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Abstract

A novel way to detect food intake events using a wearable
accelerometer is presented in this paper. The accelerom-
eter is mounted on wearable glasses and used to capture
the movements of the head. During meals, a person’s
chewing motion is clearly visible in the time domain of the
captured accelerometer signal. Features are extracted from
this signal and a forward feature selection algorithm is
used to determine the optimal set of features. Support
Vector Machine and Random Forest classifiers are then
used to automatically classify between epochs of chewing
and non-chewing. Data was collected from 5 volunteers.
The Support Vector Machine approach with linear kernel
performs best with a detection accuracy of 73.98% =+ 3.99.

1 Introduction

Studies have shown that up to 15% of community dwelling
and home-bound adults aged over 65 are malnourished and up
to 45% are at risk [1, 2]. It is estimated that between 20 and
60% of hospitalised elderly and up to 85% of nursing home
residents are malnourished [3]. Malnutrition is most frequent
in the frailest of people, particularly those who are less
autonomous and require help performing daily tasks.
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Furthermore, malnutrition has been identified as one of four
causes of frailty [4]. Frailty is considered to be a distinct
syndrome, characterised by weakness, a slow walking speed,
a low level of physical activity, unintentional weight loss and
exhaustion.

Nutrition is an important factor in the elderly’s health
status. Malnourishment is associated with decreased muscle
strength, poorly healing wounds, an increased hospital
admission length and increased hospital mortality rate [5].
Furthermore, malnourished elderly are more prone to
develop pressure ulcers and infections [6]. Preventing mal-
nutrition by means of a targeted nutritional intervention
could greatly improve the quality of life. Early recognition
and treatment should therefore be included in the routine
care of every elderly [7].

1.1 Food Intake Monitoring

Determining malnutrition can be done in a few ways. The
first is by means of a self-report diary. These have been used
to measure pain, sleep, illness or injury and health care use, as
well as eating-related issues such as binge eating, energy
intake and expenditure in weight loss treatment [8]. In the
case of malnutrition, the diary provides insight into two
aspects of nutritional intake. The first is to monitor a person’s
eating behaviour and food consumption on a daily basis in
order to see if enough meals are consumed, and second, to
record in detail all foods consumed for a nutrient analyses.
The person is instructed to record all food intake, usually
including location, time of day, quantity eaten, and nutrient
values. A self-report diary is typically in paper-and-pencil
format, but computerised solutions using a tablet-pc or ter-
minal specifically catered to elderly people also exist [9]. It is
clear, however, that a self-report diary has several limitations
when used to self-monitor elderly people. First and foremost,
keeping track of food intake and the need to look up foods in
a nutrient guide and record the amount of intake is a time
consuming task. The self-monitoring protocol is seldom
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followed adequately, resulting in an incomplete diary [8].
Furthermore, limited literacy skills or bad handwriting also
play an important role. Similar techniques such as 24-hour
recalls, food records or food frequency questionnaires share
the same limitations, especially in elderly care.

A different type and the most widespread tool for nutri-
tional screening and assessment is the Mini Nutritional
Assessment (MNA) [5]. The MNA contains 18 questions
grouped into 4 parts: anthropometry, general status, dietary
habits, and self-perceived health and nutrition states. Each
question is graded and summed up to a total of 30 points. The
result is defined by the following thresholds: a score below 17
indicates malnutrition; a score between 17 and 23.5 indicates
arisk of malnutrition; scores above 24 indicates a good status.

Other tools such as the Geriatric Nutritional Risk Index
(GNRI) [10] and Cumulative Illness Rating Scale (CIRS)
[11] have also been used in combination with the MNA to
provide further insight into the person’s health status [1, 5].

An important limitation, however, that instruments such
as the MNA all share is the requirement for a health care
professional to assist in taking and completing the test.
Neither are they taken at routine intervals due to their time
consuming nature [12]. They are therefore not used as a
preventative tool to detect malnutrition at an early stage. In
case of home-bound elderly receiving home care, tests such
as the MNA are typically never administered unless ordered
by a GP or after admission to a hospital. The results of these
tests are also not always on par with what care-takers
observe on a day to day basis.

1.2 Detecting Food Intake

A potential solution to replace manual self-monitoring
methods is through the use of wearable devices. A wear-
able device that is able to detect food intake events and
determine the amount of food ingested could replace manual
food diaries and questionnaires. Sazonov and Fontana [13]
demonstrated the use of a piezoelectric strain gauge sensor
fixed to the lower jaw to detect epochs of chewing with high
accuracy. In [14], the strain gauge sensor is incorporated in a
larger system together with a hand gesture sensor and an
accelerometer worn on a lanyard around the neck. In [15],
3D surface reconstruction from pictures taken with a mobile
phone was used to determine the amount and type of food
ingested. Detection of chewing and swallowing using a
wearable microphone was presented in [16] and [17].

In this paper, the use of an accelerometer mounted on
wearable glasses is proposed to measure the chewing motion
as part of a system to measure food intake. The use of an
accelerometer integrated into an already worn pair of glasses
would have little impact on the elderly’s comfort and is less
stigmatising than other alternatives. Glasses are typically

taken off to sleep, during which the sensor could be wire-
lessly charged on the night stand.

2 Methods

2.1 Glasses Mounted Accelerometer

Figure 1 shows the prototype setup used to capture the data.
We used the low-noise tri-axial accelerometer of a Shim-
mer3 unit with a sample frequency of 128 Hz to capture the
movements. The raw accelerometer signal is first filtered
using a 10th order Chebyshev band-pass filter with f; = 1
and fy = 45Hz in order to discard DC offset and high fre-
quency noise and prevent aliasing.

In order to determine the feasibility of this method to
detect chewing motion, the researcher himself consumed a
meal while recording the accelerometer signal. The meal was
recorded with a camera for annotation purposes. Figure 2
shows the captured signal in each of the three dimensions.
The overlaying square wave is the annotation signal indi-
cating an epoch of non-chewing (0) or chewing (1). As soon
as chewing starts around the 6 mark, distinct peaks can be
observed in all three dimensions, although different in
amplitude. After comparing the accelerometer signal with
what was visible in the video, we found that these peaks are
the result of the chewing motion: a peak is captured each
time the jaw is closed. The first four such peaks are high-
lighted in blue in Fig. 2. Since these peaks are visible in the
time domain, it should be possible to extract characterising
features from the signal to be used for classification.

2.2 Dataset

To construct the training and test dataset, data was collected
from 5 volunteers who were asked to consume a meal while

Fig. 1 Setup used for data collection. The Shimmer sensor is firmly
attached to the frame using cable ties
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Fig. 2 Illustration of the captured tri-axial accelerometer signal while
eating. The red annotation signal indicates epochs of chewing (1) and
not chewing (0). The highlighted peaks represent the closing motion of
the jaw (only the first four are highlighted) (Color figure online)

wearing the acquisition setup. Annotation was done by an
observer. Two states were annotated: chewing (1) and
not-chewing (0). As soon as the food entered the mouth and
chewing started, the annotation was set to chewing until the
food was swallowed, after which the annotation was set to
not-chewing. Examples of activities that fall under the not-
chewing class are: talking to the observer, bringing food to
mouth, cutting food, etc. In order to get a representation of
every day meals, food items with different properties were
selected. The following meals were consumed: a crunchy
deli sub sandwich, a mixed salad with bread (two times),
mashed potatoes with vegetarian burger, and a hamburger.

Test subjects were also asked to walk around the room for
roughly 1 min. This was done to determine if we are able to
distinguish the chewing motion from other types of daily
activities. This resulted in a total of three classes: chewing,
not-chewing and walking.

2.3 Feature Extraction and Selection

From the triaxial accelerometer signal (x, y and z), the
resultant net acceleration r is calculated using Eq. 1.

r=vx2+y?4+22 (1)

All data is then split up according to the recorded annotation.
For example, all data containing chewing is concatenated
serially to produce one signal containing only the chewing
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Table 1 List of extracted features. Highlighted in bold are those
selected by the forward feature selection

Name

Standard deviation
Mean

Power

Range

Skewness

# of zero-crossings of r
# of zero-crossings of %

25th percentile value
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—

Dominant frequency

activity. Likewise for the not-chewing and walking activity.
As discussed in Sect. 2.1, the signals are then filtered with a
band-pass filter with f; = 1 Hz and fy = 45 Hz. The filtered
signal is segmented into non overlapping windows of 5 s.
Concatenation is done to prevent windows containing data
from different classes in the training dataset. Window size
was experimentally determined to allow for enough win-
dows that don’t contain data from different classes when the
detector is used in real-time. Chewing typically takes
between 10 and 20 s, a window size of 5 s ensures that
enough windows completely contain data of only one class.
Features are subsequently extracted from the net acceleration
signal on a per window basis. Table 1 shows an overview of
the extracted features.

A forward feature selection based on [18] is performed on
the dataset to eliminate redundant features. This method
selects features with high correlation to the class, while
discarding those having high intercorrelation. The total of 11
features is reduced by the algorithm to a final set of three, as
shown in bold in Table 1: zero crossing rate, 75th percentile
value and dominant frequency (determined via FFT).

2.4 C(Classification

Equivalent to the feature extraction as described in the pre-
vious section, classification is done on a per window basis.
Two classifiers are evaluated: the Support Vector Machine
(SVM) and the Random Forest (RF) decision tree. Classifier
parameters were experimentally tuned to produce the highest
accuracy. For the SVM, we chose a linear kernel with cost
parameter C = 1 and the RF was constructed with a maxi-
mum of 100 trees. It is worth noticing that a feature selection
is typically not required when using decision trees such as
Random Forest due to their already selective nature in
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features. However, we evaluated this and found that the RF
performed better using only the three features selected by the
feature selection.

Due to the limited size of the dataset, validation of the
classifiers is done using the leave-one-out method. One
person is excluded from the training set and used to test the
classifier. This is done for each of the five participants and
the results are averaged. We use the accuracy as performance
metric. This method provides the added value that the
classifiers can be tested on each person individually and
evaluate how well they work as a group model.

To construct the training dataset, the method described in
Sect. 2.3 is used. To construct the test set, a slightly altered
version is used. Because we want to simulate the use of the
classifiers in a real life setting, we segment the original
signal into windows of five seconds without the concatena-
tion step. This means, however, that a single window could
potentially contain data from different classes. When this is
the case, a choice is made: when a window contains data of a
certain class for over 50% of the time, this class label is
assigned to the window.

3 Results

Two experiments are conducted. In the first experiment, only
two classes are included: chewing and not-chewing while the
walking class is omitted from both the training and test set.
In the second experiment, the walking class is also included
together with chewing and not-chewing. Leave-one-out
validation as described in Sect. 2.4 is used in both cases.
Table 2 shows the results of these two experiments. The
table contains the accuracy and standard deviation of the
leave-one-out validation. We can see that the SVM classifier
performs slightly better than the RF classifier in both cases,
although the difference is statistically insignificant, with an
average accuracy of 73.98% =+ 3.99.

Table 3 shows the confusion matrices of the two exper-
iments for the SVM classifier. These matrices contain the
summed result of the leave-one-out validation, i.e. the con-
fusion matrix values for each participant that was left out are
added together.

Table 2 Results of the leave-one-out validation (acc. + std.dev.)
SVM RF

73.98% + 3.99  72.39% + 6.51
71.93% + 5.03  69.79% + 8.79

Included classes
Chewing—not-chewing

Chewing—not-chewing—
walking

G. Mertes et al.

Table 3 Confusion matrices for the SVM classifier. Sum of all

leave-one-out results

Chewing Not-chewing
Chewing 373 93
Not-chewing 120 230

Chewing Not-chewing Walking
Chewing 361 98 7
Not-chewing 115 228 7
Walking 6 9 23

4 Discussion and Conclusion

The average detection accuracy of 73.98% =+ 3.99 obtained
with the SVM indicates that our approach is able to correctly
classify chewing events, but a considerable amount of false
positives are still present. This can be seen in the confusion
matrices in Table 3. Averaged over the five participants, the
amount of false positives does not bias towards one specific
activity. However, we found the false positive rate to be very
person-specific. For example, when using the SVM classifier
and classifying between chewing and not-chewing, for two
out of five participants the chewing activity was frequently
incorrectly classified as not-chewing, while for the other three
participants the opposite was true. Likewise for the walking
activity: for three participants there were no false positives
for this activity, while the remaining two did have roughly
30% false positives. For all five participants, however, the
true positive rate remained higher than the false positive rate.

This difference in false positives per person can be
attributed to a couple of reasons. First, there is the fact that
the annotation is done by an observer during the meal and is
therefore not perfect. While this is not a problem for the
walking activity, some errors could be made when annotat-
ing between chewing and not-chewing. Secondly, the dataset
which was used to train and validate the classifiers is limited
to only five participants. It is also worth noticing that our
dataset is unbalanced, with less activities of the not-chewing
class and only a few of the walking class. In order to further
reduce the amount of false positives, a larger dataset would
have to be recorded.

Adding the walking activity to the list of included classes
lowers the detection accuracy. This indicates that there is
still room for improvement in our proposed method. Look-
ing towards future work, a possible improvement could be to
further incorporate features from the frequency domain in
the classifier or look into methods such as wavelet trans-
forms. Furthermore, while the five second window was
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chosen based on a motivated choice, the effect of the win-
dow size on the accuracy still stands to be determined.

Different studies have shown that it is possible to detect
chewing motion using a group model with a jaw strain gauge
sensor or microphone system with accuracies ranging from
80 t0 90% [14, 16, 17]. While our system did not improve on
these accuracies, it does offer the fact that the sensor can be
incorporated into an existing pair of glasses, either by using
a custom frame with the sensor built in or using a clip-on
system. This would have little impact on the comfort of the
wearer and makes the system more suitable for elderly
people. Before this can happen, however, more research
specifically targeting elderly people is required, starting with
a case-study examining the elderly’s and care givers’ will-
ingness to use such a system and the acquisition of a dataset
with test subjects in this demographic group.
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