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Formal Methods for Aerospace Systems

Achievements and Challenges

Marco Bozzano, Harold Bruintjes, Alessandro Cimatti,
Joost-Pieter Katoen, Thomas Noll and Stefano Tonetta

Abstract The size and complexity of control software in aerospace systems is
rapidly increasing, and this development complicates its validation within the con-
text of the overall spacecraft system. Classical validation methods are both labour
intensive and error prone as they rely on manual analysis, review and inspection.
Thus there is a growing trend to incorporate the use of automated formal meth-
ods. This chapter introduces the ESA-funded COMPASS project, which aims at
an integrated system-software co-engineering approach focusing on a coherent set
of specification and analysis techniques for evaluation of system-level correctness,
safety, dependability and performability of on-board computer-based aerospace sys-
tems. Its modelling features and supporting toolset provide a unifying framework for
system validation, employing state-of-the-art temporal-logic model checking tech-
niques for infinite-state transition systems, both qualitative and probabilistic, with
extensions to fault detection, identification and recovery (FDIR) and safety analysis.
We provide an overview of the technology and of the results that have been achieved
so far, and address several challenges for future developments. Current efforts of the
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project consortium concentrate on improving and advancing both process as well as
technology of the COMPASS approach, with the goal of bringing the methods to
higher levels of technology readiness.

Keywords Safety and dependability analysis · Performance analysis · Model
checking · AADL modelling language

6.1 Introduction

Verification and validation (V&V) are key processes in the engineering of safety-
critical hardware and software systems. Their goal is to check whether the system
under construction or its artefacts meet their requirements and its intended functions.
The current industry practices for conducting V&V are rather labour intensive [4].
There are severe concerns on scaling these techniques to deal with the ever-growing
complexity of systems and in particular of software. The trend is to incorporate the
use of formal methods [44, 47, 62]. In particular, automated verification techniques
are attractive for supporting more rigorous V&V. Formal methods, however, tend to
require a high degree of expertise and specialised know-how. These incur substantial
investments before their cost and efficiency benefits can be reaped.

To tackle this problem, the European Space Agency (ESA) has initiated an inte-
grated system-software co-engineering approach focusing on a coherent set of speci-
fication and analysis techniques for the evaluation of system-level correctness, safety,
dependability and performability of on-board computer-based aerospace systems.
The work has been and is still being carried out in an ESA-funded project entitled
COMPASS,which stands forCOrrectness,ModellingandPerformanceofAeroSpace
Systems [39].

This chapter gives an overview of the technology and of the results that have been
achieved so far, and addresses several challenges for future developments. Current
efforts of the project consortium concentrate on improving and advancing process as
well as technology of the COMPASS approach, with the goal of bringing themethods
to higher levels of technology readiness.

With regard to technology, several directions to be pursued have been identified,
and corresponding methods and implementations are currently under development.
Many of them are dealing with failure modelling and analysis. Originally, the COM-
PASS toolset supports performability evaluation: given an AADL model with asso-
ciated error probabilities, probabilistic model-checking techniques are employed to
determine the likelihood of a system failure occurring up to a given deadline. Inmany
cases, however, the probabilities of basic faults are not (exactly) known. It would
therefore be worthwhile to consider parametric error models, and to automatically
compute the maximal tolerable fault probabilities such that the overall model satis-
fies its performability requirements. A related problem is model repair, where one
tries to tune the error probabilities of a given model such that a given performabil-
ity property holds. Moreover, there is increasing demand for verification techniques
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that are able to cope with several (interdependent) performance measures, such as
reliability and energy consumption. In this setting, multi-objective model checking
is a promising approach.

Another error modelling concept to be investigated further are Timed Failure
Propagation Graphs (TFPG), which enable a precise description of how and when
failures originating in one part of a system affect other parts – a fundamental feature
for successfully designing contingency mechanisms. The latter require the careful
design and analysis of FDIR strategies, which in turn are based on the automated
synthesis of observability requirements to ensure sufficient diagnosability of fail-
ure situations. Another safety-related concept is Dynamic Fault Trees, an expressive
extension of standard Fault Trees that additionally cater for common dependability
patterns. In COMPASS, their analysis relies on the extraction of an underlying sto-
chasticmodel, which is a time-consuming process. This can be improved by reducing
the size of this model prior to analysis using graph transformation techniques, and
by accelerating the state space generation by leveraging reduction techniques from
model checking.

Another direction which is currently under development, is the enhancement of
the tool support to formalise the requirements into formal properties and to validate
with formal techniques that the specification is correct and complete. Related to this,
the specification of formal properties in terms of component assumptions and guar-
antees enables contract-based design, including the verification of contract-based
refinement and contract-based compositional verification of the system behaviour.

The following section sketches a systematic space systems engineering approach
as advocated by ESA and related institutions. In the subsequent two sections, we
address both the results that have been achieved in the COMPASS project and some
of the remaining challenges, and then conclude with a brief summary.

6.2 Space Systems Engineering

ESA and related institutions develop and maintain a series of standards for the man-
agement, engineering and product assurance in space projects and applications,
known as European Cooperation for Space Standardization (ECSS). Among oth-
ers, Standard ECSS-E-ST-10C [48] specifies the system engineering implementation
requirements for space systems and space products development. More concretely,
it states that

Systems engineering is defined as an interdisciplinary approach governing the total technical
effort to transform a requirement into a system solution. A system is defined as an integrated
set of elements to accomplish a definedobjective.These elements includehardware, software,
firmware, human resources, information, techniques, facilities services, and other support
elements.
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Moreover, [48] partitions system engineering into the following activities:

requirements engineering which consists of requirement analysis and validation,
requirement allocation, and requirement maintenance;

analysis which is performed for the purpose of resolving requirements conflicts,
decomposing and allocating requirements during functional analysis, assessing
system effectiveness (including analysing risk factors); and complementing test-
ing evaluation and providing trade studies for assessing effectiveness, risk, cost
and planning;

design and configuration which results in a physical architecture, and its com-
plete system functional, physical and software characteristics;

verification whose objective is to demonstrate that the deliverables conform to
the specified requirements, including qualification and acceptance;

system engineering integration and control which ensures the integration of the
various engineering disciplines and participants throughout all the project phases.

The following section describes to what extent these activities are supported in
our COMPASS approach.

6.3 Achievements

TheCOMPASSproject funded by the European SpaceAgency (ESA) aims at an inte-
grated system-software co-engineering approach focusing on a coherent set of spec-
ification and analysis techniques for evaluation of system-level correctness, safety,
dependability and performability of on-board computer-based aerospace systems.
Its main contributions are a tailored modelling language and a toolset for supporting
(semi-)automated validation activities. The modelling language is a dialect of the
Architecture Analysis and Design Language (AADL) and enables engineers to spec-
ify the system, the software, and their reliability aspects. The COMPASS toolset pro-
vides a unifying framework for validation, employing state-of-the-art temporal-logic
model checking techniques for infinite-state transition systems, both qualitative and
probabilistic, with extensions to fault detection, identification and recovery (FDIR)
and safety analysis. Its applicability has been demonstrated in several case studies in
the space domain, ranging from thermal regulation and mode management in satel-
lites with associated FDIR strategies to an industrial-size satellite platform. Here we
provide a brief overview of our framework. A more comprehensive description is
given in [24, 65, 72].

6.3.1 The COMPASS Approach

The COMPASS toolset addresses, in a coherent manner, different aspects that are
relevant to the engineering of complex systems, such as co-engineering of hardware
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and software, performability and dependability, reliability, availability, maintainabil-
ity and safety engineering (RAMS). COMPASS offers a multi-disciplinary approach
that supports the early design phases by considering systems at the architecture level.
Thus it mainly targets the “requirements engineering” and “analysis” functions of
systemengineering, but also tackles the “design and configuration” and “verification”
phases.

More concretely, COMPASS provides a specification language that offers conve-
nient ways to describe nominal hardware and software operation, hybridity, (proba-
bilistic) faults and their propagation, error recovery, and degraded modes of opera-
tion. This language is discussed in Sect. 6.3.2 in greater detail. It is equipped with a
formal semantics that opens up the possibility to apply a wealth of formal methods
for various kinds of verification and validation activities. Most of these are based on
formal requirements as introduced in Sect. 6.3.3. V&V is supported by an integrated
toolset, described in Sect. 6.3.4, that covers the following functionalities according
to the ECSS standards.

Requirements Validation [48] In order to ensure the quality of requirements, they
can be validated independently of the system. This includes both property con-
sistency (i.e., checking that requirements do not exclude each other), property
assertion (i.e., checking whether an assertion is a logical consequence of the
requirements), and property possibility (i.e., checking whether a possibility is
logically compatible with the requirements). Altogether these features allow the
designer to explore the strictness and adequacy of the requirements. Expected
benefits of this approach include traceability of the requirements and easier shar-
ing between different actors involved in system design and safety assessment.
Furthermore, high-quality requirements facilitate incremental system develop-
ment and assessment, reuse and design change, and they can be useful for product
certification.

Functional Verification [48] Analysing operational correctness is the first step to be
performed during the system development lifecycle. It consists in verifying that
the system will operate correctly with respect to a set of functional requirements,
under the hypothesis of nominal conditions, that is, when software and hardware
components are assumed to be fault-free. This can be accomplished by both
simulation and exhaustive model checking techniques.

Safety and Dependability Analysis [49, 51–53] Analysing system safety and
dependability is a fundamental step that isperformed inparallelwith systemdesign
and verification of functional correctness. The goal is to investigate the behaviour
of a system in degraded conditions (that is, when some parts of the system are not
working properly, due to malfunctions) and to ensure that the system meets the
safety requirements that are required for its deployment and use.

Performability Analysis [50] To guarantee the required system performance in the
presence of faults, integrated hardware and software models can be evaluated
with respect to their performance behaviour in degraded modes of operation.
In line with the approach for the functional correctness, again model checking
techniques are employed for assessing this type of requirements.
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Fault Detection, Identification and Recovery (FDIR) Analysis [49] System mod-
els can include a formal description of both the fault detection and identification
sub-systems, and the recovery actions to be taken. Based on these models, tool
facilities are provided to analyse the operational effectiveness of FDIR mea-
sures, and to investigate the observability requirements that make the system
diagnosable.

In summary, the overall process of analysing system specifications in the COM-
PASS framework involves the following steps:

1. System specifications (describing the nominal and, if applicable, the error behav-
iour) are entered using a text editor, and loaded into the toolset (cf. Sect. 6.3.2).

2. Some of the subsequent analyses require writing properties. COMPASS offers
several ways to specify such properties (cf. Sect. 6.3.3).

3. To interactively explore the dynamic behaviour of the system, the model simula-
tion feature of the toolset can be employed (cf. Sect. 6.3.4).

4. Finally, depending on the type of the system, a plethora of analyses can be applied
(cf. Sect. 6.3.4).

6.3.2 System Modelling

AADL [84] is an industry standard formodelling safety-critical system architectures,
which is developed and governed by SAE. This language provides a cohesive and
uniform approach for modelling heterogeneous systems, consisting of software (e.g.,
processes and threads) and hardware (e.g., processors and buses) components, and
their interactions. It enables analysis of system designs prior to implementation and
supports a model-based and model-driven development approach throughout the
system life cycle.

Our dialect of AADL was designed to meet the needs of the European space
industry. The original language is mainly focused on the architectural organisation
of a system under nominal and degraded modes of operation. The nominal modes
indicate that the system is operating normally, whereas degraded modes typically
signify that the system’s functions are (partially) impaired due to some anomaly.
Our goal was to extend AADL’s scope on defining the architecture of a system by
also allowing to analyse its dynamic behaviour, namely both its nominal and degraded
modes of operation and their interweaving.

In particular, quantitative aspects such as the timing of operations and the likeli-
hood of faults should be covered. To this end, we built on a core fragment of AADL
Version 1 [83] and extended it, essentially by supporting the following features:

• Modelling both the system’s nominal and faulty behaviour. To this aim, primitives
are provided to describe software and hardware faults, error propagation (i.e.,
turning fault occurrences into failure events), sporadic (transient) and permanent
faults, and degraded modes of operation (by mapping failures from architectural
to service level).
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• Modelling (partial) observability and the associated observability requirements.
These notions are essential to analyse the effectiveness of fault management sys-
tems. These subsystems, being part of the overall system, monitor it, identifying
when a fault has occurred, pinpointing the type of fault and its location, and finally
recovering from it by, for example, switching to a backup system configuration.

• Specifying timed and hybrid behaviour. In particular, to analyse physical systems
with non-discrete behaviour, such as mechanics and hydraulics, the modelling
language supports continuous real-valued variables with (linear) time-dependent
dynamics.

• Modelling probabilistic aspects, such as random faults and repairs, that are subject
to stochastic timing.

A complete system specification consists of three parts, namely a description
of the nominal behaviour, a description of the error behaviour, and a fault injection
specification that describes how the error behaviour influences the nominal behaviour.
This separation approach is different from the one taken in AADL and its Error
Model Annex [81], which interacts through an explicit specification of mangling
error and nominal events. In contrast, our dialect provides an automated mechanism
(calledmodel extension) that enables engineers to keep the nominalmodel completely
separate from the error model. A comprehensive presentation of our specification
language and its formal semantics is given in [25].

6.3.3 Requirements Specification

An important aspect of V&V of requirements is the consistent and complete specifi-
cation of formal properties associated with the requirements. As the (correct) spec-
ification of such properties requires a significant amount of technical expertise, the
COMPASS toolset has striven to alleviate this burden from its users as much as
possible.

The approach initially taken by COMPASS was to allow the user to specify prop-
erties by means of patterns [5, 46]. These provide a structured way of generating a
formal property given a template with placeholders, where the user provides basic
propositions (statements about the current state of the system) for each of these
placeholders. The use of these patterns relies on the fact that the requirements them-
selves often use recurring shapes. For example, one pattern describes the absence of
particular behaviour in the system, e.g., reaching a state of critical failure.

Various logics are supported by this approach, in particular qualitative, timed
and probabilistic logics, such as LTL/CTL, MITL and CSL respectively. A formal
property expressed by a pattern is converted into the appropriate logic depending on
the pattern used, and given to a model checker for analysis. An appropriate model
checker in the toolset will be provided the input model and one or more properties,
and checks whether the property holds, thus providing the formal verification of the
requirement associated with it.
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Recently, support has been added to COMPASS for the Catalogue of System and
Software Properties (CSSP) in the CATSY project [18]. The CSSP defines a set of
design attributes which are used to automatically derive formal properties. A require-
ments taxonomy has been set up, with a focus on the space engineering domain, to
allow various project requirements to be classified (e.g., requirements related to
monitoring, protocols or availability). For each of these classes, associated design
attributes have been identified. Such design attributes may refer to the presence of
elements in the model (e.g., redundant components or mode transitions) or to prop-
erties associated with such elements (e.g., timing of events, or reactions to events).
The latter are collected in the CSSP. This way, for appropriate requirement classes,
a user can simply specify the value of the associated properties. A formal property
is generated automatically for such model properties, allowing for the verification of
the corresponding requirement.

Moreover, still within the CATSY project, the specification language has been
enrichedwith the possibility to specify properties on components directly in temporal
logics, thus without the help and limitation of the pattern-based approach. Finally,
the properties attached to components (either specified directly in temporal logic or
by means of patterns or the CSSP) can be structured into contracts [38], i.e., pairs of
assumptions and guarantees, to enable the verification of contract-based refinement
and contract-based compositional verification and safety analysis.

6.3.4 COMPASS Toolset

The COMPASS toolset is the result of a significant implementation effort carried out
by the COMPASS Consortium. The GUI and most subcomponents are implemented
in Python, using the PyGTK library. Pre-existing components, such as the NuSMV
and MRMCmodel checkers, are mostly written in C. Overall, the core of the toolset
consists of about 100,000 lines of Python code. Figure6.1 shows the functionality
of the toolset. Its main features are introduced in the COMPASS Tutorial [41]. It is
complemented by the COMPASS User Manual [40], which can be consulted for a
more systematic reference.

COMPASS takes as input one or more AADL models, and a set of properties.
As pointed out before, the latter are provided in the form of generic properties or
instantiated property patterns, which are templates containing placeholders that have
to be filled in by the user. The COMPASS toolset provides templates for the most
frequently used patterns, that ease property specifications by non-experts through
hiding the details of the underlying temporal logic. The tool generates several out-
puts, such as traces, Fault Trees and FMEA tables, diagnosability and performability
measures.

The toolset builds upon the followingmain components. NuSMV (New Symbolic
Model Verifier, [34, 74]) is a symbolic model checker that supports state-of-the-art
verification techniques such as BDD-based and SAT-based verification for CTL and
LTL [8]. nuXmv [32] is an extension of NuSMV for the SMT-based verification of
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Fig. 6.1 Functional view of the COMPASS platform

infinite-state systems. MRMC (Markov Reward Model Checker, [67, 71]) is a prob-
abilistic model checker that enables the analysis of discrete-time and continuous-
time Markov reward models. Specifications are written in PCTL (Probabilistic
Computation Tree Logic) and CSL (Continuous Stochastic Logic [6], a probabilis-
tic real-time version of CTL). SigRef [88] is used to minimise, amongst others,
Interactive Markov Chains (IMC; [61]) based on various notions of bisimulation.
It is a symbolic tool using multi-terminal BDD representations of IMCs and applies
signature-based minimisation algorithms. xSAP [13] is a tool that supports model-
based safety analysis including Fault-Tree Analysis, FMEA, and diagnosability.
OCRA [36] takes in input a system architecture specification and allows to perform
contract-based validation and verification.

The tool also supports a graphical notation of our AADL dialect, which is derived
from the graphical notation of AADL [82]. We developed a graphical drawing editor
enabling engineers to construct models visually using the adopted graphical notation.
This editor is called theCOMPASS Graphical Modeller and is part of the COMPASS
toolset. Figure6.2 shows the main window of the COMPASS toolset after loading a
system model and performing a fault injection.
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Fig. 6.2 Main window of the COMPASS toolset

6.3.4.1 Properties Validation

Figure6.3 gives an example of a property specification by means of patterns. Before
analysing the correctness of the behavioural model against the specified properties,
the properties themselves can be validated to search for errors in the requirements or
in their formalisation. COMPASS supports this activity of properties assurance [79]
by allowing the user to specify and check property validation problems. These can
be a simple check of consistency (i.e., logical satisfiability) of a set of properties or
can consist of specifying a new property to be consistent with or entailed by a set of
existing properties. In case of inconsistency or failed entailment, an execution trace
is generated as a witness of the result. In case of proved inconsistency or entailment,
a minimal subset of properties that are sufficient for the proof can be extracted.

Whenproperties are structured into contracts, COMPASS supports the verification
of their refinement as described in [38]. In contract-based design, the assumptions
of a component are properties to be satisfied by the component environment, while
the guarantees are properties to be satisfied by the implementation when the assump-
tions hold. A correct contract refinement ensures that any correct implementation
of the subcomponents form a correct implementation of the composite component,
and, together with an environment satisfying the assumptions, form a correct envi-
ronment for each subcomponent. This is verified by generating and proving a set
of proof obligations, which are validity problems for the underlying temporal logic.
For every refined contract, there is a proof obligation to ensure that the guarantee
of the composite component is entailed by the conjunction of the assumption of the
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Fig. 6.3 The property editor

composite component and the contracts of the subcomponents, and similarly for each
assumption of each subcomponent.

If the contract refinement is not correct, the tool provides an execution trace
for every invalid proof obligation. In case the refinement is correct, the tool can
provide some feedback by presenting viable tightenings of the contract refinement,
i.e. stronger/weaker versions of the assumptions/guarantees that still yield a correct
contract refinement, as described in [35].

6.3.4.2 Functional Correctness

COMPASS supports random and guided model-based simulation of AADL models.
Guided simulation canbe performedby choosing either the next transition to be taken,
or a target value for one or more variables. The generated traces can be inspected
using a trace manager that displays the values of the model variables of interest
(filtering is possible) for each step.

Property verification is based on model checking [8], an automated technique
that verifies whether a property expressed in temporal logic holds for a given model.
Symbolic techniques [10, 11, 60] are used to tackle the problem of state space
explosion. COMPASS relies on the NuSMV [34, 74] and nuXmv [32, 75] model
checkers, which support both BDD-based and SAT-based verification for finite-state
systems, and SMT-based verification techniques for timed and hybrid systems, based
on the MathSAT solver [20, 69]. On refutation of a property, a counterexample
is generated, showing an execution trace of the model violating the property. An
example of this is shown in Fig. 6.4. It is also possible to run deadlock checking, in
order to pinpoint deadlocks (i.e., states with no outgoing transitions) in the model.



144 M. Bozzano et al.

Fig. 6.4 A model-checking counterexample

The verification of properties can be enhanced by contract-based specification to
perform it in a compositionalway. In this case, COMPASS interactswithOCRA [36],
first, to check that the contract refinement is correct and, second, to individually verify
each atomic component with respect to its local contract. These checks ensure the
correctness of the overall system by compositional reasoning.

6.3.4.3 Safety and Dependability Assessment

COMPASS implements model-based safety assessment techniques, based on sym-
bolic model checking [26, 28], and supports traditional techniques such as Failure
Mode andEffects Analysis (FMEA; [49]) andFault Tree Analysis (FTA; [52]). FMEA
is an inductive technique that starts by identifying a set of (combinations of) failure
modes and, using forward reasoning, assesses their impact on a set of system prop-
erties. The results are summarised in an FMEA table. It is also possible to generate
dynamic FMEA tables, i.e., to enforce an order of occurrence between failure modes.
FTA is a deductive technique, which, given a top-level event (TLE), i.e., the speci-
fication of an undesired condition, constructs all possible chains of basic faults that
contribute to its occurrence. Pictorially, these chains are organised in a Fault Tree
with a two-layer logical structure, corresponding to the disjunction of its minimal cut
sets (MCSs; [28]), where each MCS is a conjunction of basic faults. COMPASS also
supports the generation of (a subset of) Dynamic Fault Trees [45], where ordering
constraints between basic faults are represented using priority AND (PAND) gates.
Figure6.5 depicts a Fault Tree.
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Fig. 6.5 A generated fault tree

It is also possible to exploit a contract-based specification to obtain a fault tree that
follows the hierarchical decomposition of the system [27]. In this case, COMPASS
interactswithOCRA to compute a fault treewhere each intermediate event represents
the failure to satisfy either the guarantee or the assumption of a contract. The fault tree
represents the dependency between such failure and the failures of other components.
For example, the failure of a composite component can be caused by the combined
failure of two of its subcomponents or by the failure of its assumption, which in turn
can be caused by the failure of other components. Compared to the “monolithic”
FTA described above, the contract-based FTA is more pessimistic with regard to
the identification of possible system failures because it follows the conservative
approximation given by the contract-based refinement. The resulting fault tree is
however often more intuitive because it uses intermediate events corresponding to
the components in the system architecture.

6.3.4.4 Diagnosability and FDIR Analysis

The COMPASS toolset supports diagnosability and FDIR (Fault Detection, Isolation
and Recovery) effectiveness analysis. These analyses work under the hypothesis of
partial observability. Variables and ports in our AADL dialect can be declared to be
observable.

Diagnosability analysis investigates the possibility for an ideal diagnosis system
to infer accurate and sufficient run-time information on the behaviour of the observed
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system. The COMPASS toolset follows the approach described in [37], where the
violation of a diagnosability condition is reduced to the search of critical pairs in
the so-called twin plant model, i.e., pairs of execution traces that are observationally
equivalent but hide conditions that should be distinguished. Figure6.6 shows such a
pair of traces.

FDIR effectiveness analysis refers to a set of analyses carried out on an existing
fault management subsystem. Fault detection is concerned with detecting whether a
given system is malfunctioning, namely searching for observable signals such that
every occurrence of the fault will eventually trigger them. Fault isolation analysis
aims at identifying the specific cause of malfunctioning. It generates a Fault Tree
that contains the minimal explanations that are compatible with the observable being
triggered. Finally, fault recovery analysis is used to check whether a user-specified
recoverability property holds.

6.3.4.5 Timed Failure Propagation Graphs

COMPASS supports Timed Failure Propagation Graphs (TFPGs; [1, 70, 76]) as
a means to model and analyse how failures originating in one part of a system
affect other parts. Traditionally, TFPGs can be used for both diagnosis and progno-
sis. TFPGs describe the occurrence of failures and the temporal interrelationships
between failures and their direct and indirect effects. They constitute a very rich
formalism that can express Boolean combinations of basic failures, intermediate
consequences, and transitions across them, labelled with propagation times and pos-
sibly dependent on the system’s operational modes. TFPGs are increasingly used for

Fig. 6.6 Diagnosability counterexample
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the design of autonomous systems, in particular for the design of FDIR procedures.
Compared to other techniques such as FTA and FMEA, TFPGs have substantial
advantages. They present a more comprehensive and integrated picture than Fault
Trees, as they focus on propagation paths in response to individual feared events.
Moreover, in comparison to FMEA tables they provide additional and more precise
information, such as timing information and AND/OR correlations between propa-
gation causes and effects.

As shown in Fig. 6.7, COMPASS enables the modelling and analysis of TFPGs.
The available analyses include behavioural validation, that is, verification that a
TFPG is a complete representation of failure propagation with respect to a given
system model, and effectiveness validation, that is, verification that a TFPG is a suit-
able model for diagnosis, i.e., contains sufficient information to carry out diagnosis,
discriminating between different possible causes. Finally, COMPASS supports the
automatic synthesis of a TFPG, given a set of nodes and a system model.

6.3.4.6 Performability Analysis

We use probabilistic model checking techniques [7, 8] for analysing a model with
respect to its performance. TheCOMPASS toolset in particular supports performance
properties expressed by the probabilistic pattern system presented in [5]. It allows
for the formal specification of steady-state, transient probabilities, timed reachability
probabilities andmore intricate performancemeasures such as combinations thereof.
An example of a typical performance parameter is “the probability that the first
battery dieswithin 100h” or “the probability that both batteries diewithin themission

Fig. 6.7 Example of a TFPG
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duration”. These properties have a direct mapping to Continuous Stochastic Logic
(CSL; [6]) and are input to the underlying probabilistic model checker.

The probabilistic model checker furthermore requires a Markov model as input.
This is obtained from the integrated nominal and error model through several steps.
First, the extended model’s reachable state space is generated through an exhaustive
symbolic exploration. Second, the probabilistic rates as specified in the error models
are interwoven through the state space by replacing the transition label with the
associated probabilistic rate. The resulting state space is a symbolic representation of
an InteractiveMarkov Chain (IMC), i.e., a Continuous-TimeMarkov Chain (CTMC)
that may exhibit non-determinism [61]. This IMC is passed through the third phase,
in which its size is reduced using weak bisimulation minimisation [43, 86]. In the
final phase, CSL formulae are extracted from the performance requirements, and
are fed together with the reduced IMC to a probabilistic model checker, to compute
the desired probabilities. If the reduced IMC is a proper CTMC, the MRMC model
checker [67] is used for this purpose, otherwise the IMCA model checker [58] is
employed. As can be seen in Fig. 6.8, the result is a graph showing the cumulative
distribution function over the time horizon specified in the performance requirement.
Similar techniques are also used for Fault Tree evaluation, i.e., for computing the
probability of the top-level event in Dynamic Fault Trees [19].

Fig. 6.8 Performing performability analysis
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6.3.5 Case Studies

The COMPASS methodology has been progressively assessed by several industrial
case studies, steadily increasing in size and scope. Table6.1 summarises the results,
respectively giving appropriate references, the number of components of the system
model (“#C”), the main aspect to be investigated, and the major technological chal-
lenges that have been solved and those that were left open (and will be addressed in
Sect. 6.4).

Thales Alenia Space conducted the first evaluation. They developed two case
studies of their satellite subsystems, respectively dealing with mode management
and thermal regulation, and analysed them using the COMPASS toolset [65]. These
subsystem case studies demonstrated the potential of understanding the subtle inter-
actions between the system, software, and the fault management system. They fur-
thermore raised follow-up questions: howwould models with a greater level of detail
be handled? In which phases of the systems engineering life cycle is the COMPASS
methodology particularly suitable?

To address these issues, ESA conducted a laboratory project to model a full satel-
lite platform using the COMPASS methodology. This was performed at phase B of
the space systems engineering life cycle, the preliminary system design [24, 54].
A subsequent laboratory project was initiated afterwards to model a full satellite
platform at phase C, the detailed system design. Here, special focus was put on diag-
nosability analysis, which in the phase B pilot was deemed intractable. This analysis
increasingly gains importance in the engineering life-cycle as fault management
designs become more involved to meet mission demands. Our experiences indicate
a clear need for enhanced diagnosability analysis algorithms that also account for
delayed diagnostic means. The outcomes of this study are discussed in detail in [24].

Moreover, [31] presents a case study performed together with Airbus Defense
and Space, which was carried out to demonstrate the applicability of stochastic
model checking (Monte Carlo methods) to analyse timed reachability properties
of a simplified launcher system. The evaluation revealed the need to support more
expressive kinds of stochastic logics.

Recently, a case study on the application of TFPGs for the on-going Solar Orbiter
project [85] was performed internally at ESA. It shows the feasibility of using TFPG-

Table 6.1 Overview of case studies

Case study #C Aspect Solved Open

Mode mgmt. [65] 3 Fault mgmt. Scalab. of analysis —

Thermal reg. [65] 12 Hybrid behav. Zeno paths —

Platform B [24, 54] 86 FDIR Fairness —

Platform C [24] 246 Diagnosab. Effic. diagnosab. anal. Delayed diagnosis

Launcher [31] 37 Prob. reachab. Effic. performab. anal. Expressivity of logics

Solar Orbiter [12] 15–39 Failure propag. TFPG analysis Fault recov. synthesis
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based analyses to study time-critical failure propagation at a unit to subsystem level.
When using focused modelling, also the analysis of timed failure propagation in
detailed physical models is feasible. In general, TFPGs have been found to be a
promising technology to formally integrate various key aspects of FDIR design,
including discrete failure propagations across all levels of a system, time bounds on
the delays, mode constraints, and monitors. This is very important, because informal
analysis usually done with FMEA makes it difficult to demonstrate completeness
and timing properties of the proposed design. Indeed, by application of TFPGs in
the case study one case of a propagation link missing in the FMEA tables has been
identified.

6.4 Challenges

With regard to technological challenges, several directions to be pursued have been
identified, and corresponding methods and implementations are currently under
development.

6.4.1 Formal Validation of Probabilistic Properties

As explained in Sect. 6.3.3, system requirements are formalised by temporal logics.
The toolset described in Sect. 6.3.4 supports the validation of such properties by
means of satisfiability/validity checking, i.e., the problem of deciding whether a
given formula is satisfied by at least one or, dually, by every system model. This is
currently supported for qualitative logics like LTL and CTL, which only allow to
describe the order of system actions but cannot express quantitative properties such
as timing or probabilities. These logics possess the so-called finite model property,
and the complexity of checking satisfiability has been explored for various fragments.

However, the satisfiability problem for probabilistic versions of CTL such as
PCTL and CSL, which are employed to express quantitative properties of system
models, is almost unexplored [33]. These logics are quite popular in the field of
probabilistic verification as their model-checking problem is known to be decidable.
When it comes to satisfiability, however, the analysis turns out to be a much more
difficult endeavour. In fact, this is a long-standing open problem for PCTL. Results so
far are restricted to logical fragments such as qualitative PCTL [29], or are obtained
by considering variations of the satisfiability problem. One of the most recent results
is given in [33], where the satisfiability problem for a bounded fragment of PCTL is
shown to be decidable.

Therefore, there is strong demand for identifying richer fragments of PCTL and
for studying their satisfiability, complexity, and finite/rational model properties.
A promising direction is to start from the characterisation of safety and liveness
fragments of this logic [66].
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6.4.2 Contract-Based Fault Injection

As discussed in Sect. 6.3.4, Fault Tree Analysis can be performed either by means of
a more traditional model-based approach, which computes the minimal cut set for
a top-level event, or by means of contract-based safety analysis, which produces a
hierarchical Fault Tree that follows the specified contract refinement (and thus the
architectural decomposition). The two analyses are currently disconnected: while
the model-based safety analysis exploits the error model specification to automati-
cally inject faulty behaviours into the nominal model, the contract-based approach
identifies a failure by the fact that the component implementation violates a guar-
antee or that the component environment does not satisfy an assumption. Thus, in
the contract-based approach, in case of failure, any behaviour is possible. This may
result in Fault Trees that describe combinations of failures which can never occur in
the real system. An interesting research direction is to find an effective way to inject
the faults in the contract specification in order to have degraded assumptions and
guarantees in case of failures.

6.4.3 FDIR Design and Diagnosability

The area of diagnosability and fault detection, identification [and recovery] (FDI[R])
design is particularly challenging. Recent work [22, 23] has addressed the extension
of diagnosis and FDI to incorporate the notion of delay, and to address cases where
diagnosability cannot always be guaranteed for all system executions.

The diagnosis delay characterises situations where diagnosis requires a time delay
in order to be carried out. The notion of alarm condition formalises the relation
between the condition to be diagnosed (e.g., presence or absence of a fault, isola-
tion between different faults) and the raising of an alarm by the diagnoser; an alarm
condition may specify diagnosis with an exact delay (after exactly a given time),
a bounded delay (within a given time) and finite delay (eventually). Moreover, the
notion of trace diagnosability formalises cases where diagnosability cannot be guar-
anteed globally, but only locally, on a subset of traces, and the notion of maximality
formalises the capability of a diagnoser to raise the alarm as soon as possible and
as long as possible. Finally, FDI effectiveness properties state the correctness and
completeness of an FDI design with respect to the FDI requirements. In [23], all of
these properties of an FDI design can be specified using a general framework and
language based on temporal epistemic logic. Verification can be performed using an
epistemic model checker. Alternatively, the diagnosability check can be reduced to
standard temporal logic model checking based on the twin-plant approach described
in Sect. 6.3.4. The original version of the latter was introduced in [37] and is being
employed in the current COMPASS toolset, while [22, 57] shows how to extend it
to deal with epistemic logic. In addition, an algorithm for the automatic synthesis of
correct-by-construction FDI components is available [23].
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Another interesting research area concerns the analysis of observability require-
ments for diagnosis, and the synthesis of a set of observables that are sufficient to
ensure diagnosability [16]. It is possible to rank configurations of observables based
on cost, minimality, and diagnosability delay, thus helping designers in finding the
most appropriate configuration.

The automatic synthesis of FDIR components has been considered in two projects
related to COMPASS, namely AUTOGEF [2] and FAME [15], also funded by ESA.
The problem is cast in the frame of discrete event systems and finite delay diagnosis,
and is tackled by synthesizing the fault detection and fault recovery components
separately, with the idea that fault recovery implements a plan (recovery strategy) to
respond to the alarms generated by the fault detection component. FAME addresses
the problem of FDIR synthesis for continuous-time systems, where the diagnoser
communicates with the plant by sampling the values of the sensors at periodic time
intervals. Another outcome of the FAME project is the definition of a general process
for FDIR design that spans the different phases of system development (definition of
mission and FDIR requirements, safety assessment, FDIR design and verification).
This process aims at enabling a consistent and timely FDIR conception, development,
verification and validation, overcoming several shortcomings of existing practices.
FDIR synthesis, along with other functionality described in this section, is under
consideration for inclusion in the COMPASS toolset.

6.4.4 Timed Failure Propagation Graphs

Recent work has focused on techniques for validating TFPG models. In particular,
[21] studies several validation problems using advanced techniques based on satisfia-
bilitymodulo theory, namely possibility and necessity, refinement and diagnosability.
Moreover, [17] addresses both the completeness of a TFPG with respect to a sys-
tem model, and the problem of tightness of TFPG edges, that is, the possibility that
certain parameters, specifically time bounds, of the TFPG can be reduced without
breaking its completeness. Finally, the problem of automatic synthesis of a TFPG is
thoroughly investigated in [14]. Automatic tightening of the TFPG nodes, coupled
with the synthesis of the graph, may be used to automatically produce a complete
and tight TFPG from a system model, given the definition of the TFPG nodes.

6.4.5 Parametric Error Models

Originally, theCOMPASS toolset supports performability evaluation (cf. Sect. 6.3.4):
given an AADLmodel with associated error probabilities, the likelihood of a system
failure occurring up to a given deadline is determined. The underlying technique
is probabilistic model-checking. In many cases, however, the probabilities of basic
faults are not known, or at best can be estimated by lower and upper bounds. It
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would therefore be worthwhile to consider parametric error models, in which the
probabilities of faults are (partially) left open.

Parameter synthesis focuses on automatically computing the maximal tolerable
parameter values such that the resulting model satisfies its performability require-
ments. Although this problem is inherently harder than (probabilistic) model check-
ing, first results indicate that for a limited number of parameters, solutions are feasible
and scalable [42, 63]. They would allow to derive quality requirements for electronic
[80] ormechanical parts [73] or software components [3] of a system to be developed.

A related problem is model repair, where one tries to tune the error probabili-
ties of a given model such that the resulting model satisfies a given performability
requirement. Current approaches only consider changes of the transition probabili-
ties,whereasmodifications of the underlying topological structure are not considered.
Different methods exist, such as global repair [9] and the more recent technique to
perform local repair operations in an iterative fashion [77].

6.4.6 Dynamic Fault Trees

Fault Tree Analysis (cf. Sect. 6.3.4) is a widespread industry standard for assessing
system reliability [52]. Standard (static) Fault Trees model the failure behaviour of
a system dependent on its component failures. To overcome their limited expressive
power,Dynamic Fault Trees (DFT) have been introduced tomodel advanced depend-
ability patterns, such as sparemanagement, functional dependencies, and sequencing
[45]. Currently, in addition to static Fault Trees the COMPASS toolset only supports
sequencing, by representing ordering constraints between basic faults using priority
AND (PAND) gates. However, there is strong demand for improving safety assess-
ment by supporting more expressive constructs in DFTs. They often lead to fault
models that are more succinct, and thus better comprehensible.

DFT analysis relies on the extraction of an underlying stochastic model, such as
a Bayesian Network, a Continuous-Time Markov Chain, a Stochastic Petri Net, or
an Interactive Markov Chain. This is a time-consuming process, in particular for
more expressive dependency patterns, raising the need for approaches to make it
simpler and cheaper (in terms of computational resources). A key technique is the
reduction of the state space of DFTs prior to (and during) their analysis. Here, one
technique is to consider DFTs as (typed) directed graphs and to manipulate them by
graph transformation, a powerful technique to rewrite graphs via pattern matching.
In [64], a catalogue of 28 (templates of) rules is presented that convert a given DFT
into a smaller, equivalent one having the same system reliability and availability
characteristics. Experiments with 170 DFTs, originating from standard examples
from the literature as well as industrial case studies from aerospace and railway
engineering, showed encouraging results. The rewriting approach enabled us to cope
with 49 DFTs that could not be handled before. But also for static Fault Trees the
processing pays off, rendering analysis much faster andmorememory efficient, up to
two orders of magnitude.
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More state-space reductions can be obtained by tailoring two successful tech-
niques from the field of model checking, namely, symmetry reduction and partial-
order reduction [87]. In the DFT setting, this amounts to the detection of isomorphic
sub-DFTs, of stochastic independencies, and of sub-DFTs that become obsolete
after the occurrence of some faults. In addition, certain failure orderings arising
from superfluous non-determinism can be ignored in the analysis. All this comes at
no run-time penalty: as the results in [64, 87] indicate, structural transformations of
DFTs operate very fast, and the stochastic model generation is significantly acceler-
ated due to the reduction. This opens the possibility of supporting more expressive
types of Fault Trees, and considering techniques on how to analyse them efficiently
in the COMPASS toolset.

In addition, one can exploit that some stochastic analyses such as assessing the
reliability of a system—how likely is it operational up to a certain point in time?—are
compositional: the measure can directly be computed from its sub-DFTs’ measures.
This means that the analysis can be carried out in a modular way by considering only
a part of the state space in each step, and by re-computing measures incrementally
after local changes in DFTs.

Last but not least, the parameter synthesis techniques as sketched in Sect. 6.4.5
can also be applied to DFTs. Classical analyses require all component failure rates
to be known, which often does not hold in practice. Thus, a relevant problem is to
synthesise the allowed component failure rates ensuring, e.g., a given mean minimal
time between failures. This is clearly an instance of the parameter synthesis problem
as described earlier.

6.4.7 Multi-objective Verification

Besides the correctness of their functional behaviour, systems are required to exhibit
adequate performance characteristics. The latter can bemeasured by, e.g., its average
and peak energy consumption, construction costs, and its availability and reliability.
These measures are often contradictory: while using more power for data transmis-
sion typically increases the reliability level of communication, it also entails a higher
energy consumption. But also less obvious mutual dependencies can emerge: opti-
mising a system for (long-run) availability might reduce the (short-term) reliability.

In order to systematically investigate such effects,multi-objective model checking
can be employed. This is a fully automatic technique by which, based on a model
of the system under consideration and some measures-of-interest, a so-called Pareto
curve is deduced [56]. The latter gives an (often graphical) representation of the
optimal strategy for resolving non-deterministic choices in the system with respect
to a given weighting of these measures. Currently, only Markov Decision Processes
can be handled by this technique [55, 68]. While these support non-deterministic
choices (to be optimised) and discrete probabilities, they lack continuously distrib-
uted random delays, which are typically used to describe, e.g., mechanical wear or
other sources of failures.
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Markov Automata [59] constitute a highly expressive formalism which extends
Markov Decision Processes by such random delays. They are known to provide a
suitable model for, e.g., Dynamic Fault Trees (cf. Sect. 6.4.6) or to define formal
semantics of Stochastic Petri Nets. Previous work is only able to cope with optimis-
ing single measures on Markov Automata [59]. Our aim is therefore to extend the
techniques that have been developed for Markov Decision Processes to this richer
setting. Here, we will have to distinguish time-bounded analysis problems from oth-
ers. With regard to the former, our idea is to employ the digitisation approach from
[59] to derive upper and lower bounds for time-bounded reachability probabilities.
In the unbounded case, it will be possible to completely abstract from the continuous
behaviour of the Markov Automaton by instead considering the underlying Markov
Decision Process.

6.5 Conclusion

Totackle theproblemofcorrectnessand reliabilityofcontrol software in theaerospace
domain, formalmethods are increasingly being employed.They enable the exhaustive
and mathematically founded analysis of all possible behaviours of a computer pro-
gram and of its interaction with the overall system and the verification of properties
such as functional correctness. They also allow to reduce the effort and, thus, the cost
of testing activities [4]. Due to their benefits, they are increasingly becoming an inte-
gral part of the development cycle of safety-critical systems [44, 47, 62].

We have given a sketch of the ESA-funded COMPASS project, the related toolset
and its underlying techniques. COMPASS provides an integrated approach to inte-
grated system-software co-engineering coveringmodelling, analysis, andverification
activities. While these methods turned out to be very useful in practical applications,
there is still room for technological improvements. In the second part of this chapter,
we have identified current bottlenecks and possible solutions. This comprises tech-
niques that cover both the nominal and the error behaviour of systems, such as the
formal validation of quantitative requirement specifications (Sect. 6.4.1) and multi-
objective verification (Sect. 6.4.7).

Other methods focus on fault management, with the goal of improving the expres-
sivity of error modelling and related analysis methods. In this category, we find
approaches such as contract-based failure analysis (Sect. 6.4.2), Timed Failure Prop-
agation Graphs (Sect. 6.4.4), parametric error models (Sect. 6.4.5), and Dynamic
Fault Trees (Sect. 6.4.6). Last but not least, there is demand for better support for
fault diagnosis and management in the form of FDIR design (Sect. 6.4.3).

To guarantee a smooth embedding of such technologies in the overall system
development process, additional support by accompanying process-oriented mea-
sures is required. Here, the main concern is the integration of the modelling, analysis,
and validation activities enabled by COMPASS with the design and implementation
steps as provided by other tools supporting AADL (such as TASTE [78]) or other
specification languages (such as Simulink). Moreover we note that our approach is
completely model based. Thus, methods for generating code from AADL specifica-
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tions and for checking the conformance of a hardware/software implementation with
respect to the AADLmodel are required. For the latter, model-based testing [30] can
be employed, which is an automated technique in which the test generation process
is steered by the AADL model.
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