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Abstract Various aiding sensors can be integrated with the inertial navigation
system (INS) to reduce its error growth when the vehicle is operating in GNSS
denied environments. This paper developed a method to use the vanishing point
from vertical line observations of building blocks in order to further improve
point-based visual-inertial navigation system (VINS) for land vehicle applications.
First, we presented the formulations of tightly coupled point-based VINS based on
the Multi-State Constraint Kalman Filter (MSCKF) in the local-level frame.
Second, we developed the relationship between the INS roll angle and vanishing
point coordinates from vertical line observations. The roll angle measurement
model is formulated. Finally, loosely coupled vertical line aiding module is added
to the existing VINS, and the integration scheme is presented. Real world experi-
ments demonstrated the validity of the mixed VINS method and the improved
accuracy of the attitude and position estimation when compared with the solution
without vertical line vanishing point aiding.

Keywords Visual-inertial navigation system � Vanishing point � Roll angle �
MSCKF � Localization

1 Introduction

In the last decade there has been an increasing use of Autonomous Ground Vehicles
(AGVs) in many navigation applications. One of the representative civil application
is in intelligent transport systems (ITSs); more specifically in autonomous cars or
driverless cars [1]. In the vehicle’s Guidance, Navigation, and Control
(GNC) system, the navigation state estimation is an essential component, not only
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for the vehicle’s autonomous navigation, but also for cooperative safety commu-
nications among vehicles [2–4]. Among different navigation systems, the inertial
navigation system (INS) is the only one that has the capability to produce a complete
and continuous set of navigation state data with high precision during a short time
span. However, low-cost INS has to be integrated with other aiding sensors to reduce
its error growth. INS and Global Navigation Satellite System (GNSS) integration is
commonly used for vehicle outdoor navigation. However, GNSS signal can suffer
from obstruction and multipath errors in city centers and mountainous regions, and is
prone to the possibility of being jammed or spoofed [5].

To mitigate the error growth of INS in GNSS denied environment, aiding sen-
sors such as wheel odometers and motion constraints (e.g., Non-holonomic
Constraints (NHC) as a “virtual” sensor) were utilized for land vehicles [6, 7].
Recently, researchers proposed to use vision sensor aiding in the navigation system,
in loosely coupled form, with the visual odometry (VO) module [8, 9], or in tightly
coupled form [10–13]. Most research used point features in the tightly coupled
VINS, including simultaneous localization and mapping (SLAM) based methods
[10, 14] and structure-less methods, which focus on the ego-motion only [12, 15].
The representative algorithm of filter based methods is called multi-state constraint
Kalman filter (MSCKF) [12], which augments camera poses (a sliding window of
poses) into the state vector to make most use of measurements of feature points in
the geometry constraint. Apart from the point-based VINS, there are approaches
using the vanishing point (VP) module [16, 17], another attitude aiding source for
INS working in the environment with structured buildings or in corridors. These
methods rely on the observation of parallel lines in structured buildings.

In this paper, we present MSCKF in the local-level frame (LLF), which is
common to the navigation community. To improve the performance of point-based
MSCKF, we propose to add a VP module, which observes vertical lines of building
blocks, for land vehicle navigation. Based on that, a roll angle measurement model
is derived. Therefore, a mixed VINS using points and line observations is devel-
oped, and its performance is verified by real data experiments.

2 MSCKF Algorithm in Local-Level Frame

MSCKF is considered as a structure-less visual-inertial navigation system, which
means the vehicle localization is of the main interest, rather than recovering the
structure of the environment. They take into account all camera poses at which
observations of the same 3D point occurred. MSCKF augments camera poses (a
sliding window of poses) into the state vector to make most use of measurements of
feature points in the geometry constraint. Every feature has a corresponding stack of
misclosure vectors (residuals). Feature position error states are cancelled out by
projecting the residual stack on the left null space of the design matrix corre-
sponding to the feature error state [12]. Here we present the MSCKF algorithm in
LLF with the notations common to navigation engineers and researchers, in order to
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bridge between the navigation community and robotics community. It should be
mentioned that some components in the filtering formulations should be modified
with respect to original MSCKF.

2.1 MSCKF States and Covariance

For the near-Earth navigation, the navigation frame is usually the local-level frame
(n-frame; east-north-up is used in this paper). The navigation state is presented by
the position (latitude L, longitude k and height h), velocity (east velocity, north
velocity, and up velocity), and attitude (pitch, roll, and azimuth). Differential
equations of position P, velocity Vn and attitude matrix Cn

b are given by

_P ¼ D�1Vn ¼
0 1

RM þ h 0
1

ðRN þ hÞ cos L 0 0
0 0 1

24 35Vn ð2:1Þ

_Vn ¼ f n � 2xn
ieþxn

en

� �� Vnþ gn ð2:2Þ

_Cn
b ¼ Cn

b xb
ib�

� �� xn
ieþxn

en

� ��� �
Cn
b ð2:3Þ

where RM and RN are meridian radius of curvature and prime vertical radius
respectively, f n is the specific force in n-frame, xn

ie is the earth rotation angular rate
vector, xn

en is the angular rate of the navigation frame with respect to (w.r.t.) ECEF
frame, and xb

ib is the angular rate of the body frame (b) w.r.t. the inertial frame (i).
The notation ðaÞ� is the asymmetric matrix of a vector a. The navigation states are
propagated using Eqs. (2.1–2.3), which is called INS mechanization where the IMU
measurement is the input signal.

The navigation states can be considered as the full states, and the associated
errors are called error states. For convenience, let X denote the error states, and the
full states will be presented by their quantities notions. The state vector of the
MSCKF is:

X ¼ XT
I XT

C1
XT
C2
� � � XT

Cm

� �T ð2:4Þ

where XI is the current INS error states, and XCi ; i ¼ 1. . . m are camera poses errors
at the times the last m images were recorded. INS error states are defined as

XI ¼ dVnT /nT dPT bTg bTa
h iT

ð2:5Þ

where dVn, /n, and dP are the velocity error, misalignment error, and position error
(latitude, longitude and height error). bg and ba are biases of gyroscopes and
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accelerometers. In this case, the dimension of the state vector is 15 + 6 m.
Misalignment error /n (considered as the small angle) is defined by

Ĉn
b ¼ I � /n�½ �Cn

b ð2:6Þ

For EKF, the INS error state propagation is based on the INS error dynamic
model. The IMU sensor biases are modelled as random constants, random walks or
Gauss-Markov processes. The ith camera pose errors are defined as:

XCi ¼ /nT
Ci

dPT
Ci

� �T ð2:7Þ

where /n
Ci

and dPCi are the camera’s attitude error and position error at the ith
recorded instance. The augmented ith camera pose errors are modeled as random
constant, since the previous camera poses will not change over time.

The camera pose is augmented into the state when recording a new image. It is
calculated from current IMU pose and the known relative pose between IMU and
the camera using Eqs. 2.8–2.9.

Ĉn
C ¼ Ĉn

bC
b
C ð2:8Þ

P̂C ¼ P̂þD�1Ĉn
bP

b
bC ð2:9Þ

where Cb
C and Pb

bC are the rotation matrix and lever-arm between the camera and the
IMU; P̂C and Ĉn

c are the position and attitude matrix of the camera. Then the camera
pose estimate is appended to the state vector, and the covariance matrix is aug-
mented accordingly:

X 15þ 6ðmþ 1Þð Þ  X 15þ 6mð Þ�1;XCð6�1Þ
� �T ð2:10Þ

Pkjk  I15þ 6m

J6�ð15þ 6mÞ

� �
Pkjk

I15þ 6m

J6�ð15þ 6mÞ

� �T
ð2:11Þ

where

J6�ð15þ 6mÞ ¼
O3�3 I3�3 O3�3 O3�6 O3�6m
O3�3 D�1 bCn

bP
b
bC

� 	
� I3�3 O3�6 O3�6m

" #

2.2 MSCKF Procedures

Assuming that the ith feature, which has been observed in a set of Mi images, is no
longer detected. An EKF measurement update will be triggered after forming a
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residual corresponding to this ith feature. Suppose we have the measurement ~z ji for
j ¼ 1. . . Mi: The predicted measurement of the ith feature in jth image is

ẑ ji ¼ h bPCj ;
bCn
Cj
; bPfi

� 	
ð2:12Þ

where hð�Þ is the nonlinear camera projection equation, and bPfi is the computed
feature position. So the residuals of ith feature are

dz ji ¼ ẑ ji � ~z ji � H j
Xi
XþH j

fi
dPfi þ n j

i ð2:13Þ

where the Jacobian matrix is

H j
Xi
¼ O2�15 O2�6 � � � J j

i
bPCj

fi �
� 	bCcj

n �J j
i
bCcj
nD � � � O2�6

h i
2�ð15þ 6mÞ

H j
fi
¼ J j

i
bCcj
nD

where

J j
i ¼

1bZCj

i

1 0 � bXCj
ibZCj
i

0 1 � bY Cj
ibZCj
i

2664
3775; bXCj

ibYCj

ibZCj

i

264
375 ¼ bPCj

fi
¼ bCCj

n D bPfi � bPCj

� 	

Stack the dz ji of all Mi measurements of the ith feature to form the block residual
vector:

dzi ¼ HXiXþHfidPfi þ ni ð2:14Þ

To remove the effect of feature position error, define a residual vector
dzOi ¼ ATdzi, where A is a matrix whose columns form the basis of the left null
space of Hfi . The new residual will be

dzOi ¼ ATdzi ¼ ATHXiXþATni ¼ HO
i Xþ nOi ð2:15Þ

After the measurement update in the Kalman filter, do the feedback corrections
to the navigation states and camera poses.

The MSCKF can be implemented and operated in different ways [18]. For
example, minimum feature track lengths can be set to trigger an update. Large
minimum feature track length means that the landmarks will be observed with a
larger base line, while some near landmarks will be neglected. Potentially, large
minimum feature track may have better accuracy than the small minimum feature
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track, but the former will also have the problem of losing useful information, which
is often better than none. Usually, a large minimum feature track length will require
more features to be detected to have superior accuracy than the small minimum
feature track length.

3 Roll Angle Aiding with Vertical Line Observations

Most approaches of VINS have focused on the point features observation. Line
features are omnipresent and can be reliably extracted and tracked in structured
urban environments. Here we propose to use vanishing point coordinates from
buildings’ vertical line observations as an attitude aiding to improve point-based
VINS on-board the land vehicles.

3.1 Roll Measurement from Vertical Line Observations

The advantage of using buildings’ vertical line observations is that the measurement
is absolute roll, since the directions of these vertical lines are known. A vanishing
point is the intersection of image projections of a set of parallel 3D lines in the
scene. Each set of parallel lines is associated to a VP in an image [19].

The vertical lines in the world frame (local-level frame here) intersect at the
infinity point which can be represented as U ¼ 0 0 1 0½ �T . The corresponding
vanishing point u in the image plane is the projection of the infinity point U. The
projection equation is written as:

u ¼ K CC
n T

� �
U ð3:1Þ

where K is the camera calibration matrix, CC
n is the camera rotation matrix, and T is

the translation vector of the camera. Equation (3.1) can be rewritten as

u ¼ KCC
bC

b
n 0 0 1½ �T ð3:2Þ

Then INS roll (c) and pitch (h) can be represented as

� sin c cos h
sin h

cos c cos h

24 35 ¼ Cb
CK
�1u ð3:3Þ
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The roll angle can be calculated as

c ¼ tan�1 � eT1C
b
CK
�1u

eT3C
b
CK
�1u

 !
ð3:4Þ

where e1 ¼ 1; 0; 0;½ �T ; and e3 ¼ 0; 0; 1½ �T .
Suppose the camera has been calibrated, so Cb

CK
�1 is known. Vanishing point

u is determined by the coordinates of the intersection of multiple detected vertical
lines in the image. In this paper, we use the Line Segment Detection (LSD) [20] to
get the lines segments, which are then clustered into multiple VP classes based on
the J-Linkage model [21]. The vertical VP u is one of the dominant VP classes, and
can be easily selected and estimated [22]. Note that some erroneous line segments
exist in the vertical VP class. They can be further cancelled by making additional
assumptions, for example on the orientation or length of the line segments.

3.2 Roll Angle Measurement Model

In the INS mechanization, the roll angle c can be calculated by

ĉ ¼ tan�1
�ĉ31
ĉ33

ð3:5Þ

where ĉ31 and ĉ33 are elements of attitude matrix bCn
b, which can be written as

bCn
b ¼ I � /n�½ �Cn

b ¼
1 /U �/N
�/U 1 /E
/N �/E 1

24 35 c11 c12 c13
c21 c22 c23
c31 c32 c33

24 35 ð3:6Þ

So the roll can be expressed as

ĉ ¼ tan�1
�ĉ31
ĉ33
¼ tan�1

�ðc11/N � c21/E þ c31Þ
c13/N � c23/E þ c33

ð3:7Þ

Then the INS roll error dc can be expressed as

dc ¼ @ĉ
@/E

/E þ
@ĉ
@/N

/N þ
@ĉ
@/U

/U ð3:8Þ

where

@ĉ
@/E

� ĉ21ĉ33 � ĉ31ĉ23
ĉ231þ ĉ233

;
@ĉ
@/N

� ĉ31ĉ13 � ĉ11ĉ33
ĉ231þ ĉ233

;
@ĉ
@/U

¼ 0
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Subtracting the VP derived roll angle from the INS roll angle, we have the
residual

Zc ¼ ĉ� ~c ¼ dc� vc ð3:9Þ

Therefore, the design matrix of the roll measurement is

Hc ¼ O1�3
@ĉ
@/E

@ĉ
@/N

@ĉ
@/U

O1�9 O1�6m
h i

ð3:10Þ

As we can see from the Jacobian matrices, the roll measurement will contribute
to the estimation of both horizontal attitude errors but not the azimuth error.

3.3 Navigation Procedure

The navigation flow chat is illustrated in Fig. 1. When a new image is observed,
some key functions in MSCKF and VP aiding will work: state augmentation and
feature detection and matching, and vertical line detection, respectively. If the
measurement update is triggered in either vision modules, the states will be
corrected.

4 Results and Analysis

The point-based MSCKF and vanishing point aiding from vertical lines algorithm
described in the previous sections was tested using ‘2011_09_26_drive_0036’
dataset from the KITTI benchmark [23]. The synchronized IMU data (10 Hz) and
rectified grayscale images (10 Hz, global shutter) were used to verify the algorithm.
The biases of gyroscopes and accelerometers are 0.01°/s and 1 mg (see more details
in [24]). The reference was the IMU/GPS results (OXTS RT3003) with the L1/L2
RTK positioning accuracy of 0.02 m and pitch/roll accuracy of 0.03°. We used 250
images with traveled distance about 180 m, as shown on Fig. 2.

To illustrate the performance of proposed algorithms, the GPS data was totally
blocked of whole trajectory except for the initial value of navigation states. We
compared the performance of the following navigation schemes.

• Free INS: Only INS mechanization is performed to calculate the navigation
states.

• MSCKF-VINS with minimum 5 tracking poses: minimum 5 poses in the
tracking are required to trigger a measurement update.

• MSCKF-VINS with minimum 20 tracking poses: minimum 20 poses in the
tracking are required to trigger a measurement update.
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• MSCKF-VINS with minimum 20 tracking poses and with vertical line aiding:
Vanishing point aiding module is added into the system where minimum 20
poses in the tracking are required.

The trajectory results of the 4 navigation schemes are shown in Fig. 2. The
horizontal attitude errors and position errors are presented in Figs. 3 and 4. We can
see that there is just minor difference between MSCKF-VINS with minimum 5 and
20 tracking poses. A slight better pitch estimation of MSCKF-VINS with 20
tracking poses can be seen in Fig. 3 when there are abundant features (before 14 s).
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End naviga on?

Yes

No

Ini aliza on

State Augmenta on

Feature Tracking

VP detec on of 
ver cal lines

Roll angle 
calcula on

MSCKF Roll-aiding

Fig. 1 Navigation flowchart
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One reason can be that the longer tracking will observe further distance landmarks,
which is beneficial for the pitch angle estimation.

An example of vertical line clustering is shown in Fig. 5, where the green line
segments correspond to the vertical VP. When adding the vertical line vanishing
point aiding into the system, both pitch and roll estimations are improved to a great
extent (up to 0.2°) compared with MSCKF-only methods. The horizontal position
error is also less than MSCKF-only methods in general, within 1.2 m. The position
estimation improvement results from better attitude estimation, because the attitude

Fig. 2 Reference and calculated trajectory
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error will produce horizontal acceleration error by projecting the gravity to the
horizontal plane.

5 Conclusion

In this paper, we use MSCKF in the local-level frame and present it in a way that is
common to navigation community. To improve the performance of point-based
MSCKF, we proposed to add a VP module which observes the vertical lines of
building blocks for land vehicle navigation. Based on that, the roll angle mea-
surement model was derived. Therefore, a mixed VINS using points and line
observations was developed, and its performance was verified by real data exper-
iments. Horizontal attitude and position estimations are improved by using vertical
line vanishing point aiding module.
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Fig. 5 Line segments groups with different colors (Color figure online)
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