Parallel Bat Algorithm-Based Clustering
Using MapReduce

Tripathi Ashish, Sharma Kapil and Bala Manju

Abstract As we are going through the era of big data where the size of the data is
increasing very rapidly resulting into the failure of traditional clustering methods on
such a massive data sets. If the size of data exceeds the storage capacity or memory of
the system, the task of clustering will become more complex and time intensive. To
overcome this problem, this paper proposes a fast and efficient parallel bat algorithm
(PBA) for the data clustering using the map-reduce architecture. Efficient using the
evolutionary approach for clustering purpose rather than using traditional algorithm
like k-means and fast by paralyzing it using the Hadoop and map-reduce architec-
ture. The PBA algorithm works by dividing the large data set into small blocks and
clustering these smaller data blocks in parallel. The proposed algorithm inherits the
bat algorithm features to cluster the data set. The proposed algorithm is validated on
five benchmark data sets against particle swarm optimization with different number
of nodes. Experimental results show that the PBA algorithm is giving competitive
results as compared to the particle swarm optimization and also providing the sig-
nificant speedup with increasing number of nodes.

Keywords Bat algorithm - Parallel bat algorithm - Map-reduce + Hadoop

T. Ashish (=) - S. Kapil - B. Manju

Jaypee Institute of Information Technology Noida, Delhi Technological
University Delhi, IP College of Women Delhi, New Delhi, India

e-mail: ashish.tripathi @jiit.ac.in; ashishQ7 @ gmail.com; se.jiit@ gmail.com
S. Kapil

e-mail: kapil @ieee.org

B. Manju

e-mail: manjugpm@gmail.com

© Springer Nature Singapore Pte Ltd. 2018 73
G.M. Perez et al. (eds.), Networking Communication and Data Knowledge

Engineering, Lecture Notes on Data Engineering and Communications

Technologies 4, https://doi.org/10.1007/978-981-10-4600-1_7

74 T. Ashish et al.

1 Introduction

Clustering is a popular analysis technique in data science, used in many applications
and disciplines. Based on the values of various attributes of objects, it is used as an
important tool and task to identify the homogeneous groups of the same. Cluster-
ing can be of following two types: hierarchal and partitioning. Hierarchal clustering
works on two techniques, division and agglomeration of data clusters. Division is
breaking large clusters into smaller ones, and agglomeration is merging small ones
into nearest cluster. While in partition-based clustering, center of each cluster is
used to compute an objective function and the value of this function is optimized
by updating the center of clusters called as centroids. Clustering has a wide applica-
tion in problems of data mining, data compression, pattern recognition, and machine
learning. K-means is clustering algorithm which works on the greedy principle. It
partitions the n data samples into k-clusters to minimize the sum of Euclidean dis-
tance of all data samples from their cluster centers. However, major drawbacks of
this algorithm are as follows:

» No proper method to initialize. Generally done randomly.

» Due to high dependency on the initial centers, it may get stuck to suboptimal val-
ues, only quick solution is to execute it multiple times.

» Accuracy changes with change in number of clusters (k).

« In many cases, it tends to get stuck to local or suboptima.

To avoid the problem of initialization dependency and stuck into the local optima,
the researchers now a days are using nature-inspired algorithms for the data cluster-
ing. Nature-inspired computing is the type of computing which takes its founda-
tion from the biological aspects of nature which is humans and animals. Four pow-
erful features of nature are self-optimization, self-learning, self-healing, and self-
processing. As a self-optimizer, nature manages its resources efficiently so as to meet
all enterprise needs in the most efficient way. The main problem with the nature-
inspired algorithm is that they are computation intensive in nature. The nature-
inspired algorithms are not able to give the satisfactory results in the reasonable
amount of time. Today, the amount of data has increased manifold and its process-
ing has become a huge problem. This big data is usually so large that its computa-
tions need to be distributed across thousands of machines so that computations can
be finished in reasonable time period. Also there are the issues of parallelizing the
computation, distributing data, and handling of failures which require large as well as
complex codes to be dealt with. As a solution to this problem, a new abstraction has
been designed that allows simple computations along with hiding the untidy details
of fault tolerance, parallelization, load balancing, and data distribution in a library.
This abstraction is conceptualized from map and reduces primitives present in Lisp
and in other languages. Most of computations involve applying map operation to
each “record” in the input. This computes a set of intermediate key and value pairs.

Parallel Bat Algorithm-Based Clustering Using MapReduce 75

Then a reduce operation is applied to all the values that share same key, so that the
derived data is combined appropriately. This model of user-specified map-reduce
operations allow large computations to be parallelized easily and fault tolerance to
be handled by re-execution.

The paper is organized as follows: Sect. 2 discusses the work done in this field.
Basic bat algorithm is briefly described in Sect. 3. The proposed algorithm PBA has
been introduced in Sect. 4. Section 5 presents the experimental results, and Sect. 6
concludes the work.

2 Related Work

With the increasing complexity and size of the data, distributed computation has
become quite popular in recent years. Apart from processing of big data, distributed
computing is widely used for the evolutionary computation and machine learning.
When the size of data is too large and it is also unstructured, scaling of the machine
learning techniques is needed to cope with it. It have been seen that when the search
space is large in the case of evolutionary computation, then traditional sequential
algorithms are not able to give satisfactory result in the specified time. In such case,
distributed evolutionary computation becomes important. There are so many dis-
tributed computation models present in the literature such as GPU, CUDA, Cloud
and Map Reduce-based implementation. Among all these, Map Reduce model is
the recent research hot spot because of its simplicity and robustness. Dean et al. [1]
given a MapReduce model for data processing on large clusters that have transformed
the world of data processing and given the birth to big data processing platforms
such as Hadoop.

Kim et al. [2] proposed a density-based clustering using Map-Reduce architecture
which is robust to find the clusters with varying densities. The experimental results
show that the proposed algorithm is found robust for the massive data applications of
real-life data which is used for the experiments, and it is observed that the execution
time decreases quite rapidly with increasing the number of machines. Clustering is
the most popular machine learning techniques used in the industries and academics.
With the evolution of massive data in the recent years, it becomes difficult to manage
it with the traditional algorithms in the stand-alone systems.

Apart from the volume issue, velocity and variety of the data are also increasing
rapidly. Cui et al. [3] proposed a k-means clustering algorithm which overcome the
problem of iterations. The experiments performed on the clusters show that the
proposed algorithm is efficient, robust, and scalable. Elsayed et al. [4] proposed
ontology-based clustering algorithm for handling massive data. Amazons elastic
MapReduce was used to perform the experiments. Li et al. [5] in his paper per-
formed k-means clustering with bagging. Experiments are performed on four node
cluster. Again results show that the execution time is decreasing with the increasing
number of nodes. Remote sensing data size is too large, and traditional MATLAB
implementation of support vector machine for such massive data becomes very time-

76 T. Ashish et al.

consuming process. In such cases, processing data at multiple cores becomes impor-
tant. Cavallaroa et al. [6] used parallel support vector machine for the classification
of classes of land cover types. The PiSVM algorithm achieved a good speedup while
maintaining the same training accuracy as compared to traditional serial algorithm.

Nabb et al. [7] have proposed parallel PSO using MapReduce and confirmed that
particle swarm optimization can be naturally implemented in the map reduce model
without compromising with the any aspect of the original algorithm. Yingjie Xu et
al. [8] developed iterative MapReduce-based PSO IMPSO algorithm for minimizing
the thermal residual stress in ceramic composites. The proposed algorithm when
executed on the cluster of 20 nodes has shown quite good speedup as compared to
conventional PSO. Also satisfactory optimization results are obtained as compared
to the conventional PSO.

Xingjian Xu et al. [9] modified Cuckoo search and implemented it using MapRe-
duce architecture. The proposed algorithm MRMCS is compared with the parallel
PSO using MapReduce (MRPSO). MMRCS shows better results as compared to
MRPSO in terms of convergence in obtaining optimality. The proposed MRMCS
when compared with MRPSO on the same number of nodes has shown two to four
times speedup.

Abhishek Verma et al. [10] scaled Genetic algorithm using map reduce. The pro-
posed models showed the convergence and scalability up to great extent. Author sug-
gested that adding even more resources may enable us in solving compels problems
since no performance bottlenecks were introduced in the implementation. Filomena
Ferrucci et al. [11] given a framework for Genetic algorithm on Hadoop and tested
it on three data sets. The developed framework showed quite promising results. The
framework given by the author is can also be executed in the cloud environment with
good performance.

3 Bat Algorithm (BA)

Bat algorithm is basically designed for the continuous optimization problems. This
algorithm is inspired by the behavior of bats to catch their prey through echo. Micro-
bats can find their prey as well as discriminate various types of insects even in the
darkness by their echolocation property. Bat algorithm has its two major advantages:
The first is frequency tuning and second is their emission rate. By using these two
properties, bats can make a control between their exploration and exploitation. To
mimic the behavior of bats, this algorithm uses the frequency-based tuning and pulse
emission rate changes. This makes implementation simpler and better convergence
when compared with other meta-heuristic algorithms. Also, BA maintains a balance
of exploration and exploitation because keeping a simple fixed ratio of exploration
to exploitation will not necessarily be an effective strategy.

Parallel Bat Algorithm-Based Clustering Using MapReduce 77

Algorithm 1 Bat Algorithm (BA)

Randomly initialize the initial population and velocity of N bats
Set the value of pulse frequency f;, pulse rates r;, and loudness A;
Evaluate the fitness fir of each bat
while stopping criteria is not satisfied do
Adjusting the frequency f; by Eq. (1)
Compute the velocity v by Eq. (2)
Update the location by Eq. (3)
if (rand > r;) then
Select candidate solution among best solutions
Generate a local solution using the selected best solution
end if
Create a new solution by flying randomly
if (rand < A; & f(x;) > f(x,)) then
Accept the new solutions
Improve the value of r;
Reduce the value of A;
end if
Rank the bats;
Compute the best x,
end while

f;’ :fmin + (fmax _fmin)ﬂ’ (1)
Vi= v 4 (o = X,)
X=x"14, 3)

where, g € [0,1]

4 Parallel Bat Algorithm

The main motivation behind the proposed parallel bat algorithm (PBA) is to lever-
age the strength of bat algorithm and to make it fast by map-reduce architecture. The
advantage of bat algorithm is that it have a proper balance between exploration and
exploitation. Generally, when the data size becomes large, then sequential evolu-
tionary algorithms are not able to provide results in reasonable amount of time. PBA
algorithm is designed to handle the large data sets by distributing data sets on differ-
ent number of nodes and processing them in a parallel way. The proposed algorithm
works in three modules.

» Bat Movement: The location of the bat is updated. If any bat is crossing the bound-
ary of the search space, then it is reinitialized.

« Fitness Calculation: In this step, fitness of all the bats is calculated.

« Reduce Phase: Output from all the mappers is gathered, and the current best bat
is updated.

78 T. Ashish et al.

Bat Movement and Fitness Calculation modules are implemented to improve the
ability of the bat algorithm for mining massive data sets and updating population
set. The key value pair of PBA is associated with each Bat by a numerical ID named
batID as the key, and the bat information is kept in the value. The bat information
contains bat-ID (batID), bat location (bat-loc), best bat location (bb-loc), bat fitness
value (bat-fit), and best bat fitness value (bh-fit). The bat-loc and bb-loc are the struc-
ture of the cluster centroids. The input to the Fitness module, which is responsible
for calculating the fitness of each bat, are the input data set and the output of the Bat
Movement module. After the Bat Movement and Fitness modules are finished, the
Reduce module updates the information of each bat by combining the two output
files from the other two modules and then sends the bats to the next iteration.

4.1 Bat Movement Module

The goal of the Map-Reduce job is to move bats to the new location in the BatMove
module. The parameters key, bat component, frequency, and loudness are initialize.
After that, the new bat locations are calculated in lines 613. In the first iteration, the
bat location will be the output to the reduce function directly because it does not
have the current best bat location yet. In the second iterations, the new bat location
is generated. The distance between the bat and the current best bat is calculated.
The map function outputs the bat fitness to the reduce function by using the emit
function when the bat has been moved. The reduce function gets the input, a list of
bats produced by the map function. Reduce function outputs the pairs of bats directly.
All the bats get the new location after the BatMove module is done.

4.2 Calculate Fitness

Mapper job is to compute the fitness of each bat in the calculate Fitness module.
Each map function reads data about all the bats from the distributed cache for the
calculation of the fitness values. The input data is split into smaller blocks, and each
map function runs on one block. The distance between the cluster center of bat-
loc and each data point is calculated by the getmin distance function. After getting
the minimum distance of the bat, a new pair of batID and mindistance is formed
and output to the reduce function. The reduce function will get the values in the
summarized form. The reason is that the key value pairs are grouped by key and will
be combined as list and send to the reduce function of Map-Reduce.

Parallel Bat Algorithm-Based Clustering Using MapReduce 79

Bat

Movement Input Data Sets
Module
Output // | e l
Block 1\ Map Block 2\ Map Block 3\ Map Miterative Map Input
Bat ID ¥+—1, valu 1, value

Z.valuz\h B 2, value 1, value
at e 2, value

Information z :

Barrier : aggregate values by keys

Reduce Function

1 = Value

2 — Value

Fig. 1 Parallel bat algorithm on map-reduce

4.3 Combine module

The goal of the combine module is to merge the output files from the Bat Movement
module and the calculate Fitness module to refresh the bat information about bat-loc,
bat-fit, and best-fit. The fitness values of each bat is assigned to the bat-fit according
to the batID number. Now in order to get the best bat, all the fitness values from the
fitness output module are compared. After getting the best-fit, the best bat-loc can
be found from the output file of the Bat Movement module by checking the batID.
After Refreshing the bat information, the new bats are sent to the Bat Movement
module to start the next iteration until the terminate criterion has been met (Fig. 1).
The pseudocode of the PBA is presented in Algorithms 2-3.

5 Experimental Results

The experimental environment is a Hadoop cluster composed of four computers.
All the computers are desktop with Intel Core i5-intel (2.30 GHz * 8), 4 GB RAM,
and 1 TB hard disk. In the cluster, one of the desktop is set as the master, while the
remaining computers are set as the slave nodes to do the MapReduce jobs. In order
to implement proposed algorithm, Hadoop 2.6.0 is used for the MapReduce pro-
gramming model, and the Java version is 1.7.0. The proposed algorithm is validated
on five benchmark data sets: Iris, Glass, Wine, Magic and Poker Hand. The quality
of clustering is tested using the total intra-cluster distance given by the PBA algo-
rithm and is compared with the well-known particle swarm optimization algorithm.
Each data set is carried out 15 times to get the average fitness value. Table 1 shows

80 T. Ashish et al.

Algorithm 2 PBA : Bat Movement Module

/* Map function */
map(Key: batID, Value: bat)
batID = Key
bat = getlnfo (Value)
Generate a random number in [0,1]
//Moving bats
for each i on dimension of bat_loc do
if first iteration then
write(batID, bat)
else
bat.bat_loc;+ = rand % (bat.bh_loc; — bat.bat_loc;) * f;
end if
end for
if rand > r; then
Select a solution among the best one
Generate a local solution in the proximity of the best solution
end if
if rand < A;f(bat;) < f(bat,est) then
Accept new solution
Decrease loudness and increase pulse rate
end if
bat.update(batID)
write(batID, bat)
/* Reduce function */
Reduce(Key: batID, Value: bat_list)
for each bat in the bat_list do
write(batID, bat)
end for

Algorithm 3 PBA : Bat Fitness Module

/* Map function */

map(Key: datalD, Value: data)

datalD = Key

data = Value

//Select the bats from the Bat Movement Module

batList = getInfo (output of Bat Movement)

// Calculating minimum distance

for each bat of the batList input do
mindistance = readmindistance(data, bat.bat_loc)
write(bat.batID, mindistance)

end for

/* Reduce function */

Reduce(Key: batID, Value: mindistance_list)

for each mindistance in mindistance_list do
sum+ = mindistance

end for

that the PBA algorithm outperforms PSO for all the data sets. The advantage of the
PBA algorithm is in that the bats make a proper balance between the exploration and
exploitation. In order to test the measure of the speedup, we have run our algorithm
on the cluster of four nodes. Table 2 contains the running time on the different num-
ber of nodes. It can be observed from the Table 2 that proposed algorithm is showing
good speedup as the size of the data set is increasing.

Parallel Bat Algorithm-Based Clustering Using MapReduce

Table 1 Intra-cluster distance between considered algorithms

81

Algorithm 50 100 100 100 50
Iris Glass Wine Magic Poker Hand

PBA 106.48 333.11 17163.32 1274574.42 660627.9

PSO 130.5 340.5 17888.77 1648270.8 6707348.5
Table 2 Running time (in seconds) with increasing number of nodes

Iteration Single node Two nodes Three nodes Four nodes

Iris 59.1 58.9 58.9 58.7

Glass 60 60 59 59.3

Wine 115 116.5 115.2 116.4

Magic 435 3334 218.1 215.7

Poker Hand 27719.7 5077.1 4766.2 4235.2

6 Conclusion

In this paper, we proposed a novel clustering algorithm called parallel bat algorithm
(PBA) to solve the massive data set clustering problems. The proposed algorithm
leverages the strength of the bat algorithm and MapReduce. The simulation results
show that PBA algorithm can be efficiently used for clustering large data set. Also
simulation results show that the proposed algorithm performs very well when tested
multiple nodes. In the future, the computation time can be reduced by implement-
ing it on the spark architecture. Also the future work will include the testing of the
proposed algorithm on some real-time massive data set.

References

1. D. Che, M. Safran, and Z. Peng, “From big data to big data mining: challenges, issues, and
opportunities,” in Database Systems for Advanced Applications, 2013.

2. X.Cui, P. Zhu, X. Yang, K. Li, and C. Ji, “Optimized big data k-means clustering using mapre-
duce,” The Journal of Supercomputing, vol. 70, pp. 1249-1259, 2014.

3. J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Commu-
nications of the ACM, vol. 51, pp. 107-113, 2008.

4. A.Elsayed, H. M. Mokhtar, and O. Ismail, “Ontology based document clustering using mapre-
duce,” arXiv preprint arXiv:1505.02891, 2015.

5. L. D. Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, “A parallel genetic algorithm based
on hadoop mapreduce for the automatic generation of junit test suites,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, 2012.

6. Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, and J.-J. Li, “Distributed evolu-
tionary algorithms and their models: A survey of the state-of-the-art” Applied Soft Computing,
vol. 34, pp. 286-300, 2015.

http://arxiv.org/abs/1505.02891

82

10.

11.

T. Ashish et al.

Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan, “Mr-dbscan: an efficient paral-
lel density-based clustering algorithm using mapreduce,” in Parallel and Distributed Systems
(ICPADS), 2011 IEEE 17th International Conference on, 2011.

H.-G. Li, G.-Q. Wu, X.-G. Hu, J. Zhang, L. Li, and X. Wu, “K-means clustering with bagging
and mapreduce,” in System Sciences (HICSS), 2011 44th Hawaii International Conference on,
2011.

A. W.McNabb, C. K. Monson, and K. D. Seppi, “Parallel pso using mapreduce,” in Evolution-
ary Computation, 2007. CEC 2007. IEEE Congress on, 2007.

A. Verma, X. Llora, D. E. Goldberg, and R. H. Campbell, “Scaling genetic algorithms using
mapreduce,” in Intelligent Systems Design and Applications, 2009. ISDA’09. Ninth Interna-
tional Conference on, 2009.

Y. Xu and T. You, “Minimizing thermal residual stresses in ceramic matrix composites by
using iterative mapreduce guided particle swarm optimization algorithm,” Composite Struc-
tures, vol. 99, pp. 388-396, 2013.

	Parallel Bat Algorithm-Based Clustering Using MapReduce
	1 Introduction
	2 Related Work
	3 Bat Algorithm (BA)
	4 Parallel Bat Algorithm
	4.1 Bat Movement Module
	4.2 Calculate Fitness
	4.3 Combine module

	5 Experimental Results
	6 Conclusion
	References

