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Abstract Oxidative stress has been implicated in cellular senescence and aging, as
well as in the onset and progression of many diverse genetic and acquired diseases
and conditions. However, reactive oxygen (ROS) and nitrogen (RNS) species ini-
tiating oxidative stress also serve important regulatory roles, mediated by inter-
cellular and intracellular signaling, adaptation to endogenous and exogenous stress,
and destruction of invading pathogens. Fluorescence-based analysis of oxidative
stress and related processes is an important cytomic application; almost 4000 papers
were published between 1989 and 2016. To ascertain the specific role of ROS and
RNS in oxidative stress studies by cytomic methodologies, it is essential to detect
and characterize these species accurately. Unfortunately, the detection and quan-
titation of individual intracellular ROS and RNS remains a challenge, but different,
complementary cytometric strategies directed toward other endpoints of oxidative
stress may also be considered. In this chapter we present and briefly discuss the
limitations and perspectives of such approaches.
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1 Introduction to Reactive Oxygen (ROS) and Nitrogen
(RNS) Species

Life on Earth has evolved by creating organisms that need oxygen to live. Most
living beings depend on oxygen to obtain large amounts of metabolic energy from
the oxidation of biomolecules [1, 2]. Paradoxically, the oxygen functions essential
to living things depend on a chemical property dangerous to them: the structure of
the oxygen molecule (O2) has two unpaired electrons, and O2 can accept individual
electrons to generate highly unstable and highly reactive molecular forms known as
reactive oxygen species (ROS). The term ROS may be applied to a variety of
molecules not derived from O2 alone and includes both free radicals and species
derived from free radicals [3, 4].

Main ROS include singlet-oxygen radical, superoxide anion radical, hydrogen
peroxide (H2O2), hydroxyl radical, hypochlorous acid (HOCl), lipid peroxides
(ROOH), and ozone (O3) [3, 4]. There are also free radicals and reactive
nitrogen-containing molecules, the reactive nitrogen species (RNS), including nitric
oxide (NO) and peroxynitrite [5, 6]. Because they also contain oxygen and their
generation is connected to ROS generation, they are often considered as ROS.
Thus, ROS and RNS are not single entities but represent instead a broad range of
chemically distinct reactive species with diverse biological reactivities.

The generation of ROS and RNS has been implicated in cellular senescence and
aging [7–9], as well as in the onset and progression of genetic [10, 11] and acquired
diseases and conditions, including, but not limited to, inflammatory conditions [12–
14], cardiovascular diseases [15–18] and thrombosis [19], cancer [20–23] and
anticancer chemotherapy [24], HIV progression [25, 26], neurodegenerative dis-
eases [27–29], and metabolic disorders [30]. However, ROS and RNS also serve
important regulatory roles, mediated by intercellular and intracellular signaling [31–
34], and cell function–modifying processes involved both in the destruction of
invading pathogens [35] and in the fine tuning of cellular adaptation to endogenous
and exogenous stress [36–38]. Phagocytes use ROS and NOS as a powerful
antimicrobial weapon (oxidative burst), and in low concentrations, ROS and NOS
serve also as second messengers of signal transduction.

2 The Physiological Side of ROS and NOS

2.1 Sources of ROS and RNS

The generation of ROS and RNS can be endogenous, associated with oxidative
processes (such as the mitochondrial chain of electronic transport, NADPH oxidase,
xanthine oxidase and various flavoproteins) [39] or exogenous, derived from
inflammatory pathologies, exposure to xenobiotics, ionizing radiation, etc. [40]
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Most ROS and RNS arise physiologically in specific subcellular compartments.
The intracellular location of ROS and RNS is of great importance, as microenvi-
ronment will affect both the intrinsic functions of the reactive species and the
population of molecules and structures that will be eventually affected by their
interaction with ROS and RNS. In higher organisms, the major generation of ROS
takes place in the mitochondria, during the tetravalent reduction of O2 occurring in
the electron-transport chain associated with oxidative phosphorylation. In
prokaryotic cells, this mechanism takes place on the plasma membrane. This pro-
cess, directed to the production of ATP, gives rise to H2O as the final product, via a
sequence of univalent reductions that generate ROS [5]. Other organelles with
localized ROS generation include the phagosomes, where ROS and RNS are
focused on pathogen killing, and the peroxisomes, where many catabolic oxidation
reactions are confined [39, 40].

Nitric oxide (NO) is synthesized from L-arginine in a reaction catalyzed by NO
synthase [32, 33]. NO reacts readily with superoxide to form the peroxynitrite
anion, a RNS with strong oxidant properties [34]; activated macrophages and
neutrophils produce NO and superoxide, and thus peroxynitrite, at similar rates.

2.2 ROS in Phagocytosis

The stimulated production of ROS and RNS by phagocytic cells is known as the
respiratory burst, because of the increased consumption of O2 by these cells during
phagocytosis necessary for the bactericidal action of phagocytes [41]. This process
is initiated by NADPH oxidase, a multicomponent membrane-bound enzyme
complex that generates superoxide anion radicals, which in turn give rise to further
ROS. Similarly, activated nitric oxide synthase 2 catalyzes the production of nitric
oxide radicals, which leads to the formation of reactive nitrogen intermediates. ROS
and RNS can interact to form further reactive species. While each of these
antimicrobial systems operates independently, they are synergistic in destroying
invading pathogens [42].

2.3 ROS and RNS in Cellular Signaling

Most cytoplasmic proteins contain free SH groups, which may undergo
oxidation/reduction cycles. In coordination with antioxidant proteins and mole-
cules, ROS may turn functional proteins on and off by redox cycling [43]. A large
number of such proteins are involved in signal transduction or in the regulation of
gene expression in eukaryotes and prokaryotes [44].
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ROS signaling is involved in cell survival and adaptation to stress. Signaling
through mitogen-activated protein kinases (MAPKs) leads to the generation of
H2O2 from several enzymes, including NADPH oxidases [45]; production of H2O2

at nanomolar levels is required for proliferation in response to growth factors [46].
In synchronized cells ROS increase along the cell cycle, peaking at the G2/M phase
[47]; it has been suggested that small increases of H2O2 result in increased reentry
into the cell cycle, while sustained high levels of H2O2 lead to cell arrest and
apoptosis [36]. Apoptosis induced by prolonged activation of c-Jun N-terminal
kinase (JNK) has been shown to be caused by exposure to ROS [48, 49].
Conversely, autophagy is also triggered as an adaptive response, among other
stressors, to intracellular ROS [38].

ROS have also recently been related to signaling in platelets [50]. ROS produced
after platelet stimulation with collagen are responsible for a series of platelet-
activating events owing to oxidative inactivation of SHP-2, which promotes tyr-
osine phosphorylation–based signal transduction.

NO plays a critical role as a molecular mediator of a variety of physiological
processes, including blood-pressure regulation and neurotransmission [32, 33]. NO
that diffuses into smooth muscle cells binds to the heme group of guanylate cyclase.
Peroxynitrite, a RNS considered as an inflammatory mediator in various cardio-
vascular pathologies, has more recently been recognized as a modulator of
signal-transduction pathways owing to its ability to nitrate tyrosine residues,
thereby influencing responses dependent on tyrosine phosphorylation [34].

3 Oxidative Stress: Definition, Causes, and Consequences

3.1 Definition of Oxidative Stress

Despite the powerful and complex antioxidant machinery of higher organisms,
when the capacity of these protective mechanisms is overcome by the intensity or
duration of oxidative processes, a situation occurs called oxidative stress, which is
defined as an alteration in the equilibrium between ROS production and antioxidant
defenses, producing oxidative damage [39, 40].

Oxidative stress can result from two separate but not exclusive processes. On the
one hand is the decrease in the levels or the activity of enzymes of the antioxidant
defense by mutation or destruction of the active center, induced by the ROS
themselves [40]. Deficiencies in the dietary supply of soluble antioxidants can also
cause oxidative stress. On the other hand, increased production of ROS, exposure of
cells or organisms to elevated levels of exogenous ROS or their metabolic pre-
cursors, and even excessive induction of protective (immunological, detoxifying)
systems that produce ROS can lead to the situation of oxidative stress [5].
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3.2 Causes of Oxidative Stress

To prevent the harmful effects of the in vivo production of ROS and RNS, evo-
lution has provided prokaryotes and higher organisms with complex and effective
antioxidant systems that include enzymatic antioxidant mechanisms and antioxidant
molecules, broadly understood as those molecules that protect a biological target
against oxidative stress [5, 39, 40, 51].

The first line of antioxidant enzymes is the superoxide dismutase family of
enzymes (SOD) that catalyze the dismutation of superoxide to H2O2. Catalase
converts H2O2 to water and O2, and thus completes the detoxification initiated by
SOD. Glutathione (GSH) peroxidase includes a group of Se-containing enzymes
that also catalyze the decomposition of H2O2, as well as of organic peroxides. In the
GSH peroxidase process, GSH is consumed by oxidation, so that GSH reductase is
required to transform oxidized GSH (GSSG) into GSH [40].

The non-enzymatic antioxidants are a large group of molecules that exert various
protective antioxidant mechanisms, and include molecules that react with ROS,
such as GSH, tocopherol and b-carotene, or proteins such as transferrin and
ceruloplasmin, capable of chelating transition metals. GSH is the most important
intracellular defense against the toxic effects of ROS. Vitamin C or ascorbic acid is
a water-soluble molecule capable of reducing ROS, while vitamin E (a-tocopherol)
is a lipid-soluble molecule that has been suggested as playing a similar role in
membranes [40].

3.3 Consequences of Oxidative Stress

Oxidative damage to cells and tissues produced by ROS is associated with
free-radical chain reactions with all kinds of biomolecules, such as carbohydrates,
lipids, proteins, and DNA.

3.3.1 Protein Damage

Protein oxidation plays an important role in many of the effects of oxidative and
nitrosative stress. The modifications produced may be irreversible, such as car-
bonylation of lysine (Lys) and arginine (Arg), formation of di-tyrosine bonds,
protein-protein bonds, and nitration of Tyr and tryptophan [52]. These changes
generally result in loss of permanent function of damaged proteins. In complex
enzymes, free-radical interaction can also be damaging at the level of the prosthetic
group, leading to functional inactivation [53].
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3.3.2 Lipid Peroxidation

Lipid peroxidation is a process that occurs in three phases: initiation, propagation, and
termination. The initiation phase involves the reaction of free radicals with cellular
lipids, generating peroxyl radicals. In the propagation phase, the reaction of these newly
formed peroxyl radicals with intact lipid triggers a chain reaction that may be termi-
nated by the action of antioxidants. It is a phenomenon detrimental to the cell, since
changes in the physico-chemical properties of the membrane, as its fluidity, as well as
the inactivity of transporters and membrane enzymes can occur [53, 54].

3.3.3 Oxidative Lesions to DNA

More than 100 different free radical–induced DNA modifications have been
described, either in nitrogenated bases or in deoxyribose. The hydroxyl ion seems
to be the main cause of these lesions, an effect that is facilitated by the polyanionic
character of the phosphodiester bond, since it is attracted by metals such as Fe2+,
favoring the Fenton reaction. NO and its derivatives have the capacity to induce
lesions in the DNA, mainly through the deamination of bases, although other
processes are involved [55].

Modifications produced by ROS in the bases may be mutagenic, leading to
incorrect pairing of the bases, or cytotoxic if an arrest of replication occurs. Of
special relevance are oxidation reactions with purines that generate different
products with high mutagenic capacity, such as 8-oxo-7, 8-dihydroguanine
(8oxoG), widely used as an important marker of oxidative DNA damage [56,
57]. Cross-linking reactions between nucleotides of the same chain may be cyto-
toxic or mutagenic, the best known case being the formation of pyrimidine dimers.

4 Strategies and Reagents for Cytomic Analysis
of Oxidative Stress

Given the participation of ROS and RNS in physiological and pathological issues,
active search for biomarkers of oxidative stress has become relevant to many
biomedical fields [58], and many different methods are applied to assess the redox
state of the body or of specific tissues and cells [59–65]. Fluorescence-based analysis
of oxidative stress and related processes is an extended application offlow cytometry
[66, 67]; more than 3700 papers on this topic have been published between 1989 and
2016, according to PubMed Central (Fig. 1). Imaging approaches, including
confocal microscopy [68], high-content analysis by automated microscopy [69], and
the more recent imaging flow cytometry [70, 71] allow one in addition to visualize
and quantify topographical issues of intracellular ROS production and action
(Fig. 2).
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Fig. 1 Examples of relevant cytometric techniques for the study of ROS, RNS and oxidative
stress. a PubMed-indexed papers containing the general terms “Cytometry” AND “oxidative
stress” published between 1985 and 2016. Panels b-d show three complementary cytometric
applications having in common the same fluorogenic substrate, dihydrorhodamine 123 (DHR123),
which detects mainly H2O2 and peroxynitrite, as explained in the paper. b Example of analysis by
fluorescence microscopy of ROS generation. A confluent monolayer of MDCK cells was stained
with DHRH123 and treated with 25 lM CdCl2 for 1 h, before being photographed with a standard
fluorescence microscope. General experimental conditions are similar to those described in [181].
c Example of a whole-blood assay by flow cytometry of ROS/RNS generation by resting
leukocytes. A sample of whole blood in heparin from a healthy volunteer was stained with
CD45-PC5 antibody, to exclude erythrocytes from the analysis, and with DHRH123. Leukocyte
populations are distinguished by their side-scatter properties. The fluorescence intensity of
rhodamine 123, the oxidation product of DHR123, shows that monocytes at rest generate more
ROS/RNS than do neutrophils and lymphocytes. General experimental details can be found in
[111]. d Example of a whole-blood assay by real-time cytometry of ROS/RNS generation by
resting leukocytes. Experimental conditions were similar to those in panel c, but data acquisition
was started before H2O2 was added to the sample stained with CD45, CD14, and DHRH123,
already running in the flow cytometer. The generation of ROS/RNS in monocytes was followed by
means of a kinetic plot of rhodamine 123 fluorescence intensity versus time. Analytical regions
allow quantification of the rate of fluorescence variation. FAU: Fluorescence Arbitrary Units
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However, to ascertain the specific role of ROS and RNS in oxidative stress
studies by cytomic methodologies, it is essential to detect and characterize these
species accurately. Unfortunately, the detection and quantitation of individual
intracellular ROS and RNS remains a challenge [60–65], but different, comple-
mentary cytometric strategies aimed to other endpoints of oxidative stress may also
be considered. In this chapter we present and discuss briefly the limitations and
perspectives of such approaches.

Fig. 2 Imaging flow cytometry applied to the analysis of ROS generation and oxidative stress
in vitro. Colocalization by imaging flow cytometry of mitochondria and the superoxide radical–
sensitive probe MitoSox Red dye during apoptosis. The human liposarcoma SW872/GFP cell line
obtained by transfection with a retroviral vector expresses the GFP-tagged mitochondrial LON
protease [182]. Apoptosis was induced by treatment with camptothecin and at appropriate times
cells were trypsinized and stained with the mitochondrial superoxide sensor MitoSox Red dye.
Cell suspensions were analyzed in an Amnis ImageStream flow cytometer that collects
multispectral images of single cells at high speed. In each row of images, channels show from
left to right, bright field illumination, expression of GFP-Lon protease (i.e., mitochondrial
compartment), MitoSox Red dye fluorescence (i.e., generation of superoxide radical), and the
merged image wherefrom colocalization may be observed and quantified. The series of images
from top to bottom show that the morphological progression of apoptosis (brightfield channel) is
accompanied by generation of superoxide that is associated with the mitochondrial compartment
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4.1 Cytomic Strategies in the Analysis of Oxidative Stress

The complex processes involved in the generation of ROS and RNS, their control
by the antioxidant system, and the physiological or pathological consequences of
their action may be approached by cytomic analysis at different levels or stages,
using complementary methodologies based upon fluorescence, in multiple cell
types and clinical situations or experimental models. Thus, the most common
cytomic strategies to the study of oxidative stress include:

(a) Direct detection of ROS and RNS, the initiators of the oxidative stress process.
This task is complex owing to the low concentration, short half-life, and
extensive interactions of ROS and RNS, as well as by intrinsic limitations of
both probes and experimental conditions.

(b) Detection of more stable products of ROS and RNS reaction with cell com-
ponents or with exogenous probes, including the analysis of lipid peroxidation
and oxidative damage to DNA.

(c) Assessment of antioxidant defenses, mostly GSH and SH-containing proteins.
This indirect approach to oxidative stress may be limited by issues related to the
complexity of the antioxidant defense by itself and to the specificity of enzymes
required for fluorescent reporting of the process.

4.2 Detection of ROS and RNS Using Fluorogenic
Substrates

The use of fluorescent probes and fluorogenic substrates (Fig. 3) appears a simple
and easy approach for the detection and quantification of ROS production in cel-
lular systems. However, there are many limitations and artifacts in this methodol-
ogy. In this section we mention the principal fluorescent probes and fluorogenic
substrates used in cytometric analysis of ROS and RNS. Their main limitations and
potential sources of artifacts will be considered further along in this chapter.

4.2.1 2’,7’-Dichlorodihydrofluorescein Diacetate (H2DCF-DA)
and Related Probes

The cell-permeant H2DCF-DA is one of the most commonly fluorogenic substrates
used in studies related to ROS and RNS generation [62–64]. Upon cleavage of the
acetate groups by intracellular esterases, the intracellular oxidation of 2′,7′-
dichlorodihydrofluorescein (DCFH) produces 2′,7′-dichlorofluorescein (DCF), a
fluorescent compound (k excitation = 498 nm; k emission = 522 nm). Initially,
H2DCF was widely accepted as a specific indicator for H2O2 [72] but as discussed
later in this chapter, H2DCF is oxidized by other ROS, such as hydroxyl and
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peroxyl radicals, and also by RNS like peroxynitrite [62–64]. On the other hand, it
seems well established that H2DCF is not oxidized by superoxide anion,
hypochlorous acid, or NO [62]. With these caveats, H2DCF has been successfully
used for studies of oxidative burst in phagocytes [73, 74] and to follow the gen-
eration of prooxidants in many cell models [75–79].

Intracellular oxidation of H2DCF tends to be accompanied by leakage of the pro-
duct, DCF. To enhance retention of the fluorescent product, several analogs with
improved retention have been designed, such as carboxylated H2DCFDA
(carboxy-H2DCFDA), which has two negative charges at physiological pH, and its di-
(acetoxymethyl ester) [80]. The halogenated derivatives 5-(and 6-)chloromethyl-2’,7’-
dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), and 5-(and 6-)
carboxy-2’,7’-difluorodihydrofluorescein diacetate (carboxy-H2DFFDA) exhibit much
better retention in live cells; they have been used for following oxidative burst in
inflammatory and infectious processes and have been applied to different experimental
settings related to oxidative stress [80].

Fig. 3 Some examples of fluorescent probes and fluorogenic substrates frequently used in the
cytometric analysis of ROS, RNS and oxidative stress. The properties, applications, and limitations
of these reagents are described in the corresponding sections of the chapter. The letter colors of
reagent names indicate the spectral region of their fluorescence emission, according to [80]
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4.2.2 Dihydrorhodamine 123 (DHR123)

DHR123 is a non-fluorescent molecule that upon oxidation generates rhodamine
123, a fluorescent cationic and lipophilic probe (k excitation = 505 nm; k emis-
sion = 529 nm) [62, 80]. The lipophilicity of DHR123 facilitates its diffusion
across cell membranes. Upon oxidation of DHR123 to the fluorescent rhodamine
123, one of the two equivalent amino groups tautomerizes into an imino group,
effectively trapping rhodamine 123 within cells [81]. Like H2DCF, DHR123 is
oxidized by H2O2 in the presence of peroxidases, but this probe has low specificity,
since it can also be oxidized by other reactive oxidants, namely peroxynitrite, Fe2+,
Fe3+ in the presence of ascorbate or EDTA, cytochrome c, or HOCl [62, 81].
DHR123 is not directly oxidizable by H2O2 alone, nor by superoxide anion or by
the system xanthine/xanthine oxidase [62, 81].

4.2.3 New Fluorescent Probes for H2O2 Detection

New chemoselective fluorescent indicators are being developed to provide
improved selectivity for H2O2 over other ROS [82]. A very promising approach is
based on the selective H2O2-mediated transformation of arylboronates to phenols
[83]. Arylboronates are linked to fluorogenic moieties, such that reaction with H2O2

generates a fluorescent product.
Arylboronate probes include peroxyfluor-2 (PF2), peroxy yellow 1 (PY1), per-

oxy orange 1 (PO1), peroxyfluor-6 acetoxymethyl ester (PF6-AM), and mito-
chondria peroxy yellow 1 (MitoPY1) [82–84]. This family of probes can detect
physiological changes in endogenous H2O2 levels, allowing various combinations
for multicolor imaging experiments. The addition of acetoxymethyl ester groups
gives rise to the dye peroxyfluor-6 acetoxymethyl ester (PF6-AM), which increases
cellular retention and further increases sensitivity to H2O2 [84, 85]. In addition, the
recently developed Ratio Peroxyfluor 1 (RPF)-1 provides a ratiometric change of
two fluorescent signals upon reaction with H2O2, allowing normalization of
fluorescence ratio to probe concentration [86].

Combining the boronate–based probe design with appropriate functional groups
has resulted in organelle-specific probes that can measure H2O2 levels with spatial
resolution [87]. In particular, several mitochondria-targeted probes have been
generated, including MitoPY1 and SHP-Mito [84, 88, 89] for mitochondrial tar-
geting and Nuclear Peroxy Emerald (NucPE), for nuclear targeting [90].

4.2.4 Hydroethidine or Dihydroethidium (HE)

HE is widely used as a fluorogenic substrate for detecting superoxide anion [62–64,
80, 91]. HE is membrane-permeant and cytosolic HE exhibits blue fluorescence, but
once oxidized by superoxide, it generates 2-hydroxy-ethidium (E+), a fluorescent
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compound (k excitation = 520 nm; k emission = 610 nm). E+ is retained in the
nucleus, intercalating with the DNA, a fact that increases its fluorescence [62].

HE has been repeatedly used in studies related to the oxidative burst in leuko-
cytes [92, 93] and to inflammation [94–97]. HE has been used also for mito-
chondrial superoxide detection [80, 98, 99] although the more recently developed
MitoSOX Red indicator provides more specific mitochondrial localization, as dis-
cussed later in this section [80, 100]. Moreover, since mitochondria play a funda-
mental role in apoptosis, which can be triggered by ROS and RNS, through
mitochondrial membrane permeabilization and release of proapoptotic factors, HE
and Mito-Sox have been also used to detect changes in mitochondrial superoxide
generation associated with the induction and execution of apoptosis [98, 99].

HE may have important limitations when used for analysis of intracellular
superoxide. It has been shown that cytochrome c is able to oxidize HE, an aspect
that might be important in situations where the detected superoxide is mainly of
mitochondrial origin or in conditions leading to apoptosis, where cytochrome c is
released to cytosol [97]. Owing to the interconnection between oxidative stress and
the apoptotic processes, it will be difficult, in these situations, to assume that HE
oxidation to E+ depends only on superoxide. Furthermore, HE can also be oxidized
by a variety of reactive species, including peroxynitrite. Thus, HE should be
considered as an indicator of ROS and RNS production [62–64, 97].

4.2.5 MitoSOX Red Mitochondrial Superoxide Indicator (MitoSox
Red)

MitoSOX Red, a cationic derivative of HE, was introduced for selective detection
of superoxide in the mitochondria of live cells [64, 80, 101]. MitoSOX Red con-
tains a cationic triphenylphosphonium substituent that selectively targets this
cell-permeant probe to actively respiring mitochondria, where it accumulates as a
function of mitochondrial membrane potential and exhibits fluorescence upon
oxidation and subsequent binding to mitochondrial DNA [80]. MitoSOX Red has
been used for detection of mitochondrial superoxide production in a wide variety of
cell types and conditions [80, 100, 101].

Oxidation of MitoSOX Red by superoxide results in hydroxylation of the
ethidium moiety at the 2-position, to yield a 2-hydroxyethidium substituent.
Therefore, the fluorescence spectral properties of oxidized MitoSox Red are iden-
tical to those of HE [80]. On the other hand, since the chemical reactivity of
MitoSOX Red with superoxide is similar to the reactivity of HE with superoxide,
all the limitations of HE apply to MitoSOX Red as well [64, 102].

4.2.6 CellROX® Reagents as General Probes for ROS

The CellROX® reagents are a series of proprietary reagents from Life
Technologies-Thermofisher. These cell-permeant dyes are weakly fluorescent in the
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reduced state and exhibit photostable fluorescence upon oxidation by ROS
[103–105].

CellROX® green becomes fluorescent only with subsequent binding to DNA,
limiting its presence to the nucleus or mitochondria. This compound has an exci-
tation wavelength of 485 nm and an emission wavelength of 520 nm. This reagent
can be formaldehyde-fixed and its signal survives detergent treatment, allowing it to
be it multiplexed with other compatible dyes and antibodies. CellROX® Orange and
CellROX® Deep Red do not require DNA binding for fluorescence and are
localized in the cytoplasm. CellROX® orange has an excitation wavelength of 545
and an emission of 565, while CellROX® Deep Red has an excitation peak of
640 nm and an emission peak of 665 nm [104].

4.2.7 4,5-Diaminofluorescein Diacetate (DAF-2 DA)

The NO radical is short-lived and physiological concentrations are very low. NO is
readily oxidized to the nitrosonium cation (NO+), which is moderately stable in
aqueous solutions but highly reactive with nucleophiles or other nitrogen oxides. Under
aerobic conditions, these reactive nitrogen oxides, but not nitric oxide itself, can be
bound by aromatic 1,2-diamines to form fluorescent benzotriazoles [80, 106].

DAF-2 was the first fluorogenic probe for NO [106]. DAF-2 DA is a
membrane-permeant substrate that can be hydrolyzed to DAF-2 and trapped within
the cell [107]. The fluorescent chemical transformation of DAF is based on the
reactivity of the aromatic vicinal diamines with NO in the presence of molecular
oxygen. DAF-2, which shows low fluorescence, reacts with NO-derived NO+ to
produce the highly fluorescent triazolofluorescein (DAF-2T). The fluorescence
quantum efficiency increases more than 100 times after the modification of DAF-2
by NO+. DAF-2 DA has been used to detect intracellular NO by fluorescence
microscopy and flow cytometry with high sensitivity [108].

4.2.8 4-Amino-5-Methylamino-2’,7’-Difluorofluorescein Diacetate
(DAF-FM DA)

DAF-FM DA is a cell-permeant diacetate derivative with properties similar to
DAF-2 [80]. DAF-FM DA is cleaved by esterases to generate intracellular
DAF-FM, which is then oxidized by NO to a triazole product much more
fluorescent. Indeed, the fluorescence quantum yield of DAF-FM increases about
160-fold after reacting with NO [80].

DAF-FM has been used in many studies related to NO generation under a variety
of experimental conditions [80, 109, 110], including the kinetic analysis of NO
generation and consumption in whole-blood monocytes using real-time cytometry
[111].
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4.2.9 Dihydrorhodamine 123 (DHR123) for Detecting Peroxinitrite

Although DHR123 was described initially as a fluorogenic susbstrate for H2O2

[64], currently it is the most frequently used probe for measuring peroxynitrite [62–
64], based on the oxidative conversion of DHR123 to its corresponding
two-electron oxidized fluorescent product, rhodamine 123, (k excitation = 505 nm;
k emission = 529 nm) mediated by an intermediate DHR123 radical [64]. The
oxidation of DHR123 by peroxynitrite is not induced directly by this ROS, but is
mediated by intermediate oxidants formed from the rapid and spontaneous
decomposition of peroxynitrite [64, 112].

4.3 Detection of Lipid Peroxidation

Peroxyl radicals are formed by the decomposition of various peroxides and
hydroperoxides, including lipid hydroperoxides. The hydroperoxyl radical is also
the protonated form of superoxide, and approximately 0.3% of the superoxide in the
cytosol is present as this protonated radical [80].

4.3.1 cis-Parinaric Acid

cis-Parinaric acid is a fluorescent 18-carbon polyunsaturated fatty acid, containing
four conjugated double bonds in positions 9, 11, 13, and 15 [62, 80]. cis-Parinaric
acid can be metabolically integrated into membrane phospholipids of cultured cells,
where its conformation and mobility are comparable to endogenous phospholipids.
Moreover, its fluorescent and peroxidative properties are combined in the conju-
gated system of unsaturated carbon–carbon bonds. The fluorescence of cis-parinaric
acid (k excitation = 320 nm; k emission = 432 nm) is lost upon oxidation [62, 80]

This probe has been repeatedly used to measure lipid peroxidation in a multi-
plicity of cell systems and conditions [113, 114]. However, there are some prob-
lems associated with the use of cis-parinaric acid in living cells, such as its
absorption in the UV region, a wavelength still absent in most routine cytometers,
and where most test compounds may absorb. In addition, cis-parinaric acid is most
sensitive to air and undergoes photodimerization under illumination, which results
in loss of fluorescence and overestimation of the extent of lipid peroxidation [80].

4.3.2 4,4-Difluoro-5-(4-Phenyl-1,3-Butadienyl)-
4-Bora-3a,4a-Diaza-S-Indacene-3-Undecanoic Acid
(BODIPY581/591C11) and Related BODIPY Probes

BODIPY581/591 C11 is a fluorescent probe (k excitation = 510 nm; k emis-
sion = 595 nm) used for evaluating lipid peroxidation and antioxidant efficacy in
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different experimental models [62, 80, 115]. BODIPY581/591 C11 has a long-chain
unsaturated fatty acid (C11) of non-polar character, which makes this probe
liposoluble, while the conjugated double bonds in the fluorophore make it sus-
ceptible to oxidation by peroxyl radicals [62, 80]. BODIPY 581/591 C11 undergoes a
shift from red to green fluorescence emission upon oxidation [80]. This
oxidation-dependent emission shift enables fluorescence ratiometric analysis of free
radical–mediated oxidation in the lipophilic domain of the membranes. The primary
target for ROS is the diene interconnection, leading to the formation of three
different oxidation products that are responsible for the shift from red to green
fluorescence [62].

BODIPY581/591 C11 is sensitive to multiple oxidizing species. It has been
demonstrated that this probe is oxidized by peroxyl, hydroxyl radicals, and per-
oxynitrite, while being insensible to H2O2, singlet oxygen, superoxide, NO radical,
transition metals, and hydroperoxides in the absence of transition metals [116].

Lipid peroxidation has been detected in cell membranes using BODIPY581/591

C11 [117–119] and other similar BODIPY derivatives, such as BODIPY493/503

[120], BODIPY FL EDA (a water-soluble dye) [80], or BODIPY FL hexadecanoic
acid [80].

4.3.3 Lipophilic Fluorescein Derivatives

The probe 5-(N-dodecanoyl) aminofluorescein (C11-Fluor), a lipophilic derivative
of fluorescein, has been used in flow cytometry for determining membrane-lipid
peroxidation [60, 121]. This probe remains associated with cellular membranes in a
stable and irreversible way. Other lipophilic derivatives of fluorescein include
5-hexadecanoylaminofluorescein (C16-Fluor), 5-octadecanoyl-aminofluorescein
(C18-Fluor), and di-hexadecanoyl-glycerophosphoethanolamine (Fluor-DHPE)
[122].

4.4 Detection of Metabolic Derivatives of Peroxidized Lipids

4.4.1 Immunofluorescent Detection of 4-Hydroxy-2-Nonenal (4-HNE)

As a final consequence of the peroxidation process, a variety of aldehydes may be
formed. 4-HNE is an unsaturated aldehyde arising from peroxidation of x-6
unsaturated fatty acids. 4-HNE has been found to be a reliable biomarker of lipid
peroxidation, as it is highly reactive towards free SH groups of proteins, producing
thioether adducts that further undergo cyclization to form hemiacetals. HNE
induces heat-shock protein, inhibits cellular proliferation, and is highly cytotoxic
and genotoxic to cells [123, 124].

Monoclonal antibodies recognizing adducts of 4-HNE with histidine, lysine, and
cysteine in proteins are now commercially available [125]. These antibodies have
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been conjugated with distinct fluorochromes and can be used for in situ detection of
advanced stages of lipid peroxidation in different cell types with high specificity
[126].

4.5 Immunofluorescent Detection of Oxidized Bases in DNA

The oxidized DNA base 8-oxodeoxyguanine (8-oxoDG) is a major form of
oxidative DNA damage derived from the attack by hydroxyl radical on guanine at
the C8-position, resulting in a C8-OH-adduct radical. Thus, 8-oxoDG is formed
during free radical damage to DNA and is a sensitive and specific indicator of DNA
oxidation [56, 57].

8-oxoDG can be quantified with the OxyDNA assay, based on the specific
binding of a monoclonal antibody conjugated with FITC to 8-oxoDG moieties in
the DNA of fixed and permeabilized cells [127]. This assay has been used to detect
oxidative genotoxicity in vitro [128], including environmental studies [129]. Of
particular interest, the OxyDNA assay has been used in a number of fertility studies
related to oxidative stress during cryopreservation of sperm cells [130] and the
relation of oxidative DNA damage to fertility in humans [131–133] and animals
[134].

4.6 Assessment of Antioxidant Defenses: GSH and Thiol
Groups

Cellular thiols, especially GSH, act as nucleophiles and can protect against toxicity,
mutagenicity, or transformation by ionizing radiation and many carcinogens [40].
The availability of many thiol-reactive fluorescent probes allowed development
since the early 1980s of cytometric assays for GSH [135, 136] and free thiol groups
[137] in living cells. Currently, the analysis of intracellular levels of GSH and
activity of GSH S-transferase (GST) is a relevant application of functional
cytometry in oxidative stress and drug resistance [138], as the more than 1800
papers indexed in PubMed between 1981 and 2016 attest. Cytometric assays for
GSH and intracellular SH groups have been critically reviewed on several occa-
sions [139–142].

The probes most used for cytometric analysis of GSH and GST have been the
UV-excited, cell-permeant bimanes, particularly monobromobimane (mBrB) and
the more selective monochlorobimane (mClB). Both probes are essentially
nonfluorescent until conjugated to GSH [138–141]. o-Phthaldialdehyde, another
UV reagent, reacts with both the thiol and the amine functions of GSH, yielding a
cyclic derivative with excitation and emission maxima shifted from those of its
protein adducts, improving the specificity of GSH detection [138–141].
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ThiolTracker Violet is up to 10-fold brighter than the bimanes, when excited at
405 nm, yielding emission at 525 nm. An advantage of this cell-permeant probe is
that it resists formaldehyde fixation and detergent extraction, allowing analysis of
fixed cells [138, 142].

GSH can be determined using visible light–excitable probes, including
5-chloromethylfluorescein diacetate (CellTracker Green CMFDA), and chlor-
omethyl SNARF-1 acetate. Both probes form adducts with intracellular thiols that
are well retained by viable cells. CellTracker Green CMFDA is brighter than MClB
and is highly specific for GSH over free SH groups [138]. The GSH adduct of
chloromethyl SNARF-1 emits beyond 630 nm, allowing multicolor protocols and
reducing the impact of cellular autofluorescence.

5 Problems and Limitations in the Determination of ROS
and RNS

As commented above, detection of ROS and RNS, the initiators of the oxidative
stress process, is a complex task owing to the low concentration, short half-life, and
extensive interactions of ROS and RNS, as well as by intrinsic limitations of both
probes and experimental conditions. Such limitations and potential sources of
artifacts make quantitative measurements of intracellular generation of ROS and
RNS a difficult challenge and require careful design of the experiments and cautious
interpretation of data.

5.1 Short Half-Life and Intracellular Location of ROS
and RNS

Because of their reactivity, most ROS and RNS are short-lived molecules. For
example, the half-life of hydroxyl radical within a cell is only about 10−9 s,
compared to about 1 ms for H2O2 [39]. This means that hydroxyl radical will react
at or very near its origin, whereas H2O2 can diffuse away from its source [39].

The variability in ROS half-life and the complexity of the microenvironments
where they are produced and consumed make ROS and RNS quantification almost
impossible in cellular systems [63, 64]. While ROS and RNS of low reactivity may
accumulate with time, the more reactive ROS will reach a steady state in which the
rate of their generation will be equal to the rate of disappearance, the rate of
disappearance being the sum of reaction rates of this ROS with various components
of the system, plus the rate of self-reaction, plus the rate of reaction with the
fluorescent probe.
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To attenuate this complication, flow cytometric techniques based on real-time
measurements [143, 144] and imaging cytometry of intracellular location of ROS
can be used [111], as exemplified in Figs. 1 and 2.

5.2 Complex Interactions Among and Between ROS, RNS,
and Fluorescent Probes

A clear example of ROS interplay is mitochondrial respiration, where superoxide
anion, H2O2, and hydroxyl radical are sequentially produced by a series of partial
reductions. Incorporation of an electron into O2 gives rise to superoxide anion,
which is a poorly reactive radical but which can oxidize thiols and ascorbic acid [5,
10, 40]. Superoxide gives rise to H2O2 by spontaneous reaction or by the action of
superoxide dismutase. H2O2, in turn, can react with different organic compounds to
produce peroxyl radicals that will eventually release hydroxyl radicals during their
metabolism. Moreover, by way of the Fenton reaction, hydroxyl radicals are pro-
duced when H2O2 and a transition metal, such as Fe2+, react together, yielding Fe3+

that consumes superoxide for recycling Fe2+. In the Haber-Weiss reaction, super-
oxide and H2O2 react together to produce hydroxyl radicals [5, 10].

The interaction of ROS with nitrogen derivatives can generate RNS. NO, a gas
that is synthesized from L-arginine in many cell types by various isoforms of the
enzyme NO synthetase, is a weak reductor and reacts with O2 to form NO2, but
reacts much faster with superoxide to produce peroxynitrite (ONOO-), a powerful
oxidant [33, 34, 111].

5.3 Influence of the Probes on the Experimental System

All reduced fluorogenic substrates are subject to auto-oxidation, which usually
produces singlet oxygen, superoxide, and by its dismutation, H2O2. If the
auto-oxidation rate is significant, it may result in artifactual detection of ROS and
higher background, a problem especially important for probes such as HE or
MitoSox Red [62–65].

The concentration of the probe is also relevant, as it may affect the stoichiometry
of the process under study. For instance, the stoichiometry of the reaction between
HE and superoxide depends on the ratio of superoxide flux and HE concentration.
Owing to HE-catalyzed superoxide dismutation, the efficiency of HE oxidation
decreases at higher rates of superoxide generation, and high HE concentrations
might lead to fluorescence increase independent of superoxide [62].

Fluorescent probes at high concentration may perturb cells and be toxic. For
example, when irradiated with UVA, H2DCF auto-oxidizes and photo-sensitizes
cells [63]. In addition, probes may affect the activity of ROS-producing enzymes.
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For instance, H2DCF can be a source of electrons for the oxidation of arachidonic
acid by prostaglandin H synthase [63], while dihydrocalcein was reported to inhibit
the activity of mitochondrial complex I [64].

5.4 Experimental Artifacts

Artifactual generation of ROS may result from photochemical reactions of components
of culture media [60, 145]. The presence of ROS has been detected even in natural
environments, such as seawater [146, 147]. Xenobiotics and endogenous compounds
such as catechols, dopamine, hydralazine, and molecules with SH groups may also
produce significant ROS upon interaction with media [60].

On the other hand, binding to macromolecules in the medium may lead to quenching
of fluorescent probes. For example, quenching of DCF fluorescence has been reported
by binding to native or glyoxal-modified human serum albumin [60, 148].

5.5 Cell Integrity and Functional Competence
and Intracellular Localization of Probes

As previously commented in this chapter, ROS and RNS are usually produced and
act in discrete intracellular locations. This situation is successfully approached by
chemical modifications in the probes that allow them to cross the plasma and,
eventually, the organelle membranes to be targeted to specific intracellular envi-
ronments [62–65]. However, artifacts may arise when these assumptions are not
realized. For instance, dihydrocalcein accumulates in mitochondria, in contrast to
H2DCF, which usually localizes in the cytoplasm [149], but preferential localization
of H2DCF in the mitochondria of rat cardial myocytes has been reported [150].

A much more common problem involves extracellular leakage of fluorogenic
probes or their oxidation products. Passive probe leakage will always be present, to
an undetermined extent, in necrotic or apoptotic cells, owing to enhanced plasma
membrane permeability, leading to artifacts or erroneous interpretation of results
(Fig. 4).

The presence of active multidrug transporters in the plasma membrane of cells may
result in probe extrusion and underestimation of oxidative stress [151], as
multidrug-resistant cells with elevated level of expression of some transporters can
appear to produce less ROS. Substances such as rhodamine 123 and ethidium are good
substrates for P glycoprotein, while substances such as fluorescein and dihy-
drofluorescein are substrates for MRP1 [152]. Dihydrocalcein has been preferred to
H2DCF because its oxidation product calcein is believed to not leak out of cells;
however, calcein is also a good substrate for MRP1 and MRP2 transporters [60].
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5.6 Intrinsic Limitations of Fluorogenic Substrates
and Probes

5.6.1 Probes Used for Detection of H2O2 and Organic Peroxides

H2DCF-DA is possibly the probe most widely used for detecting intracellular H2O2

and oxidative stress. Traditionally, H2DCF-DA and DHR123 are believed to be
oxidized by H2O2 and organic peroxides, and have been used for assaying per-
oxides [72, 80]. However, these probes do not react directly with H2O2 in the
absence of peroxidases [63, 64], and the fluorescence of DCF or rhodamine 123 is
not a direct measure of H2O2. Even if H2DCF oxidation also occurs by action of
H2O2 or O2 in the presence of Fe2+, the hydroxyl radical is the species responsible
for such oxidation [62].

Since the oxidation of H2DCF and DHR123 by H2O2 under physiological
conditions requires peroxidase-dependent systems, enzyme activity may become a
limiting factor; thus measurement of probe oxidation might be rather considered a
measure of peroxidase activity. However, H2DCF and DHR123 can be oxidized not
only by the peroxidases, but also by other related enzymes, such as xanthine
oxidase, superoxide dismutase, and cytochrome c [62].

Fig. 4 Example of passive H2DCF leakage from necrotic or apoptotic cells due to enhanced
plasma membrane permeability. Human kidney adenocarcinoma A.704 cells were resuspended
from monolayer culture by tripsinization and treated for 1 h with 150 lM t-butyl hydroperoxide
(t-BOOH), a prooxidant model compound, or with DMSO as vehicle (control). Cells were stained
for 30 min with 5 lg/mL H2DCF-DA; 2.5 lg/mL propidium iodide was added immediately
before analysis with a standard flow cytometer. Treatment with t-BOOH increases in live cells the
fluorescence of DCF, the product of H2DCF-DA oxidation. Dead or dying cells (positive for
propidium iodide), exhibit decreased intracellular DCF fluorescence. FAU: Fluorescence Arbitrary
Units
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H2DCF and DHR123 are not oxidized by NO or superoxide to any significant
extent, but they are very efficiently oxidized by peroxynitrite via the radicals
generated during peroxynitrite decomposition [153, 154].

DCF may undergo photoreduction by visible light or by UVA radiation [155].
This mechanism may generate a semiquinone radical from DCF that produces
superoxide by reaction with O2. Sequentially, the dismutation of superoxide gen-
erates H2O2, which leads to an artificial increase of H2DCF oxidation and to
amplification of DCF fluorescence.

Mito PY-1 and other aromatic boronate derivatives have been proposed for
analysis of intramitochondrial generation of H2O2 [82–84]. However, aromatic
boronates also react nearly stoichiometrically with peroxynitrite a million times
faster than they do with H2O2 [156]. Because of this reactivity, it is critical to
perform proper controls when using a boronate-based fluorescent probe, such as
expression of catalase, or using a peroxynitrite-specific probe.

5.6.2 Probes Used for Detection of Superoxide

Measurement of intracellular and mitochondrial superoxide using HE and
Mito-SOX Red is also a widely used strategy for studying oxidative stress [62–64].
The red fluorescence of the two-electron oxidation product of HE, ethidium (E+), is
usually considered proof of intracellular superoxide formation. However, it has
been demonstrated that E+ is not formed from the direct oxidation of HE by
superoxide [157, 158]. Instead, 2-hydroxyethidium (2-OH-E+), a different product
with similar fluorescence characteristics, is the reaction product of HE with
superoxide [102]. E+ and other dimeric products, but not 2-OH-E+, are generated
during the reaction between HE and other oxidants such as peroxynitrite, hydroxyl,
H2O2, and peroxidase intermediates. Thus, 2-OH-E+ is only a qualitative indicator
of intracellular superoxide [64, 102].

The chemistry of Mito-SOX with superoxide is similar to that of HE and the
same caveats apply [64]. Because of its positive charges, Mito-SOX reacts slightly
faster with superoxide compared to HE [101]. Mito-SOX reacts with superoxide
and forms a red fluorescent product, 2-hydroxymitoethidium (2-OH-Mito-E+), and
not Mito-E+. 2-OH-Mito-E+, the specific product of superoxide with Mito-SOX,
and Mito-E+, the nonspecific product of Mito-SOX, have overlapping fluorescence
spectra. Thus, the red fluorescence formed from Mito-SOX localized in mito-
chondria is not a reliable indicator of mitochondrial formation of superoxide, as it
might arise also from an oxidation product of Mito-SOX induced by one-electron
oxidants (such as cytochrome c, peroxidase, and H2O2) [64, 101, 102, 157, 158].

HE is oxidized directly by ferricytochrome c [91] and by other heme proteins.
Oxidation of the probe by cytochromes c, c1, b562, b566, and aa3 is
oxygen-independent, whereas oxidation by methemoglobin and metmyoglobin is
strictly oxygen-dependent, with products consisting of a mixture of species
resulting from 1- to 4-electron abstraction from HE. Although they are different
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from the superoxide oxidation product, their excitation/emission peaks are close to
those generated by superoxide [60, 159].

5.6.3 Probes Used for Detection of NO and Peroxynitrite

Diaminofluoresceins were initially reported to be specific for NO, but DAF-2 reacts
mainly with peroxynitrite rather than with nitric oxide [60, 160]. DAF-FM also
reacts with peroxynitrite, but under conditions of physiological concentrations of
NO and peroxynitrite it is fairly specific for NO.

Oxidants also interfere with the reaction of DAF-2 with NO [161], while reducing
compounds such as catecholamines, ascorbate, dithiothreitol, mercaptoethanol, and
glutathione attenuate the fluorescence of the reaction product [162]. Peroxidases in the
presence of H2O2 oxidize DAF-2 to a relatively stable nonfluorescent intermediate that
reacts directly with NOS, thus increasing fluorescence yield. Therefore, intracellular
oxidation of DAF-2 may result in increase of DAF-2 fluorescence, erroneously indi-
cating increased NO production [163].

DHR123 is the most frequently used probe for measuring peroxynitrite [62–64],
but oxidation to rhodamine 123 is actually mediated by the radicals •NO2 and •OH
formed from the rapid and spontaneous decomposition of peroxynitrite, and is not
induced directly by peroxynitrite itself. In addition, the intermediate radical, DHR•,
formed from the one-electron oxidation of DHR123, also reacts rapidly with O2 and
Fe2+ [112, 164], triggering a redox cycling mechanism leading to artifactual
amplification of the fluorescence signal intensity. Thus, DHR123 can be used only
as a nonspecific indicator of intracellular peroxynitrite and HO radical formation
[64].

5.6.4 Probes Used for Detection of Lipid Peroxides

The presence of four double bonds in cis-parinaric acid makes this probe very
susceptible to oxidation if not rigorously protected from air [62, 80]. During
experiments, cis-parinaric samples should be handled under inert gas and the
solutions prepared with degassed buffers and solvents. cis-Parinaric acid is also
photolabile and undergoes photodimerization when exposed to intense illumination,
resulting in loss of fluorescence [80].

BODIPY581/591 C11 is photosensitive, degrading under high-intensity illumi-
nation conditions, such as those typical of laser confocal microscopy [165]. In
addition, BODIPY581/591 C11 is more sensitive to oxidation than are endogenous
lipids, and therefore tends to overestimate oxidative damage and underestimate
antioxidant protection effects [80].
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5.6.5 Probes Used for the Determination of GSH

Several fluorescent probes are used to determine intracellular GSH, but all of them
may have limitations for quantitative studies. In many cases, the fluorescent
reagents designed to measure GSH may react with other free or protein-bound
intracellular thiols [137, 140, 166]. An important aspect in the use of GSH reagents
is the large interspecies and tissue variability of cellular GSH content and the
presence of GST isozymes, which may complicate enzyme-based measurements
under saturating substrate conditions [166]. For instance, mClB, which is highly
selective for GSH in rodents, should not be applied with quantitation purposes to
human cells because of its low affinity for human GST [140].

5.7 Controls in the Cytometric Analysis of ROS, RNS,
and Oxidative Stress

According to the limitations and caveats presented above, including appropriate
positive and negative controls is very important when performing cytometric
experiments or analyses related to ROS, RNS, and oxidative stress. When possible,
direct visualization of intracellular ROS and RNS generation by co-localization
techniques is highly recommendable [70] (Fig. 2); detailed discussion of possible
controls in such studies is beyond the scope of this chapter, as the biochemical
complexity of experimental oxidants and antioxidants parallels that of their bio-
logical counterparts [40, 167].

In general, the most frequent controls are positive controls, molecules or com-
plex systems that directly or indirectly increase the intracellular level of ROS or
RNS or mimic the cellular effects of oxidative stress. Prooxidants are chemicals that
induce oxidative stress, either by generating reactive oxygen species or by
inhibiting antioxidant systems [40, 167]. To mimic mitochondrial H2O2 production,
cells can be treated with the complex I respiratory-chain inhibitor rotenone [84].
Peroxyl radicals, including alkylperoxyl and hydroperoxyl radicals, can be gener-
ated from compounds such as 2,2’-azobis(2-amidinopropane) and from hydroper-
oxides such as t-butyl hydroperoxide or cumene hydroperoxide [84]. The hydroxyl
radical can be generated from superoxide donors (e.g., plumbagin or menadione)
[111] or by exogenous H2O2 in a Fenton reaction catalyzed by Fe2+ or other
transition metal, as well as by the effect of ionizing radiation [80]. Superoxide can
be most effectively produced by the hypoxanthine/xanthine oxidase–generating
system [168]. Many xenobiotics, including anticancer agents such as anthracyclines
and cis-platin [169], and natural redox-active toxins, like pyocyanin, [170] generate
ROS and can be used as positive controls.

Intracellular levels of ROS can also be increased by attenuating or inhibiting
antioxidant defenses. A convenient strategy involves depletion of intracellular GSH
stores by inhibiting GSH biosynthesis or by accelerating GSH oxidation [171].
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Inhibitors of antioxidant enzymes, such as superoxide dismutase [172] and catalase
[173], have also been used to increase intracellular ROS and induce oxidative
stress.

The intracellular content of RNS can be increased by using NO donors, a
heterogeneous group of chemicals (including ester nitrates, furoxans, benzofurox-
ans, NONOates, S-nitrosothiols, and metal complexes) that cross the cell membrane
and generate intracellular NO [111, 174, 175] or peroxynitrite [176].

In addition, negative controls may be designed to reduce the levels of ROS or
RNS or attenuate their biological effects. If possible, controls should be specific
with respect to which particular reactive species or enzyme system is involved, but
in most cases, controls do not attempt that degree of specificity [63–65].
Antioxidants can be categorized as enzymatic and nonenzymatic [167]. Enzymatic
antioxidants work by transforming oxidative products to H2O2 and then to H2O, in
a sequential process. Cell-permeable forms of antioxidant enzymes, such as
polyethyleneglycol–superoxide dismutase [177] can be also used to decrease
specifically intracelllular ROS. Non-enzymatic antioxidants work by interrupting
free radical–initiated chain reactions. Such antioxidants can be classified depending
on whether they are hydrophilic (e.g., ascorbic acid, N-acetyl cysteine, GSH-esters)
or lipophilic (e.g., a-tocopherol and Trolox) [40]. In general, water-soluble
antioxidants react with oxidants in the cytosol while lipid-soluble antioxidants
protect cell membranes from lipid peroxidation [40]. In addition, chelators of
transition metals [178] also exert antioxidant effects, based upon the attenuation of
Fenton-type reactions [40, 167].

Regarding the use of chemical antioxidants as negative controls, it should be
kept in mind that reducing agents may become prooxidants. For instance, ascorbate
has antioxidant activity when it reduces oxidizing substances such as H2O2, but it
can also reduce metal ions, leading to the generation of free radicals through the
Fenton reaction [40, 167]. When considering the specificity of antioxidants, all
organic compounds react with hydroxyl radicals with rate constants approaching
the diffusion limitation. Thus, in solution, no compound really has any more sig-
nificant hydroxyl radical–scavenging activity than other compounds (proteins,
lipids, nucleic acids, amino acids, numerous metabolites, etc.) already present in
any biological system [40]. On the contrary, a-tocopherol, owing to its specific
uptake into membranes and relatively rapid kinetics of reaction with lipid
hydroperoxyl radicals compared with their propagation reaction, may be an effec-
tive chain breaker in lipid peroxidation [40].

In recent years, novel approaches to design positive and negative controls in
studies of oxidative stress have involved genetically modified organisms. For
instance, Guo et al. [85] used an enzymatic method to generate cytoplasmic H2O2 in
astrocytes. Primary astrocytes were transduced with adenoviruses containing the
cDNA for cytoplasmic D-amino acid oxidase (DAAO). DAAO oxidatively deam-
inates D-amino acids using FAD as the electron acceptor. At the same time, DAAO
uses O2 to oxidize FAD, thus generating H2O2 in a dose-dependent manner relative
to the concentration of D-alanine.
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To provide biosensors of oxidative stress our own group [179] has developed a
collection of genetically modified strains of Escherichia coli B WP2, based on the
inactivation of the oxyR operon, a main sensor of oxidative stress [44]. Escherichia
coli B WP2 strains possess an altered cell-wall lipopolysaccharide that results in
increased membrane permeability; we have previously shown that flow cytometric
analysis of WP2 strains is a convenient alternative for cytometric assays of bacterial
function [180]. Such oxyR-deficient bacterial strains show enhanced sensitivity to
oxidative stress and increased accumulation of intracellular ROS when examined by
flow cytometry using fluorogenic susbstrates (Fig. 5).
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