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Abstract

The most widely accepted hypothesis to explain the pathogenesis of

Alzheimer disease (AD) is the amyloid cascade, in which the accumula-

tion of extraneuritic plaques and intracellular tangles plays a key role in

driving the course and progression of the disease. However, there are

other biochemical and morphological features of AD, including altered

calcium, phospholipid, and cholesterol metabolism and altered mitochon-

drial dynamics and function that often appear early in the course of the

disease, prior to plaque and tangle accumulation. Interestingly, these other

functions are associated with a subdomain of the endoplasmic reticulum

(ER) called mitochondria-associated ER membranes (MAM). MAM,

which is an intracellular lipid raft-like domain, is closely apposed to

mitochondria, both physically and biochemically. These MAM-localized

functions are, in fact, increased significantly in various cellular and animal

models of AD and in cells from AD patients, which could help explain the

biochemical and morphological alterations seen in the disease. Based on

these and other observations, a strong argument can be made that

increased ER-mitochondria connectivity and increased MAM function

are fundamental to AD pathogenesis.
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11.1 Introduction

Beginning in primary school and continuing on

through secondary school and university, the

approach to teaching the structure of eukaryotic

cells has been informed by what one might call

the “pigeonhole” view. In other words, the cell is

described not as a unitary entity, but rather as an

object containing various discrete subcellular

elements – for example, the nucleus, the endo-

plasmic reticulum, the Golgi body, mitochondria,

peroxisomes, endosomes, and lysosomes – each

with its own special place within the cell and

each with its own special function. This view is

so embedded in our thinking that we have even

anthropomorphized many of these functions: the

mitochondrion is the “powerhouse of the cell,”

the nucleus is the cell’s “information center,” the

lysosome is the cell’s “garbage disposal and

recycling center,” and so forth.

Of course, the reality is much more complex.

Each subcellular compartment indeed has its own

role to play, but to work properly, both spatially

and temporally, the function of each organelle

has to be coordinated with the function(s) of

every other organelle. In addition, organelles

can have multiple complementary and/or

overlapping functions. For example, the synthe-

sis of cholesterol requires the interplay of at least

five organelles – endoplasmic reticulum (ER),

the Golgi body, the plasma membrane (PM),

mitochondria, and the nucleus – while calcium

trafficking requires at least three, ER,

mitochondria, and PM.

This interdependence is seen most clearly in

the many functions of the ER, which makes

physical connections with the nucleus (as the

nuclear envelope), the Golgi body (at ER exit

sites), the plasma membrane (at plasma

membrane-associated membranes, or PAM),

peroxisomes (in the “pre-peroxisomal” compart-

ment), and even with lipid droplets (English and

Voeltz 2013, Lynes and Simmen 2011). One

other important ER connection point, and one

that is relevant to the rest of our discussion

here, is the association of ER with mitochondria,

at mitochondria-associated ER membranes, or

MAM. The role of MAM as a highly dynamic

entity and its unexpectedly important association

with neurodegenerative disease have been

revealed only in the last ten years. We will dis-

cuss here a hitherto-unsuspected connection

between MAM function and the pathogenesis of

Alzheimer disease (AD).

11.2 Mitochondria-Associated ER
Membranes

As noted elsewhere in this volume, MAM is a

dynamic subdomain of the ER that

communicates with mitochondria, both biochem-

ically and physically (Csordas et al. 2006,

Hayashi et al. 2009, Raturi and Simmen 2013,

Rusinol et al. 1994). It is a distinct biochemical/

biophysical entity within the overall ER network:

as opposed to “free ER,” “MAM ER” is a lipid

raft-like domain rich in cholesterol and

sphingomyelin (Area-Gomez et al. 2012,

Hayashi and Fujimoto 2010) and is enriched in

approximately 1,000–1,200 proteins, as deter-

mined by proteomic analyses of MAM derived

from mouse liver (Sala-Vila et al. 2016) and

mouse brain (Poston et al. 2013); of these,

approximately 165 have been verified in the lit-

erature, and of those, mutations in about 65 are

associated with human disease. Among the

proteins associated with MAM-related functions

are those involved in calcium homeostasis (e.g.,

IP3 receptors (Mendes et al. 2005, Szabadkai

et al. 2006)), in phospholipid metabolism (e.g.,

phosphatidylserine synthase (Stone and Vance

2000, Vance et al. 1997)), in cholesterol metabo-

lism (e.g., acyl-CoA/cholesterol acyltransferase

(Rusinol et al. 1994)), in lipid transfer between

mitochondria and ER (e.g., fatty acid transfer

protein 4 (Jia et al. 2007)), and in the regulation

of mitochondrial morphology (e.g., dynamin-

related protein 1 and mitochondrial fission factor

(Friedman et al. 2011)). MAM is also associated

with proteins that regulate and/or stabilize the

apposition of mitochondria to ER (at an

estimated interorganellar distance of

~10–30 nm (Csordas et al. 2006)), such as
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mitofusin 2 (de Brito and Scorrano 2008) and

phosphofurin acidic cluster sorting protein

2 (Simmen et al. 2005), but the exact “tethering”

mechanism is not known.

11.3 Alzheimer Disease

The main histopathological hallmarks of

Alzheimer disease (AD), a neurodegenerative

disorder characterized by progressive neuronal

loss in the cortex and hippocampus, are the accu-

mulation of extracellular neuritic plaques and

intracellular neurofibrillary tangles (Querfurth

and LaFerla 2010). The plaques are composed

of numerous proteins, most prominent among

them β-amyloid (Aβ). The tangles consist mainly

of hyperphosphorylated forms of a single protein,

the microtubule-associated protein tau (Reitz

2012). The majority of AD (>99% of patients)

is sporadic (SAD), but genetic variations in

APOE, encoding apolipoprotein E, a component

of circulating lipoproteins, confer an increased

risk of developing the disease (Holtzman et al.

2012, Huang 2010). At least three genes have

been identified in the far rarer autosomal-

dominant familial form (FAD): the amyloid pre-

cursor protein (APP), presenilin-1 (PS1), and

presenilin-2 (PS2). From a clinical point of

view, the two disorders are essentially identical,

differing only in the earlier age of onset in FAD

(Querfurth and LaFerla 2010).

Disturbances in APP processing play a critical

role in both forms of the disease. Full-length APP

(which is 695–770 aa in length, depending on the

isoform; APP-695 is the predominant isoform in

brain) is cleaved near its C-terminus by

β-secretase (BACE1) to produce a long soluble

N-terminal fragment (sAPPβ) and a shorter

membrane-bound C-terminal fragment

(APP-C99). APP-C99 is then cleaved by the

γ-secretase complex (an aspartyl protease

containing PS1 and/or PS2 in its catalytic core;

both presenilins are produced as full-length, rel-

atively inactive, precursors that are cleaved auto-

catalytically to produce the active enzyme) to

produce Aβ (~40 aa [Aβ40]) and the APP intra-

cellular domain (AICD) peptide (~50 aa).

Pathogenic mutations in PS1, PS2, or APP that

cause FAD result in the production of aberrantly

processed forms of Aβ (and especially an

increase in the ratio of Aβ42/Aβ40) that accumu-

late in the neuritic plaques. The accumulated Aβ,
and especially Aβ42, is toxic to cells, promoting

tau hyperphosphorylation. This chain of events

has been called the “amyloid cascade” (Hardy

and Higgins 1992, Selkoe 2011) and is the most

widely accepted hypothesis to explain the patho-

genesis of AD.

The amyloid cascade hypothesis helps explain

why mutations in both APP and in the presenilins

cause FAD. However, the amyloid cascade

hypothesis does not address other features of

AD that have received less attention in the field

(Area-Gomez and Schon 2016, Schon and Area-

Gomez 2010, Schon and Area-Gomez 2013).

These include altered cholesterol (Stefani and

Liguri 2009), glucose (Hoyer et al. 1988, Liu

et al. 2009), fatty acid (Fraser et al. 2010), and

phospholipid (Pettegrew et al. 2001) metabolism,

perturbed calcium homeostasis (Bezprozvanny

and Mattson 2008), and mitochondrial dysfunc-

tion (Wang et al. 2009). It is notable that these

“other” features of AD are the very ones that are

implicated in MAM function and that are often

associated with proteins enriched in the MAM.

This potential connection has given rise to the

hypothesis that perturbed MAM function plays a

role in the pathogenesis of AD (Area-Gomez and

Schon 2016, Schon and Area-Gomez 2010,

Schon and Area-Gomez 2013).

11.4 The MAM Connection in AD

In the last few years, a number of groups have

found that presenilins and γ-secretase activity

itself, while present in the ER (in agreement

with the findings of others (Busciglio et al.

1997, Walter et al. 1996)), are not present there

homogeneously, but rather are enriched hetero-

geneously in the MAM subcompartment of the

ER (Area-Gomez et al. 2009, Newman et al.

2014, Schreiner et al. 2015). The finding that

MAM is an intracellular lipid raft (Area-Gomez

et al. 2012, Hayashi and Fujimoto 2010) is
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consistent with the observation that PS1 and

γ-secretase activity reside in lipid rafts (Vetrivel

et al. 2004) and supports the emerging view that

rafts are located not only at the cell surface

(Lingwood and Simons 2010, Vieira et al.

2010) but can also be found inside the cell (e.g.,

at the MAM).

Furthermore, alterations in the processing of

APP result in MAM dysfunction, and vice versa
(Area-Gomez et al. 2012, Hedskog et al. 2013),

which links abnormalities in γ-secretase function
to the metabolic alterations found early in the

course of the disease. On the morphological

side, the area of ER-mitochondria appositon is

increased significantly in FAD and SAD

fibroblasts and in presenilin-mutant cells, com-

pared to controls (Area-Gomez et al. 2012). On

the biochemical side, it has long been known that

calcium homeostasis, which is in large part a

MAM-mediated process (Csordas et al. 2010,

Hayashi et al. 2009, Patergnani et al. 2011), is

perturbed in AD patients (Gibson et al. 1997,

Liang et al. 2015, Mattson 2010, Peterson and

Goldman 1986, Sims et al. 1987, Supnet and

Bezprozvanny 2010) and in animal models of

AD (Sun et al. 2014). Another MAM-mediated

process, mitochondrial bioenergetics and dynam-

ics (e.g., organellar localization, fusion, and fis-

sion), is also perturbed in AD (Ferrer 2009,

Gibson and Huang 2004, Peterson and Goldman

1986, Riemer and Kins 2013, Stokin et al. 2005,

Wang et al. 2008).

Another important early feature of AD is dis-

turbed lipid homeostasis (Di Paolo and Kim

2011), which may be behind some of the synaptic

alterations seen in the disease (Rohrbough and

Broadie 2005). As alluded to above, MAM

serves as a regulatory hub for lipid regulation,

including that of cholesterol and phospholipids

(Vance 2014). Both of these functions are altered

in AD (Area-Gomez et al. 2012, Stefani and

Liguri 2009, Pettegrew et al. 2001), which can

explain the altered lipid profiles seen in the dis-

ease (Chan et al. 2012) and the still-controversial

connection to cholesterol (Chan et al. 2012).

Early alterations in MAM can also explain

the prominent role of ApoE4 as a major genetic

risk factor in sporadic AD (Holtzman et al.

2012). As noted above, ApoE is a component

of lipoproteins that traffic lipids – mainly cho-

lesterol, cholesteryl esters, and phospholipids –

through the circulation, including the brain

(where astrocytes, but not neurons, synthesize

ApoE). There are a number of naturally occur-

ring variants of ApoE in the population, with

the most common being ApoE3 (it has a cyste-

ine at amino acid position 112). ApoE4, with an

arginine at that position, confers a significantly

increased risk of developing AD compared to

that conferred by ApoE3, via a currently

unknown mechanism (Holtzman et al. 2012).

Notably, ApoE4 has been shown to increase

the intracellular concentration of cholesterol

compared to the effect of ApoE3 (Heeren et al.

2004).

Consistent with this difference, it was recently

shown that lipoproteins containing ApoE4 (but

not the free protein) upregulated MAM function

to a significantly greater degree than did those

containing ApoE3 (Tambini et al. 2016). These

results imply that the negative effects of ApoE4

on MAM functionality may well be due to its

function in lipoprotein-mediated cholesterol

metabolism and trafficking. Thus, the contribu-

tion of ApoE4 to the risk of developing AD may

be due to the effects of perturbed cholesterol

homeostasis on MAM function. This finding is

concordant with the discovery of genetic variants

in a number of cholesterol metabolism-related

genes (Wollmer 2010), such as ABCA7
(Steinberg et al. 2015), which encodes a choles-

terol and phospholipid transport protein

(Abe-Dohmae et al. 2004), also predispose to

developing AD.

Overall, these data and observations support a

view of AD pathogenesis that departs from that

afforded by the amyloid cascade hypothesis and

is focused less on plaques and tangles and more

on altered cellular metabolism as the underlying

disturbance in AD. In particular, the “MAM

hypothesis” proposes that the development and

progression of the AD result from increased

communication between ER and mitochondria

at the MAM (Area-Gomez and Schon 2016,
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Schon and Area-Gomez 2010, Schon and Area-

Gomez 2013). This increase affects a panoply of

cellular functions, both directly (e.g., alterations

in MAM-localized enzymatic functions) and

indirectly (e.g., alterations in cellular behavior

in response to perturbed MAM behavior). The

increased apposition between ER and

mitochondria and the concomitant alteration in

MAM function are consistent with the perturbed

cholesterol homeostasis, the altered phospholipid

profiles, the increased calcium trafficking

between the two organelles, the changes in mito-

chondrial bioenergetics and dynamics, and the

elevated ratio of Aβ42/Aβ40 (Schon and Area-

Gomez 2013). Thus, it is possible that the func-

tional cause of AD is an increase in the commu-

nication between ER and mitochondria and an

associated upregulation in MAM function. What

now remains to be elucidated is the biochemical

cause of this ER-mitochondria hyperconnectivity

and how APP processing plays a role in this

process.

In this regard, the finding that ApoE4 impacts

on MAM function may provide an important

clue. Although the connection between ApoE4

and APP processing is at present unclear, one

conceptual connection between the two is

perturbed cholesterol homeostasis. Lipoproteins

transport cholesterol and cholesteryl esters, and

their components are recycled following binding

to lipoprotein receptors on the cell surface and

internalization into the cell. Interestingly, intra-

cellular lipoprotein-derived cholesterol is

recycled poorly in ApoE4-containing cells rela-

tive to ApoE3 (Heeren et al. 2004). Thus, one

possible connection between APP processing and

ApoE in general (and ApoE4 in particular) is the

regulation of cholesterol homeostasis (Heeren

et al. 2003), for two reasons. First, γ-secretase
resides in the MAM (Area-Gomez et al. 2009), a

lipid raft rich in cholesterol and sphingomyelin.

Second, APP contains a cholesterol-binding

domain at its C-terminus (Barrett et al. 2012)

that may act as a cholesterol sensor (Beel et al.

2008). Thus, it may well be that in AD choles-

terol levels are altered, either at steady state or

dynamically (e.g., altered cholesterol turnover).

In the case of SAD, this could be the result of

aberrant cholesterol trafficking mediated by, for

example, ApoE4 or mutated ABCA7. In the case

of FAD, it could be the result of aberrant choles-

terol sensing or homeostasis due to altered APP

structure or amount (as is the case in subjects

with Down syndrome, who are at elevated risk

for developing AD, likely due to an extra gene

dose of APP) or in the ability of mutated

presenilins to cleave APP properly (Heilig et al.

2010). In either case, altered cholesterol metabo-

lism somehow induces an increase in

ER-mitochondria communication that then

gives rise to the phenotypes seen in AD (Marquer

et al. 2014).
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