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Preface

The term cyber-physical system (CPS) was introduced by Helen Gill at the NSF
referring to the integration of computation and physical processes. In CPS,
embedded computers and networks monitor and control the physical processes,
usually with feedback loops where physical processes affect computations and vice
versa. The principal challenges in system design lie in this perpetual interaction of
software, hardware, and physics.

CPS safety is often critical for society in many applications such as trans-
portations, whether automotive, trains or airplanes, power distribution, medical
equipment, or tele-medicine. Whether or not life is threatened, failures may have
huge economic impact. Developing reliable CPS has become a critical issue for the
industry and society. Safety and security requirements must be ensured by means of
strong validation tools. Satisfying such requirements including quality of service
implies to have the required properties of the system proved formally before it is
deployed.

In the past 15 years, technologies have moved towards Model Driven
Engineering (MDE). With the MDE methodology, requirements are gathered with
use cases, and then a model of the system is built that satisfies the requirements.
Among several modeling formalisms appeared in these years, the most successful
are executable models, models that can be exercised, tested, and validated. This
approach can be used for both software and hardware.

A common feature of CPS is the predominance of concurrency and parallelism
in models. Research on concurrent and parallel systems has been split into two
different families. The first is based on synchronous models, primarily targeting
design of hardware circuits and/or embedded and reactive systems. Esterel, Lustre,
Signal, and SCADE are examples of existing technologies of this nature.
Additionally, in many places, these have been connected with models of environ-
ments that are required for CPS modeling. The second family addresses loosely
coupled systems, where communication between distributed entities is asyn-
chronous by nature. Large systems are, indeed, mixing both families of concur-
rency. They are structured hierarchically and they comprise multiple synchronous
devices connected by networks that communicate asynchronously.
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In an architectural model, a CPS is represented by a distributed system. The
model consists of components with well-defined interfaces and connections
between ports of the component interfaces. Furthermore, it specifies component
properties that can be used in analytical reasoning about the system. Models are
hierarchically organized: each component can contain another sub-system with its
own set of components and connections between them. An architecture description
language for embedded systems, for which timing and resource availability are
primary characteristics of requirements, must additionally describe resources of the
system platform, such as processors, memories, and communication links. Several
architectural modeling languages for embedded systems have emerged in recent
years, including the SAE AADL, SysML, and UML MARTE.

An architectural specification serves several important purposes. First, it breaks
down a system model into components of manageable size to establish clear
interfaces between these components. In this way, complexity becomes manageable
by hiding details that are not relevant at a given level of abstraction. Clear, formally
defined, component interfaces allow us to avoid integration problems at the
implementation phase. Connections between components, which specify how
components affect each other, help propagate the effects of a change in one com-
ponent to the linked components.

More importantly, an architectural model serves as a repository to share
knowledge about the system being designed. This knowledge can be represented as
requirements, design artifacts, and component implementations, all of which are
held together by a structural backbone. Such a repository enables automatic gen-
eration of analytical models for different aspects of the system, such as timing,
reliability, security, performance, or energy consumption.

In most cases, however, quantitative reasoning in architecture modeling and CPS
is predominantly parameterized by the dimension of time. An architecture or CPS
model refers to software, hardware, and physics. In each of these viewpoints, time
takes a different form: continuous or discrete, event-based or time-triggered. It is,
therefore, of prime importance to mitigate heterogeneous notions of time to support
quantitative reasoning in system design, either using a tentatively unified model for
it, or by formalizing abstraction/refinement relations from one to another in order to
mitigate heterogeneity.

Despite recent research activities in the aim of formally defined or semantically
interpreted architectural models, we observe a significant gap between the state
of the art and practical needs to handle evolving complex models. In practice, most
approaches cover a limited subset of the language and target a small number of
modeling patterns. A more general approach would most likely require a semantic
interpretation, an abstraction and a refinement, of the source architecture model by
the target analytic tool, instead of hard-coding semantics and patterns into the
model generator.

Duing March 21-24, 2016, we organized an NII Shonan Meeting on
Architecture-Centric Modeling, Analysis, and Verification of Cyber-Physical
Systems. The meeting invited 22 world-leading researchers from Asia, Europe,
and North America and provided a unique opportunity for the participants to
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exchange ideas and develop a common understanding of the subject matter. Further
information about this meeting can be found at the Web site (http://shonan.nii.ac.jp/
seminar/073/) and in the meeting report, No. 2016-5 (http://shonan.nii.ac.jp/shonan/
report/).

The meeting brought together contributions by research groups interested in
defining precise semantics for architecture description languages, and of using this
mathematical foundation to leverage tooled methodologies. Such new methodolo-
gies generate analytical models, for the purpose of simulation and formal verifi-
cation, components integration, or requirements validation. Furthermore, they
generate code, for the purpose of interfacing components properly, for the purpose
of orchestrating execution of components with heterogeneous policies, and for the
purpose of real-time scheduling execution of application thread components.

The book consists of chapters addressing these issues, written by the participants
of the meeting, which offers snapshots on the state of the art in each of every
viewpoint of the problem at hand, and means to put them through.

Tokyo, Japan Shin Nakajima
Rennes, France Jean-Pierre Talpin
Kariya, Japan Masumi Toyoshima
Huntsville, USA Huafeng Yu

January 2017
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Chapter 1
Virtual Prototyping of Embedded Systems:
Speed and Accuracy Tradeoffs

Vania Joloboff and Andreas Gerstlauer

Abstract Virtual prototyping has emerged as an important technique for the devel-
opment of devices combining hardware and software, in particular for the devel-
opment of embedded computer components integrated into larger cyber-physical
systems with stringent performance, safety or security requirements. Because vir-
tual prototypes allow for observing and testing the system without requiring a real
hardware at hand, they make it possible to test application software and use formal
methods tools to validate the system properties at early design stages. A virtual pro-
totype is an abstraction that emulates, with more or less accuracy, the real system
under design. That emulation is usually significantly slower than the real applica-
tion. In this survey, we overview different virtual prototyping techniques that can be
used, and the compromises that they may offer to trade-off some aspects of reality
in exchange for other higher priority objectives of the project.

Keywords Virtual prototyping + System simulation + Performance estimation -
Instruction set simulation - Dynamic binary translation - Host-compiled simulation *
Transaction-level modeling

1.1 Introduction

Embedded and cyber-physical systems have become ubiquitous in our everyday
life, including consumer electronics, transportation, control, industry automation,
energy grids, medical equipment and defence systems. Their timely development
has become a key to economic success in many business areas. An inherent property
of embedded systems is that they combine hardware and software into a coherent
apparatus that serves some dedicated function, e.g. a camera taking pictures, or a train
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braking system. Also, more and more devices have turned from being standalone to
networked, communicating systems, which necessitate the adjunct of communication
hardware and software to the embedded platforms.

As a corollary of these evolutions, at the beginning of a project (to design a new
system) the separation may not be clearly defined yet between which system functions
will be performed by hardware or by software. This hardware/software partitioning
may be decided based on large number of factors, including performance, flexibility
and costs, as the result of an investigation and early prototyping phase. Independently
of all these considerations, there is market pressure to decrease their development
time and costs, despite increasing safety and security requirements for the manufac-
turers, for example in transportation, industrial process control or defence. Crucially,
this includes both functional as well as non-functional requirements, i.e. requirements
on the behavior of a system at its outputs as a function of its inputs, as well as quality
attributes such as real-time performance, power consumption or reliability.

All these issues call for development tools that can help the designers to decide
the optimal hardware and software combination, to validate the software function-
ality, to estimate overall performance, and to validate that the resulting product ver-
ifies the required properties in timely fashion. Among available design automation
approaches, simulations continue to play a vital role. A simulator provides an exe-
cutable, virtual model of a candidate design that allows emulating the evolution of
behavior over time and under different inputs before a system is built, i.e. for candi-
date designs that may not yet physically exist. Given the inherently dynamic nature of
complex systems today, being able to rapidly observe and evaluate their time-varying
behavior at early design stages can be crucial feedback for designers. As such, virtual
prototyping as presented in this chapter is a key tool, although it is certainly not the
only one available.

This chapter is aimed at providing an overview and survey of issues and solutions
in virtual prototyping of embedded computer systems. The main concern in all vir-
tual prototyping is to find the right abstractions that will allow optimally navigating
fundamental tradeoffs between applicability, accuracy, development costs and sim-
ulation speed. The rest of the chapter is organized as follows: After an overview of
general virtual prototyping objectives and issues in Sect. 1.2, we will discuss general
abstraction concepts in Sect. 1.3 followed by various approaches that have been taken
in modeling different aspects and parts of embedded computer systems in Sects. 1.4
and 1.5. Finally, the chapter concludes with an outlook on remaining issues and
future directions in Sect. 1.6.

1.2 Virtual Prototyping

Engineering projects aim at constructing a device, or an ensemble of devices, that
performs some function. The goal is to elaborate the object, including hardware, soft-
ware, and the mechanical parts, and later to manufacture this object on a production
line. In the past, engineers have been making physical prototypes of such devices by
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creating or assembling the hardware parts, writing the software programs running
on the hardware, and testing whether the prototype would satisfy the requirements.
When it does not, they would construct a second prototype, and so on, until the device
is ready for manufacturing. This is a long and tedious process, slowing down time
to market, and because the number of actual prototypes is limited, only a handful of
engineers can work concurrently.

Computer modeling technologies in 3D, mechanics and electronics have become
powerful enough that one can build a virtual prototype, that is, a virtual device that
can be tested and validated in simulation. In this chapter, we use the term virtual pro-
totyping to refer to technology that provides an emulation of an embedded computer
system represented by executable hardware and software models that capture most,
if not all, of the required properties of a final system. The real application software
can be run over the virtual prototype of the hardware platform and produce the same
results as the real device with the same sequence of outputs. The virtual prototype
of the complete system under design can then be run and tested like the real one,
where engineers can exercise and verify the desired device properties. However, a
key challenge is that the virtual prototype includes enough detail to faithfully and
accurately replicate the behavior of the modeled system. This in turn directly influ-
ences the speed at which the prototype can be run. Ideally, it should do so in about
the same time frame as the real system and also report non-functional properties such
as performance measurements, power consumption, thermal dissipation, etc.

The goal of virtual prototyping is to verify that required functional and non-
functional properties of the system are satisfied. In a number of cases, it happens
that verifying properties on a virtual platform is more advantageous than on the real
hardware. This includes:

Observing and checking system properties Sometimes one wouldlike to observe
the system internally without disturbing the device functions. In a number of cases,
adding software to observe the system modifies its behavior. For example, to test
that the memory usage of an embedded application is correct, one has to track the
memory operations using instrumented code and this introduces changes in the
application behavior, and possibly also the real target platform cannot support such
instrumentation. A virtual prototype makes it possible to add non-intrusive soft-
ware probes in the simulation model itself. This can include observation of hard-
ware behavior, e.g. to monitor the memory consumption as each memory access
canbe tracked. Also, many software defects stem from hardware not being correctly
initialized. Whereas it is hard to check this on the real platform, it is easy to verify
initialization assertions in a virtual platform. Finally, in a virtual simulation, time
can be stopped to observe the global system at a particular point in execution. This
is difficult if not impossible to achieve in the physical world. Even if one system
component is stopped, e.g. in a debugger, other components and the external envi-
ronment will continue to run.

Accelerating time to market and lowering costs Building physical prototypes
can be extremely expensive, especially when considering prohibitive costs of
taping out real chips. As such, when using real platforms, there are usually only a
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small number of hardware prototypes available, which severely limits the number
of engineers working on the project. In contrast, one may have many engineers
each running the virtual prototype on their personal workstation. Moreover, a
virtual prototype is typically much cheaper to build and modify. The process of
downloading the software into the target and instrumenting the tests is avoided.
As many engineers as necessary can be assigned to work on the virtual prototype.
A real prototype is only necessary at the very end of the process to undergo the
final tests.

Complementing formal model verification Since a virtual prototype is based on
a high-level abstraction model, it is possible to use model verification tools, such
as a model checker, a deadlock verifier, an invariant verifier, theorem provers, etc.
to check that this model is sound. As verification is highly time consuming, it can
be complemented with and aided by simulations of the same model. For example,
it may be pretty difficult to reconstruct the cases where the verification tool fails.
One may instead use the simulator to debug the faulty situations. Conversely,
simulations can be used to generate symbolic information usable by formal meth-
ods tools. During the simulation, the system state may be observed whether in or
hardware or software, and one can verify assertions, or generate symbolic trace
files that can be anlayzed with formal method tools.

Checking fault tolerance and safety Many critical systems have to be tolerant to
hardware failures using redundancy or other techniques. Some faults can easily
be checked in the real world, e.g. removing a cable, but some others, such as tran-
sient failures, can be very hard to create in a real experimental context. A virtual
prototype can simulate more easily a defective component, whether permanently
or transiently, and the fault tolerance can be checked in the virtual environment.
Similarly, a virtual prototype can be easily exercised with inputs outside of normal
operating conditions to check behavior under corner cases without running the
risk of damaging the physical device or its environment.

In order to discuss various aspects of virtual prototyping, let us consider here the
case of the iPhone virtual prototype freely distributed by the manufacturer, shown in
Fig. 1.1. The iPhone Software Development Kit provides an environment in which
software developers can develop and test iPhone software on a standard workstation.
On the workstation display a virtual phone appears. The developers can interact with
the software application under development. They can immediately test their soft-
ware, without requiring any real mobile phone. No need to download the software
into a real device for testing and collecting the results with some complicated mech-
anism. The software is run immediately, the visual output shows up on the display
and resulting data may be available in local files.

This virtual prototype is a partly functional virtual prototype. The developers can
test a lot of their application code but they cannot place a phone call. Furthermore, the
iPhone simulator does not accurately simulate any hardware or operating system (OS)
detail, nor does it provide any feedback about the performance of the application on
the real phone. Although it is not a full system simulator, it has been a strong enabler
of applications for the iPhone developers market.
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Fig. 1.1 Popular iPhone virtual prototype

In most cases, embedded systems developers do not want to only test the func-
tionality of their application software like iPhone developers. They want to explore
hardware architectures, code new software drivers for this hardware, and build new
applications for which they want to have some performance estimation. A complete
virtual prototyping platform must include some operating system and hardware emu-
lation technology since the device functions must be simulated at least to a minimum
extent and with a certain amount of accuracy in order to run the software and evaluate
the design alternatives. A hardware simulation engine is then a key component of the
virtual prototyping platform, which makes it possible to run the application software
and generate outputs that can be analyzed by other tools. This simulation engine must
simulate the hardware at least enough to accurately run the software with regards to
the real hardware. It is said to be bit-accurate when it provides identical output (to
the real device) when given some input data. It is further said to be cycle-accurate
when it provides outputs after exactly the same amount of elapsed clock cycles as
the real device when given the same inputs in the same cycles.

The electronics industry has long been using electronic design automation (EDA)
tools to design hardware. There are many such tools commercially available for
hardware developers. They make it possible to test the design in all aspects and
are fundamental to the electronics industry. EDA tools are available to simulate the
hardware in every detail. This interesting property from the hardware design point of
view turns out to be a drawback from the system point of view. Despite many recent
advances to accelerate simulation, simulating very low level operations is much too
slow to be usable for virtual prototyping. The authors of FAST [12] report that their
system, although it is indeed a fast bit- and cycle-accurate simulator implemented
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with FPGAs, runs at 1.2 million instructions per second (MIPS), which is much faster
than the systems to which they compare. Considering for example an application
program that executes 60 billions instructions: it takes roughly 5 min to execute on a
200 MHz platform (assuming 1 instruction per clock cycle), but it would take over
16h to run over a simulator at 1 MIPS.

Embedded systems designers who want to evaluate architectures and test software
cannot wait for endless simulation sessions. Another approach must thus be used to
provide reasonable simulation performance for quick iterative steps in modern agile
development projects. In order to reduce simulation time, the virtual prototype must
trade-off something in exchange for speed. Depending upon the designers’ goals,
one may be interested in trading some loss of accuracy, which leads to constructing
simulation models that focus on some design aspects while providing abstraction of
others. It also takes time to develop a virtual prototype. In many cases, developing a
detailed virtual prototype from scratch would in fact take more time than assembling
areal one.

In the end, some tradeoffs may have to be made between the accuracy of the virtual
prototype, the time it takes to develop the virtual models, and the simulation speed. In
the sequel of this chapter, we provide an overview of various abstraction techniques
that can be considered for making such tradeoffs. The following terminology is used:
the embedded system to be simulated is called the farget system, and the computer
system used to run the simulation is called the host. During a simulation session on
the host some wall clock time is elapsing, representing some simulated time on the
target. The faster the simulation, the larger simulated time is obtained in constant
wall clock time. The simulation is real time when the two are equal.

1.3 Simulation Abstractions

Tradeoffs are made in general by abstracting the low-level details into higher-level
functions that can be simulated with a simpler and thus faster model. However, a
model at a higher level of abstraction will at the same time result in less accuracy
in simulating those details that have been abstracted away. As such, there are funda-
mental tradeoffs between accuracy and speed when developing simulation models.
A key concern in virtual prototyping is thus on deciding which aspects of a sys-
tem can be abstracted away, and which parts have to be simulated in detail. These
choices create a space of possible prototyping models. Ultimately, choosing the right
model will depend on the particular use case and step in the design flow, where, due
to inherent tradeoffs, there can never be one optimal model to satisfy all concerns.
A system designer will use a range of models at successive lower levels of abstrac-
tion, gradually increasing the amount of detail as the design progresses. Fast yet
relatively inaccurate models can be used at early design stages to quickly prune out
unfeasible design candidates. By contrast, slow but accurate models are typically
used for final validation and sign-off to physical design and manufacturing.
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A key principle that permeates all of system design is the separation of largely
orthogonal computation and communication aspects of a design [39]. In their
overview paper, Cai and Gajski [8] have introduced a two-dimensional taxonomy of
design models by applying this separation of communication from computation to
the modeling space. In other words, it means that one can independently choose to
abstract the low level of the computation steps or of the communication steps. Virtual
prototyping models can thus provide an abstraction of the system under design in
these two directions:

e Communication abstraction in the sense given by Cai and Gajski. Hardware com-
ponents communicate together using some wiring and some protocol to transmit
the data over the wiring. The communication may vary from simple one-to-one
synchronous data transfer to complex asynchronous, multiplexed bus systems with
priority arbitration. It may be that simulation of the communication and the par-
ticular protocol is irrelevant to the purpose of virtual prototyping. Then, part or
all of the communication details can be abstracted into higher data transmission
functions.

e Computation abstraction. A hardware component computes a high-level func-
tion by carrying out a series of steps, which in turn are executed by composing
even smaller components. In a virtual prototyping environment, it is often possi-
ble to compute the high-level function directly by using the available computing
resources of the simulation host machine, thus abstracting the real hardware steps.

Atthe same time, abstraction of both computation and communication can actually
be divided in two aspects: pure functionality that only serves to obtain the resulting
data, and timing information that relates to the synchronization or the delays to
obtain that result. For example, simulating memory accesses with or without a cache
simulation has no direct impact on the data, only on the delay to obtain it. Timing
information is thereby the core non-functional performance property to be modeled
and validated in a virtual prototype. Knowledge of timing provides the basis for
modeling other properties such as power consumption (when combined with energy
estimation), which in turn provides the input for thermal models, etc. We can thus
distinguish principle abstractions along two dimensions:

e Functional abstraction is determined by the amount and granularity of structural
detail versus purely behavioral descriptions in a model. A purely behavioral model
only describes the input-output operations of a particular system or block in the
form of arbitrary and fast host simulation code without any further internal detail.
A structural description instead breaks down the system or block into a netlist
of components, each of which can in turn be described in behavioral form or as
a structural decomposition into additional sub-components. With each additional
level of structural detail, additional component interactions can be observed and
validated, but also additional component communication is exposed, which needs
to be modeled and simulated with corresponding overhead.

e Non-functional timing abstraction. In a precise and accurate simulator, there are
multiple parallel simulation tasks. Each task makes some progress within measured
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clock cycles and therefore precise performance measurements can be made. But
keeping track of elapsed time and synchronizing many low level tasks with the
clock steps can considerably slow down the simulation. In a virtual prototype, one
may not need to have that precise timing information. Instead, abstractions can
be defined allowing for faster simulation, for example by ignoring cache handling
and processor pipeline stalls, etc.

Functional and timing abstractions are closely coupled through the granularity of
modeled computation and/or communication components. For the example of caches,
in order to provide a simulation of cache delays, the memory accesses between the
CPU core and the cache need to be structurally separated. Similarly, the timing
impact of synchronization and concurrency effects can only be accurately captured
if component interactions are faithfully modeled. Nevertheless, there are approaches
that decouple functionality and timing. For example, if enough information can be
extracted from a purely behavioral simulation, and if there are no complex component
interactions, a fast functional simulation can be augmented with an accurate timing



1 Virtual Prototyping of Embedded Systems: Speed and Accuracy Tradeoffs 9

model without having to expose all structural detail. Such an approach can be applied
to model cache delays in source-level software simulations, as will be discussed later.
In summary, the design modeling space can be viewed, as shown in Fig. 1.2, as a
four-dimensional space. The coordinate origin can be viewed as the complete bit- and
cycle-accurate register-transfer level (RTL) specification whereas the extreme point
is an infinitely abstracted model of computation (MoC). Virtual prototyping solutions
explore this modeling space to trade some characteristics in return for simulation per-
formance. Moving into the space amounts to finding appropriate abstractions that
may satisfy the prototyping requirements and yet provide reasonably fast simulation.
The following two subsections review general approaches for abstracting function-
ality and (non-functional) timing in more detail. In the remaining sections of this
chapter, we then survey the state of the art in how such abstraction approaches have
been applied to computation, communication and other parts of a system model.

1.3.1 Functional Abstraction

As mentioned before, functional abstraction is determined by the granularity of struc-
tural detail exposed and thus observable in a model. Together with this come details
of how functionality is broken down into smaller and smaller steps provided by dif-
ferent components and their interactions. For example, a structural model of a proces-
sor at microarchitecture granularity will describe the step-by-step process of how each
instruction is processed when executing a piece of code on the processor. By contrast, a
behavioral description will only emulate the equivalent functionality of the code, pos-
sibly directly at the source level without even exposing individual instructions. In the
process, certain functional details and limitations of the processor microarchitecture
may not be modeled and abstracted away, such as details of exception handling.

A virtual prototype is a structural description at the full system level. It models and
allows observing the system architecture as a set of processing elements (PEs), such as
processors, accelerators, memories or peripherals, interacting through a set of busses
or other interconnect, including communication elements (CEs), such as routers,
bridges and transducers. The functional abstraction of a virtual prototype is ultimately
defined by the abstraction used to model its individual PE, interconnect and CE
components. This in turn determines the detailed steps and events that can be observed
across the system, where a larger number of steps and events negatively influence
the speed at which the prototype can be simulated. We can generally distinguish four
levels of abstraction:

e Microarchitecture simulation. The simulation of the cycle-by-cycle operation of
hardware at the register-transfer level. This can either be in the form of typical hard-
ware description languages (HDLs), such as VHDL or Verilog, or as functionally
equivalent models in the form of C or similar code. HDL models can at the same time
serve as the basis for further synthesis down to actual implementations.
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By contrast, C models can make use of abstract data types and a hardcoded sequence
of evaluations to achieve faster simulation speeds.

e [Instruction- or transaction-level simulation. On the computation side, processor
models are abstracted to only emulate the functionally equivalent behavior of each
instruction. On the communication side, transaction level modeling (TLM) makes
it possible to abstract complete transactions on individual phases, such as arbitra-
tion, address and data phases of read/write transactions on a bus, into function calls
that emulate each transaction or phase without exposing the underlying protocol
of sampling and driving various pins and wires. As will be described in subsequent
sections, due to the significantly reduced detail that needs to be simulated, such
models can provide orders of magnitude speedup while maintaining functional
accuracy.

e Source- or intermediate-level simulation. Beyond instruction- or transaction-level
simulation, functionality is abstracted into coarser blocks that emulate equivalent
behavior without necessarily exposing individual instructions or all transactions.
On the computation side, larger blocks of code or complete functions are provided
in the form of source or intermediate representation (IR) code that can be compiled
and executed on the simulation host to emulate their functionality on the target.
On the communication side, larger message transfers consisting of multiple trans-
actions are emulated as a single function call. Simulation speed can be further
increased, but details of actual instruction or transaction streams are potentially
abstracted away.

e Purely behavioral simulation. No structural or implementation detail is modeled,
and only the overall input-output functionality of the system or subsystem is sim-
ulated in an abstract manner. In extreme cases, a MoC may only describe the
inherent task-level concurrency to perform associated determinism or deadlock
analyses without even modeling each task’s behavior.

As already mentioned above, the granularity and level of functional abstraction is
tightly related to the level of non-functional detail, chief among which is timing. The
exact timing behavior of interactions, overlap and concurrency among components,
such as pipeline stages in a processor microarchitecture, can in general only be accu-
rately described if they are explicitly modeled in structural form. Nevertheless, in
some cases it is possible to couple a faster behavioral description with an accurate
lower-level timing model. For example, a functional simulation at the block or mes-
sage level can be annotated with accurate timing information that is obtained from
pre-characterization of complete code blocks or message-passing transactions on a
detailed timing model.

1.3.2 Time Abstraction

Time abstraction is fundamentally coupled to the granularity at which time is sim-
ulated. A coarser granularity allows the simulator to advance time in larger steps
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with fewer context switches and events to be simulated, resulting in faster simulation
speed. At the same time, this requires lumping multiple events into larger discrete
time steps, where details about original event ordering, i.e. accuracy are lost.

A technique widely used to abstract time is so-called temporal decoupling or time
warping [34]. The notion of time warping can be roughly expressed as follows: when
a simulation task is activated, it must perform the operation that it has to perform
now, but it might perform as well the operations it will have to carry in the future (e.g.
in future clock cycles) if these operations are already known at that time (and the
input data is available). The simulation task can then jump ahead of time, hence the
name. An operation that takes several clock cycles may then be simulated entirely
in one simulation step, whose result is available earlier than the real future clock
cycle. This technique makes it possible to reduce the number of simulation tasks,
reduce context switches, and possibly advance the clock by several cycles without
simulating each intermediate step.

Time warping is possible only to the extent that the current operation does not
need or depend on additional data or events that will be computed in the future.
Two alternatives are possible. First, one can stop the simulation task until either the
necessary data has become available or some relevant event has occurred. This is
called conservative simulation. Second, one may assume in optimistic simulation
that the necessary data will have a certain value or that no event will arrive, and
continue the computation under this assumption. When the data or event indeed
arrives, either the optimistic computation is determined to have been correct, or
the simulation state has to be rolled-back and the operation re-computed with the
correct data. If the number of such roll-backs is small, an optimistic simulation can
be significantly faster than a conservative one, which can only apply time warping in
cases where the model guarantees that no out-of-order events can ever occur. Both
approaches are commonly applied, where tradeoffs depend on the particular context
and circumstances. In addition, using the conservative approach, a simulator can be
built where all the tasks carry their work as long as they have the necessary data and
notify others when they produce new data. As a result, it is possible to build a purely
timeless functional simulator with simulation tasks that only use an event structure
and two primitives for waiting and notifying events. The simulation then does not
use any clock. The SystemC [1, 33] modeling language makes it possible to design
such timeless models using event-based synchronization, as well as timed models
all the way down to cycle-accurate ones.

In the context of virtual prototyping, the granularity down to which timing needs
to be measured depends on various factors. In such cases as performance evaluation
or worst-case analysis, the simulation should produce accurate timing estimates.
If the goal is to test and verify the hardware/software interface, then timing estimates
may not be necessary. One usually distinguishes four types of time abstractions:

e Cycle-accurate simulation. The simulation of hardware components is imple-
mented in software with parallel simulation tasks representing the tiny individual,
simultaneous hardware operations. The core of the simulator can be described
schematically as maintaining a list of tasks activated at some clock tick. On each
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clock cycle, the system runs the necessary tasks, then moves to the next clock tick.
This makes it possible to have a very detailed simulation, with a very precise count
of clock cycles, but it is very slow.

e Approximately timed. Approximately timed simulators are supposed to provide
accurate timings with a known error margin. Unlike cycle-accurate models, the
simulation tasks may overlap several clock cycles. However, the simulation models
must implement a lot of auxiliary components that are irrelevant for the functional
view, slowing down the simulation. On the computation side, an approximately
timed model must simulate the instruction fetch hardware and the data cache
hardware and estimate the pipe line stalls in order to have an acceptable error
margin. On the communication side, a model must describe the separation into
different arbitration, address and data phases for each bus transaction.

e Loosely timed has, as the name implies, a loose definition of time. It covers a
wide range of simulations where some timing information is obtained, but it is
known that this information is not accurate and can possibly be far from reality
in some cases. The goal of loosely timed simulation is (i) to make it possible to
test functionality that depends on timing, e.g. software using timers, and (ii) to
obtain rough performance estimates under explicit assumptions. For example, one
may obtain performance estimates of an application assuming that the cache will
suffer a known average cache miss. The timing obtained might be wrong, but under
correct assumptions, loosely timed simulation are very fast and quite useful.

e Timeless simulation is at the highest end of the spectrum. The system does not
maintain any timing and the tasks are organized in large functional blocks. Such
simulations can be significantly accelerated as the simulation tasks can be highly
abstracted. The software can be run and the hardware models can be functionally
validated but no performance estimate can be obtained. Such models are also called
programmers view, as they reflect the hardware behavior as it is perceived by the
software programmers.

Timeless models are very useful to do early-prototyping of new software or hardware
functionality. Using loosely timed models becomes necessary to validate embedded
software and verify basic time-related properties, such as checking that the proper
behavior happens after a time-out. But it can hardly be used to obtain performance
estimates. As many systems require some performance estimate of the system under
design, the community had to address the issue of providing performance estimation
of the simulated system. Several directions have been explored that we will discuss
in the context of computation and communication models in subsequent sections.

1.4 Computation Abstraction

To illustrate computation abstraction, let us consider the naive example of an integer
multiplication. A hardware multiplier component is implemented with multiple addi-
tions and shifts. Simulating the multiplication of two numbers A and B by replicating
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the shift and adds in software would obviously be slow. Comparatively, using the C
code result = A % B; is more efficient. It is a typical computation abstraction: to
obtain the result of a computation, a different technique is used from the one used
in the real system, but one trusts (and hopefully one can prove) that the result of the
two computations are identical. In doing the multiplication using C, one trusts that
the host computer carrying out the operation will indeed yield the same result, but
much faster than replicating the shifts and adds.

Asalot of a simulation session is spent in executing processor instructions, proces-
sor simulation is a critical item of a virtual prototyping platform. Each processor
implements a specific instruction set, related to a particular computer architecture.
Hence the term instruction set simulator (ISS) is used, which may cover several actual
processors with minor variants. ISSs are a common form of computation abstraction.

1.4.1 Instruction Set Simulation

An instruction set simulator is used to mimic the behavior of a target computer proces-
sor on a simulation host machine. Its main task is to carry out the computations that
correspond to each instruction of the simulated program. There are several alterna-
tives to achieve such simulation. In interpretive simulation, each binary instruction
of the target program is fetched from memory, decoded, and executed, as shown in
Fig. 1.3. This method is flexible and easy to implement, but the simulation speed
is relatively slow as it wastes a lot of time in decoding. Interpretive simulation has
been used in tools such as Insulin [80], Simplescalar [7] and various architecture
exploration tools [29].

A second technique called static translation or compiled ISS is based on a direct
translation of target instructions to be simulated into one or more instructions in the
host’s instruction set. These native instructions manipulate a model of the emulated
target machine state in a functionally equivalent manner. In statically compiled ISSs,
this translation is performed once for the complete target binary before the simulation
is started. The simulation speed with static translation is vastly improved [57, 60, 70,
80, 87, 89], but such approaches are less flexible and do not support self-modifying
or dynamically loaded code.

A third technique to implement an ISS is dynamic binary translation. It has
been pioneered by [13, 83], with ideas dating back to dynamic compilation used
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in the earliest virtual machine based languages [15]. With dynamic translation,
shown in Fig. 1.4, the target instructions are fetched from memory at runtime, like
in interpretive simulation. But they are decoded only on the first execution and the
simulator translates them into another representation, which is stored into a cache. On
further execution of the same instructions, the translated cached version is used and
its execution will be faster. If the target code is modified during runtime (for example
by self-modifying programs) the simulator must invalidate the cached representation.

Dynamic translation adds some translation delay to the total simulation time
(unlike static translation) but the translation pay-off is so large that it is usually
worthwhile. Although it is not as fast as static translation, dynamic binary translation
supports the simulation of programs for which one does not have the complete source
code, one does not have the auxiliary libraries available on the host, or the application
does dynamic loading or uses self-modifying code. Hence, many ISSs nowadays are
dynamic translation simulators [2, 30, 36, 53, 60, 63, 71, 76, 77] with a reasonable
speed.

Dynamic cached translators all work on the same model, but they can be subdi-
vided into roughly two categories according to the nature of the translated data and
its usage, which we will call here object-oriented or native code generators.

In an object-oriented ISS, the original binary instructions are each translated into
an object, in the sense of object-oriented languages, which captures the variable data
from the instruction and defines methods that are called upon execution. Object-
oriented ISSs are not so difficult to construct. In fact, using some appropriate input
formalism, the code of the object classes and methods can even be generated. Using
this technique, the ISS is independent of the host operating system and independent
of the host processor, therefore easily portable. Because the methods can be compiled
in advance, a compiler with maximum optimizations can be used. When constructing
an instruction object, the constructor initializes its variables with the instruction data
for the methods to operate. Object oriented ISSs can reach speeds above 100 MIPS
on a standard computer.

An optimization that can be used in dynamic translation consists of analyzing
the binary at decoding time to reconstruct the control flow graph of the application
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software in basic blocks, each ending with a branch instruction. Although it may
happen that the destination of the branch is unknown at decoding time, the edges of
the graph can be dynamically constructed as the simulation advances. The dynamic
translation can translate basic blocks into a single object and achieve further optimiza-
tions. Another possible optimization is the usage of a partial evaluation compiling
technique [19] in which a number of parameters for simulating each instruction are
discovered at decoding time and specialized versions of the instructions can be used
instead of the generic one [30]. In general, the target code to be translated, whether
statically or dynamically, can be decomposed into translation units, i.e., sequences
of instructions that have a logical structure, e.g. nodes from the control flow graph.
Each translation unit is executed individually in the simulation. Upon exit of a unit,
control returns to the main simulation loop, which makes it possible to handle vari-
ous operations such as checking for interrupts or gathering statistics. Increasing the
size of translation units usually makes it possible to achieve further optimizations
and increase simulation speed, but also decreases accuracy, as discussed below with
respect to interrupts.

With the code generation technique, the ISS dynamically translates the target
binary code into host native code. There are again variants in this technique: (i)
re-generate C code that can be dynamically recompiled [63], or (ii) generate some
intermediate language code for which an existing back-end compiler is used to gener-
ate the hostcode [31, 77] as illustrated in Fig. 1.5. Technique (i) is easier to implement
but adds a significant translation delay to recompile C source code. Technique (ii)
can take advantage of existing compiler intermediate languages and back-ends, such
as LLVM [41] or GCC GIMPLE [10] intermediate representations.

A variant of that is the micro-instruction technique, initially used in QEMU [2].
Each instruction is translated into a sequence of pre-defined micro-instructions that
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are stored into the cache. These pre-defined micro-instructions can be considered as
a very low-level virtual machine that is run inside the ISS, but this virtual machine
is strongly related to the way the simulated processor state is represented inside the
ISS. In order to translate each instruction, the parameters of each micro-instruction
must be extracted, and then the micro-instructions from an entire basic block can be
“glued” together into a sequence. Because a whole sequence of target instructions
can be translated into a block of micro-instructions that directly modify the virtual
state, the execution is faster and a higher simulation speed can be reached. The
micro-instruction code be compiled in advance with a highly optimizing compiler
and pre-loaded in memory. But the micro-instructions must undergo a linkage process
that may be dependent upon both target binary format and host operating system,
hence reducing portability of the ISS.

The code generation technique provides higher performance than the object-
oriented technique. The Edinburgh University ISS claims to reach performance in the
range of over 400 MIPS [36]. The SocLib project reports [25] speedups with a factor
of several hundreds in a comparison between their virtual prototyping framework and
their cycle-accurate simulator. However, this performance must be balanced with the
throughput. Because dynamic translation is more complex, it takes more time and
the simulation time must be long enough to amortize the translation time. Dynamic
translation with native code generation can become comparable in speed to statically
compiled or even natively executed code, allowing complete operating systems to be
booted in a virtual prototype.

In naive translation, each instruction is executed as a function in native code.
Moving up at the block level, using a compiler intermediate language such as LLVM,
the functions simulating each of the instructions from a block can be grouped into one
function. The compiler optimizer can be called to do optimizations such as in-lining
and constant propagation on that function, which is then compiled into native code.
In the end, the size of the native translated block is much smaller than the sum of the
individual functions and it executes several instructions at a much higher speed [5,
35]

Interpreted, static or dynamic translation approaches are interesting for simulat-
ing platforms based on existing commercial off-the-shelf processors, when one can
leverage an existing tool. But there are also cases where one wants to explore a new
architecture for which there are no available simulators. As it is a large effort to build
a simulator from scratch, it is advantageous in such cases to generate the simulator
from a higher-level architecture description language (ADL). These languages have
been designed specifically for generating either compilers or simulators, and have
been classified [50] into three categories:

e Structural models such as MIMOLA [88] that focus on the detail of the micro-
architecture, to explore the low-level architecture design. Such approaches are in
fact oriented towards circuit synthesis rather than virtual prototyping, although
MIMOLA has been used to generate simulators [45].

e Behavioral languages such as ISDL [26] or nML [18] that focus more on the
instruction sets and their simulators (or compilers).
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e Mixed ones that allow both, such as LISA [58], EXPRESSION [51], MADL [65],
or Harmless [37].

Both behavioral or mixed languages can be used to generate simulators that can be
completed and instrumented to build an exploratory virtual prototype.

In order to provide timing information in the context of instruction-set simulation,
the ISS needs to be augmented with an instruction-level timing model. In interpreted
ISSs, this can be a detailed, cycle-by-cycle model of how different instructions prop-
agate through the processor-internal pipeline, including their interactions with and
through the micro-architectural machine state in every cycle. Such detailed micro-
architecture models can provide cycle-accurate results, but are expensive to simulate.
At the other end of the spectrum, when speed is the primary concern, one can simply
associate a fixed number of cycles with each instruction, e.g. either assuming a con-
stant cycles per instruction (CPI) or using instruction-specific table lookups. Such
approaches incur little to no simulation overhead, but are unable to capture dynamic
timing behavior in modern deeply pipelined, out-of-order processor architectures.

Several alternative approaches have been explored to provide fast yet accurate
ISSs. For one, computer programs exhibit repeating behavior. To estimate perfor-
mance it may not be necessary to run all of the program using accurate timed sim-
ulation. The performance measured on a sequence of instructions will be the same
when this sequence of instructions is repeated in the same conditions. The sampling
simulation technique is achieving precisely that: given properly selected samples of
instructions, only these instructions are simulated with accurate timing. The remain-
ing instructions can be executed using timeless simulation. Sampling can draw upon
statistics theory to estimate a property of a population by examining only a subset of
this population. Of course, the difficulty is in choosing the appropriate samples that
represent the repeated behavior.

Sampling benefits simulation speeds, which are order of magnitude faster (from
30 to 60 times faster) than with cycle-accurate simulators. Known representatives
of sampling methods are Simpoint [27, 59], SimFlex [28], SMARTS [84] and
EXPERT [46]. These systems differ mostly in the manner the samples are selected
in size and frequency. Sampling techniques can provide fairly accurate performance
prediction with a high probability, but may also generate very large data files. A
difficulty with sampling is also the transition from timeless to timed models. When a
series of instructions have been run in functional simulation, the details of architec-
ture state are usually lost, but the architecture state must be initialized properly to start
running in timed mode and obtain accurate estimates. This problem is known as the
warm-up issue. Before starting timed simulation, the details of hardware state must
be reinitialized. This can be done by saving the results from previous simulations or
computing an estimated state. However, establishing a trustworthy state may require
to roll-back into long program history. The warm-up phase introduces uncertainty in
the results and simulation slow down. Given appropriate program sampling, existing
technologies report that they can estimate performance within a 3% error margin
with a confidence larger than 99.5%.



18 V. Joloboff and A. Gerstlauer

Another approach consists in statistical workload generation and simulation after
collecting data from one complete simulation [54, 66]. Because cache misses are the
major performance bottleneck, specific attention has been devoted to cache perfor-
mance and cache behavior prediction. For example, statistical methods have been
successfully used for cache analysis in [3]. Yet another approach consists in compile
time static analysis of the code for predicting cache behavior [81] based on cache
miss equations. This method is very fast, but limited in the scope of programs that
can be analyzed, and it requires access to the source program.

1.4.2 Source-Level and Host-Compiled Simulation

As an alternative to ISSs, so-called source-level simulation has recently emerged as
an approach that is based on translation of the application source code to be simulated
into another program compiled for the host machine. This technique does not use an
ISS and is not a straightforward compilation. As such, it avoids the overhead of having
to emulate a non-native instruction set. Instead, the translator knows the target system
and it directly generates code specifically optimized for it. In simple cases [4, 9], the
application source code is translated into C code similar to the original one, with only
additions or modifications to handle non-portable aspects in the source code, such as
translation of data types into target-equivalent bit widths. In more sophisticated trans-
lations [11, 32,79, 82], asillustrated on Fig. 1.6, the source code is first translated into
a lower-level representation similar to a compiler intermediate representation, which
can be further analyzed. If the intermediate representation includes the control flow
graph, the graph can be analyzed and function calls may be added at each transition.
Finally a new source code program is generated after the transformations, which is
compiled for the host computer and linked with the simulation runtime and libraries.

So-called host-compiled approaches extend source-level simulation of application
code with models that emulate the complete software execution environment [6, 22].
Pure source-level approaches can not simulate binary-only library or operating system
code that is closely tied to the target processor hardware and instruction set. Instead,
any such code needs to be explicitly emulated in the virtual prototype. This requires a
specific runtime component to be linked with the translated code. In the simplest case,
the translator has some objectives of quantifying or qualifying some measurements
and properties. It augments the original source code with function calls to the runtime
component so that the simulator can perform internal actions, e.g. to collect statistics,
tracing memory usage, check assertions, etc.

In particular, however, operating system calls may be detected and transformed
into calls to a virtual operating system or an operating system model. For example,
if the source code contains a call to openfile () on the target OS, this call may be
detected and replaced with a call to the virtual OS model. This call can then decide to
instead open a local file on the host operating system with some mapping information
provided as a simulation parameter, e.g. to adapt to a different directory structure.
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A similar semi-virtualization of OS calls into equivalent host functionality is often
also applied in ISSs.

A key aspect of OS models in host-compiled approaches is also to accurately
emulate the multi-tasking behavior beyond just a single source-level task as it would
occur in reality on the simulated target system. A host-compiled simulator can not run
the binary code of a real OS to manage the interactions between multiple tasks. One
approach is to instead port and para-virtualize the target operating system to execute
on top of the host’s OS kernel. However, this requires OS sources to be available
and often incurs a significant porting effort and simulation overhead. Alternatively,
lightweight OS models can be developed to provide a simulation of task scheduling,
communication and synchronization behavior directly on top of languages like Sys-
temC [23, 40, 42, 61]. The virtual OS model then must be a part of the simulation
runtime component on the host machine. Similarly, the function calls into auxiliary
target libraries and drivers for interaction with external peripherals may then also
be detected and transformed into calls into a host library, OS model or the overall
system and communication simulation environment.

A key concern in source-level and host-compiled models is accurate timing sim-
ulation at such a high level of abstraction. A technique that has become popular and
that can be applied for both the host-compiled approach and dynamic ISS translation
is the technique of back-annotation [11]. The main idea is to analyze the structure of
the simulated code at some granularity. The analysis is related to some objective and
model, for example to estimate performance, and results into some estimates for cer-
tain metrics. The data obtained with this analysis can then be used to back-annotate
the code, as kind of meta-information, for further re-use during the simulation. For
the sake of generality and to analyze virtual prototypes of applications that can be
ported to multiple platforms, the code to annotate can be analyzed at some inter-
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mediate, target-independent level. However, the target compiler might still optimize
the code with techniques such as loop unrolling and inlining, making the generic
estimates over-pessimistic. Although it is more costly, a more accurate analysis can
be done by using the target-dependent basic block structure effectively generated by
the target compiler’s IR. In either case, the technique consists of annotating the basic
blocks with additional performance or power consumption data that is later used to
compute non-functional properties during simulation.

Let us illustrate this concept of back-annotation with an example drawn for per-
formance estimation of an €200 processor from the Power architecture family. This
processor has a 2-issue pipeline. Thus, in general it can simultaneously execute 2
instructions. The pipeline takes its instructions from an instruction buffer of 8§ instruc-
tions that is itself refilled regularly from the instruction cache. Considering a basic
block, one can do the following to estimate the number of cycles used by the block
execution. First, knowing the instruction cache contents at the entrance of the block,
one can compute whether there will be an instruction cache miss during the execution
of that block. Since many blocks are smaller than the cache lines held, there will be
relatively frequent cache hits, simplifying the block analysis. If there is a cache miss,
it is possible to predict at which instruction(s) the cache miss(es) will occur, what
consequently the new contents of the cache will be, and to compute the delay, if
any. A similar approach can be applied to model data caches and associated hit/miss
penalities on every load/store instruction [48, 56, 62]. However, accurately tracking
cache state to determine hits and misses at the source level requires relatively com-
plex analysis to reconstruct physical address traces that in turn drive a dynamic and
thus slow to simulate behavioral cache model.

Another potential source of delays are the pipeline hazards when two instructions
in each issue of the pipeline want to access the same resource. For example, if the
same register would be accessed at the same time or two simultaneous load/store
instructions would occur, but the €200 only has one load/store unit. These hazards
can be detected by analyzing the block, dispatching of instructions into the pipeline
according to an abstract €200 pipeline model, and calculating the resulting delays.
For hazards that span across block boundaries, models can track the actual control
flow paths taken during simulation and adjust delays accordingly. Finally, another
source of delay is the branch prediction system. The €200 has a branch unit that
includes a branch target buffer (BTB) of 8 addresses. When a branch instruction is
entering the pipeline, it checks whether it is already in the BTB, and possibly refills
the BTB. Because branch instructions may only occur as the last instructions of the
basic blocks, the branch analysis can be done only during the transitions between
blocks [17].

As seen on this example, some of the performance analysis made at a block level
can be done statically only once, and some dynamically, but only at the entrance and
exit of a block. Hence, the block can be annotated with the results of such analysis
either with purely static data, and/or with dynamic hooks to perform updates and
compute additional delays. Eventually, the whole simulation will gather the static
and dynamic data to obtain performance estimation.
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This type of analysis and back annotation can clearly be done within an ISS using
dynamic binary translation, but also within a host-compiled approach that analyzes
the code generated by the target compiler, obtains the data, and back-annotates the
source or IR code of the application before compiling [4, 11, 32, 79, 82]. Not only
is the simulation quite faster, but the back-annotation mechanism makes it possible
to check other non-functional properties of the application [86]. Some people also
now combine host-compiled approaches with dynamic translation [20].

Note that the simulation speed and accuracy can be affected significantly by the
level of abstraction defined by the virtual OS. The virtual OS can be used to map
simple system calls that mimic the target OS behavior, such as managing files or
obtaining a network connection, but it can also be used to study various operating
system scheduling policies or predict non-functional aspects of the software. Anissue
arises when temporal decoupling or time warping abstractions are applied to speed
up simulations. Asynchronous task events may be captured at wrong times leading
to inaccuracies in the simulated scheduling order at coarser timing granularities. To
overcome speed and accuracy tradeoffs, both conservative [67] and optimistic [74]
OS simulation approaches have been developed. Similarly, simulating the correct
order of accesses to shared resources such as caches in a multi-core context requires
corresponding solutions for fast yet accurate modeling of cache and resource con-
tentions [68, 78]. Finally, host-compiled simulations can be augmented with models
of other processor and hardware behavior, such as exceptions, interrupt handling and
external bus communication [21, 38, 69, 75] (see also Sect. 1.5).

The host-compiled approach is the technique used for the iPhone simulator cited
above, using a virtual i0S. A drawback is that it is not as flexible as interpretive sim-
ulation. The application program source code must be available at translation time,
before simulation starts, which is not always the case. Furthermore, one must have
both the dependent libraries and the virtual OS available. Host-compiled translation
is clearly not suitable for application programs that dynamically modify the code or
dynamically load new code at runtime. It does not allow for simulation of virtual
machines that generate code on the fly with JIT compilers, not for real operating
systems. It can be very useful, however, for testing embedded software applications.

1.5 Communication Abstraction

Hardware components communicate together, and abstracting the communication
among them may provide a significant speedup in simulation. In the physical circuit,
components are connected together using wires or complex buses. The details of
the signals sent for communication are often irrelevant to the virtual prototyping
goals. The communication details may be abstracted in the simulation with a higher
level message passing schema. The term transaction-level modeling (TLM) has been
forged to name the modeling style whereby communication among components is
achieved through a uniform transaction interface [16, 24] at a level of function calls
above pins and wires. This interface hides and abstract the details of the operations.
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1.5.1 Transaction-Level Modeling

Transaction-level modeling is a mature and widely adopted topic with a rich liter-
ature of existing reference materials [24]. As such, we only briefly summarize key
abstraction concepts and ideas here. In a transaction-level model, the component
starting the communication is named the initiator, it sends a transaction, a message
specifying some operation to be performed, to a destination component named the
target. Both the initiator and the target do not need to be aware of the interconnection
structure. It may be a direct transfer or it may be a complex bus structure. TLM makes
it possible to implement multiple kinds of models. Purely functional models can use
transactions that use highly abstracted interconnect and ignore all communication
issues. However, the interface must be standardized if one wants to exchange mod-
els among third parties. Because it accommodates various levels of modeling, the
open source TLM library from the Open SystemC Initiative (OSCI) [55] has become
widely used in academia and industry as it offers an interoperable interface with
a fast implementation. In that implementation, a transaction is basically a function
call from the initiator, issued on some communication port, which, after routing, is
implemented as a function call in the target module.

TLM is not totally independent of the time abstraction, which raises an issue.
Indeed, if one wants to build an approximately timed virtual prototype, when issuing
transactions to remote components, one wants to know the approximate duration of
that transaction and the transaction interface must support that. Virtually all hardware
simulation techniques have similar requirements, but we illustrate the problem here in
SystemC with the TLM library. The simulation kernel maintains a clock to measure
elapsed time. The clock advances through an interface, in SystemC, the wait ()
call. But, whereas the initiator wants to control the timing model of an operation that
may require issuing multiple transactions in parallel, if the targets make the clock
move up unknowingly of the initiator, it is problematic.

Thus, the TLM standard has developed two models named the blocking model
and the non-blocking model. In the blocking model, transactions are allowed to call
wait () and the clock may advance during the transaction. It is simpler, and it is
possible to build loosely timed models or timeless models that simply ignore the
clock value.

In the non-blocking model, transactions must not make the clock move up, but they
must provide in the end a timing estimate of the operation. An issue is that the target
may be in the situation where it cannot achieve the transaction immediately, or it has
no clue at that moment on how long it will take. Hence, the OSCI standardization
committee decided to split such transactions into phases, with the so-called 4 phases
protocol. In the first phase, the initiator issues a request. The target then replies with
an end-request to either acknowledge the transaction or raise an error. At this point
the initiator may issue other transactions if necessary, but at some point it must wait
(with or without moving the clock) for the target response. When the target has done
its work, it issues a backward begin-response, to which the initiator should reply
with an end-response. Finally, the transaction ends with a terminating status code.
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On each phase, the initiator receives a delay parameter. This delay combines all the
delays from the target and the interconnect, e.g. bus contention delays can be added
to the target delays. Eventually, the initiator can combine all of the successive or
parallel delays recorded during the transactions in the appropriate manner to update
the clock with the accurate number of cycles.

In conclusion, loosely timed models can abstract the interconnect to the desired
level using blocking transactions. Approximately timed models should implement
interconnects descriptions that yield accurate estimates of the communication time
and use non-blocking transactions. Sometimes, it is also desirable to mix loosely
timed and approximately timed simulation models as long as there is interoperabil-
ity between them. This can be useful, for example, to evaluate performance of an
application where already existing components, whose performance has been eval-
uated in the past, are combined with a new specific co-processor under design, for
which one wants to have precise measurements. Mixing models is a demand, and it
is possible to implement it with the TLM library.

Virtual prototype designers can choose the level of abstraction they want for
implementing communication abstractions. Although the complexity increases with
the 4-phase protocol, data can still be transferred in chunks using software function
calls with reasonable performance. To achieve even higher abstraction and speed,
temporal decoupling and time warping techniques can be applied on top of blocking
(or non-blocking) transfers. The TLM library includes a so-called quantum keeper
for this purpose. The quantum keeper maintains a configurable time quantum by
which each simulated component is allowed to run ahead of the current simulator
time. Without further adjustments, however, this leads to transactions being simulated
out-of-order, where the time quantum can be adjusted to navigate the associated speed
and accuracy tradeoff. Alternatively, various conservative [47, 78] and optimistic [64,
73] TLM simulation approaches have been investigated to maintain or restore the
correct transaction order in accesses to shared resources, such as busses, peripherals
or the memory system, for which order matters.

1.5.2 Memory Simulation

Memory load and store instructions are the most frequently used transactions in the
communication between a CPU and the memory system. Consequently, simulation
of memory accesses rapidly becomes the bottleneck. There are two critical points
in the simulation of memory accesses: the memory read/write transactions and the
simulation of the hardware Memory Management Unit (MMU).

In addition, virtually all architectures use memory-mapped I/O, meaning that
communication with hardware peripherals is achieved through load/store instruc-
tions. A virtual prototype may adopt a simplistic approach to memory simulation, by
only differentiating which memory areas are mapped to peripherals and which are
mapped on real memory. For the peripherals, memory operations can be transformed
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into communications transactions, and the real memory accesses can be mapped onto
an equivalent host memory space.

However this simplistic approach may turn out to be inadequate for checking
memory protection and performance issues. The various types of real memory used
in the target embedded system platform (i.e. static or dynamic memory, ROM, flash
memory) are simulated using host memory, but they have different performance
characteristics. In a transaction-based simulation, memory accesses would normally
each require a transaction, with computation of access time for an approximately
timed estimate. However, for a loosely timed simulation, one wants to use host
memory to simulate target memory as fast as possible. The TLM 2.0 Direct Memory
Interface [55] specification offers an interface so that a memory target segment can
reliably be implemented using a dedicated host memory segment and a target memory
access implemented at roughly the speed of a host memory access. The host memory
and the target memory may also be of different endianness and of different word
size. In general, faster simulation is achieved by using the host endianness and word
size to represent target memory, and carry out conversions only when needed.

The MMU is the hardware component that controls each memory access and
enforces the policy set by the software. On each memory access, it checks whether
the memory access is authorized. Otherwise, it routes the instruction to an exception
mechanism. Additionally, on some architectures such as ARM and Power, the MMU
performs partly or totally the translation of logical addresses to physical addresses. A
full system simulator must hence also simulate the MMU, and this becomes a critical
element of the overall performance [49, 72]. Modern processors use the notion of
logical memory. Typically, the memory logical space is divided up into sections
or pages of some size, and a logical page is mapped (or not) into a real page of the
physical memory. The operating system must maintain tables associating logical IDs
with physical memory addresses. The first task of the MMU is to check whether or
not alogical address is mapped or not. It does this by using an associative table named
the translation lookaside buffer (TLB) associating within each entry the logical to
the physical memory mapping and its access permission rights.

If the TLB lookup fails because there is no mapping, on some architectures an
exception is raised named a TLB miss or a page fault. When a page fault occurs, the
operating system must either cancel the faulty program or fill the TLB with appro-
priate data from the page table. On more sophisticated architectures, the hardware
directly performs a page table walk. In that case, the MMU also has access to the
page table. It searches for the requested entry and inserts it automatically into the
TLB. If that table walk also fails, then an exception is raised, allowing the software
to terminate the program or provide a new page table. While associative hardware
search performance increases with a larger TLB size, the simulator performance
decreases. All of these steps can be implemented with engineering tricks to acceler-
ate the process, but memory access simulation remains a performance bottleneck.

Another aspect of memory management, when the simulation is using dynamic
translation, is the coherency between the binary target code and the translation cache.
Initially, instructions from memory locations are translated into the translation cache.
However, this code may be replaced with other code, typically when the operating
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system is loading a new program in memory to replace a terminated program. The
translation cache then becomes inconsistent with memory contents. The simulator
must consequently detect memory write operations that overwrite previously trans-
lated code to invalidate the corresponding cached translation. Garbage collection of
the translation cache must occur with replacement of the initial instructions with new
code.

1.5.3 Interrupts

All simulators, whichever technology they use, must handle hardware interrupts, if
they want to fully simulate the processor and run operating systems with interrupt
handlers. An ISS can mimic the processor behavior by checking for interrupts after
every instruction. Doing this by software becomes a performance burden. But one
can note that in most systems, the fact that an interrupt occurs exactly at one point
in the code should not matter. In fact, an operating system that would be sensitive to
the moment when interrupts do occur would be totally unreliable. An ISS can thus
increase simulation speed by checking for interrupts at larger intervals, avoiding
many useless tests.

Checking for interrupts in the simulation loop is easier with interpretive simula-
tors, for example every N instructions. Dynamic binary translation simulators must
plan for checking interrupts at appropriate intervals inserted into the code as simulat-
ing long translation units may lead into issues with time related software. Similarly,
host-compiled simulators must incorporate appropriate models of the interrupt han-
dling chain that tightly integrate with virtual OS models and emulation of scheduling
and processor suspension behavior [69, 85].

1.5.4 Peripherals

A virtual prototype typically includes one or more ISSs (for each core) connected to
co-processors and peripherals. Itis often the case that the system under designincludes
some application-specific hardware, for example digital-to-analog converters, data
compressing or decompressing components, cryptographic components, etc. If the
focus of the design is such a component, the simulation model for this component
becomes the focus of the virtual prototype. In early exploratory phases, high-level,
purely functional models can be used (e.g. of a crypto algorithm) to abstract the com-
putation. In later phases where more accurate timing behavior of the hardware compo-
nent and overall system is desired, functional models can be augmented with timing
information, e.g. using similar back-annotation based approaches as in source-level
and host-compiled software models [43, 44]. Conversely, it may be that the complete
application program is not necessary to validate the peripheral component. The ISS
can then be replaced by a simple testbench that emits commands to the co-processor.
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1.6 Summary and Conclusions

In the development of embedded computer systems, architects want to explore hard-
ware alternatives, software engineers want to develop and validate the software before
the hardware platform is available, and both want to verify properties of the system.
Virtual prototyping makes this possible. However, there is no virtual prototyping
solution that would be as fast and as accurate as the real platform that it virtualizes.
Tradeoffs have to be made to obtain virtual prototypes that satisfy the designer’s
objectives and allow for reasonably paced development iteration cycles. These trade-
offs are obtained by abstracting some aspect of the real prototype into a higher-level
model. Designers can choose to explore the modeling space by raising the abstrac-
tion level in one of two possible directions, computation and communication, where
each can be abstracted in terms of functionality or non-functional properties, chiefly
among which is time. Raising the level of abstraction unfortunately results in loosing
some accuracy: the designers must choose the most appropriate tradeoff with respect
to the virtual prototyping goals.

In fact, a virtual prototype of a system may evolve in time. It may move from
a purely functional model at the beginning of a project towards an approximately
timed model when reaching the optimization stage. We have presented in this chapter
the directions to abstract hardware functions into simulation models by abstracting
functionality and time for computation and communication. The various abstractions
that can be made and the technologies that can implement such tradeoffs have been
presented; and some techniques and standards that make it possible to gather indi-
vidual models into complex platforms have been mentioned. Virtual prototyping is
now a mature enough technology to be used in industrial processes.

A new challenge is the validation of large heterogeneous, fault-tolerant cyber-
physical systems (CPS) that have to operate over a network of sensors, actuators and
dedicated functions operating in a distributed manner. Embedded computer systems
and their virtual prototypes are an integral part of any CPS, but solutions for holistic
prototyping of complete CPS do not yet exist, or just recently have started to appear
and be developed [14, 52]. A complete virtual CPS prototype may need to be mod-
eled partly with languages such as SysML for the high-level application model, partly
with SystemC or similar approaches for the hardware/software components, partly
with MatLab/Simulink or Modelica if there is a continuous process in the application
and the simulation of that process requires solving equations, and partly in a network
simulator to model physical layers and protocol stacks of device-to-device commu-
nications. In order to build a virtual prototype of such a large system, it is necessary
to interconnect continuous simulators based on solving differential equations with
discrete-event simulators and general modelers. To test various properties of the sys-
tem, in particular to verify that the overall application software is fault-tolerant to
potential hardware failures of the components and satisfies the imposed constraints
in the continuous process, one needs to control the overall execution of the individual
simulators with synchronization steps and data exchange protocols, and this is not
yet state-of-the-art.
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Finally, as CPS have become more widely used in many applications that are

safety-critical for human beings, it becomes even more necessary to guarantee a
proper system behavior. We believe that virtual prototyping frameworks should be
more strongly coupled with formal verification tools such as model checkers, error
finding methods such as abstract interpretation or trace analysis, and verification of
non-functional properties, possibly using theorem provers, to correlate the simulation
results with formal requirements and finally achieve faster validation of systems with
stronger proofs of correctness.
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Chapter 2

Model-Based Design and Automated
Validation of ARINC653 Architectures
Using the AADL

Jérome Hugues and Julien Delange

Abstract Safety-Critical Systems as used in avionics systems are now extremely
software-reliant. As these systems are life- or mission-critical, software must be care-
fully designed and certified according to stringent standards. One typical pitfall of
corresponding development project is the late detection of safety issues or bugs at
integration time that impose to redo development steps. Model-Based Engineering
aims at capturing system concerns with specific notations and use models to drive
the development process through all its phases—design, validation, implementation
and ultimately, certification. Through a single consistent notation, such an approach
would avoid undefined assumptions and traditional hurdles due to informal, text-
based, specifications. In this chapter, we present recent contributions we pushed
forward in the AADL architecture description language for the design and valida-
tion of Integrated Modular Avionics systems. First, we review modeling patterns
to support abstractions for Integrated Modular Avionics systems. We then introduce
capabilities to check all ARINC653 patterns are enforced at model-level. In addition,
we review error modeling and safety analysis capabilities towards the production of
safety reports conforming to ARP4761 recommendations, along with code genera-
tion strategies to map model elements to code. All these contributions are integrated
in one uniform modeling process based on the AADL.
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2.1 Introduction

Safety-Critical Systems (as the ones used in avionics, aerospace or automotive
domains) are becoming extremely software-reliant. Boeing’s new 787 Dreamliner
contains more than 6.5 millions lines of software code [6]. Between 2006 and 2012,
the software of the F-35 increased from 6800 K to 24000 KSLOCS [16].

While this trend brings many benefits such as ease of update or upgrade, re-use
of software across different product lines; it also introduces new challenges.

As software is being updated and upgraded, it becomes more complex with many
collocated functions on several processors that may interact (i.e. bus connections,
interference between collocated tasks). In such environment, a single software error
might have significant impacts: a report claims that 50% of car warranty costs are
now related to electronics and embedded software [6].

In the avionics domain, a software error can have dramatic consequences. Such
systems must be carefully engineered according to stringent standards such as
DO178C [19], which mandates analysis, testing and certification activities. Unfortu-
nately, ensuring compliance with this standard is labor-intensive and costly. As the
development process is mostly manual and paper-driven, many errors are introduced.
This adds significant rework efforts, cost and postpones product delivery.

During the last two decades, new standards have been defined to facilitate the
development of safety-critical systems. In the avionics community, the ARINC653
standard [1] focuses on isolating software in partitions so that they meet higher
safety requirements while reducing the number of CPUs. Such approaches help
system designers structuring their architectures; but they still need to validate soft-
ware isolation and deliver assurance of implementation correctness. As development
activities are loosely coupled, many errors are introduced early on and impact other
activities.

As a result, efforts made in early development phases, such as requirements and
architecture, spread over the development process so that more than 60% of devel-
opment efforts are focused on implementation and testing [7].

This motivates a Model-Based development approach for avionics software.
Models use a formal representation of the system and constitute the core of the
development workflow: they are processed across the development process to val-
idate, implement and test the system. In order to implement such a development
process, designers need an appropriate language to represent system architecture
with their specific characteristics using an appropriate modeling language. Using a
formal language reduces errors from textual specifications and undefined assump-
tions while automating the development process ensures that the system is correctly
validated and implemented according to the specifications.

This chapter presents our recent contributions to the Architecture Analysis and
Design Language (AADL) [21] for modeling and validating avionics architectures.
Through a motivational example, we illustrate how model-based help detecting safety
errors early while providing support for assurance cases.
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We first illustrate how to represent Integrated Modular Avionics (IMA) architec-
tures using the ARINC653 annex [22] so as to capture specific requirements (such as
isolation properties). In addition, we present our validation rules that analyze models
and ensure correctness of requirements enforcement. We then focus on safety analy-
sis, and the production of various reports mandated by safety assessment authorities,
as well as code generation strategies targeting avionics-grade operating systems.

These combined validations and automated report and code generation facilities
are the foundations to validate the architecture and ultimately generate safety reports,
paving the path towards system airworthiness at model-level.

2.2 Boeing 777 ADIRU Case Study

On 1 August 2005 a serious incident involving Malaysia Airlines Flight 124, occurred
when a Boeing 777-2H6ER flying from Perth to Kuala Lumpur also involved an
ADIRU fault resulting in uncommanded maneuvers by the aircraft acting on false
indications [2]. The ATSB (Australian Safety Authority) found that the main probable
cause of this incident was a latent software error that allowed the ADIRU to use data
from a failed accelerometer. The ATSB report [18] indicates that a model of Software
Health Management (SHM) for the Boeing 777 Air Data Inertial Reference Unit
(ADIRU) is involved in the incident; and provides a full explanation of the incident.

The Architecture of the Boeing 777 ADIRU (Fig. 2.1) has multiple levels of redun-
dancy. Two ADIRU units are used, primary and secondary. The primary ADIRU
consists of 4 Fault Containment Areas (FCA). Each FCA contains multiple Fault
Containment Modules (FCM). The ADIRU system can continue to work without
maintenance if only one fault appears in each FCA. The system can still fly with
2 faults, but it needs maintenance before next flight. The Secondary Attitude Air
Data Reference Unit (SAARU) also provides inertial data to flight computers. The
flight computers use the middle value between the data provided by the ADIRU and
SAARU.

In the report, it was revealed that accelerometer number 5 had failed in June
2001 and could still produce high acceleration values or voltages that were erro-
neous. This failure was identified and accelerometer number 5 was excluded from
use in acceleration computation by ADIRU subsequently. On the day of the acci-
dent ADIRU went through a power cycle. Afterwards a second accelerometer failed
(number 6). This failure was identified and accelerometer number 6 was excluded.
But unexpectedly the software allowed the previous failed accelerometer number
5 to be used in acceleration computation, so the high value acceleration data was
produced and output to the flight computer. Then the accident occurred. The reason
why the failed accelerometer number 5 was reused in acceleration computation is
the ADIRU software error in the algorithm that failed to recognize accelerometer
number 5 as unserviceable after a power cycle.

Such an error results from incomplete system-level engineering that did not fore-
see such—apparently—basic situation. We claim these can be avoided by using
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Fig. 2.1 Architecture of the Boeing-777 ADIRU, from [2]

rigorous, tool-supported engineering process. In the following, we revisit this exam-
ple, introduce the core AADL language and detail the specific modeling patterns
from the ARINC653 annex [22] to represent avionics architectures. We then detail
how we use and extend the Resolute [15] language to validate IMA requirements in
AADL models and generate assurance case.

2.3 AADL and Patterns for IMA System

In this section, we review the AADL core language and extensions we proposed as
part of the SAE AS2-C committee to model avionics systems based on the Integrated
Modular Avionics paradigm.

2.3.1 The AADL Core Language

The Architecture Analysis and Design Language (AADL) [21] is a modeling lan-
guage standardized by SAE International. It defines a notation to model soft-
ware components, the deployment/configuration on a hardware platform, and its
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interaction with a physical system within a single and consistent architecture model.
The core language specifies several categories of components with well-defined
semantics. For each component, one defines both a component type to represent its
external interface; along with one or more component implementations.

For example, the task and communication architecture of the embedded software
is modeled with threads and processes that are interconnected with port connections,
shared data access and remote service calls.

The hardware platform is modeled as an interconnected set of buses and memory
components, with virtual processors representing hierarchical schedulers, and virtual
buses representing virtual channels and protocol layers. A device component repre-
sents a physical subsystem with both logical and physical interfaces to the embedded
software system and its hardware platform.

System components are used to organize the architecture into a multi-hierarchy.
Users model the dynamics of the architecture in terms of operational modes and
different runtime configurations through the mode concept.

Users can further characterize standardized component properties, e.g., by speci-
fying the period, worst-case execution time for threads. The language is extensible;
users may adapt it to their needs using two mechanisms:

1. User-defined properties New properties can be defined by users to extend the
characteristics of the component. This is a convenient way to add specific para-
meters in the model (for example, criticality of a subprogram or task)

2. Annex languages Specialized languages can be attached to AADL components to
augment the component description through additional characteristics or require-
ments (for example, specifying the component behavior [14] by attaching a state-
machine). They are referred to as annex languages, meaning that they are exten-
sions to a component.

SHM_pr

ToomdarmAgaregator -3
i
i

dia ISE!
alarmAggregator_out -.ﬂ.“!?-- pr— i
'

i

i

! systemHM_action_adin,
diagnosis_in H

L

1

|

1 1

) 3---MitigationActor_________
artarm_adirup_in 5 '{ diagnosis_out 34
1

—— ] i

systemHM_action_acc\h

arlarm_acc_in

Fig. 2.2 ADIRU AADL model example - graphical representation
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AADL provides two views to represent models:

1. The graphical view outlines components hierarchy and dependencies (bindings,
connection, bus access, etc.). While it does not provide all details, this view is
useful for communication and documentation purposes.

2. The textual view shows the description, with component interfaces, properties
and annexes. It is appropriate for users to capture internal details and for tools to
process and analyze the system architecture from models.

Figure 2.2 represents a simple AADL model (excerpt from the ADIRU case study)
that contains three threads that communicate together. The corresponding textual
notation of this model is shown in Listing 2.1.

process implementation systemHM process.impl
subcomponents
alarmAggregator: thread threads::alarmAggregator.impl;
diagnosisEngine: thread threads::diagnosisEngine.impl;
mitigationActor: thread threads::mitigationActor_th.impl;
connections
Cl: port arlarm acc_in<->alarmAggregator.arlarm_acc_in;
C2: port arlarm adirup_in<->alarmAggregator.arlarm_adirup_in;
- [..]

end systemHM_process.impl;

Listing 2.1 ADIRU AADL example model - textual representation

The AADL model annotated with properties and annex language clauses is the
basis for analysis of functional and non-functional properties along multiple dimen-
sions from the same source, and for generating implementations, as shown in Fig. 2.3.
We discuss existing analysis tools and methods to analyze and validate AADL models
in Sect.2.4.

Fig. 2.3 AADL ecosystem

Requirements Security Analysis
validation

Code Consistency

Generation validation

[ Latency Analysis ] Performance
Analysis
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2.3.2 Modeling Integrated Modular Architectures with AADL

The goal of the Integrated Modular Avionics (IMA) concept is to integrate software
components in common hardware modules. The IMA approach aims at deploying the
same portable software component on different execution hardware and to change
their configuration or communication policy without impacting functional aspects
(and the associated code). However, such design flexibility requires capability to
analyze and verify the architecture to ensure that application requirements (such as
deadline, memory or safety) are met. For example, relocating a software component
from one processor to another affects the scheduling and latency. Having the ability
to capture this change, analyze the architecture and validate these requirements will
simplify the design of such architectures.

The AADL language can be leveraged to capture IMA architectures, its software
aspects and its configuration and deployment policy. For description of software
aspects, AADL provides the following components:

e data components represent types used on components interfaces (AADL data
and event data port) to communicate values between functions.

e subprogram components capture logical software units executed by an ARINC653
process (AADL thread component). Such components can be realized using tra-
ditional languages (e.g. Ada or C) or functional models (e.g. Simulink or SCADE).

e thread components specify a task executing code (AADL subprogram). This
concept is similar to a POSIX thread (also called process by some standard such as
ARINC653). Timing requirements of AADL thread components (e.g. period,
deadline, execution time) are specified using the core properties.

e process components provide a separated memory space hosting several tasks
(AADL thread components); UNIX processes.

For configuration and deployment, AADL includes the following components:

e bus components represent the physical (e.g. wires) and logical (e.g. protocol)
connections (i.e. ethernet bus) that transport data across physical nodes.

e memory components capture a physical memory (i.e. RAM) and its logical decom-
position (i.e. memory segments).

e processor components represent a physical processor as well as the execution
runtime (i.e. operating system such as Linux or, in the context of IMA systems,
an ARINC653 module).

These components are integrated to capture the software platform and its execu-
tion runtime. The deployment policy can be easily modified in the model by changing
component associations so that engineers can evaluate pros and cons of different con-
figurations. Ultimately, AADL models are analyzed by tools to evaluate the archi-
tecture metrics (e.g. latency [11] or scheduling [8]). Let us note this approach is
currently transitioning to the industry [17].
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The core AADL language provides an accurate semantics to capture IMA princi-
ples (deployment of software components on different execution architectures, com-
ponents reuse, etc.). However, as such, it does not support the representation of some
specific characteristics of IMA architecture, in particular, the Operating System. IMA
systems use an ARINC653-compliant Operating System, a time and space partition-
ing system that separates software into partitions. While AADL provides the capa-
bility to represent such Operating System, it still needs to be extended with specific
properties and modeling patterns. Next sections introduce the AADL ARINC653
annex, a standardized document that specifies how to capture ARINC653-compliant
systems with the AADL.

2.3.3 The AADL ARINC653 Annex

This section introduces the AADL ARINC653 annex [22] that provides the ability
to model ARINC653-compliant architectures. Models that are compliant with this
annex are conformant with the IMA principles but also specific ARINC653 con-
straints, such as time or space isolation.

The AADL ARINC653 annex [22] defines modeling patterns and specific proper-
ties to represent ARINC653 [1] platform requirements. ARINC653 defines specific
concepts (e.g. time and space partitioning) that require additional AADL proper-
ties to be captured. Standardizing modeling patterns provides guidance to represent
ARINC653 systems so that AADL users and tools use the same modeling patterns,
making model analysis portable.

The next paragraphs introduce the modeling patterns and specific properties
of the AADL ARINCG63 annex and discuss the recent additions made to this
standard document, especially regarding the specification of the Health Monitor-
ing policy.

2.3.3.1 ARINC653 Module

An ARINC653 module is captured using a processor component that represents
the physical processor and the isolation layer (e.g. the isolation kernel ensuring time
and space separation between partitions). This component also contains virtual
processor components, each one representing a partition.

The processor defines the time isolation policy of the ARINC653 module:
time slots durations and assignments to each partition. This requirement is captured
by the ARINC653 : : Module_Schedule property. Partition should have at least
one time slot to be sure it is executed at each module period.
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2.3.3.2 ARINC653 Partition

An ARINC653 partition is defined by two main assets:

e application software it is associated with the partitions as ARINC653 processes,
using AADL thread components. It is important to distinguish the difference
between an AADL process component and an ARINC653 process, as the same
word are used in both standards with different semantics. The former represents
the ARINC653 application software partition while the latter is a task and mapped
to an AADL thread component.

e execution runtime resources available to execute the application software parti-
tion. It is captured using an AADL virtual processor associated with the
ARINC653 module (AADL processor).

The application software (AADL process) is associated with an execution
runtime using the AADL processor bindings (property Actual_Processor
_Binding). Itis also associated with a memory segment (i.e. space isolation) using
AADL memory association bindings (property Actual_Memory_Binding).

2.3.3.3 Memory Configuration

In an ARINC653 architecture, the main memory is separated in several disjoint
segments. Each segment is associated with one partition, ensuring space isolation
between collocated partitions.

The main memory component (e.g. RAM) is captured using a memory compo-
nent. The policy is specified decomposing this AADL component using memory
sub-components, each one representing one segment. Memory segment character-
istics (e.g. segment size, base address) are specified by attaching AADL properties
the corresponding AADL memory components.

Then, each segment is allocated to one partition using the AADL memory binding
mechanism (property Actual_Memory_Binding). This is specified by associ-
ating the partition application software (e.g. AADL process component) to the
memory segment (e.g. AADL memory component).

2.3.3.4 Scheduling Parameters

ARINC653 mandates a hierarchical scheduling approach with two levels:

1. The module level schedules partitions using a fixed, predictive time-line
algorithm repeated at a given rate (called the Major Frame).

2. The partition level schedules ARINC653 processes (AADL thread) within
partitions. This is policy is partition-dependent and relies on the mechanisms
supported by the underlying partition execution runtime.



42 J. Hugues and J. Delange

The scheduling policy at the module level is specified in AADL processor
components, which represent ARINC653 modules. The ARINC653 : :Module
_Schedule property defines a list of time slots for each partition, while the parti-
tions’ scheduling rates are defined by the ARINC653 : : Module_Major_Frame
property.

The scheduling policy at the partition level is defined in AADL virtual
processor components which represent the partition execution runtime. The
scheduling policy is captured with the AADL Scheduling Protocol property.

2.3.3.5 Intra-partition Communications

ARINC653 Intra-Partition communication are channels between ARINC653
processes (or AADL thread components) located within the partition. Such chan-
nels are confined within the partitions and do not require any specific capability
from ARINC653 module. The standard distinguishes several intra-partition mecha-
nisms: buffers, blackboards, events and semaphores which are translated in AADL
using (respectively) event data ports, data ports, event ports and shared data
components.

The associated AADL data classifier associated to a port represents the type of
data used by the communication channels (ARINC653 buffers and blackboards). In
addition, AADL properties (e.g. Queue_Size) are attached to AADL interfaces
to represent specific requirements (e.g. number of data instances within a buffer,
management of history, etc.).

2.3.3.6 Inter-partitions Communications

ARINC653 inter-partitions communications specify communication channels
between partitions. This type of communication must be explicitly configured by
the ARINC653 operating system. Only declared channels can be created and used at
runtime. Correct configuration and implementation of this mechanism ensure space
isolation across partitions by avoiding data leakage between partitions classified at
different assurance level.

The ARINCG653 standard distinguishes two types of inter-partitions communica-
tions: queuing and sampling ports, which are mapped in AADL using (respectively)
event data ports and data ports. Ultimately, partitions ports are connected to
tasks in order to represent data usage and explicitly capture what software component
(thread or subprogram) processes and uses it.

2.3.3.7 Health-Monitoring Policies

ARINC653 health-monitoring policy configures error detection mechanisms and
associated mitigation and recovery strategy to keep the system in a safe state.
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Table 2.1 Mapping rules between ARINC653 and AADL concepts

ARINC653 concept AADL concept
Module Processor component
Partition Process component bound to a virtual processor

component and a memory component

Space isolation Decomposition of physical memory
components into logical memory components

Time isolation Each partition (process component) is bound to
a virtual processor component that is itself
bound to a processor component (representing
the module)

Process Thread component

Queuing ports Event data ports across process components
Sampling port Data ports across process components
Buffer Event data port across thread components
Blackboard Data port across thread components

The general concept is that each potential error (e.g. a divide by zero exception,
inconsistent memory access, etc.) is associated with a recovery action such as restart-
ing the partition where the fault originated. The ARINC653 standard distinguishes
three levels of health monitoring: module, partition and process.

The ARINC653 AADL annex defines a simple approach to map Health Monitor-
ing policies with two properties:

e ARINC653::HM_Error_ID_Levels defines the level for each system error
and at which level it is detected and eventually recovered;

e ARINC653: :HM_Error_ID_Actions defines the set of recovery actions for
each error that can be detected by the ARINC653 executive.

These properties replace the approach from previous versions of the ARINC653
AADL annex which used properties at each health monitoring level. Because the
health monitoring policy was spread over the component hierarchy, this former
method was confusing as it might introduce non-deterministic specifications (for
example, having the same error handled at several levels which is not a legal
ARINC653 specification).

2.3.3.8 Mapping Rules

Between AADLv2 and ARINC653 concepts are summarized in Table2.1.
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Fig. 2.4 ADIRU full model (graphical)

2.3.4 ADIRU Full Model

We captured in a set of AADL packages the full model.! It represents 1.5 KSLOCs of
models and capture all facets of the functional architecture of the ADIRU, along with
its scheduling and memory configuration parameters. A graphical representation is
shown in Fig.2.4.

Let us note this model has a high level of complexity, and captures all facets of the
initial cas e study. Yet, it remains of tractable size thanks to the compact textual rep-
resentation. From this model, several analyses can be performed. In the following, we
focus on three of them: model-based assurance, safety analysis and code generation.
For each, we explain how the model has been extended to address a particular concern.

2.4 Model-Based Assurance with AADL

The system architecture captured in AADL can be processed and validated against
system requirements. Such analysis can be processed by specific tools that browse
models components, extract properties and evaluate their correctness against the
requirements.

IThe model is available as part of the AADLIb library of models: http://www.openaad].org/aadlib.
html.
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This validation process is useful but is difficult to analyze, especially when there
are a lot of inter-dependent results. Investigating analysis results and finding poten-
tial issues can be challenging, especially when architectures have inter-dependent
requirements. In order to make the analysis review easier, we extend our analysis tool
and auto-generate an assurance case from the validation results. This shows the inter-
dependencies of each requirements using a hierarchical notation and details which
ones are not enforced. The assurance case, associated with the validation results,
constitutes an indicator of the system architecture quality (how many requirements
are covered and validated in the architecture).

The next sections introduce the Resolute validation language, our extension for
producing assurance case from validation results and how we apply this technique
to produce assurance cases to check IMA requirements.

2.4.1 Validation of AADL Models

Analysis tools process AADL models and automatically check their correctness
with regard to specific quality attributes (e.g. security, safety, performance). To date,
AADL has been already successfully used to validate several quality attributes such
security [12], performance, [11] or safety [9]. Analysis functions have been designed
in the Open Source AADL Tool Environment (OSATE) [5], an Eclipse-based mod-
eling framework. Analysis tools are implemented as Eclipse plug-ins that browse the
components hierarchy, retrieve informations from the components (through AADL
properties or annex languages) and produce an analysis report.

However, writing analysis methods as Eclipse-plugins require learning the inter-
nals of the modeling tool, study the Eclipse platform as well as the AADL meta-model.
This makes the design of new analysis features difficult for non computer-science
experts, which reduce the development of new analysis capabilities. Model analysis
can be implemented using general constraints language (such as OCL [20]) but such
approaches are often difficult to use, complicated to use and not user-friendly [4].

no_double_fanin() <=
** " All incoming feature have only one connection" **
forall (c : component) . true => has_single_fanin (c)

has_single_fanin (comp : component) <=
*% "All IN features have one connection on " comp **
forall (f : features (comp)) . (direction(f) = "in")
=> (length (connections (f)) = 1)

Listing 2.2 Example of a RESOLUTE theorem - check for single fanin
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= * no_double_fanin()

= « Al incoming feature have only one connection
«/ All incoming feature have only one connection on alarmAggregator : threads::alarmAggregator.impl
+/ All incoming feature have only one connection on diagnosisEngine : threads::diagnosisEngine.impl
+ All incoming feature have only one connection on mitigationActor : threads::mitigationActor_th.impl

Fig. 2.5 RESOLUTE analysis result

To overcome this issue, the AADL community proposed a specific extension
(through the annex mechanism of AADL), RESOLUTE [15], to process and analyze
a model with a specific, user-friendly query language. It allows system designers to
write new analysis methods within the modeling platform without having to learn
the basics of Eclipse plug-ins development or any details of the AADL meta-model.
When analyzing amodel, RESOLUTE produces a hierarchical graphic representation
of the execution results (as in Fig.2.5).

Listing 2.2 shows an example of a resolute theorem that checks all incoming
interfaces of all components are connected to a single source. Figure2.5 shows the
graphical representation of the analysis results when using this theorem on the AADL
model introduced previously in Fig. 2.2 and Listing 2.1. In this example, the analysis
passes: all incoming interface is connected to a single source The graphical repre-
sentation of analysis results helps system designers to automatically check AADL
models against specific requirements. A complete description of the language and
analysis tools and more details can be found in [15].

2.4.2 Application to ARINC653 Requirements

We implemented ARINC653 validation rules using the RESOLUTE [15] language
introduced in Sect. 2.4, and the new capability to generate assurance case [3, 13] from
analysis results with a GSN notation. We designed a library of predefined validation
theorems that validate ARINC653 requirements in AADL by checking that:

e Each partition AADL process is associated with exactly one memory seg-
ment (AADL memory component) and one partition execution runtime (AADL
virtual processor component).

e Each ARINC653 module (AADL processor components) specify the partitions
scheduling policy (property ARINC653: :Module_Schedule) and execute
each partition at least once during each scheduling period.

e All ARINCG653 processes (AADL thread) define their scheduling characteristics
(e.g. dispatch protocol, period, deadline).

e The ARINC653 Health-Monitoring Policy address all potential errors that are
listed in the ARINC653 standard (such as divide by zero, application error, module
error, etc.).



2 Model-Based Design and Automated Validation of ARINC653 ... 47

e Each memory segment (AADL memory component) is associated with at most
one partition (AADL process component).

e All queuing ports or buffers (represented with AADL event data ports) spec-
ify the maximum number of data instances they can store (property Queue_Size).

These rules have been written in a RESOLUTE theorem library and integrated in
OSATE. System designers can then use them directly without having to write any
additional code. Note that these rules do not directly address safety issues related to
the incident from Sect. 2.2 but detect any deployment or configuration issue that can
led to such issue. This is part of a model-development process that can catch several
type of errors. The next paragraph presents how safety analysis can be performed
from the same model and detect safety issues as the one from Sect.2.2.

2.5 Safety Analysis

Aerospace Recommended Practice (ARP) 4761 from Society of Automotive Engi-
neers (SAE) defines a process for using common modeling techniques, and analysis
methods such as Functional Hazard Assessment (FHA), Fault Tree Analysis (FTA)
or Fault Impact Analysis (FIA).

As part of the AS5506/A1 standard document [22], AADL has been enhanced
with capabilities to support capture of erroneous behavior and to analyse their impact
on the global architecture through the Error Modeling Annex v2 (EMV2 thereafter).
EMV2 supports architecture fault modeling at three levels:

e Error propagation between components and their environment: Modeling of fault
sources in a system, their impact on other components or the operational environ-
ment through propagation.

It allows for safety analysis in the form of hazard identification, fault impact analy-
sis, and stochastic fault analysis.

e Component faults, failure modes, and fault handling: Modeling of fault occur-
rences within a component, resulting fault behavior in terms of failure modes,
effects on other components, the effect of incoming propagations on the compo-
nent, and the ability of the component to recover or be repaired.

It allows for modeling of system degradation and fail-stop behavior, specification
of redundancy and recovery strategies providing an abstract error behavior speci-
fication of a system without requiring the presence of subsystem specifications.

e Focus on compositional abstraction of system error behavior in terms of its sub-
systems. It allows for scalable compositional safety analysis.

In addition, EMV?2 introduces the concept of error type to characterize faults,
failures, and propagations. It includes a set of predefined error types as starting point
for systematic identification of different types of error propagations providing an
error propagation ontology. Users can adapt and extend this ontology to specific
domains. See [10] for a more detailed presentation of EMV2 features.
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device implementation acc_device.impl
annex EMV2

(10
use types ADIRU errLibrary;

use behavier ADTRU errLibrary::simple; Error def|n|t|on

lerror propagations

accData : out propagation{valueErroneous};
flows

1 : error source accData{ValueErroneous} when failed;
lend propagations;

properties .
em2: :hazards = Error documentation
([ crossreference => *N/A*;
failure => “Accelerometer value error*;
phases => (*in flight");
description => "Accelerometer starts to send an erroneous value";
comment => “Can be critical 1f not detected by the health momitoring*;
1
applies te accData.valueerroneous;

EMV2: :OccurrenceDistribution => [ ProbabilityValue => 3.4e-S ; Distribution => Fixed;]
applies to accData.valueerroneous;

s

end acc_device.impl;

Fig. 2.6 Extension for safety concerns

Component e Sazard Deneription ouebeerr  functional Fallure Operations! Phases Comment
et - Ak bot” CNIAT valus smee” in fght™ " v oaing:
el socData” T T value emoe” *in flght™ by
el Data” * "N valogommor® “in flight™ “Can be crtical f nct detected by the health monstoring”
2ot Data” hoe” CNJAT " value emoe” “in flight™

o e v b WA " e et “in Hight™ ¥
1 K - WA - g !

Fig. 2.7 FHA report generated

We extended the previous model to add EMV2 concepts. Thanks to AADL encap-
sulation and inheritance mechanism, we can separate regular interfaces and properties
from safety concerns (see Fig.2.6).

By defining specific error types, propagations across components and error
occurence probabilities, we can generate directly through OSATE2 analysis plug-ins
both Fault Hazard Analysis (FHA) that captures the list of hazards that are derived
from each function (Fig.2.7) and Fault Trees (Fig.2.8, note the figure is symetri-
cal for the 6 accelerometers, we cropped it to make it legible) that represent the
combinations of errors that could lead to a system-level failure.

Through Fault Impact and Faul Tree analyses, we could replay all scenarios
depicted in the original case study, demonstrating the expressive power of EMV2 to
capture in a concise way error propagation.

2.6 From Model to Code

The complete ADIRU system has been modeled in AADL thanks to the materials
provided by the ATSB. To this model, we applied the validation scheme presented in
Sect.2.4.2 to the model, so as to validate the model against the ARINC653 require-
ments, and then perform safety analysis.
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& component acc_hm_pr in state
v Failed

event253 (3.4E-5)
Accelerometer
4+ starts to send an
erroneous value
(component acc4)

event261 (3.4E-5)
Accelerometer

<+ starts to send an
erroneous value
(component acc2)

event255 (3.4E-5)
Accelerometer
< starts to send an
erroneous value
(component acc5)

Fig. 2.8 FTA report generated

Let us note the AADL model captures all configuration parameters: partitions,
buffers, link to memory segments, etc. We leveraged this information to validate the
model is sound in the previous section. From this description, we can actually go
further and also generate the corresponding source code.

To do so, we enhanced the Ocarina code generator [23] to target ARINC653
Application Executive (APEX), and more specifically DDC-I DeOS and WindRiver
VxWorks653. These are extensions to previous work we did when targetting the
FLOOS POK partitioned kernel. We rely on the Code generation annex that has been
published in [22]. This annex provides guidelines to connect user-provided source
code to a full distribution middleware generated from an AADL model.

Code generation covers two facets of the ARINC653 process:

1. Generation of XML descriptors: these configuration files describe all the resources
required by the APEX to run: name and configuration parameters. These are
derived from the definition of AADLv2 memory components that define the mem-
ory layouts, virtual processors capturing partitions and regular AADL threads,
processes and subprograms;

2. Generation of code skeletons to be populated by the user source code. This codes
provides regular patterns for periodic or sporadic activations, along with pat-
terns for inter-/intra-partition communications using ARINC653 queueing and
sampling ports.
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Let us note that at this level, the initial AADLv2 model can be reused almost as-is.
The only necessary addition is a property that indicates the APEX we want to target.
This is captured in a property that is specific to our toolset.

Hence, from the AADL model, one can now generate a full prototype of the
running application for both simulation and run-time validation purposes, combined
with model-level validation. As such artefacts are usually produced manually by sys-
tem engineers using (mostly) textual specification, generating them from a consistent
semantics modeling language as AADL exhibits the following benefits:

1. Costs reduction as assurance cases can be automatically produced from models,
it avoids labor-intensive costs to create them, especially considering the size of
such documents on real systems. Also, because of this automation capability, the
system’s middleware code source can be updated and maintained as soon as the
system is modified.

2. Higher fidelity using a semi-formal language (such as AADL) removes the errors
related to informal specifications. It ensures the quality of the generated artifact
and removes any indeterminism related to undefined assumptions made while
reading non-formal, textual system specifications.

From the code generated, and its execution in a simulated environment, one can
demonstrate all the scenarios that were initially tested as part of the safety analysis:
simulation of the failure of a sensor, correct re-configuration of the system in the
corrected revision and complete the performance analysis and evaluate the worst-
case response time before complete recovery.

2.7 Conclusion and Future Work

Safety-critical software, such as the one used in avionics, must be carefully designed,
validated and implemented. Such systems use dedicated execution platform (the IMA
and its related ARINC653 operating system) and must comply with stringent cer-
tification standards (DO178C). Because of these requirements designing and main-
taining such software is cost-intensive, and actual development methods no longer
scale. Over the years, Model-Based approaches have shown interesting benefits to
reduce development costs while maintaining (or even increasing) system quality.

In this chapter, we introduce our Model-Based Engineering approach to design
and validate ARINC653 systems. We leverage the AADL language to capture IMA
architecture and their requirements and propose specific modeling patterns for mod-
eling ARINC653 operating systems.

In addition, we design a validation library for ARINC653 systems using RES-
OLUTE, an AADL-specific constraint language to analyze and validate software
architectures. Using this tool, we are able to automate some system validation activi-
ties and auto-generate assurance cases, usually created manually. Such an automation
might reduce manual efforts and keep certification documents up-to-date with the
actual specifications.
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Finally, we performed both safety analysis using AADLv2 EMV?2 so that engi-
neers can analyze fault impacts and generate safety documents (e.g. Fault-Tree
Analysis, Failure Mode and Effects Analysis); and extended actual AADL code
generation capabilities from the Ocarina toolset to auto-produce an implementation
code that targets an ARINC653-compliant operating system.

Hence, we propose a large palette of tools to support all major activities for the
engineering of safety-critical avionics system: full architecture capture, covering
both functional and dysfunctional facets; analysis of system-level requirements on
architecture artifacts, safety analysis and finally code generation. In our view, code
generation in a simulated environment serves both for rapid prototyping and valida-
tion of many design choices.

All tools presented in this chapter are available through OSATE?2 and Ocarina,
and are available as free software. The ADIRU model is also fully public, to help
the community better understand the close relationships between all those models.
As we stated the model supports multiple verification and validation activities while
remaining of modest size.

Future work will consider closer interaction with certification processes so as
to align our contributions with current practices, but also challenge the benefits of
model-based to reduce certification costs.
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Chapter 3

Formal Semantics of Behavior Specifications
in the Architecture Analysis and Design
Language Standard

Loic Besnard, Thierry Gautier, Paul Le Guernic, Clément Guy,
Jean-Pierre Talpin, Brian Larson and Etienne Borde

Abstract In system design, an architecture specification or model serves, among
other purposes, as a repository to share knowledge about the system being designed.
Such a repository enables automatic generation of analytical models for different
aspects relevant to system design (timing, reliability, security, etc.). The Architecture
Analysis and Design Language (AADL) is a standard proposed by SAE to express
architecture specifications and share knowledge between the different stakeholders
about the system being designed. To support unambiguous reasoning, formal verifica-
tion, high-fidelity simulation of architecture specifications in a model-based AADL
design workflow, we have defined a formal semantics for the behavior specification
of the AADL, the presentation of this semantics is the aim of this chapter.

Keywords Architecture modeling - Formal semantics + Synchronous concurrency -
Code generation + AADL

3.1 Introduction

In system design, an architecture specification serves several important purposes.
First, it breaks down a system model into manageable components to establish clear
interfaces between them. In this way, complexity becomes manageable by hiding
details that are not relevant at a given level of abstraction. Clear, formally defined,
component interfaces allow us to avoid integration problems at the implementation
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phase. Connections between components, which specify how components affect
each other, help propagate the effects of a change in one component to the linked
components.

More importantly, an architecture model is a repository to share knowledge about
the system being designed. This knowledge can be represented as requirements,
design artefacts, component implementations, held together by a structural backbone.
Such a repository enables automatic generation of analytical models for different
aspects relevant to system design, such as timing, reliability, security, performance,
energy, etc. Since all the analyses are generated from the same source, the consistency
of assumptions w.r.t. guarantees, of abstractions w.r.t. refinements, used for different
analyses, becomes easier, and can be properly ensured in a design methodology based
on formal verification and synthesis methods.

Several standards for modeling embedded architectures have emerged in recent
years: the SAE AADL! [1], SysML,2 and UML MARTE [17]. Each of them repre-
sents different design approaches, embodies different concepts, and serves different
purposes. We focus on the AADL, and the scope and precision of concepts defined by
this standard, to define a formal semantics for a significant subset of its behavioral
specification annex language, often called ‘BA’. Just as non-functional properties
(timing, performance, energy, security properties), such descriptions can be attached
to threads, processes, or any object of the standard (bus, sensor, actuator, port) to
formally specify its behavior, as specified in the standard (e.g. a bus), or refine it (e.g.
as an AFDX bus).

Since it began being discussed in the AADL standard committee, the formal
semantics defined in this article evolved from a synchronous model of computation
and communication [4] to a semantic framework for time and concurrency in the
standard: asynchronous, synchronous or timed, to serve as a reference for model
checking, code generation or simulation tools uses with the standard. These semantics
are simple, relying on the structure of automata already present in the standard, yet
provide tagged, trace semantics framework to establish formal relations between
(synchronous, asynchronous, timed) usages or interpretations of behavior.

3.2 Example of an Adaptive Cruise Control System

To illustrate the definition and use of a formal semantics for the AADL behavior
annex, we consider the case study of an Adaptive Cruise Control (ACC) system,
Fig.3.1.

ACC systems implement two main functions:

1. an ACC can automatically sustain a preset speed (as a conventional Cruise Control
system), and

Uhttp://www.aadl.info/aadl/currentsite/.
Zhttp://www.omg.org/spec/SysML/1.4/.
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Fig. 3.1 Adaptative Cruise Control

2. an ACC can adapt the vehicle’s speed to maintain a safe distance with other
vehicles so as to prevent collisions.

To implement these functions, the ACC requires data from different sensors:
speedometer, laser, radar (1, 2) to detect vehicles or obstacles ahead, and wheel
sensor to adjust the focus point of the laser or radar. The ACC receives commands
from the driver through buttons allowing to set the preferred speed and to activate or
deactivate the system (3, 4).

Depending on the situation (presence of an obstacle or not, activation of the cruise
control or not), the ACC computes the acceleration and deceleration for the vehicle
to reach the needed speed: the preferred speed of the driver if there is no obstacle
and the cruise control is on, or the speed of the vehicle ahead. Finally, it acts on the
vehicle speed through its brakes and throttle.

An ACC is a safety-critical system. Hence, in addition to meeting its functional
requirements, its design must satisfy design correctness objectives that concern sev-
eral aspects specified in its architecture model:

e from the timing and scheduling perspective, all threads must meet their deadlines;

e reaction to the presence of an obstacle must be done in a minimum amount of
time;

e from the logical perspective, the system must be free of deadlock and race
condition;
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e from the security perspective, critical software components (processes or sys-
tems) must be protected from less critical components, thus executed on dedicated
processors;

e from the consumption perspective, the system must draw minimal power from the
car battery, thus processors must run on the minimal possible frequencys;

e from the cost perspective, the overall cost of the system should be minimal, which
means minimizing hardware component size and complexity.

3.3 Architecture Analysis and Design Language

AADL [1] is SAE International standard AS5506C, dedicated to modeling embed-
ded real-time system architectures. As an architecture description language, based
on a component modeling approach, AADL describes the structure of systems as
an assembly of software components allocated on execution platform components
together with constraints and properties, including timing ones.

3.3.1 Architecture

In AADL, three distinct families of components are provided:

e software application components which include process, thread, thread group,
subprogram, and data components,

e execution platform components that model the hardware part of a system including
(possibly virtual) processor, memory, device, and (possibly virtual) bus compo-
nents,

e composite components (systems).

Figure 3.2 presents an overview of an ACC system, consisting of:

e devices, such as sensors (speedometer, radar, wheel sensor), console with buttons
and display, throttle and brakes;

buses allowing subsystems to communicate with each other and with devices;

e controller and console subsystems.

Each subsystem in Fig.3.2 consists of hardware components, such as proces-
sors, memories and buses; and software components: processes containing threads.
Figure3.3 presents the controller subsystem and its components: one processor,
one memory, one bus connecting the processor and the memory and one controller
process. The controller process itself contains four threads, one for each sensor, and
the ComputeActionThread, which is responsible for sending speed up, slow
down or complete stop signals to the throttle and brakes of the vehicle.
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The AADL components communicate via data, event, and event data ports. In
Fig.3.2, ports are represented by arrows, and connections between ports by lines. Data
ports are represented using filled arrowheads and event ports using empty arrowheads.

Each component has a type, which represents the functional interface of the com-
ponent and externally observable attributes. Each type may be associated with zero,
one or more implementation(s) that describe the contents of the component, as well
as the connections between components.

3.3.2 Properties

AADL properties provide various information about model elements of an AADL
specification. For example, a property Dispatch_Protocol is used to pro-
vide the dispatch type of a thread. Property associations in component declarations
assign a particular property value, e.g., Periodic, to a particular property, e.g.,
Dispatch_Protocol, for a particular component.

For example, Listing 3.1 presents such properties attached to the Compute
ActionThread thread.

thread implementation ComputeActionThread.impl
properties

Dispatch_Protocol => Periodic;
Period => 50 ms;

Deadline => 40 ms;

Compute_Execution_Time => 20 ms;

end ComputeActionThread;
N y,

Listing 3.1 Timing and scheduling properties of the ComputeActionThread thread implementation

3.3.3 AADL Timing Execution Model

Threads are dispatched periodically, triggered by the arrival of data or events on
ports, or from the arrival of a subprogram call (from another thread), depending on
the thread type. Three event ports are predeclared: dispatch, complete and
error (Fig.3.4).

A thread is activated to perform a computation at start time, and has to be finished
before the deadline. A complete event is sent at the end of the execution. The received
inputs are frozen (copied for reading) at a specified time (Input_Time), by default
the dispatch time. This implies that the content of a dispatched port does not change
during the execution of a thread dispatch, even though the sender may send new values
in its input FIFO queue. For example, values 2 and 3 (Fig. 3.4) arriving after the first
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Fig. 3.4 Execution time model for an AADL thread

Input_Time will not be processed until the next Input_Time. As aresult, the performed
computation is not affected by a new input arrival until an explicit request for input
(another dispatch). Similarly, the output is made available to other components at a
specified point of Output_Time, by default at complete (resp., deadline) time if the
associated port connection is immediate (resp., delayed) communication.

3.4 A Formalization Using Constrained Automata

We define the model of computation and communication of a behavior specification
by the synchronous, timed or asynchronous traces of automata with variables [18].
These constrained automata are derived from polychronous automata defined within
the polychronous model of computation and communication [12]. Automata define
a behavior using transitions. A transition is composed of an initial state, a guard, an
action, a final state. The guard and action of a transition are defined using logical
formulas. The logical formula of the guard must be true for the transition to occur.

3.4.1 Vocabulary

Logical formulas are defined on the vocabulary W of the states S, variables V,
connections and ports P defined in the lexical scope of the denoted AADL object, and
of AADL constants. An identifier w in W has a type T = typeof (w) and is valuated
in the corresponding domain Dy, e.g., Booleans, integers or reals, D 2 B U Z U R.3

We write D, for the value domain of a typed identifier x. The domain of a port
identifier p of type T isdefined by D, = Dy = D7 U {_L}. The bottom sign L denotes
the absence of a value at the given step of execution. A port value is said absent if
the port is not frozen and its value is neither read or written.

3 Although BA supports other types (strings, enumerations, records, arrays) our formalization
focuses on numbers and Booleans without loss of generality.
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3.4.2 Formulas

The set of typed formulas Fy on the vocabulary W is an algebraic set of terms that
denotes the conditions, actions and constraints of an AADL object of vocabulary W.
It is defined by induction from:

Constants O (false), to mean “never”, and 1 (frue), to mean “always” (up to W).
Atoms w of W, to mean the value of an identifier w.
Unitary expressions:

— "pis the clock of p: a Boolean that denotes the presence of a value on a frozen
port p,ie., p # 1;

— @p is the date of p: a real number that denotes the time of an event present on
a port p;

— v/ denotes the next value of a variable v;

— — f denotes the complement of formula f, for all f in Fy.

Binary expressions f op g:

— for all Boolean formula f, g in Fy and Boolean operators Vv, A, =, etc. (in
particular, f — g = f A —g);

— for all numerical formula f, g in Fy and numerical operators +, —, %, /, %, =,
<, etc.

A formula f is the denotation of a well-typed AADL condition or action. It is hence
assumed to be a well-typed, multi-sorted, logical expression. Ill-typed expressions
do not define formula.

Example The formula "a A "b = 0 stipulates that the ports @ and b should never
carry a value (sent or dispatched) at the same logical period of time. In the AADL, it
refers to the condition “on dispatch a” of an object possibly triggered by a or b and
allows to make the status of a as being explicitly frozen and b not (or, alternatively,
empty, with “not b'fresh” or “not b’'count = 0”).

Conversely, "a = "b expresses the synchrony of a and b at any step of execution.
It can be refined by the real-time constraint d < @a, @b < d + p, where d is the
date of the behavior’s dispatch and p its period.

3.4.3 Model

A model m is a function W — Dy from a vocabulary W to its domain of valuation
Dy that is true for a formula f of Fy, written m = f. A timed model m® is a
function W — R x Dy, associating also each event with a date, that the formula
must satisfy as well.
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3.4.4 Automaton

The meaning of a behavior annex is defined by an incomplete automaton with vari-
ables A = (Sy, S0, Va, P4, T4, C4) where:

e S, is the set of states of the automaton A, sy is the initial state.

e V, is the set of local variables of the automaton A (V' designates the set of next
values V' for all v € V).

e P, is the set of ports of automaton A, both inputs /4 and outputs O, P4 =
14U Oy.

e F, is the set of Boolean formulas of A, defined on the vocabulary W4 = S, U
ViU Py.

e The transition function T4 € Sy x F4 — F4 x S4 defines the transition system
of A.

— The source formula of a transition is its guard g, defined on V4 and I4.
— The target formula of a transition is its action f, defined from V4 and Pjy.

e C, € F,istheconstraint of A. It mustalways equal 0, to mean never. It is a formula
that denotes the invariants (properties, requirements) of the denoted AADL object
in a form of a logical formula.

Since the variables V, are private to the automaton A, a transition function 74
is equivalent to one in X4 = Q4 X Fp — Fp x Q4 over extended states Q4 =
S4 x DV for all valuations DV = HvevA D, of the variables V,: for all transition
(s, 8, f,d) € Ty, forallmodelm € (V4 + V4') — D4, wehave ((s, m(Vy4)), m(g),
m(f), (d,m(V,")) € X, and, for all v’ € V' undefined in f, m(v') = m(v).

Example A behavior alternating between two states of receiving a’s and b’s can be
represented (Fig.3.5) by a transition system defined on the vocabulary {a, b} with
two complete states sy and s; ( complete states are observable states—see Sect. 3.5)
and two transitions:

e (59, a — "b, true, s1) denotes the transition from s0 to s 1 if port a carries a value
and b does not;

e (s1,”b — “a,true, sp) denotes the transition from s1 to s0 if port b carries a value
and a does not.

The role of a constraint formula such as “a A "b = 0 is to guarantee the property
(“never a and b”) by all implementations of the (incomplete) automaton. For instance:

Fig. 3.5 Alternating behavior
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e ifan a isreceived in state 51, or a b in state 5¢, both the automaton and the constraint
allow it: the event is consumed and the automaton remains in the same state;

e if both a and b are received in either sy or s| then the transition is denied by the
constraint.

3.4.5 Properties

e The control clock 1,4 of an automaton A is defined by the sum (union) of its port
clocks 14 =2 p "P-

e The trigger tick(s) = Z(x,g,f,d)eTA (g) of a state s is defined by the upper bound
of guard formulas g in transitions that depart from s.

e The stuttering clock of a state s is defined by t4(s) = 14 — ((s * C4) + ticks(s)).
It means that an automaton A is silent in state s if and only if its model m satisfies
the constraint C4 in state s and no guard can be triggered from s with m.

3.4.6 Product

The synchronous product of two automata A = (S4, So, Va, Pa, T4, C4) and B =
(Sp, to, Vg, Pp, Tp, Cp) isdefined by A | B = (Sap, (50, 0), Vap, Pap. Tap, Cap)
with

SAB = SA X SB
Vap=VaUVp
Psp = P4 U Pp
Cap=CuaVvCp
Tap = {((s1,11), 81 A 82, f1 A f2, (52, 12)) | (51, 81, f1. 1) € T A (52, &2, f2.12) € T}

Product is commutative, associative, has a neutral element ({s}, s, ¥, @, @, 0) and
is idempotent for deterministic automata.

Example The synchronous composition of two automata A and B communicating
through an immediate connection of port p can be represented by the synchronous
product of A and B with the automaton representing a point-to-point one-place first-
in-first-out buffer (Fig.3.6). A queue of size n can be defined by the product of n
copies of FIFO,.



3 Formal Semantics of Behavior Specifications ... 63

Fig. 3.6 FIFO FIFO = ({s0,51},50,{v},{pa. P8}, Triro, ,0)
TFIFO] = {(SOaApA7V/ = PA,SI), (S[ ,frue,pgp = V7SO)}

3.4.7 Small Step

The model m of a transition in an automaton A consists of a pre-condition pre(m)
defined on input ports / — D7 and state variables V — Dy and a post condition
post(m) defined on output ports O — ]D)é and next values of variables V' — Dy.

A small step of an automaton A from state s to state ¢ is defined by a model m
of A that satisfies its constraint C4, written m = —Cy4, and both the guard g and
action f of a transition (s, g, f, ) of A, writtenm =g A f.

Example A small step of an automaton denotes an atomic and untimed execution step
of the denoted behavior. Forinstance, the modelm = {(v, 0), (v/, 0), (pa, 0), (pg, 0)}
is a small step of the automaton FIFO| from sy to s;: it satisfies both guard m = "pa
and actionm =1V = py.

3.4.8 Big Step

Letn > 1, g1 = (s1,71) and ¢, = (s,, 1) two extended states of an automaton A
with complete states sy, s, € S4 and variable valuations ry, r, € D" ~V, > Dy,
(note that it may be the case that g, = q;). A big step of automaton A from s, to s,
is defined by a model m € Py — DﬁA that, for all 1 < i < n satisfies:

e prer; 1 (v) = postr;(v') for all v € V, (the next variable values V' at step i,
postr; (V'), are the regular variable values v at step i + 1, pre ;41 (v))

oem; =ridm

o m; = —Cy

o (si,8i, fi,siy1) € Taandm; =g A f;

e prer;(v) = postr; (V') forall v/ € V} not occurring in f; and g;

e s5; isan execution stateif 1 < i < n (an execution state is anon observable, internal
state—see Sect. 3.5).

We write m, s; = A, s, to mean that m is the model of a big step of A from s; to s,,.

Example For instance, the model m = {(p4, 0), (pp, 0)} is a big step of the automa-
ton FIFO; from sy back to 5. It abstracts the meaning of A over its port interface
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for the corresponding valuation of its local variables {(v, 0), (/, 0)} that satisfies the
guard and action.

3.4.9 Synchronous and Asynchronous Trace

A synchronous trace B € Py — (]D)i)* of an automaton A is a finite sequence of

valuation over P4 obtained by concatenating the codomains of successive big steps.
The length of B is denoted |B|. The set of synchronous traces of an automaton A
from its initial state s is defined as:

T(A,s50) =B € Py — (D )* |0 <i <|Bl, mi,si = A, sip1 AVx € dom(B), (B(x)); = m;(x)}

An asynchronous trace B* € Py — (Dp,)* is the abstraction of a synchronous
trace B € Py — (D#A)* obtained by the removal of all absence marks L. For a
sequence s in (D4)*, we denote by s, the projection of s on D*. The set of asyn-
chronous traces of an automaton A from its initial state s, is defined as:

T*(A,s0) = {B € Py — (Dp)* | C € T(A, s9) AVx € dom(B), B(x) = C(x),1}

3.4.10 Timed Step and Timed Trace

A timed step of an automaton A from state s to state ¢ is defined by a timed model
m® defined on W, that satisfies its constraint and the guard g and action f of a
transition (s, g, f,t) of A. For all w in Wy, m®@(w) refers to the value of w in m®©
and m @ (@w) refers to the date of w in m.

A timed trace B® € Py — (R x Dp )* of an automaton A is defined by the
concatenation of the codomains of successive timed steps (m i@ )i>0 of A such that for
all0 <i < j,forall x in dom(mi@), for all y in dom(m]@), mi@(@x) < mj@(@y). A
timed trace B is therefore the refinement of a synchronous trace B € P, — (D#A )*
associating each event in B with a date.

3.5 Behavior Annex Model

BA provides an extension to AADL to associate functional behavior specifications
with AADL components. A behavior is expressed by transition systems with con-
ditions and actions [2]. Actions can be abstract, e.g., denote the consumption of
time, resources, or describe an error scenario. They can be refined to simulate and
define the functional behavior of the AADL component using an imperative action
language.
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This section first presents how we formally express the meaning of a behavior
annex (through an automaton). Then, the formal semantics of all elements of the
behavior annex are defined (transition system, action and expression language, inter-
action protocols, etc.).

3.5.1 Formalization

Formally, the meaning of a behavior annex is defined by the axiomatic, denotational
and operational interpretation of constrained, incomplete, automata with variables
A = (84, 50, Va, Pa, T4, Cy) such as the one defined in Sect.3.4. The sets S,, Vy,
P4 represent the states (including the initial state sp), variables and ports
of A. The guard, action and constraints of its transitions 74 and constraints C4 are
denoted by multi-sorted logical formula Fy.

F4 is defined over the vocabulary Wy available in the scope of a behavior annex:
AADL value constants, port, state, and variable names. They are combined using
AADL logical operators and numeric operators. Operators that are specific to the
model of computation and communication of a given behavior annex are "p, a
Boolean value to mean the presence of a value on port p under synchronous inter-
pretation (i.e., p # L); and @ p, a numeric value to mean the time of an event on p,
under timed interpretation.

The transition system of an automaton A is defined by the function 74 € S4 X
F4y — F4 x S4 whose quadruples (s, g, a, t) consist of the source state s, guard
formula g, action formula @ and target state 7 of a specified transition.

In the reminder of the section, we present each element of the behavior annex,
with examples using our motivating case study, and the semantics of the element
with respect to our framework.

3.5.2 Transition System

The AADL behavior annex defines a transition system (an extended automaton)
described by three sections: variables declarations, states declarations, and transitions
declarations. This transition system of the behavior annex is not to be confused with
the transition system of the automaton interpreted to give its meaning to a behavior
annex. On the one hand, we have a transition system which is part of the behavior
annex, and on the other hand an automaton which is used to express the meaning of
the whole behavior annex.

The automaton A of a behavior_ annex instance is defined on the vocab-
ulary consisting of its private variables behavior_variable, of its states
behavior_state, and ports of its parent component. Its transition system 74
is the union of the transitions specified by a behavior_transition.
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behavior_annex ::=
[ variables { behavior_variable }+ ]
[ states { behavior_state }+ ]
[ transitions { behavior_transition }+ ]

We first describe how a thread can be described in the Adaptive Cruise Control
model using the behavior annex. Then we present the three different sections of the
transition system of the behavior annex, detailing the example. Finally, we give the
formal semantics of the different elements of the transition system.

3.5.2.1 Transition System of a Thread of the Adaptive Cruise Control

In the Adaptive Cruise Control (ACC) system, the ComputeActionThread
thread is responsible for processing the correct behavior the system should adopt
(slow down, speed up or keep the speed constant) depending on the situation.
Figure 3.7 pictures the transition system describing the behavior of the Compute
ActionThread thread.

For readability sake, conditions and actions have been omitted. In the case of this
transition system, conditions are tests on input signals (are they present or not) and
on variables (value comparison), and actions are of two kinds: either the sending
of a signal through one of the output ports of the thread; or the computation of an
intermediate value, such as the vehicle speed relative to the obstacle one, or the
acceleration/deceleration needed to reach a given speed, and its assignment to a
variable.

The state transition system starts in the Waiting state, waiting for its thread to
be periodically dispatched, and to pass in Started state. The Waiting state is a
complete one, that is, a state in which a thread pauses its execution, waiting for a
new dispatch.

After entering the Started state, depending on the inputs, the state transition
system can pass in Detected (the system detected an obstacle) or Console state
(the system did not detect an obstacle and the cruise control is on), or go back to the
Waiting state (the system did not detect an obstacle and the cruise control is off).

In the Detected state, the system must check the emergency of the situation: if
the obstacle is in an unsafe range, the system goes into the Emergency state and its
next transition will send a signal to brakes in order to stop the vehicle; if the obstacle
is outside this range, the system enters the NoEmergency state and then determines
whether it should slow down to adapt its speed to the obstacle speed, speed up or keep
the speed constant (each transition sending the corresponding signal to the throttle
after the computation of the needed acceleration/deceleration). The same happens
in the Console state depending on the current speed of the vehicle and the speed
preset by the driver.

After saving useful values (e.g., current speed, current obstacle speed and distance)
in the SaveValues state, the state transition system returns in the Waiting state,
waiting for the next dispatch of its thread.
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Fig. 3.7 Transition system for the ComputeActionThread thread

3.5.2.2 Variables Section

The variables section of the transition system of a behavior annex declares iden-
tifiers that represent variables within the scope of the behavior annex subclause.
Local variables can be used to keep track of intermediate results within the scope
of the annex subclause. They may hold the values of out parameters on subpro-
gram calls to be made available as parameter values to other calls, as output through
enclosing out parameters and ports, or as value to be written to a data component
in the AADL specification. They can also be used to hold input from incoming port
queues or values read from data components in the AADL specification. They are
not persistent across the different invocations of the same behavior annex subclause.
Listing 3.2 presents an example of the variables section of the behavior annex of

thread ComputeActionThread.
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variables

actual_speed: Base_Types::Float;
previous_actual_speed: Base_Types::Float;
obstacle_speed: Base_Types::Float;

previous_obstacle_speed: Base_Types::Float;

- J

Listing 3.2 Sample of the variables section of the behavior annex of the ComputeActionThread
thread

3.5.2.3 States Section

The states section declares all the states of the automaton. Some states may be quali-
fiedas initial state (thread halted), final state (thread stopped), or complete
state (thread awaiting for dispatch), or combinations thereof. A state without qual-
ification is referred to as execution state. A behavior automaton starts from an
initial state and terminates in a final state. A complete state acts as a suspend/resume
state out of which threads and devices are dispatched. Complete states thus corre-
spond (with initial and final states) to the observable states of the behavior, in which
computations are “paused”, inputs read and outputs produced. Listing 3.3 shows an
excerpt of the states section of the ComputeActionThread thread of our ACC
example.

states
Waiting: initial complete state;
Started, Detected, ..., ComputeBreak: state;

Listing 3.3 Sample of the states section of the behavior annex of the ComputeActionThread
thread

3.5.2.4 Transitions Section

The transitions section defines transitions from a source state to a destination state.
Transitions in a behavior automaton represent the execution sequence within a thread.
A transition out of a complete state is initiated by a dispatch once the dispatch condi-
tion is satisfied. Transitions can be guarded by dispatch conditions, or execute con-
ditions, and can have actions. Listing 3.4 presents three transitions (t0, t1 and t3)
from the transitions section of the behavior annex of the ComputeActionThread
thread.
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transitions

t0
Waiting -[on dispatch]-> Started ({
actual_speed:=inActualSpeed

}i

tl
Started —-[inObstacleDetected and (actual_speed != 0)]-> Detected {
obstacle_distance:=inObstacleDistance

bi

t3 :

Emergency -[]-> SaveValues {
outFullBreak!

bi

Listing 3.4 Sample of the transitions section of the behavior annex of the ComputeActionThread
thread

Dispatch conditions explicitly specify dispatch trigger conditions out of acomplete
state. A dispatch condition is a Boolean expression that specifies the logical combina-
tion of triggering events: arrival of an event or event data on an event port or an event
data port, receipt of a call on a provided subprogram access, or timeout event.

Execute conditions specify transition conditions out of an execution state to
another state. They effectively select between multiple transitions out of a given
state to different states. These conditions are logical expressions based on compo-
nent inputs, subcomponent outputs, and values of data components, state variable
values, and property constants. They can also result in catching a previously raised
execution timeout exception.

If transitions have been assigned a priority number, then the priority determines the
transition to be taken. The higher the priority number is, the higher the priority of the
transition is. If more than one transition out of a state evaluates its condition to true and
no priority is specified, then one transition is chosen non-deterministically. For mul-
tiple transitions with the same priority value the selection is also non-deterministic.
Transitions with no specified priority have the lowest priority.

Each transition can have actions. Actions can be subprogram calls, retrieval of
input and sending of output, assignments to variables, read/write to data components,
and time consuming activities. An action is related to the transition and not to the
states: if a transition is taken, the sequence of actions is performed and then the state
specified as the destination of the transition becomes the new current state.

3.5.2.5 Transition Semantics

States of a behavior annex transition system can be either observable from the outside
(initial, final or complete states), that is states in which the execution of
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the component is paused or stopped and its outputs are available; or non observable,
execution states, that is internal states. The semantics of the AADL is concerned with
the observable states of the automaton. The set S4 of automaton A thus only contains
states corresponding to these observable states and set T4 big-step transitions from
an observable state to another (by opposition with small-step transitions from or to
an execution state).

A transition behavior_transitionhassourcestates =source_state_
identifier. Its guard formula g is defined by the translation of the expression
behavior_conditionasalogical formula. Its targetstated =destination_
state_identifier isthatof the transition system defined by the semantic func-
tion T (s, d) (defined Sect.3.5.4) applied to its action block behavior_action_
block.

A transition_identifier, if present, is represented by a label L that
names the clock of the transition. It is a (virtual) event considered present and true
if and only if the guard formula of that transition holds and the constraint of the
automaton is enforced: the transition (L : s, g, f, d) is equivalent to the transition
(s, g, f, d) with the constraint "L < ("s A g).

A behavior_transition_priority, if present, enforces a deterministic
logical order of evaluation among transitions. A pair of transitions (s[m], g1, f1, s1)
and (s[n], g2, f2,s2) from a state s and such that m < n (to mean that m has
higher priority than n) is equivalent to the transitions (s, g1, f1,s1) and (s, g2 A
—gl, f2,52): the guard formula of a prioritized transition is subtracted from all
transition in the same state of lower or no priority.

behavior_transition ::=
[ transition_identifier [ [ behavior_transition_priority ] 1 : ]
source_state_identifier { , source_state_identifier }*
-[ behavior_condition ]-> destination_state_identifier
[ behavior_action_block ]

3.5.3 Behavior Conditions

Behavior conditions that cause transitions may be either execute conditions or dis-
patch conditions.*

behavior_condition ::= execute_condition | dispatch_condition

Execute conditions are Boolean-valued expressions, and may only be used in
transitions leaving an execution (or initial) state. State machines may never ‘stall’
in execution states; there must always be an enabled, outgoing transition from an
execution state. The otherwise condition occurs when no other execute condition
of a transition leaving an execution state is true.

“The grammar for behavior_condition, here, is slightly simplified from that in the BA
standard.
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execute_condition ::= logical_ value_expression | otherwise

Dispatch conditions can only be associated with transitions from a complete
state. A thread scheduler evaluates dispatch conditions to determine when threads
are dispatched. A dispatch trigger condition can be the arrival of events or event data
on ports (expressed as a disjunction of conjunctions) or timeout.

Periodic dispatches are always considered to be implicit unconditional dispatch
triggers on complete states and handled by dispatch conditions without dispatch
trigger condition. This is the case for transition t0 presented in Listing 3.4.

dispatch_condition ::= on dispatch [ dispatch_trigger_condition ]
[ frozen ( frozen_ports ) ]

dispatch_trigger_condition ::= dispatch_trigger_logical_expression
| stop | timeout_catch

Dispatch can be triggered by arrival of events at an event port or event-data
at an event data port. To provide flexibility, dispatch conditions may be a
disjunction, of conjunctions, of event (data) arrival at event (data) ports. Dispatch
can also be triggered by event arrival at the predeclared Stop port.

Timeout catch is a dispatch trigger condition that is raised after the specified
amount of time since the last dispatch or the last completion is expired.

timeout_catch ::= timeout
[ [ ( port_identifier { or port_identifier }* ) ] behavior_time ]

dispatch_trigger_logical_expression ::=
dispatch_conjunction { or dispatch_conjunction }*

dispatch_conjunction ::= port_identifier { and port_identifier }*

3.5.3.1 Behavior Condition Semantics

A dispatch_condition is represented by a guarding formula g that is formed
by referring to the clock “p of the logical combination of ports specified as its
dispatch_trigger_condition.

An execute_condition is represented by a guarding formula that encodes
its logical_value_expression using the current state of its persistent vari-
ables V. The otherwise clause is handled as the guard of least priority. The
otherwise guard, if present in a transition leaving execution state s, applies if
none of the guards from other transitions leaving s are true. It is hence defined by
("s — tick4(s)), which differs from the stuttering clock of s, T4 (s).

In the case of a time-triggered dispatch, when the dispatch trigger condition of an
on dispatch clause is empty, the Boolean true is assumed, but only in the scope
of the denoted object. It means that the dispatch condition is considered to be present
as soon as it is triggered and an event is to be handled (otherwise, it can be regarded
as silent, i.e., absent).
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A timeout clause, if present, is denoted by the dispatch of the virtual event
port timeout, whose trigger is associated with a real time constraint of the parent
component behavior action block. The parent component is responsible for triggering
this event by respecting the real time constraint behavior time, if specified, as well
as with the specified frozen ports list, if present.

3.5.4 Action Language

The action language of BA defines actions performed during transitions. Actions
associated with transitions are action blocks that are built from basic actions and
a minimal set of control structures: sequences, sets, conditionals and loops. Action
sequences are executed in order, while actions in actions sets can be executed in any
order.

Basic actions can be assignment actions, communication actions or time consum-
ing actions. Assignments consist of a value expression and a target reference (local
variables, data components acting as persistent state variables, or outgoing features
such as ports and parameters) for the value assignment, separated by the assignment
symbol : =. For example transitions t0 and t1 presented in Listing 3.4 both have
associated assignment actions.

Communication actions can be freezing the content of incoming ports, initiating
a send on an event, data, or event data port, initiating a subprogram call or catching
a previously raised execution timeout exception. Listing 3.4 presents the transition
t3 with associated action to initiate a send on the event port outFullBreak.

Timed actions can be predefined computation actions. Computation actions spec-
ify computation time intervals. An execution timeout exception can be raised after
any behavior action block. Raising such a timeout event may trigger a transition with
a timeout catch execute condition.

3.5.4.1 Action Semantics

Let us recall that the transition system 7T representing a behavior transition is defined
by T = (s, g, true,s’) |J T'. It has source state s and a guard formula g. Its target
state d is that of the transition system 7" defined by the semantic function call encod-
ing the behavior_action_block block as T (s, d)[behavior_action_block] = T'. T' is
constructed by recursively calling function J on the action block’s sub-expressions.
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behavior_action_block ::= { behavior_actions } [ timeout behavior_time ]
behavior_actions ::=
behavior_action \ behavior_action_sequence \ behavior_action_set
behavior_action_sequence ::= behavior_action { ; behavior_action }+
behavior_action_set ::= behavior_action { & behavior_action }+
behavior_action ::=
basic_action | behavior_action_block
\ if ( logical_value_expression ) behavior_actions
{ elsif ( logical_value_expression ) behavior_actions }*
[ else behavior_actions ]

end if
| for ( element_identifier in element_values ) { behavior_actions }
\ forall ( element_identifier in element_values ) { behavior_actions }
\ while ( logical_value_expression ) { behavior_actions }
| do behavior_actions until ( logical_value_expression )
basic_action ::= assignment_action | communication_action | timed_action

The recursive function T (s, d)[behavior_actions] = T associates the action block
behavior_actions guarded by a behavior condition of formula g, of source and
target states s and d, to a transition system 7. It is defined by case analysis on
behavior_actions:

e a behavior action sequence is represented by concatenating the transition systems
of its elements. For instance, T (s, d)[action, ; action,] is represented by the union
T, |J T» of its transition systems T} = T (s, e)[action,] and T, = T (e, d)[action,],
by introducing a new execution state e;

e abehavior action set is represented by composing the transition systems of its ele-
ments. For instance, T (s, d)[action, & action;] is represented by the synchronous
composition

T = (T|Ty)[(s1, 52) /s, (dv, d2)/d]

of its transition systems 71 = T(sy, d;)[action|] and T2 = T(s2, d>)[action,],
substituting the composed states (s, 52) and (d;, d») by s and d.

A behavior action is defined by case analysis of its form:

e if (b) a; else a, end if is represented by a guard formula g corresponding to
logical_expression and returning the union

T =1 T J(s, g true, 1), (s, =g, true, 5,))

of its transition systems 7; = T (sq, d)[a;] and T, = T (s,, d)[a>] where the guard
formula g is the translation of the logical value expression, b;

e while (b) a is represented by the union T | J 75 of its transition systems 7} =
T(s1,8)[a]l and T, = {(s, h, true, s1), (s, —h, true, d), (5o, h, true, s1), (s», —h,
true,d)} where the guard formula % is the translation of the logical value
expression, b;

e do ¢ until () is represented by the union T | J T of its transition systems T} =
[al and T> = {(sy, h, true, s), (s1, —h, true, d)} where the guard formula 4 is the
translation of the logical value expression, b;
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e forall (jin e) a can be represented by the action set a; &...& a, where g; results
from the substitution of j by the i’ element value of e in a.

e for (j in e) a can be represented by the action sequence a; ; ...; a, where q;
results from the substitution of j by the i’ element value of e in a.

A basic action is defined by case analysis of its grammar’s sub-clauses:

e an assignment action to a variable v := e is represented by updating v with e as
T(s,d)[v :=e] = {(s, true, V' = e, d)} where V' represents the next value of v;

e an output port action port!(value) is represented by an action formula that binds
value to port by T (s, d)[port!value] = {(s, true, port = value, d)};

e an input port action port?(target) is represented by an action formula that updates
target to port by T[port?target] = {(s, true, target’ = port, d)};

e atimed action of the form computation (#[..z;]) is a timing constraint imposed
on the execution time of the action block. It can either be represented by a timing
property of the parent thread object or simulated by a protocol interacting with
the scheduler using two virtual ports ps (start) and pf (finish) to specify a delay of
time between exclusive occurrences of ps and pf, and to translate the timing spec-
ification by T(s, d)(t1[..t.])] = {(s, true, ps, ¢), (c, pf, true, d)} using a complete
state ¢ and the timed constraint @ps + t; < @pf + t»;

e subprogram invocations are specified using the communication protocols HSER,
LSER or ASER (cf. Sect.3.5.7). A subprogram invocation is hence represented by
the composition of the client (the caller) and server (the callee) with the behavior
of the calling protocol. For instance, a subprogram call subprogram!(parameter)
using the HSER protocol is encoded by T (s, d)[subprogram!(parameter))] =
{(s, true, sps = pv, c), (c, spf, true, d)}. The output port sps encodes the call, the
variable pv its parameter, and the input port spf signals the return from the callee;

3.5.5 Communication Actions

The communication actions defined by BA allow threads to interact with each other.
Threads can interact through shared data, connected ports and subprogram calls.
The AADL execution model defines the way queued event/data of a port are trans-
ferred to the thread in order to be processed and when a component is dispatched.
Messages can be received by the annex subclause through declared features of
the current component type. They can be in or in out data ports; in or in out event
ports; in or in out event data ports and in or in out parameters of subprogram access.
The AADL standard defines that input on ports is determined by default freeze at
dispatch time, or at a time specified by the Input_Time property and initiated by a
Receive_Input service call in the source text. From that point in time the input of the
port during this execution is not affected by arrival of new data, events, or event data
until the next time input is frozen. For example, after transition tO0 (in Listing 3.4)
is fired by the periodic dispatch of the thread, all input ports of the thread are frozen,
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new arrival of data or events will not be taken into account before the next periodic
dispatch.

The AADL standard also defines that data from data ports are made available
through a port variable with the name of the port. The same transition t 0 in Listing 3.4
uses the port variable inActualSpeed to get the data available on the same name
port. If no new value is available since the previous freeze, the previous value remains
available and the variable is marked as not fresh. Freshness can be tested in the
application source code via service calls.

3.5.6 Expression Language

The expression language of BA is used to define expressions, the results of which
are used either as logical conditions of transitions or conditional statements, or as
values for assignment actions. Expressions consist of logical expressions, relational
expressions, and arithmetic expressions. Values of expressions can be variables,
constants or the result of another expression.

Variable expression values are evaluated from incoming ports and parameters,
local variables, referenced data subcomponents, as well as port count, port fresh, and
port dequeue. For example, transition t1 presented in Listing 3.4 is conditioned by
an expression based on one event input (inObstacleDetected)and one variable
value (actual_speed). Constant expression values are Boolean, numeric or string
literals, property constants or property values.

3.5.7 Synchronization Protocols

Thanks to subprogram access features, an AADL thread can receive execution
requests and execute the corresponding subprogram. With proper statements in a
behavior annex subclause, it is possible to specify the states where specific requests
can be accepted, which correspond to Ada selective accept statements or to HOOD?
(Hierarchical Object-Oriented Design) functional activation conditions. This mech-
anism also allows a clean separation between the functional part of the component
defined by a set of subprograms and the synchronization aspects specified by the
behavior annex automaton. The internal behavior of a server component together
with the specification of the interaction protocols between the server component and
its clients define the global synchronization aspects.

The behavior annex introduces precise communication protocols that can be used
to better control the blocking duration of a client thread during a remote call to a
server thread. These protocols are derived from the main HOOD functional execution
requests:

5 http://www.esa.int/ TEC/Software_engineering_and_standardisation/ TECKLAUXBQE_0.html.
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e HSER for Highly Synchronous Execution Request;
e LSER for Loosely Synchronous Execution Request;
e ASER for ASynchronous Execution Request.

3.5.7.1 Synchronization Semantics

Let cs and cd delimit the source and target state of subprogram call. Let ss and sd
delimit the transition system of the server’s subprogram. Let pc be the client request
port and ps be the server reply port.

e The HSER protocol is encoded by the client transitions {(cs, true, pc, s), (s, "ps,
true, cd)}, using acomplete state s, and the server transition {(so, "pc, true, ss), (sd,
true, ps, $o)};

e the LSER protocol is encoded by the client transitions {(cs, true, pc,s),
(s, "ps, true, cd)} and the server transition {(so, "pc, ps, ss)};

e the ASER protocol is encoded by the client transitions {(cs, true, pc, s)} and the
server transition {(so, “pc, true, ss)}.

3.6 Related Work

Many related works have contributed to the formal specification, analysis and veri-
fication of AADL models and its annexes, hence implicitly or explicitly proposing a
formal semantics of the AADL in the model of computation and communication of
the verification framework considered.

The analysis language REAL [9] allows to define structural properties on AADL
models that are checked inductively visiting the object of a model under verification.
[8] presents an extension of this language called LUTE which further uses PSL
(Property Specification Language) to check behavioral properties of models as well
as a contract framework called AGREE for assume-guarantee reasoning between
composed AADL model elements.

The COMPASS project has also proposed a framework for formal verification and
validation of AADL models and its error annex [7]. It puts the emphasis on capturing
multiple aspects of nominal and faulty, timed and hybrid behaviors of models. Formal
verification is supported by the nuSMYV tool. Similarly, the FIACRE framework [3]
uses executable specifications and the TINA model checker to check structural and
behavioral properties of AADL models.

RAMSES [6], on the other hand, presents the implementation of the AADL behav-
ior annex. The behavior annex supports the specification of automata and sequences
of actions to model the behavior of AADL programs and threads. Its implementation
OSATE proceeds by model refinement and can be plugged in with Eclipse-compliant
backend tools for analysis or verification. For instance, the RAMSES tools uses
OSATE to generate C code for OSs complying the ARINC-653 standard.
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Synchronous modeling is central in [16], which presents a formal real-time rewrit-
ing logic semantics for a behavioral subset of the AADL. This semantics can be
directly executed in Real-Time Maude and provides a synchronous AADL simulator
(as well as LTL model-checking). It is implemented by the tool AADL2MAUDE
using OSATE.

Similarly, Yang et al. [19] defines a formal semantics for an implicitly synchronous
subset of the AADL, which includes periodic threads and data port communications.
Its operational semantics is formalized as a timed transition system. This framework
is used to prove semantics preservation through model transformations from AADL
models to the target verification formalism of timed abstract state machine (TASM).

Our proposal carries along the same goal and fundamental framework of the
related work: to annex the core AADL with formal semantic frameworks to express
executable behaviors and temporal properties, by taking advantage of model reduc-
tion possibilities offered thanks to a synchronous hypothesis, of close correspondence
with the actual semantics of the AADL.

Yet, we aim at an effort to structure and use these concepts within the framework
of a more expressive multi-rate or multi-clocked, synchronous, model of compu-
tation and communication: that of polychrony. Polychrony would allow us to gain
abstraction from the direct specification of executable, synchronous, specification
in the AADL, yet offer services to automate the synthesis of such, locally synchro-
nous, executable specification, together with global asynchrony, when or where ever
needed.

CCSL, the clock constraint specification language of the UML profile
MARTE [15], relates very much to the effort carried out in the present Chapter.
CCSL is an annotation framework to making explicit timing annotation to MARTE
objects in an effort to disambiguate its semantic and possible variations.

CCSL actually provides a clock calculus of greater expressivity than polychrony,
allowing for the expression of unbounded, asynchronous, causal properties between
clocks (e.g. inf and sup).

While CCSL essentially is isolated as an annex of the MARTE standard for speci-
fying annotations, our approach is instead to build upon the semantics of the existing
behavior annex and specify it within a polychronous MoCC.

Finally, the Behavior Language for Embedded Systems with Software (BLESS)
[10, 11] was derived from BA by adding non-executable assertions to behaviors. With
human guidance, a proof engine transforms proof outlines into deductive proofs that
every execution conforms to a formal behavior specification. Although the formal
semantics defined for BLESS are expressed much differently than the semantics
for BA defined here, they are not incompatible. We are endeavoring to merge the
semantics so that deductively proved BLESS behaviors can also be analyzed with
polychronous tools such as Polychrony.

Our previous work demonstrated that the all concepts and artifact of the AADL
core could, as specified in its normative documents, be given an interpretation in



78 L. Besnard et al.

the polychronous model of computation and communication [5, 13, 14, 20-22], by
mean of its import and simulation in the Eclipse project POP’s toolset.®

3.7 Conclusion

We propose a formal semantics for a significant subset of the behavioral specification
annex of the Architecture Analysis and Design Language (AADL). This annex allows
one to attach a behavior specification to any components of a system modeled using
the AADL, and can be then analyzed for different purposes which could be, for
example, the verification of logical, timing or scheduling requirements.

The addressed subset includes the transition system (state variables, states and
transitions), the conditions that can be attached to transitions, the action language
allowing to describe actions to be computed when a transition is fired and the expres-
sion language, used for logical conditions and assignment actions.

The semantics we presented for this subset relies on constrained automata
(automata with variables derived from polychronous automata) and supports unam-
biguous reasoning, formal verification and simulation of the modeled system.

In future work, we will provide semantics for the remaining subset of the behavior
specification annex of the AADL (mainly the synchronization protocols allowing to
send and receive execution request in a client-server configuration). We will also
implement the semantics of the behavior specification annex through a model trans-
formation from the annex to the Signal language, in which the constrained automata
are ahead implemented.
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Chapter 4
MARTE for CPS and CPSoS

Present and Future, Methodology and Tools

Frédéric Mallet, Eugenio Villar and Fernando Herrera

Abstract Cyber-Physical Systems (CPS) combine discrete computing elements
together with physical devices in uncertain environment conditions. There have been
many models to capture different aspects of CPS. However, to deal with the increas-
ing complexity of these ubiquitous systems, which invade all the part of our lives,
we need an integrated framework able to capture all the different views of such com-
plex systems in a consistent way. We also need to combine tools to analyze their
expected properties and guarantee safety issues. Far from handing out a full-fledge
solution, we merely explore a possible path that could bring part of the solution. We
advocate for relying on UML models as a unifying framework to build a single-source
modeling environment with design, exploration and analysis tools. We comment on
some useful extensions of UML, including MARTE and SysML, and show how they
can together capture different views of CPS. We also report on some recent results
obtained and discuss possible evolutions in a near future.

Keywords MARTE - Cyber-Physical Systems * Systems of systems - Model-driven
methodology + System engineering

4.1 Introduction

4.1.1 CPS and CPSoS

Cyber-Physical Systems combine digital computational systems with surrounding
physical processes. Computations are meant to control and monitor the physical
environment, which in turn affects the computations.
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The main characteristics of Cyber Physical Systems and main design challenges
have been identified some years ago [22, 23]. CPS are: heterogeneous, in the sense
that they combine various models of computations relying on both discrete and
continuous time abstractions; platform-aware and resource-constrained, and thus
the software depends on various non-functional properties imposed by the plat-
form; time-sensitive and often safety-critical; widely distributed with heterogeneous
interconnects.

CPS are first and foremost complex systems and as such designing them requires
several models, usually hierarchical, to fully capture the different aspects and views,
whether structural or behavioral. Structural models include a description of the com-
ponents or blocks of the systems and of the communication media involved. Behav-
ioral models include hierarchical state machines and dataflow streaming diagrams.
Expected or faulty interactions with the surrounding environment can be captured
as a set of use cases or requirements that correspond to positive or negative scenar-
ios. Such models are usually called heterogeneous in the sense that they combine
different models, each of which may follow a different model of computation.

CPS also have the main characteristics of embedded systems, which are usu-
ally platform-aware. Contrary to standard software engineering, embedded system
design depends a lot on the execution platform on which the system should execute,
be it a system-on-a-chip (SoC), with multiple computing resources and a complex
memory hierarchy, or a wide scale distributed system, with potentially all the variety
of interconnects and communication media. This awareness of the platform makes it
important to account for how and when the available resources are accessed or ‘con-
sumed’, considering together both the spatial and temporal dimensions. The spatial
dimension is not only about how much resource is available but also about where
the resources are physically located in the system relative to each other. How much
resource is available is indeed easy since it is usually given by the technology used
and the targeted selling price. However, how the resources are used makes all the
difference between two a priori equivalent products. The spatial dimension encom-
passes the interconnect topology, i.e., physical parallelism available, but also and
more importantly where the data and programs are allocated. Indeed, the distance
between the data memory and the computing resource that executes the program
largely impact the fetching time that may potentially largely exceed the computing
time. Then, this spatial distribution requires to perform the temporal scheduling of
both the execution of programs and the routing of data from memory to computing
resources, forth and back. This leads to logical concurrency coming both from the
physical parallelism and the inherent data and control dependencies of the appli-
cation. CPS are therefore resource-constrained and time-sensitive systems. Even
though the resources (memory size, computing power) are not necessarily as scarce
as they used to be, nevertheless finding the right tradeoff between the resource usage,
the computation speed and the cost makes it a multi-criteria optimization problem
difficult to solve. The cost is not only measured in terms of money, but includes all
kinds of additional extra functional properties (like power, energy, thermal dissipa-
tion), also called non-functional properties.
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More than being mere embedded systems, CPS are usually made of multiple inter-
connected embedded subsystems, some of which are computing devices and some
other being physical devices. This requires some abilities to describe heterogeneous
interconnects, while simpler embedded systems usually only rely on homogeneous
communication structures. Being made of several computing devices also consti-
tute a big step since it requires to model the whole system as a closed model, with
software, devices but also with the environment and the expected continuous inter-
actions with this environment. In standard software development, the environment
is by definition outside the system to be developed. Close loop systems have been
modeled for several years with tools and techniques to find approximate solutions
to differential equations and are well established. However, the integration with dis-
crete models still causes problems in many tools and each of them proposes ad-hoc
solutions. A seamless integration with a generic environment is still to be proposed.

Finally, cyber-physical systems are often big and often interact directly with users
that are not even aware of the computer. The size is an aggravating factor since a single
system concerns potentially millions of people (smart cities, intelligent transportation
systems...). [t means some CPS are safety-critical, just like embedded systems but at
a larger scale. The large scale and the integration of multiple systems gives rise to the
notion of System of Systems. It also increases the demand to have sound and scalable
models along with verification tools. Sometimes, they also require certification tools
to be accredited and allowed to be used in public environments (e.g., unmanned aerial
vehicle). However, we do not address at all the certification issue in this chapter.

Moore’s Law has dominated the (re-)evolution of electronics during the last quar-
ter of the 20th century. All the electronic products we use today depend directly or
indirectly on the increasing integration capability allowed by semiconductor technol-
ogy. If Moore’s Law has changed the world, its end may have a similar effect. For the
first time, the underlying technology will be stable with only incremental improve-
ments in time. Cyber-Physical Systems of Systems (CPSoS [9])' will dominate the
electronics century becoming pervasive in all the aspects of our daily lives. In this
new scenario, modeling, analysis and verification of CPSs must evolve. The tendency
is toward complex, heterogeneous, distributed networks of many computing nodes.
Services will be offered by the interaction of functional components deployed onto
many distributed computing resources of many kind, from small motes,” embedded
systems and smart-phones to large data centers and even High-Performance Com-
puting (HPC) facilities. Electronic design in this new context should address effec-
tively new requirements. Among them, scalability, reusability, human interaction,
easy modeling, fast design-space exploration and optimization, powerful functional
and extra-functional verification, efficient handling of mixed-criticality and security.
An essential aspect will be the availability of powerful, CPS modeling and analysis
frameworks able to produce automatically efficient implementations of the system

IWe use CPS or CPSoS interchangeably, while most considered systems are complex enough to be
seen as an integration of systems with more or less explicit interactions.

2Motes: embedded devices consisting of sensors, radios, and microprocessors.
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model on many different computing resources. The Unified Modeling Language
(UML) is a very good candidate to provide the modeling means in this new context.

4.1.2 Role of UML and Its Extensions

The Unified Modeling Language [33] is a general-purpose modeling language spec-
ified by the Object Management Group (OMG). It proposes graphical notations to
represent all aspects of a system from the early requirements to the deployment of
software components, including design and analysis phases, structural and behav-
ioral aspects. As a general-purpose language, it does not focus on a specific domain
and relies on a weak, informal semantics to widen its application field. However,
when targeting a specific application domain and especially when building trust-
worthy software components or for critical systems where lives may be at stake, it
becomes necessary to extend the UML and attach a formal semantics to its model ele-
ments. The simplest and most efficient extension mechanism provided by the UML
is through the definition of profiles. A UML profile adapts the UML to a specific
domain by adding new concepts, modifying existing ones and defining a new visual
representation for others. Each modification is done through the definition of anno-
tations (called stereotypes) that introduce domain-specific terminology and provide
additional semantics. However, the semantics of stereotypes must be compatible with
the original semantics (if any) of the modified or extended concepts, i.e., the base
metaclass.

Domain-specific profiles, such as the UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE [32]) extends the UML with generic
features required for real-time and embedded systems. Still, MARTE should be
extended [34] to cover the modeling of the complete CPS and in particular the
physical models that are usually left outside the scope of classical digital (cyber)
models.

SysML [31] is another extension dedicated to systems engineering and has been
successfully used to cope with physical models.

To summarize, CPS demand the integration of continuous models, classical state-
based or dataflow models, hardware descriptions, and non-functional constraints.
UML offers a tool-neutral non-proprietary solution that already contains most of the
required notations. However, those notations need to be tailored to capture specific
aspects of CPS (time, non-functional properties, continuous models). Both MARTE
and SysML offer some extensions dedicated to these goals, and we discuss here
some examples of useful features of either MARTE or SysML to model CPS. These
notations also need to come with adequate, not tool-specific, explicit semantics if we
are to address safety-critical issues.
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4.1.3 Outline

Focusing on the key characteristics of CPS, we present some selected aspects of
MARTE in Sect.4.2. In Sect. 4.3, we select a simple case study addressed in a recent
project and show which aspects can be modeled using UML, MARTE, SysML and some
extensions that we thought were lacking in MARTE. More specifically, we explore two
extensions, one to allow for the modeling of systems with mixed-criticality issues,
another to deal with design space exploration. Section 4.4 describes some developed
tools. Section4.5 discusses the potential future use of UML in the modeling of CPSs,
before our partial conclusion in Sect. 4.6.

4.2 Overview of MARTE
4.2.1 Overview

The UML profile for MARTE [32] extends the UML with concepts related to the
domain of real-time and embedded systems. It supersedes the UML profile for Schedu-
lability, Performance and Time (SPT [30]) that was extending the UML 1.x and that
had limited capabilities. UML 2.0 has introduced a simple (or even simplistic) model
of time and has proposed several new extensions that made SPT unusable. Therefore
MARTE has been defined to be compatible with UML Simple Time model and now
supersedes SPT as the official OMG specification.

SysML [13] is another extension dedicated to systems engineering. We use some
notations from SysML and we introduce those notations whenrequired. The task forces
of MARTE and SysML have synchronized their effort to allow for a joint use of both
profiles. The remainder of this subsection gives an overview of MARTE, which con-
sists of three parts: Foundations, Design and Analysis. We try to give a general overview
of most of it while focusing on the aspects that we use in our examples.

4.2.2 Foundations

The foundation part of MARTE is itself divided into five chapters: Core Elements,
NonFunctional Properties (NFP), Time, GenericResourceModeling (GRM)
and Allocation.

4.2.2.1 CoreElements

Define configurations and modes, which are key parameters for analysis. However,
their realization is mainly inspired from classical UML State Machines and we do
not use specific constructs from this chapter.
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4.2.2.2 NFP

Gives a support to describe Non-Functional properties. In real-time systems, pre-
serving the non-functional (or extra-functional) properties (power consumption, area,
financial cost, time budget...) is often as important as preserving the functional ones.
The UML proposes no mechanism at all to deal with non-functional properties and
relies on mere strings of characters for that purpose, while one could expect a richer
type-based system to guarantee the well-formedness of expressions.

4.2.2.3 Time

Is often considered as an extra-functional property that comes as a mere annotation
after the design. These annotations are fed into analysis tools that check the confor-
mity without any actual impact on the functional model: e.g., whether a deadline is
met, whether the end-to-end latency is within the expected range. Sometimes though,
time can also be of a functional nature and has a direct impact on what is done and not
only when it is done. All these aspects are addressed in the time chapter of MARTE.

4224 GRM

Chapter provides annotations to capture the available resources on which the applica-
tive part shall be deployed.

4.2.2.5 Allocation

Chapter gives a SysML-compatible way to make deployments. In MARTE, we use the
wording allocation since the UML deployment usually implies (in people’s mind)
a physical distribution of a software artifact onto a physical node. Allocation in
MARTE goes further. It encompasses the physical distribution of software onto
hardware, but also of tasks onto operating system processes, and, more importantly,
it covers the temporal distribution (or scheduling) of operating parts that need to
share a common resource (e.g., several tasks executing on a single core processor,
distributed computations communicating through an interconnect).

4.2.3 Non-functional Properties

The NFP subprofile offers mechanisms to describe the quantitative as well as the qual-
itative aspects of properties and to attach a unit and a dimension to quantities. It defines
a set of predefined quantities, units and dimensions and supports customization. NFP
comes with a companion language called Value Specification Language (VSL) that
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defines the concrete syntax to be used in expressions of non-functional properties.
VSL also recommends syntax for user-defined properties.

There are two levels of support in MARTE. The first level is a set of ready-
to-use types that should be imported by users whenever relevant. For instance, the
MeasurementUnits Library in MARTE provides a set of predefined units and
dimensions, most of the ones that are relevant from the International System of
Units (SI) [36]. Figure4.1 (upper part) shows an except of such elements. A symbol
is assigned to each dimension. This symbol is used to build new dimensions like
PowerUnitKind defined as the square of length times a weight divided by a time
to the power 3. The second level is a set of mechanisms to create constructs that do not
existin MARTE, for instance to build new units or new dimensions. Figure 4.1 (lower
part) shows, on the left side, the creation of a new dimension to represent a Torque
(or moment force), and, on the right-hand side, the creation of one new type.
NFP_Weight is proposed as part of MARTE libraries and NFP_Torque is cre-
ated following the same construction mechanisms. We shall use this dimension
in subsequent examples to represent the torque of a rotor in a quadrotor system.

« modelLibrary »
MARTE_Library::MedsurementUnits

1
T

« dimension » « dimension »
TimeUnitKind WeightUnitKind
{symbol =T} {symbol = M}
wunits & ® unit » g
wunits tick  unit » mg {baseUnit=g, convFactor=1E-3}
«unit» ms {baseUnit=s, convFactor=0.001} « unit » kg (baseUnit=g, convFactor=1E3}
«units us {baseUnit=ms, convFactor=0.001)

« dimension »
« dimension » PowerUnitKind,
LengthUnitKind {baseDimension = {L, M, T},
{symbol = L} baseExponent = {2, 1, -3}}
« unit o m
# unit » cm {baseUnit=m, convFactor=1E-2} * unit » W
« unit » mm {baseUnit=m, convFactor=1E-3} ® unit » m\W {baseUnit=\¥, convFactor=1E-3}
® unit » kKWW (baseUnit=W, convFactor=1E3}
«Enumeration» «DataType:
«Dimension» «NfpType»
[ TorqueUnitKinc (=] NFP_Real
«Dimension» Es + value: Real [0..1
symbol=tau

baseDimension=[LengthUnitKind,
WeightUnitKind, TimeUnitKind]

baseE t= -
aseExponentSi2,1.-2l «DataType» «DataType»
«NfpType» «NfpType»
= «Unit» N.m (&) NFP_Weight [ NFP_Torque

Fig. 4.1 NFP subprofile of MARTE: two levels of support
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MARTE tools rely on such mechanisms to perform dimension analyses, which is of
paramount importance for system engineering.

4.2.4 Time

The time model of MARTE has been extensively described before [1, 2, 26], we
give here the minimum to understand its role for modeling CPS.

Time in SPT is a metric time with implicit reference to physical time. As a suc-
cessor of SPT, MARTE supports this model of time. UML 2, issued after SPT, has
introduced a model of time called SimpleTime. This model also makes implicit ref-
erences to physical time, but is too simple for use in real-time applications, and was
initially devised to be extended in dedicated profiles.

MARTE goes beyond SPT and UML 2. It adopts a more general time model
suitable for system design. In MARTE, Time can be physical, and considered as
continuous or discretized, but it can also be logical, and related to user-defined clocks.
Time may even be multiform [4], allowing the use of different units (seconds, steps,
processor ticks, heartbeats) to refer to temporal phenomena and allowing different
time logics with progresses in a non-uniform fashion, and possibly independently to
any (direct) reference to physical time. In MARTE, time is represented by a collection
of Clocks. The use of word Clock comes from vocabulary used in the synchronous
languages. They may be understood as a specific kind of events on which constraints
(temporal, hence the name, but also logical ones) can be applied. Each clock specifies
a totally ordered set of instants, i.e., a sequence of event occurrences. There may be
dependence relationships between the various occurrences of different events. Thus
this model, called the MARTE time structure, is akin to the Tagged Systems [21].
To cover continuous and discrete times, the set of instants associated with a clock
can either be dense or discrete.

Figure 4.2 shows the main stereotypes introduced by MARTE Time subprofile.

«Profiles
Time

=modellibrarys
ol 1 ek Timelibra;

=metachisis

Action Behavior Message
i i Y Constraint <Enimecabons
T ithi
0.1 + durstion 3 melinting
wunite
ms sunite
[ e e
h  sunite
TumdPro(’er;:ang ; TimedElement | Cle(k(.on:tulntl T
'
<Profiles H
01] +f 0.1 [1.7] Res ¥
rt + finizh . +on i
e ! s [ + constramnedClocks o]
" «Stereaty - «Stereotypes
P I
Event i Clock = Unit
. * unit

Fig. 4.2 Excerpt of MARTE time subprofile
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Stereotype Clock is one important stereotype that extends UML metaclass Event.
A Clock carries specific information such as its actual unit, and values of quantitative
(resolution, offset...) or qualitative (time standard) properties, if relevant.

TimedElement is another stereotype introduced in MARTE. A timed element is
an abstract stereotype that associates at least one clock with a modeling element.
TimedProcessing is a specialization of TimedElement, which extends the UML meta-
classes Action, Behavior and Message. It defines a start and a finish event for a given
action/behavior/message. These events (which are usually clocks) specify when the
action starts or when it finishes. TimedProcessing also specifies the duration of an
action. Duration is measured on a given logical or physical clock. In a MARTE
model of a system, stereotype TimedElement or one of its specializations is applied to
model elements which have an influence on the specification of the temporal behav-
ior of this system. The expected behavior of such TimedElements is controlled by a
set of ClockConstraints. Those constraints specify dependencies between the various
occurrences of events. Dedicated languages, like the Clock Constraint Specification
Language (CCSL [25]) can be used to specify those constraints formally.

The MARTE Time subprofile also provides a model library named TimeLibrary. This
model library defines the enumeration TimeUnitKind which is the standard type of time
units for chronometric clocks. This enumeration contains units like s (second), its
submultiples, and other related units (e.g., minute, hour). The library also predefines
aclock called IdealClock, which is a dense chronometric clock with the second as time
unit. This clock is assumed to be an ideal clock, perfectly reflecting the evolutions
of physical time. It should be imported in user’s models with references to physical
time concepts (e.g., frequency, physical duration).

4.2.5 Allocation

Since embedded systems are platform-aware, one needs a way to map the elements
of the application onto the execution platform. This aspect is specifically addressed
by the allocation subprofile of MARTE, which is further described in this subsection.

The wording Allocation has been retained to distinguish this notion from UML
Deployment diagrams. Deployments are reserved to deploy artifacts (e.g., source
code, documents, executable, database table) onto deployment targets (e.g., proces-
sor, server, database system). The MARTE allocation is much more general than that.
For instance, it is meant to represent the allocation of a program onto a system thread,
or of a process onto a processor core. More generally, it is used to represent the asso-
ciation of an element (action, message, algorithm) that consumes a resource onto
the consumed resource (processing unit, communication media, memory). Word-
ings ‘mapping’ or ‘map’ have also been discarded since they often refer to a function
and then map one input from a domain to one single output in the co-domain. The
allocation process, however, is an n-to-m association, take for instance a bunch of
tasks that need to be scheduled on several cores.
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Fig. 4.3 Exerpt of MARTE allocation subprofile

Note that the wording execution platform has been preferred to ‘architecture’
or ‘hardware’. Indeed, architecture is a way to describe the structure of a system,
while an execution platform contains both structural and behavioral parts. On the
other hand, the execution platform is not necessarily a piece of hardware. It can be a
piece of software, a virtual machine, a middleware, an operating system or a mixed
platform that combines software and hardware intellectual properties (IPs).

Finally, itis also important to note that this notion of allocation is common between
MARTE and SysML in a bid to ease the combination of the two profiles. In particular,
for CPS both profiles can and shall be used jointly [34].

Figure 4.3 shows the two main stereotypes of the subprofile, Allocate and Allocated.
Allocate represents the allocation itself, while Allocated may be used on both sides to
mark either the element that is allocated or the resource onto which an element is
allocated. The property nature is meant to distinguish two kinds of possible alloca-
tions: spatial and temporal. Typically, when messages are allocated onto a buffer or a
memory, this is a spatial allocation. Indeed, the message will consume/use some cells
of the memory. However, when two tasks are allocated onto a processing unit, this is a
temporal allocation (scheduling); It means those two tasks must be scheduled to avoid
resource conflicts. When a program is allocated onto a processor, this can be consid-
ered both as spatial and temporal allocations; Spatial because the program consumes
disk and memory resources; Temporal because while this program executes, another
one cannot execute simultaneously. The allocation usually implies constraints that
describe precisely the impact (or cost) of the allocation on the non-functional prop-
erties. This is why there is an association to a specific MARTE stereotype called
NfpConstraint, i.e., to capture the constraints implied by the allocation in terms of
memory consumption, power consumption, or execution time, for instance.

4.2.6 Design and Analysis in MARTE
4.2.6.1 The Design Part
Has four chapters: High Level Application Modeling (HLAM), Generic Component

Modeling (GCM), Software Resource Modeling (SRM), and Hardware Resource
Modeling (HRM).



4 MARTE for CPS and CPSoS 91

The first chapter (HLAM) describes real-time units and active objects. Active
objects depart from passive ones by their ability to send spontaneous messages or
signals, and react to event occurrences. Normal objects, the passive ones, can only
answer to the messages they receive or react on event occurrences. HLAM also
introduces the notions of real-time feature and specification. A real-time feature
(«RtFeature») can be anything on which one wishes to pose some kinds of real-
time constraints. The constraints themselves are applied via a real-time specification
(«RtSpecification»). We give some examples of such usage in Sect.4.3.

While clocks are precisely sequences of time points where events repetitively
occur, a real-time feature makes no assumption on the specific constraint to be
applied, i.e., it can refer to time point or time intervals or something much more
complex. However, as we show later, some phenomena can be described either as
clocks and clock constraints or with real-time features and real-time specifications.
We consider that the specification is a compact way to assign several kinds of prop-
erties to a generic feature while the semantics of such properties can be described at
a finer grain using clocks and clock constraints.

The three other chapters provide a support to describe resources used and in
particular execution platforms on which applications may run. A generic description
of resources is provided, including stereotypes to describe communication media,
storage and computing resources. Then this generic model is refined to describe
software and hardware resources along with their non-functional properties.

4.2.6.2 The Analysis Part

Also has a chapter that defines generic elements to perform model-driven analysis
on real-time and embedded systems.

This generic chapter is further specialized to address schedulability analysis and
performance analysis.

The chapter on schedulability analysis is not specific to a given technique and
addresses various formalisms like the classic and generalized Rate Monotonic Analy-
sis (RMA), holistic techniques, or extended timed automata. This chapter provides
all the keywords usually required for such analyzes.

Finally, the chapter on performance analysis, even if somewhat independent of a
specific analysis technique, emphasizes concepts supported by the queuing theory.

The single-source modeling methodology introduced in Sect.4.3 gives a way to
combine all these mechanisms. However, there is no space here to describe them in
length and we rather give methodological information in the following section.

4.3 MARTE for CPS
4.3.1 Case Study: Quadcopter

We consider the example of a quadcopter as an example of cyber-physical system.
An efficient design of the flight control part requires coupling to the analysis a model



92 F. Mallet et al.

of the dynamics of the quadcopter and of its environment (i.e., physical laws, data
received by sensors).

Figure4.5 gives a UML model of a quadcopter and combines several models to
capture different views. The structural view (at the bottom right) is a UML composite
structure model. We use MARTE allocation with its two acceptions. One structural
allocation to allocate the PIDController on the Zinq board. It is identified as a spatial
distribution. We also allocate the QuadRotorController to the PIDController as a time
scheduling allocation. Indeed, all the actions have to be scheduled on the controller.

Looking at behavioral views, we use a UML activity to model the controller and
its five main concurrent actions. All these actions have to compete for the avail-
able resources. «TimedProcessing» refines the description to assign a clock to the
start instant of three actions. Two of them become synchronized, both start (syn-
chronously) on clock c2. The last one starts with clock ¢100 and we use a clock
constraint to denote the relative speed. Indeed c100 is fifty times slower than c2.
Later (see Sect.4.3.2), we can refine such a specification to assign a precise physical
periodic behavior to each action.

Another behavioral view describes the operating modes, three while being
in-flight. CoreElements stereotypes of MARTE serve to identify the modes. Switching
from OnGround to InFlight is done according to events on and of f . Both timeEvent
become clock and a clock constraint explains their relative behavior.

Each of the three inflight-mode behaves differently. Here we describe one of the
modes using SysML parametrics, which are acausal models introduced by SysML. The
word acausal is used here in opposition to causal, i.e., there is no causal relationship
among the variables of a formula, no assumption on which ones are inputs and which
ones are outputs.

~ Flight
[ control ] Video Record
& Streaming

Fig. 4.4 Quadcopter system
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Fig. 4.5 Quadcopter system: UML model

The rectangles denote values or properties connected the pins, some of them use
the NFP types defined earlier (like NFP_T orque). The rounded rectangles denote
constraint blocks and define a non-linear equations among the values. This model
clearly defines a closed loop to control the position (X, y, z) of the quadcopter. The
content of the constraint blocks is typically defined as an equation that can feed a
simulation in tools like Simulink.



94 F. Mallet et al.

4.3.2 Proposed Extensions: Mixed-Criticality, Design-Space
Exploration

The growing capabilities and cost effective solutions provided by embedded plat-
forms has increased their application domains. This can be illustrated through the
Quadcopter system sketched in Fig.4.4.

Moreover, the quadcopter system is also an example of Mixed-Criticality system
(MCS) [7, 24]. The application software of this system has parts (data mining, flight
control) which concern safety, while other parts concern the mission (e.g., object
tracking, stream server) or even less important tasks (e.g., data logging). It shall be
possible to model and analyze with sufficient accuracy the behavior and performance
of these applications on top of a multi-core, costly effective platform. The capture
of a sufficiently detailed platform model exposing shared resources, attributes and
details concerning performances, and labeling the criticality of the different parts
of the systems is required. Design space exploration (DSE) is a crucial activity in
Electronic System Level (ESL) design [3]. It consists in the evaluation of alternative
solutions to find a tradeoff between the performances and costs. It requires specific
modeling capabilities to capture the alternative solutions and their respective cost,
i.e., the potential available design space.

MARTE offers several mechanisms to cover most of these needs, as shown in the
single-source modeling methodology proposed in [16, 38], and sketched in Fig.4.6.

Schedulablity

Analysis

Reusability

-\ v L® S
N [ G
MARTE
PIM Architectural HW/SW
(App) Mappings | Platform

Performance
Architectural Analysis

Mapping

Design-Space

m .

Fig. 4.6 Single-source analysis and design methodology of the University of Cantabria
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The main idea is to rely on a common, unique system model, essentially UML
and MARTE. Around this model, all the tool infrastructure enables a number of
system-level design activities, which include verification, schedulability analysis,
simulation, performance analysis, and software synthesis. In [16], the advantages
and other features of the single-source methodology are discussed in detail. In the
framework of the CONTREX project [29], the single-source design framework is
implemented (see details in Sect.4.4.2). The single-source modeling methodology
enables to build up a component-based application model that can be mapped onto a
platform. The platform model describes in detail the available HW and SW resources.
It includes efficient multi-core platforms with shared resources, a main aspect to deal
with in MCS design. The modeling methodology also states how to model a design
space by relying on MARTE and on the Value Specification Language (VSL).

The single-source modeling methodology provides fixes to patch the minor defi-
ciencies of the current MARTE specification [32]. They have to do with modeling
of MCS and for DSE, which is understandable, as the standard was not initially
designed for such purposes.

4.3.2.1 Extensions for Design Space Exploration

A basic modeling construct for DSE is the DSE parameter. A DSE parameter states
that the value of an attribute associated with a modeling element can adopt one
among a set of values during the DSE activity. Along the DSE, several solutions
are assessed. A solution is defined by the set of values assigned to each of the DSE
parameters. Figure4.7 illustrates the modeling construct employed for describing a
DSE parameter in the single-source methodology. A MARTE NFP constraint plus
the ExpressionContext stereotype is linked to the model element (a HW resource
componentin Fig. 4.7) containing the attribute. The expression is captured in MARTE
VSL with the following syntax:

$DSEParameterName = DSERangeSpecification

The “$” symbol prefixes a VSL variable, and thus the DSE parameter name. The
DSERangeSpecification expresses the range of the DSE parameter, that is, all the
values that the DSEParameterName variable can have during the exploration. The
DSE parameter range can be annotated either as a collection or as an interval. Col-
lections are captured with the syntax DSERangeSpecification=(vl, v2, v3, unit),
where “v/, v2, v3” are the numerical values of the parameter and unit expresses the
physical unit associated with the values. MARTE provides a rich set of unit kinds
(see Sect.4.2.3), to support the different extra-functional properties characterising
systems components, e.g. frequencies, bandwidth, data size. Intervals follow the syn-
tax “DSERangeSpecification = ([Vyin.-Vmax ], unit)”. For acomplete determination of
the exploration range, this style obliges to assume an implicit step. For an explicit and
complete determination of the DSE range, the support of the style “DSERangeSpec-
ification = ([Vpin.-Vmax, Step], unit)” is proposed, which means a minor extension
of VSL. The definition of non-linear ranges is possible. For instance, step can take



96 F. Mallet et al.
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the value exp2, which enables the definition of a geometrical progression, i.e., the
second value is “v,,;,x2”, and so on.

Figure 4.7 illustrates the specification of a design space on the frequencies of the
ARM processing cores of the quadcopter HW platform. This way, the exploration
of the impact on performance depending on the selection of a Z-7020 device (which
works at 667 MHz), a Z-7015 device (at 766 MHz) or a Z-7020 device (at 866 MHz)
can be explored.

In Fig.4.7, the DSE has been associated with the processor component declara-
tion (in the HW platform resources view). Therefore, once the DSE parameter value
is fixed, it is fixed for all its instances. The single-source methodology also allows the
association of the DSE parameter with the instance properties. Moreover, the method-
ology enables the definition of DSE parameters at the application level, and the speci-
fication of parameterizable mappings. Further details can be found in [16, 38]. In any
cases, as shown, MARTE (and specifically VSL) is exploited for most of the required
constructs for DSE, while a minor extension is required (for explicitly stating the steps
of an interval-based specification of a DSE parameter).

4.3.2.2 Extensions for Mixed-Criticality

The single-source modeling methodology [16, 38] was specifically extended in
CONTREX [29] for supporting the MCS modeling and design. This requires a
minor extension of MARTE, sketched in Fig.4.8, and proposed to the OMG. The
first extension adds a criticality attribute to a NFP constraint (Fig. 4.8, left hand side).
The criticality attribute is an integer to denote an abstract criticality level. The NFP
constraint can be associated with different types of modeling elements, e.g. UML
components and UML constraints. The second extension (Fig. 4.8, right hand side)
consists in adding an attribute criticality to the NF P_CommonT ype so that it can
be used in VSL values.

These two small extensions impacts lots of modeling constructs since constraints
and values are used in many different contexts. More precisely, the first extension adds
a criticality level, through UML constraints, to application and platform components,
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« dataType »
« nfpType »
{ exprAttrib= expr }
NFP_CommonType

expr. VSL_Expression

source: SourceKind
NFP_Constraint statQ: StatisticalQualifierKind
dir: DirectionKind
kind:ConstraintKind [0..1] mode: string [*]
criticality: Integer [*] criticality: Integer [*]

Fig. 4.8 Extensions of MARTE for mixed-criticality

as well as performance requirements. The second extension adds a criticality level to
value annotations, e.g. a WCET, and also to performance constraints captured. These
modeling constructs provide solutions to cover different mixed-criticality modeling
scenarios which have been identified and described in [16, 38].

Figure4.9 shows an illustrative and novel MCS modeling scenario, where it is
possible to add criticality levels along with the performance requirements of the
system. Specifically, in Fig. 4.9, acriticality level 3 is assigned to a power performance
requirement for the quadcopter system, i.e., the first kind of extension proposed.

Figure4.10 completes the association of criticalities to other time-related perfor-
mance requirements imposed to the quadcopter system. Specifically, the quadcopter
model captures a number of deadline requirements on components of the quadcopter
Platform-Independent Model (PIM). Those deadlines are captured as VSL value
annotation through the attribute relDI of stereotype RtSpecification. The annotation
of these performance requirements relies on our second proposed extension.

As mentioned, the single-source methodology covers other scenarios, e.g. model-
ing for mixed-criticality aware schedulability analysis, and for validation of architec-
tural mapping according the criticality associated with application components and
to the platform resources the former are mapped to (this is illustrated in Sect.4.4.2).

«nfpConstraint_Contrex»
wexpressionContext»
«MNFpConstraint_Contrex»
criticality=[3]

Power
{out$Estimation_core_power_cpu1(W,est)+out$Estimation_core_power_cpu2(W,est)
+outS$Estimation_core_power_cpu3(W,est)+outSEstimation_core_power_cpud(W,est) <

15w}

Fig. 4.9 Ceriticality level assigned to a power-related requirement
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«Components [ ]
quadcopler_app
structure
«riSpecification» wrtSpecifications «rSpecifications Ly
«RiSpecifications «RiSpecifications «RiSpecification»
occKind=periodic{penod=(2 ms)) occKind=periodic(perod=(2 ms)) occKind=penodic(period=(200,ms))
relDi=(value=2 unit=ms, criticality=3) relDi={value=2 unit=ms criticality=3) relDI=(200,ms criticality=3)
| | i
+ ining : D ing + fiight_alg : FiightAlgori + telemetry | RC TelemetryC
struchure struchure stucture
+ mission : MissionPayloadC + overall_mon_dbg : OveralMonitorDbgC
structure stucture
. i
artSpecifications artSpecifications

«RiSpecifications «RtSpecification»

occKind=periodic(penod=(33 33 ms)) occkind=periodic(period=(10,ms))

reiDI=(33.33,ms criticality=2) relDI=(10.0,ms criticality=1)

Fig. 4.10 Ceriticality associated with deadline requirements in the PIM

4.4 Tooling

4.4.1 State-of-the-Art

All the commercial UML editors support MARTE to diverse degrees. The simplest
support consists in defining all the stereotypes. Others go further by usually allow-
ing transformations of subsets into ad-hoc external tools. For instance, when using
the analysis part of MARTE, one can performance schedulability analysis by trans-
formations to RapidRMA or Cheddar (see http://www.omgmarte.org). Also another
transformation from another subset of MARTE allows for performance evaluation [11].

Another possible set of analyses is available through the transformation [12] of a
MARTE specification into AADL, which is a standard from the Society of Automotive
Engineers and that gains interests for the design of safety-critical systems. There
again, a specific subset of MARTE is retained.

TimeSquare [10] proposes a different family of tools. One side, when using clocks
and clock constraints, TimeSquare attempts to build one behavior consistent with all
the constraints. If this is possible, then it proposes one simulation model and animate
the UML model. It can also use the constraints to detect possible inconsistencies and
potential deadlocks [27].

Another approach [5] is to use a model-based approach to verify a given imple-
mentation through the analysis of execution traces.

A more detailed survey [6] gives an overview of other approaches based on UML,
including MARTE. However, most solutions use ad-hoc transformations from a rel-
atively small subset of UML and MARTE to ad-hoc external tools. In the following
subsection, we promote integrated approaches with a single-source design for MARTE.


http://www.omgmarte.org

4 MARTE for CPS and CPSoS 99

4:>‘ MARTE ™ }<}:
T 1

Model
Validation

Modelling
Errors

ForSyDe
Functionality generation Eerf. Ma.del Functionality
(Formally based eneration Time&Power
properties) Performance

MAST
Model generation

Schedulability
Analysis
|1 SW Synthesis
(native target)

DSE setup
and launch

Pareto Set

Implementation
(SW stack)

SW Synthesis
(cross target)

Functionality
(emulated time)

Fig. 4.11 The CONTREX Eclipse-Plugin provides a front-end and integrates tool infrastructure
for single-source design from UML/MARTE

It is an attempt to bring consistencies among different views and integrate several
tools within the same framework.

4.4.2 Single-Source Design from MARTE

The generic single-source design approach shown in Fig. 4.6 has been implemented
by the University of Cantabria into the framework sketched in Fig.4.11. In this
framework, the CONTREP Eclipse Plugin (CONTREP) enables an unified front-
end where the single-source model is developed, and where system-level design
activities (boxes in Fig.4.11) are applied from.

The architecture of the single design framework, revealing how and which profiles,
libraries and tools are stacked is sketched in Fig. 4.12. Following, the tools integrated
in the implemented framework and their role is explained under the perspective of
the design tasks they enable. Eclipse MDT is at the base of the unifying front-end.

For the modelling task, Papyrus and the MARTE profile are at the base of the
UML/MARTE modelling. CONTREP complements Eclipse/Papyrus with a profile
with the MARTE extensions introduced in Sect.4.3.2. CONTREP also provides a
tool and a related configuration tab for the static validation of the model.

For enabling the different system-level design activities from the UML/MARTE
model, CONTREP provides code generators, configuration and launching facili-
ties. This performs an effective integration of state-of-the art and novel system-level
design tools.
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Fig. 4.12 Architecture of the single-source design environment

For formally based functional validation, CONTREP enables the generation of a
ForSyDe model-SystemC model. By relying on ForSyDe-SystemC library [19, 28],
CONTRERP enables the generation of an executable model abiding the rules of the
Synchronous Dataflow (SDF) Model-of-Computation (MoC) [20]. This ensures func-
tional determinism by construction and makes analisable if the application is free from
deadlock. CONTREP enables schedulability analysis as it integrates the Marte2mast
code generator [14], able to produce a model that can be processed by the MAST [15]
schedulabiltiy analysis tool.

CONTRERP enables software synthesis for heterogeneous multi-core targets. For
a given specific solution (once a platform and the architectural mapping is fixed),
the platform dependent code is automatically generated, and the target binaries gen-
erated. In CONTREDP, the code generators developed for eSSYN [37] have been
integrated, extended and made available through its user menu.

The single-source design framework also enables the automatic generation and
the execution of an emulation model. An emulation model enables the functional
validation of the program, and the emulation of the timing specified on the applica-
tion on top of the host machine. For instance, if the application states that a tasks
will execute periodically, with period 1s, the produced emulated model will rely on
the host RTOS services for emulating that timing behaviour. However, this type of
model does not mimic the timing due to the mapping of the application to a given plat-
form. In fact, the production of the emulation model considers the PIM, but neither
the platform model nor the mapping information. The emulation model integrates
platform independent functionality (referred by the PIM components of the model),
and platform dependent functionality. The latter is generated through a specific code
generator, the m/eSSYN code generator. This generator is invoked from CONTREP
and produces all the code which implements the communication, concurrency and
time services required by the semantics of the PIM components. In this sense, this
platform dependent code wraps the platform independent code. Because of that, this
code is also called wrappers code, and the code generator, wrappers generator.

CONTREP automates the generation of a fast executable performance model. The
generation of the performance model relies on the VIPPE tool [39], which implements
advanced techniques for fast simulation and performance assessment. The generation
also relies on m/eSSYN, an extension of the eSSYN code generators, to support also
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a configurable simulation target. The m/eSSYN code generator allows to integrate
DSE variables in the automatically produced code. This way, the performance model
enables fast exploration (without trigerring new SW synthesis) of several design
solutions considering also the variation of some aspect of the target dependent code,
i.e. a task period. The final outcome is a more holistic exploration, in the sense that
DSE parameters can be associated to platform attributes and also to the application.
Simulation is convenient for getting accuracy and considering the dynamism of the
application and of the input stimuli of the system environment, that is for an scenario-
aware assessment of the system. VIPPE provides a rich set of metrics related to the
time performance of the system. Thus the user is not only able to explore if the time
requirements are fulfilled, but also facilitates the assessement of the main causes of
eventual violations of those time requirements. Moreover, VIPPE provides energy
and power consumption metrics. VIPPE relies on host-compiled simulation, and it
is capable to parallelize the simulation to exploit multi-core host platforms. This
is a main reason foor the suitability of VIPPE to be very suitable for design space
exploration. Another one is that VIPPE supports the Multicube XML interface [35].
VIPPE is also capable to export power traces readable by tools able to perform
dynamic temperature analysis, like ThermalProfiler [17].

CONTRERP automates also the validation of a performance solution by automat-
ically comparing the performance of a simulated solution versus the performance
requirements captured in the UML/MARTE model. When the exploration is done
in an interactive way, the comparison relies on two XML files. CONTREP code
generators translate the performance requirements captured in UML/MARTE to an
intermediate XML file. The run of the (VIPPE) executable performance model for
a given combination of DSE parameter values (configuration or solution) produces
an XML file reporting the performance metrics required to evaluate the performance
requirements.

CONTREP also automates the generation of a complete simulation-based DSE
infrastructure. As well as the performance model, files describing information like
the design space, the performance constraints, the cost functions, and the exploration
strategy, a basic input for the exploration tool coupled to the simulatable performance
model is generated. The framework is flexible and allows the user to select the specific
exploration tool to employ in the DSE (i.e. MOST [8] or Multicube explorer[40] so
far), among the different exploration strategies available for the selected exploration
tool, and among different report options, e.g., if intermediate results are preserved,
of whether an HTML report is produced. Moreover, CONTREP allows to control the
generation of a cost function which takes into account the criticality levels associated
to the performance requirements. Thus the framework allows to give preference to
solutions with larger safety margins in the more critical performance requirements,
provided a minimum or equivalent performance on other metrics.

Both, for SW synthesis and for the production of an accurate VIPPE performance
model, set ups of the cross-compiler tool-chains (X-DEV in Fig.4.12) supporting
the targeted platforms are required.

The final result is an joint user front-end to give access to triggering the different
design activities from the same menu, shown in the capture of Fig.4.13.
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Fig. 4.13 Menu enabled by the CONTREX Eclipse Plug-in

4.5 Forecast About the Role MARTE May Have
in Designing CPS

4.5.1 The End of Moore’s Law

In its latest edition of 2015, the International Technology Roadmap for Semiconduc-
tors (ITRS) roadmap provided by the semiconductor companies changed its format
from previous editions [18]. On the one hand, it confirms the end of Moore’s Law as
it has been performing until the first decade of the century. In fact, for several years
now, the scaling has not been geometric as in the past. Although manufacturers still
associate technology nodes with increasingly smaller dimensions, the size reduc-
tion is no longer the main cause of technological improvement. This improvement
depends mostly on new structures (FinFET and FD-Sol transistors), new materials,
etc. The roadmap proposes to achieve 10nm technology in 2021. However, stag-
nation is observed from that date on. Only through technological improvements in
processes with the same scale factor i.e. devices with the same size, will it be possi-
ble to manufacture integrated circuits with better performance. This is what is called
equivalent scaling. A clear finale. An electronic technology that reaches maturity
and is not going to be able to offer the exponential growth maintained to date. The
end of Moore’s Law will cause a radical change in the technological evolution as we
have been enjoying it so far. On the one hand, the amortization of the billion invest-
ments to be made in each new line of semiconductor manufacturing can be spread
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on longer periods of time so that manufacturing costs can be significantly reduced.
Today, advanced technologies are available only for those designs with high enough
volumes of production. The aim is to ensure that the investment pays off in the short
period of time in which that technology node is active before being replaced by more
advanced technologies in new products. If this is no longer the case, semiconductor
technology could become much more accessible to companies with smaller volumes.
A similar evolution would follow design tools and libraries. On the other hand, for
the designer, the pressure of time-to-market’ is reduced, which will reduce design
costs. Thus, it is quite possible that in the near future, the design of integrated circuits
is accessible to any company in which the value added by silicon compensates the
higher non-recurrent engineering cots. Between a product and its successor there
will be only incremental improvements; no substantial improvements based on a
significantly higher computing power, as it happens now. Innovation would come
from the new applications and services based on new electronic products making
use of application-specific integrated circuits fabricated with stable technologies.
The price/performance evolution of electronic products will follow a similar trend
to many other products. No longer fueled by the exponential improvement predicted
by Moores Law. Some large companies are already preparing for this scenario. In
some cases, this is an even desirable scenario as it could free up resources to invest
in other technologies to offer new services to the marketplace.

4.5.2 The Rise of Connected Ubiquitous Smart Objects

Nowadays, we have just started to realize the enormous potential of an intercon-
nected world of billions of smart devices providing new services to people. The end
of Moore’s Law commented above, might facilitate the proliferation of new elec-
tronic systems supporting these new services. Currently, most systems involve just
a small number of computing resources, such as a data-center processing the voice
from a smartphone and providing a voice-to-text service, or the distance sensors
in a car connected to an Electronic Control Unit providing an automatic parking
service to the driver. In these examples, specifying the complete service, deciding
which functionality to execute in each node, and programming the corresponding
application, although reasonably complex, are affordable tasks. However, services
in a fully interconnected world will be composed of many SW components deployed
on multiple devices of many kinds, from small sensing motes, embedded systems
and smartphones to data-centers, and even, High-Performance Computing (HPC)
facilities. All of them may be implemented with integrated systems containing het-
erogeneous processing elements (i.e. CPUs of different kinds, GPUs, DSPs and
HW co-processors). And in all cases, the systems will need to satisfy functional
and extra-functional critical constraints, including safety, security, power efficiency,
performance, size, and cost. The global characteristics of the system as a whole
will depend on the characteristics of their independent components, but also on the
interactions with the physical environment and among them through the different
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communication networks. Therefore, the main innovation in the time to come shall be
to jump from the design of cyber-physical systems (CPS) to cyber-physical systems
of systems (CPSoS). These complex, heterogeneous, distributed systems require
an interdisciplinary approach where the knowledge about the physical side of the
systems is essential to arrive at solutions that are taken up in the real world. To
integrate these diverse research and development communities is the most crucial
aspect for a successful future development of CPSoS [9]. Current domain-specific
methods are becoming obsolete; hence new predictive, engineering and program-
ming methods and tools are required ensuring the satisfaction of the functional and
extra-functional constraints imposed to the system while taking into account its
interaction with the physical world. An additional important aspect to consider is the
interaction between the system and the humans both as users or involved directly or
indirectly in its operation (humans in the loop). The main reaction to the continuous
evolution of computing platforms has been to decouple the application SW from
the underlying HW. To achieve this goal many abstraction layers of middleware,
communication protocols, operating systems, hypervisors and HW abstraction lay-
ers are being used. This approach is powerful enough for general purpose systems,
for which extra-functional constraints such as execution times, energy efficiency,
dependability, etc. are not strict. But the technological evolution towards CPSoS
based on heterogeneous devices composed of CPUs of different kind, GPUs, DSPs,
HW co-processors etc., added to the need to satisfy stricter non-functional properties
makes this goal unrealizable. Although the software development on each of these
platforms shares many commonalities, the current situation is that specific program-
ming approaches, using different languages and tools are applied in each case. As
a consequence, SW development for a supercomputer, for instance, becomes com-
pletely different to a smartphone or an embedded system. This was not a major prob-
lem when the supercomputer and the embedded system were functionally decoupled.
Nevertheless, this is no longer valid in the fully connected world commented above.
An initial functional partition followed by separate programming approaches leads
to inefficient distribution of loads and communication traffic causing performance,
energy, dependability, data movement, and cost overheads. Model-Driven Engineer-
ing (MDE) is a mature system engineering approach which is being successfully
applied in many different domains. UML has proven its support to MDE in all these
domains based on domain-specific profiles. Nevertheless, none of the currently avail-
able domain-specific approaches is applicable to develop SW for CPSoS or, the other
way around, their applicability to different domains would require interoperability
with other different languages, design methodologies and tools. Another important
aspect is that in each domain the key concerns are also different. This is no longer
valid. When dealing with a cross-domain application involving interacting SW com-
ponents to be deployed and executed in different execution platforms, the functional
and extra-functional properties (i.e. power consumption, real-time properties, per-
formance, security, dependability, data movement) in one of the components may be
affected by the rest of components. As a consequence, there is a need for a holistic
modeling framework, across SW and HW layers, applications and domains. This
modeling framework should be able to capture the complete high-abstraction model,
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integrating projects with different constraints (i.e. commercial or critical SW) and
domains (i.e. from High Performance Computing, to embedded SW). The framework
should integrate in a seamless and almost transparent way any abstraction layer (i.e.
middleware, communication protocols, operating systems, hypervisors) required in
a particular domain, on a particular HW platform. Currently fragmented but mature
MDE techniques should be extended to the emergent, distributed, heterogeneous,
CPSoS. Beyond the MDE underlying system engineering technology, the solution
should allow an average skilled software developer to build an application for the
advanced systems discussed previously. The goal is to avoid the system engineer
a detailed knowledge of the characteristics of the underlying HW/SW platforms,
letting him/her to focus on the Platform-Independent functionality of the complete
system he/she wants to implement. The design framework should provide him/her
with an accurate knowledge of the implications that the final implementation of the
functionality on the concrete (distributed) platforms under a specific functional map-
ping will have in terms of extra-functional constraints. Beyond performance; energy
consumption, safety, data traffic, security, adaptability, scalability, complexity man-
agement and cost-effectiveness have to be taken into account. This information about
the complete system characteristics can be used in efficient optimization and design-
space exploration for the complete system. As commented above, an essential aspect
to be taken into account is the interaction of the system with humans all along the
life-cycle, since the specification and design of the system until its deployment, field
and obsolescence. UML has the potential to be the central modeling language in
this new context. To achieve this goal, a consensus on a profile, powerful enough to
capture all the relevant concepts required in CPSoS engineering while, at the same
time, simple enough to find wide acceptance by the design community, is required.
MARTE is a good starting point for two main reasons. Firstly, it captures most of
the concepts required in system engineering on heterogeneous platforms under strict
design constraints. Secondly, there is clear convergence among computing platforms
and today, it is possible to find the same computing resources (i.e. CPUs, GPUs,
and application-specific HW) in platforms apparently as different as an embedded
system, a smartphone and a supercomputer. As the technology evolution will be
incremental and no longer, exponential, this profile will be stable in time with only
incremental improvements. If this is achieved, UML could become the system design
language for the electronic century.

4.6 Conclusion

MARTE has the capability to describe several parts necessary to model CPS. Since
MARTE is just a language, it does not come with a recommended or unique method-
ology. Here, we draw a map of what can be done with MARTE and what remains to be
done. We advocate for a single-source modeling methodology where a central model
is used to feed several analysis tools. This model relies on UML, MARTE, SysML along
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with very few extensions that we propose. The results are used to extend and refine
the models following an iterative process.

To illustrate the process, we use the example of a quadcopter. We manage to put
together several chapters (CoreElements, NFP, Time, Allocation, HLAM, VSL) of
MARTE to propose a consistent usage in an unprecedented manner.

The question of whether UML is ill-founded is irrelevant, UML is there, it is widely
used and will continue to be used. This is the only modeling language widely accepted
by industry and that is expressive enough to cover so many aspects of complex
heterogeneous systems. So, the good question, is rather to decide how to use it
efficiently to gain an even bigger adoption and sound usage. We hope this chapter
contributes to this objective.
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Chapter 5

Combined Model Checking and Testing
Create Confidence—A Case on Commercial
Automotive Operating System

Toshiaki Aoki, Makoto Satoh, Mitsuhiro Tani, Kenro Yatake
and Tomoji Kishi

Abstract The safety and reliability of automotive systems are becoming a big con-
cern in our daily life. Recently, a functional safety standard which specializes in
automotive systems has been proposed by the ISO. In addition, electrical throttle
systems have been inspected by NHTSA and NASA due to the unintended accel-
eration problems of Toyota’s cars. In light of such recent circumstances, we are
researching practical applications of formal methods to ensure the high quality of
automotive operating systems. An operating system which we focus on is the one
conforming to the OSEK/VDX standard. This chapter shows a case study where
model checking is applied to a commercial automotive operating system. In this
case study, the model checking is combined with testing in order to efficiently and
effectively verify the operating system. As a result, we gained the confidence that
the quality of the operating system is very high.
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5.1 Introduction

Recently, the safety and reliability of automotive systems are becoming a large con-
cern in society. Although vehicles have been controlled by simple mechanics in
the past, many of electronic parts are embedded in them at present according to the
progress of electronic control technology and its performance. These electronic parts
can actualize the complex control of the vehicles, and make it possible to provide
high functionality to vehicles such as automatic speed controlling and emergency
braking. The electronic control technology makes the vehicles more convenient and
safer. Unfortunately, electronic parts also introduce the problems of the reliability
and safety of the vehicles because the automotive systems become more complicated
and their scale larger. In fact, highly electronized automotive systems have received
much attention with respect to their reliability and safety. A functional safety stan-
dard which specializes in automotive systems has been proposed by the ISO [1].
Electronic throttle systems have been inspected by NHTSA and NASA because of
the unintended acceleration problem of Toyota’s cars in 2010 [2].

We are working on the verification of automotive operating systems to ensure
the high quality of automotive operating systems. An operating system which we
focus on is the one conforming to the OSEK/VDX [3] standard. OSEK/VDX is an
organization which was established in 1993 and provides the industrial standards of
ECU (Electronic Control Unit) architectures. OSEK/VDX deals with many kinds
of components used in automotive systems and one of them is an operating system.
Although AUTOSAR [4] takes over this activity, the OSEK/VDX standards is still
used for automotive operating systems in practice. We use OS for the abbreviation
of ‘operating system’ below.

Our purpose is to provide a high quality OS by applying formal methods which
are recommended in the functional safety standards. OS has much impact on their
safety evaluation because it is the base of automotive software which is embedded
into automotive systems. JAIST and DENSO started a joint research project in 2006.
DENSO develops automotive software using OSs which are provided by the other
companies. We examined the feasibility of applications of formal methods at this
point. Then, we decided to apply formal methods to a commercial OS whose target
CPU is V850. Renesas Electronics Corporation (REL) which develops this OS and
CPU joined this project in 2009. We call the OS ‘REL OS’ below. REL OS has been
already released and used in a current series of cars at this time. It is needless to say
that traditional methods have been applied to REL OS in order to check it then. Our
aim is to achieve higher quality of the OS for next series of cars by applying formal
methods.

This chapter shows a case study that model checking, which is one of formal
methods, is applied to a commercial OS, that is, REL OS. REL OS is too complicated
to convince us that it correctly performs for any application. We adopted exhaustive
verification techniques to check REL OS. We have conducted exhaustive testing
based on a design model which was exhaustively verified by model checking. As a
result, we acquired the confidence that REL OS correctly performs for any application
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although no new bug was found since the model checking and testing were more
exhaustive and reliable than the traditional methods. Such combined model checking
and testing are appropriate to convince us of the correctness thanks to their exhaustive
nature.

The rest of the chapter is organized as follows. We briefly introduce OSEK/VDX
OSs in Sect.5.2. Section5.3 shows the overview of our approach to apply model
checking and testing to the verification of REL OS. Section5.4 discusses related
works. Sections5.5 and 5.6 explain the details and results of the verification.
Section 5.7 discusses the approach and results. Section 5.8 concludes this chapter.

5.2 OSEK/VDX Operating Systems

OSEK/VDX OS, shortly, OSEK OS adopted a priority based scheduling of multiple
tasks. Mixing preemptive tasks with non-preemptive tasks is allowed. It provides API
functions such as ActivateTask, TerminateTask, and ChainTask for controlling the
execution of tasks. ActivateTask activates a task, TerminateTask terminates a task,
and ChainTask activates a task after terminating a task. A concept named resource
exists to manage shared resources. The resource is obtained and released by API
functions GetResource and ReleaseResource respectively. Mutual exclusion of tasks
which have access to the shared resource can be realized by these API functions. They
adopt a priority ceiling protocol [5] in order to avoid a priority inversion problem.
Interrupt service routines are invoked when the interrupts occurred. We abbreviate
interrupt service routines as ISR below. A priority is assigned to an ISR as well as
a task. Synchronizing the tasks by events and alarms which invoke tasks based on
time are also provided in addition to the API functions shown above.

The primary function of OSEK OS is to schedule tasks and ISRs. It is not too much
to say that OSEK OS is almost a scheduler. The example of OSEK OS scheduling is
shown in Fig.5.1. The horizontal lines appeared in this figure represent time passage
of tasks, a resource, or interrupts. The vertical direction shows their priorities. If
one line is located upper to another line, the priority of the former is higher than
that of the latter. The horizontal direction from left to right expresses time passing.
OSEK OS allows us to mix preemptive tasks with non-preemptive tasks. TASK H(P)
and TASK L(P) are preemptive tasks and TASK M(NP) is non-preemptive Task in
Fig.5.1. INT H and INT L represent interrupts. Interrupt service routines are invoked
when the interrupts raised. We abbreviate interrupt service routines as ISR below.
RES M represents a resource whose priority is between those of INT H and INT L.
The execution order of the tasks and ISRs are as follows.

1. The task TASK L(P) is activated initially.
2. When the task TASK L(P) obtains the resource RES M, the priority of TASK
L(P) is raised to that of RES M temporarily by the priority ceiling protocol.
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Fig. 5.1 Scheduling tasks in OSEK OS

3. When an interrupt INT H occurs, an ISR which corresponds to the interrupt is
invoked after the preemption of TASK L(P). TASK M(NP) is activated inside
the ISR.

4. When ISR is completed, TASK L(P) is resumed.

5. Even though an interrupt INT L occurs, while TASK L(P) is executing, an ISR
which corresponds to that interrupt is not executed because the priority of INT
L is lower than that of TASK L(P) at this point.

6. When TASK L(P) releases RES M, its priority becomes the original one. Then,
TASK L(P) is preempted and an ISR of INT L is executed.

7. After the ISR of INT L is finished, the task TASK M(NP) is executed.

8. The priority of TASK M(NP) is temporarily raised to RES M by obtaining the
resource RES M and it activated TASK H(P).

9. Even though the priority of TASK M(NP) becomes the original one by releasing
RES M, it continues the execution since this task is non-preemptive.

10. After TASK M(NP) is terminated, TASK H(P) is executed.
11. After TASK H(P) is terminated, TASK L(P) is executed.

In the scheduler of OSEK OS, information needed for the scheduling is managed
by data structures such as a queue and tables. The scheduler makes use of those
data structures and calculates a task or ISR to be executed. Such calculation is very
complicated since there are various configurations of priorities and preemptions,
activation timings of tasks, and ISRs, and synchronization mechanisms. For example,
in an OS conforming to OSEK/VDX, an activation of a task was ignored if an ISR
activates the task whose priority was lower than another task preempted by the ISR.
In this case, the scheduling of tasks becomes incorrect since a task TASK M(NP) is
not executed at the eighth step even though ISR of INT H activates the task at the third
step in Fig.5.1. This incorrect scheduling is encountered not in all of configurations
but in a specific one. It is very important to ensure that the computation is correct



5 Combined Model Checking and Testing Create Confidence ... 113

for any configuration. How the scheduling has to work is defined by OSEK/VDX
standard specification. In our joint research project, we verified that the scheduler of
REL OS surely conforms to the specification.

5.3 Approach

We show the overview of our approach in Fig.5.2. Our approach is divided into
two kinds of activities, design verification and testing. We have constructed a design
model to clarify calculation carried out in REL OS. We confirmed that the calculation
is correct by applying model checking to the design model. Incorrect scheduling as
shown in Sect. 5.2 would be detected at this point. Then, we have conducted testing
based on the design model in order to confirm that the implementation of REL OS
conforms to the design model in which the correct computation was realized. The
testing brings our confidence that the implementation is correct because it is actually
operated. The activities associated with the design verification and the testing are
surrounded by solid lines and dotted lines respectively.

5.3.1 Design Model

We constructed and verified a design model of REL OS to analyze its scheduling
mechanisms. The design model was verified by a model checking tool Spin [6].

Design Verification

(- :
Environment Environment
Model (Promela)
OSEK/VDX
Specification
REL OS | Design Model
Specification (Promela)
>

..F Test Model
(Promela)

Testing {~ RN \
i REL OS Test Programs | !
i (Binary) i
1 |
b Simulator | |
i i

N 7

Fig. 5.2 Overview of approach
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Spin checks properties represented as LTL formulas, assertions and so on against
behavior represented as automata which are concurrently executed with channels
to communicate with each other. Such behavior is described in a specification lan-
guage named Promela. A Promela description consists of concurrent processes whose
behavior is described as guarded commands in an operational way. It also pro-
vides various datatypes such as arrays and record types. Those datatypes allow us
to straightforwardly describe the scheduling mechanisms of REL OS. In addition,
the syntax of Promela is similar to C language which is familiar to engineers who
develop REL OS. It is easy for the engineers to learn as well as communicate with
researchers based on Promela descriptions. Thus, we constructed the design model
in Promela.

5.3.2 Design Verification and Environment Modelling

5.3.2.1 Closing Open System by Environments

OSEK OS is an open system which performs when an API function is invoked by
tasks or ISRs. It does not do anything if nothing is invoked. Similarly, the design
model is not executable by itself. To check it by Spin, we need descriptions invoking
API functions in addition to the design model. Such descriptions are usually called
environments because it is outside of the design model.

5.3.2.2 Types of Environments

The environments manage invocations of functions to a target, callback from the tar-
get, inputs to the target and outputs from the target. There are two types of the environ-
ments. One is that the environments make completely non-deterministic invocations
of functions and inputs to the target. The other is that they make non-deterministic
invocations within specific execution contexts. The former is called universal envi-
ronments [7]. Although the universal environments allow us to exhaustively check
behavior of the target, many spurious errors will be reported. To avoid them, we need
to constrain the behavior of the universal environment, for example, provide a filter
of the behavior by LTL formulas [8]. Our objective of the design verification is to
ensure the fact that a task selected by the scheduler is correct with respect to the spec-
ification. To represent this fact, we need to constrain the behavior of the environment
so that it can make invocation sequences which lead to the selection of a specific
task. However, it is very hard to describe LTL formulas representing those invoca-
tion sequences. In addition, the universal environment likely causes a state explosion
problem. Thus, in our approach, we adopted the latter type of the environments,
which make non-deterministic invocations within specific execution contexts. Those
environments are represented as automata which define the contexts. The automata
make it easier to describe the invocation sequences as the environments.
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5.3.2.3 Facilitating Variations of Environments

In our approach, the environments are described as an environment model that we
proposed in [9]. There are a number of variations of configurations such as the number
of tasks, the number of resources, priorities of tasks, and ceiling priorities of resources
for the environments. It is very hard to manually describe those environments one by
one. Thus, we have proposed the environment model which represents variations of
the configurations and allows us to automatically generate environments described
in Promela. The variations are modeled in the class diagram of UML [10] and OCL
(Object Constraint Language) [11]. The invocation sequences of API functions are
modeled in the statechart diagram of UML with some extension. The expected results
of the invocation of the API functions are also described in the statechart diagram with
OCL. Then, we have developed a tool named EnvGen [9, 12] which automatically
generates environments described in Promela from the environment model consisting
of the class diagram and statechart diagram. The environments are generated within
specific bounds of the variations of the configurations. The expected results are
realized as assertions in the environments.

5.3.2.4 Constructing Environment Models

The possible configurations of the environments of REL OS are described in the
environment model. Such configurations are identified from the specification of REL
OS in addition to the OSEK/VDX standard specification. The invocation sequences
and expected results of the API functions are also identified and described in the
environment model similarly. In verifying the design model of REL OS, we generated
environments from this environment model. The design model is coupled with each
of the environments generated by EnvGen, then it is checked by Spin. That is, the
design model is checked as many times as the number of the environments.

5.3.3 Testing

5.3.3.1 Confirming Conformance by Testing

We made much effort to ensure that the scheduling of tasks was correctly realized
in the design model. What we had to do next was to ensure that the implementation
of REL OS conforms to the design model. There are two approaches to ensure that
an implementation conforms to a design model in general. One is that we generate
a source code from the design model. The other is if the implementation conforms
to the design model after manual implementation. We selected the second approach.
A primary reason why we selected this approach was that REL OS has been already
implemented. Another reason was that it was very hard to refine the design model
so that a source code can be generated. REL OS is implemented in an assembly
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language of V850 to achieve high performance of executions. In addition, there
are many mechanisms and optimizations, which are specific to V850. However,
some such mechanisms do not appear in the design model since it focuses on the
computation of the scheduling. Therefore, it would be very hard to refine the design
model so that it can be isomorphic to the implementation of REL OS.

5.3.3.2 Regarding Design Model as Test Oracle

In our approach, we test the implementation of REL OS by test cases which are
generated from its design model in order to check that the implementation conforms
to the design model. We assigned much importance to the verification of the design
model. We not only checked the design model by Spin but also reviewed the design
model and environment model carefully. As the result of this effort, we assume that the
design model is correct, that is, regard it as a test oracle. This assumption is reasonable
since the design model must be relatively reliable in comparison to the other artifacts.
Test cases are generated from the design model. Those test cases contain invocations
of API functions in addition to expected results of them. Obtaining the expected
results is possible because correct calculation is done (we assume this) in the design
model.

5.3.3.3 Covering Implementation States

Conformance testing based on automata has been studied for a long time [13]. By
these studies, it is well-known that strong assumptions are needed to decide that one
automata conforms to another one. However, it is difficult for practical systems to
discharge those assumptions. Therefore, we do not aim at this theoretical confor-
mance but cover all the states, which appeared in the design model. In this approach,
in order to cover states that we expect to test in the implementation, the design model
needs to contain corresponding states. Thus, we constructed the design model so that
if states of the implementation are different to each other, corresponding states of
the design model can be also different to each other. This makes it possible to gen-
erate test cases, which reach expected states of the implementation. We use a model
checking tool to obtain test cases which cover all the states of the design model.

5.3.3.4 Environments for Test Case Generation

We need environments in generating test cases as well as in the design verification
since the design model does not compute anything if no API function is invoked.
We call the environments to generate test cases fest models. The test models are
different from the environments of the design verification. The test models do not
check the design model but only invoke API functions non-deterministically within
some bounds.
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5.3.3.5 Tools to Automate Testing

We have developed two tools named TCG (Test Case Generator) and TPG
(Test Program Generator) for automatic testing based on the design model. TCG
automatically generates test cases using Spin. Our approach is to generate test cases
not by trap properties [14] but exhaustive search algorithm of states with a model
checking tool. TCG generates test cases, which are reachable to all the states appear-
ing in the combination of the design model and test models. Generated test cases
consist of invocation sequences of the API functions and expected results. TPG trans-
forms the test cases into programs to test REL OS. A program generated by TPG is
compiled with REL OS and executed in a simulator and debugger of V850. TCG and
TPG allow us to automatically perform testing of REL OS using the design model
and test models as inputs.

5.4 Related Works

A word ‘verification’ is recognized as proving correctness with theorem provers or
deductive techniques. The verification of OSs is challenging as demonstrated by the
existing researches [15]. The verification of seL.4 kernel is known as a recent notable
success story [16, 17]. The word ‘verification’ is not limited to such deduction
based approaches but used for model checking. Penix et al. [7, 18] verifies the time
partitioning of DEOS. In this work, environments are obtained by filtering a universal
environment with assumptions described in LTL. This approach is effective when
the assumptions can be described simply, but shows weaknesses when describing
precise behavior of environments because the assumptions described in LTL become
complex. In our approach, we adopted different types of environments using automata
to simply describe properties of scheduling. In addition, this work only verifies the
design model despite that our approach deals with not only the verification of the
design model but also the testing of the implementation.

There are several works on the verification of OSEK OS. Zhu et al. [19] verifies
OSEK OS implemented in C language. The primary purpose of this work is to for-
mally specify API functions of the OSEK OS. A part of such specifications is veri-
fied by VCC [20]. Huang et al. [21] manually constructs a model of CSP based on the
source code of OSEK OS. Then, itis checked by a model checking tool PAT [22]. They
do not take into account the conformance between the model and the source code.
Choi [23, 24] verifies an open source OS named Trampoline [25], which is imple-
mented in C language. In this work, the source code of Trampoline is analyzed by
Spin. A model of Promela is manually constructed, then it is checked against prop-
erties obtained by safety analysis. This work does not take the conformance between
the model and the source code into account as well. In comparison to those works,
the originalities of our work can be summarized as follows. Firstly, our approach cov-
ers both of design and testing phases in developments although the other works focus
on a single activity or phase of the developments. We combine the verification of the
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design model with testing of the implementation seamlessly. Secondly, our target is
implemented in the assembly language of V850. Thus, we cannot take existing tech-
niques which are specific to C language like [19, 23, 24].

In our previous researches, we proposed a tool to automatically generate environ-
ments [9] and it has been applied to a design model of OSEK OS [26]. We adopt the
tool for verifying a design model of REL OS. The design model described in [9, 26]
is different from that of REL OS. We have proposed an approach to automatically
generate test cases from the design model [27]. In the approach, test scenarios to
generate the test cases were described in Z notation [28]. We do not describe the test
scenarios in this chapter. Instead of the test scenarios, we describe a test model which
non-deterministically invokes API functions of OSEK OS to exhaustively generate
test cases since our purpose of the verification is to obtain the confidence thanks to
the exhaustive nature. In addition, we made trade-offs and decisions for obtaining the
confidence throughout the design verification and testing. In this chapter, we show
a practically integrated approach to obtain the confidence and experiences that we
gained in the case study.

5.5 Design Model and Verification

5.5.1 Construction of Design Model

We constructed the design model of REL OS in Promela. As mentioned in Sect. 5.2,
we focus on its scheduler. The scheduler of REL OS has data structures consisting of
a ready queue, tables, and flags. The ready queue records activation orders of tasks
for each of the priorities. A task to be executed is determined based on the ready
queue. It is obtained by searching the highest and firstly activated task recorded in
the ready queue. The tables record information of tasks such as the current states
and priority of tasks. The flags record conditions needed for the scheduling. High
performance of the scheduling is required for the OS since it controls machinery of
automobiles. On the other hand, searching the ready queue and switching tasks are
not efficient. To achieve high performance, the flags are used for identifying whether
costly operations are needed or not. Such data structures can be straightforwardly
described in Promela.

Figure 5.3 shows a part of the design model described in Promela. In the imple-
mentation of REL OS, the ready queue is realized as a specific memory area of ECU.
Operations to enqueue/dequeue a task to/from the ready queue is implemented by
instructions of V850 which calculate addresses to update the memory area. We did
not model the ready queue based on such memory area and instructions. We mod-
eled the ready queue as an array instead of the address calculation. In Fig.5.3, the
ready queue is represented by an array named ‘ready’ in the design model. Opera-
tions to enqueue and dequeue are described as inline macros which update the array.
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Datatypes Basic operations on datatypes

#define N_PRIO_TASK 72 /* maximal tasks in a queue */
#define N_TASK 4 /* maximal tasks */

#define OS_ACT_MAX 2 /* maximal multiple activations */ }
#define TID byte /* task identifier as byte */
#define PRI byte /* priority as byte */

inline enq(pr,id){
enqueue 'id" in a queue of 'pr'

inline deq(pr,id)
dequeue 'id' from a queue of pr'

#define queue(x,y) ready[((x) * N_TASK * OS_ACT_MAX) + (y)] }

TID ready[N_PRIO_TASK]; /* ready queue */

#define NOTEXIST 0

#define SUSPENDED 1 API functions
zg:gg: ESQDY 32 inline ActivateTask(t){
#define WAITING 4 error check;

get an array index idx corresponding to t;
if
i tsk_state[idx].actent < OS_ACT_MAX ->
tsk_state[idx].actent++
if
:: tsk_state[idx].tstat == SUSPENDED ->
enq(tsk_state[ret_ix].tpriority, id);
tsk_state[idx.tsat = READY;

typedef TCB{

PRI tpriority; /* priority */

byte tstat; /* task state */

byte actcnt /* activation counter */

} _ .

TCB tsk_state[N_TASK]; ercd = E_OK;

TID turn = EMPTY: /* context */ :: tsk_state[idx].stat == READY ->
#define E_OK 0 N

#define E_OS_ACCESS 1 fi

#define E_OS_CALLEVEL 2 b )

#define E OS ID 3 inline TerminateTask(t)...}

byte ercd; /* error code */ inline ChainTask(t1,t2){...}

Fig. 5.3 Design model

TCB (Task Control Blocks) which hold information of tasks is represented by an
array named ‘tsk_state’.

If an API function is invoked, a task to be executed is determined after values of
the datatypes are updated. For example, if ActivateTask(s) where ¢ is a task identifier
is invoked, 7 is enqueued into the corresponding position of the ready queue as well
as a current state of a task # which is recorded in the tables is updated to a ready state.
Then, a search of the ready queue and switching a task are performed if needed.
Such operations are realized as inline macros of Promela in the design model as
shown in Fig.5.3. Interrupt handling mechanisms are described in the design model
in addition to operations of API functions. The interrupts affect the scheduling of
tasks although they are processed by hardware in actuality.

The design model has been constructed by the JAIST team in our joint project.
The initial design model has been constructed based on the OSEK/VDX standard.
However, its behavior was not the same to REL OS due to some misunderstandings
and the ambiguity of the specification. It was reviewed by engineers of DENSO and
REL to make its behavior equivalent to that of REL OS. We held regular meetings to
consider review results once a month. The improvements of the design model were
also done by the JAIST side according to the review results. It took around 6 months
to improve it and we finally obtained the design model of REL OS.
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5.5.2 Environment Modelling

As mentioned in Sect.5.3, in our approach, the environments are described as an
environment model that we have proposed. We describe our decisions and tradeoffs
that we made with brief introduction of the environment model here. For more details,
please refer to our earlier works [9, 12, 26]. Figure5.4 shows an example of the
environment model. The left-hand side of Fig. 5.4 models variations of configurations
in the class diagram of UML. The set of tasks and resources are denoted as classes
named 7ask and Resource respectively. The multiplicities are assigned to the classes
since there can be multiple tasks in a configuration. M and N represent the maximal
number of tasks and resources respectively. There are relations between them. For
example, there is a relation that a task uses resources. Such relations are represented
as an association between the classes Tusk and Resource. In addition, there is a
constraint that if a task uses a resource, the ceiling priority of the resource has to be
higher than or equal to the priority of the task. This constraint is described in OCL
and attached to the class Task. In this way, we define the variations of configurations
in the environment model.

Invocation sequences of API functions and expected results are described in a
statechart diagram of UML and OCL as shown in the right-hand side of Fig.5.4.
This statechart diagram represents the collective behavior of tasks instantiated from
the class 7ask. We introduce some extensions to describe such behavior. For example,

| Run—>Rdy : GetRun () is called a synchronous transition which triggers simul-
taneous transitions of multiple objects. This transition is needed for expressing the
fact that state changes of a task affect that of another task.

The environment generator EnvGen generates all possible environments of the
environment model. Environment generation is conducted in three steps. Firstly, all
possible object graphs are generated within the bounds of the class model. In [9],
we performed this generation by an elementary algorithm that enumerated all of the
object graphs in alphabetical order. However, the performance of this algorithm is
poor. Currently, we have updated the generator to use a satisfiability modulo theories
(SMT) solver for enumerating all the object graphs [12]. In this version of EnvGen,
the performance was improved very much. Secondly, for each object graph, we
generate a labeled transition system (LTS) by composing the statechart diagrams of
all objects in the object graph. Finally, we generate the environments by translating
each LTS into a Promela file.

5.5.3 Approximation of Environments

The environment model represents the set of invocation sequences of API functions
and their expected results. They are, in a sense, analogous to test cases and their
expected results. We want to examine the design model ultimately for all the invoca-
tion sequences. However, if we construct the environment model which deals with
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inv inv
self.res->forall(r |pr=<r pr) GetState(self.id)==Rdy [tid==self.id&ExRun()]

L) T ActivateTask(tid)
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> Task : (self.pr,self.id) [tid==self.id&ExRun ()&
I GetPr(GetRun())<self.pr]
pr:{1..P} I \ ActivateTask(tid)
state {Sus,Rdy,Run} | Run->Rdy :GetRun()
tsk'(l M) RDY . SUS ] [tid==self.id& ExRdy() & [ RUN I]
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(GetPr(GetRun())>=self.pr] , TerminateTask(tid) "
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GetState(self.id)==Sus TerminateTask(tid) Getstate(self.id)==Run

Fig. 5.4 Environment model

those invocation sequences, its complexity becomes similar to that of the design
model. For example, if we describe expected results in the case where multiple tasks
whose priorities are the same are activated, we need a queue like the ready queue of
the design model in the environment model because activation orders of tasks have to
be recorded in the environment model as well. Creating such an environment model
makes little sense because its reliability becomes as uncertain as the design model.
The reliability of the environment model should be higher than the design model
from the viewpoint of practicality.

There are two approaches, over approximation and under approximation, to solve
this problem. In the former, we construct an environment model so that it can contain
more invocation sequences and stronger expected results than exact ones. For exam-
ple, if there are multiple tasks whose priorities are the same and in the ready states, an
expected result is that one of those tasks should be executed. In this case, we do not
need a queue to describe expected results and make the environment model simpler.
However, such expected results make little sense because they are too strong. For
example, checking the fact shown above can not detect errors in the order to become
running. Thus, it does not contribute to the correctness of the scheduling very much. In
addition, many false positive counter examples would be reported because the envi-
ronment model contains many of non-deterministic invocations of API functions.
Hence, we took the latter approach which is under approximation. In this approach,
we construct an environment model so that it can contain less invocation sequences
and weaker expected results than exact ones. This under approximation is achieved
by case splittings of environment models. Thus, we constructed the environment
models separately such that each model was as simple as possible. This separation
allows us to provide high reliability to the environment models. In addition, the sep-
aration of models can reduce the risk of state explosion. If we check all aspects of
the design model at once, state explosion can easily occur. We can check each of
them within a relatively small state space by separating the environment models.
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5.5.4 Verification Result

We construct the environment models separately from each other. Such separation
introduces a problem of coverage. This approach does not cover all the invocation
sequences of API functions because it is based on the under approximation. On the
other hand, as discussed so far, neither fully non-deterministic nor over approximated
invocations of API function can be accepted in our approach. Thus, we decided to take
the under approximation approach and carefully separate the environment models so
that they can cover our concerns in the design model.

Figure 5.5 shows environment models that we have constructed. The environment
models are divided into six groups based on which the functionalities of OSEK OS
are being checked. Each group is further divided into two cases based on the equality
of task priorities. For example, environment models No. 1 (TaskDiff) and No. 2
(TaskEq) check task management functions. They represent the cases with different
priorities and the same priority respectively.

Figure 5.6 shows the results of environment generation and model checking. We
used a computer whose specification is Intel Core2Duo CPU 2.4 GHz with 4 Gbyte
memory. The environment generation results show the number of environments gen-
erated from each environment model, the time taken for generation, the average
length of the Promela descriptions, and the average number of states and transitions
contained in each environment. The model checking results show the time taken for
checking all of the environments. We limited the number of tasks, resources, and
ISRs to a maximum of 3. With these ranges, we were able to generate a total of
789 environments in about 100s, which is quite efficient since only about 0.1 s was
needed to generate each environment. This result demonstrates the effectiveness of
using the SMT solver. In our previous work, the environments were generated by
simply enumerating instances which meet constraints appeared in the environment
models. Although the generation of the environments were impossible for three tasks
and three resources, it was completed thanks to the SMT solver. For model checking,
we were able to check the design model using all of the environments without state

No. [ Name Purpose Condition
1 | TaskDiff | termination and activation of tasks | different priorities
2 | TaskEqg | termination and activation of tasks | same priorities
3 | CtDiff ChainTask different priorities
4 | CtEqg ChainTask same priorities
5 | MultDiff | multiple activation of tasks different priorities
6 [ MultEq multiple activation of tasks same priorities
7 | ResDiff | getandrelease of resources different priorities
8 | ResEg get and release of resources same priorities
9 | EvDiff events different priorities
10 | EvEq events same priorities
11 | IsrDiff ISR different priorities
12 | IsrEq ISR same priorities

Fig. 5.5 Separated environment models
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No. | name generated environments model
checking

num. | time(s) | lines | states | trans. time(s)
1 | TaskDiff 26 0.6 153 4 9 115.6
2 | TaskEq 9 0.3 245 9 16 44.2
3 | CtDiff 26 0.8 168 4 13 116.3
4 | CtEq 9 0.3 273 9 23 45.9
5 | MultDiff 26 0.9 199 8 19 119.7
6 | MultEq 9 1.1 576 50 98 68.3
7 | ResDiff 341 62.7 892 44 112 3828.5
8 | ResEq 63 10.9 926 44 112 834.4
9 | EvDiff 26 14 336 15 47 143.3
10 | EvEq 9 1.6 | 1284 78 261 179.7
11 | lsrDiff 182 13.9 502 17 49 1245.0
12 | IsrEq 63 5.9 789 34 99 617.0

Fig. 5.6 Environment generation and model checking results

explosion occurring due to the separation of the environment models. The entire
model checking took 122 min such that about 10s per environment was required on
average. Most of this time was used for compilation, which grows exponentially with
the length of the Promela descriptions.

We conducted model checking several times while we were constructing the
design model. The results shown in Fig.5.6 are final ones. The design model was
constructed and checked in this way by the JAIST side. We found many errors such
as incorrect conditions and incorrect updates of data by model checking during its
construction and verification. However, they were not the errors of REL OS but of
the design model itself. That is, we described the incorrect conditions and updates
which do not appear in REL OS in constructing the design model. Finally, no error
was reported by model checking. Nonetheless, we gained confidence that the design
model was highly reliable. We encountered many errors detected by our approach
even though they were not the errors of REL OS. It made us believe that it was
powerful enough to find errors.

5.6 Testing Based on Design Model

5.6.1 Generation of Test Cases and Programs

We made much effort to verify the design model by review and model checking.
Then, we assume that it is correct and generate test cases with their expected results
from the design model. We have proposed a method to automatically generate test
cases from Promela descriptions by Spin [27]. In this method, search paths during
model checking are recorded as search logs. Spin has an option to generate debug
information such as up and down operations of depth-first search of model checking
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algorithm. In addition, we can print out information about the status of the design
model such as invoked API functions and the current states of tasks during model
checking thanks to the embedded C function of Promela. Such debug information
and status make it possible to restructure a search tree of model checking in which
expected results are contained. We obtain test cases, which are reachable to all the
states of the design model and test models by scanning this search tree. We have
developed a tool named TCG for testing REL OS according to this method. TCG
inputs the design model and a test model. Then, it outputs invocation sequences of
API functions and their expected results consisting of current states and priorities of
tasks.

The test cases generated by TCG are not programs but the invocation sequences
and expected results. Thus, we developed a tool named TPG which translates them
into programs to be compiled with REL OS. The programs generated by TPG are
regarded as applications executed on REL OS. The programs invoke API functions
according to the test cases. In addition, they have statements to check whether status
of REL OS is the same to those expected results. Such a check is realized by debugger
of a V850 development environment. The results of the check is stored in a log file
of testing.

TCG and TPG allow us to automate testing of REL OS based on the design model.
If we give the design model with a test model, testing is automatically performed
and then its results are recorded in the log file. In our project, TCG and TPG were
developed by the JAIST side and REL side respectively.

5.6.2 Test Models

We need environments in generating test cases as well as the design verification since
the design model does not do any computation if no API function is invoked. The envi-
ronments to generate the test cases are called test models. Figure 5.7 shows a general
form of the test models. A test model invokes API functions of the design model non-
deterministically. The reason why preconditions are described is to prevent infeasible
test cases from being generated. For example, invoking TerminateTask() by a task
whose state is not running is infeasible in an actual execution. Such invocations are
excluded by the preconditions. Execution context of the design model is needed to
describe preconditions. For example, the current states of tasks are needed to describe
the precondition of the invocation of TerminateTask(). This execution context can

Fig. 5.7 Test model do
:: precondition, -> API function,
:: precondition, -> API function,

:: pre-condition,, -> API function,,
od
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TerminateTask()
Task H
Task H ‘ﬁi TommnataTask()

Task L | Task M i TerminateTask()

>  TaskL i—

ActivateTask(Task H) t
ActivateTask(Task L)
ActivateTask(Task M)

ActivateTask(Task H) ActivateTask(Task L)

Fig. 5.8 Task switches

be obtained by referring to states of the design model. This is reasonable because
we assume that the design model is correct for conducting the testing. Checking the
design model is not an objective in testing. Reference to the states of the design
model make it easier to describe test models.

Configurations have to be bounded in the test models. We have to determine
the number of tasks, resources, ISRs, their priority assignments and events for the
generation of test cases. We investigated behavior of task switches realized by REL
OS since we focus on its scheduling. We describe each of possible variations of
task switches as a use case. Then, we consider that what configurations cover those
variations. For example, we show two of use cases in Fig. 5.8. Two tasks which have
different priorities are sufficient to ensure the fact that a task whose priority is the
highest among tasks whose states are ready. This case is shown in the left-hand side
of Fig. 5.8. To ensure the fact that a task to be executed does not depend on activation
orders, we need three tasks which have different priorities. This case is shown in the
right-hand side of Fig.5.8. In this way, we identified the following configurations
which cover the variations of task switches. The numbers of tasks, resources, ISRs
and events are 3, 2, 1, and 1 respectively.

5.6.3 Test Cases and Test Programs

Figure 5.9 shows atest case and test program generated by TCG and TPG respectively.
The test case represents an invocation order of API functions as follows.

A task named task1 invokes ActivateTask(task?2).

A task named task2 invokes ActivateTask(task3).

An interrupt whose number is 1 occurs.

An interrupt service routine isrl invokes SetEvent(task1, Eventl).
An interrupt which occurs in 3 is reset.

SNk b=
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The expected current states such as ready queue and TCB exist in the test case,
however; they are omitted here for the sake of simplicity. Timings that interrupts
occur are also described. SetINTR(1) and ResetINTR(1) represent that the interrupt
which triggers an interrupt service routine named isrl is set and reset respectively.

The test program realizes the invocation order described in the test case as well
as checks the expected current states. Although the test program consists of tasks,
the test case is an invocation sequence of API calls. Thus, we need to transform the
test case to the tasks which cause the invocation sequence. The test case contains
information which makes it possible to assign invocations of API functions to tasks.
The invocation order of assigned API functions has to be controlled inside of each
of the tasks. The variables exccntl to excent4 control the invocation order so that
it can follow the one represented in the test case. The expected current states and
execution order of API functions are checked using debug functions of the simulator.
The timings that the interrupts occur are controlled by a library of the simulator. Code
fragments to check them and control the interrupts exist in the test program, however;
those are omitted in Fig.5.9.

Test Case
task1:Activate Task(task2) task2:ActivateTask(task3) SetINTR(1)
isr1:SetEvent(task1,Event1) ResetINTR(1) task3:TerminateTask()
task2:Terminate Task() task1:Activate Task(task3) SetINTR(1)
isr1:SetEvent(task3,Event1) isr1:ActivateTask(task2) ResetINTR(1)
task3:Terminate Task() task2:Terminate Task() task1:ChainTask(task2)
task2:ActivateTask(task1) task2: TerminateTask() task1:ActivateTask(task3) ...

Test Program

: TASK(task2){
ISR(isr1X . 2X
if(excent1 == 1) fexcantd == 1N

ercd = SetEvent(task1,Event1);
return;

}if(excent1 == 2){
ercd = SetEvent(task3,Event1);
ercd = ActivateTask(task2);

ercd = ActivateTask(task3);
ercd = Terminate Task();
return;

/* if branches continue */

}return; if(excent3 == :
if(excent! == 3)( (re;f:r:' TerminateTask();

/* if branches continue */ }
) if(excentd == 3){
TASK(task1){ [* if branches continue */

ercd = ActivateTask(task2);
ercd = ActivateT ask(task3);

ercd = ChainTask(task2); Tstﬁ(éiﬂ(i)i )

}return; excentd++;

if(excent2 == 2 er;:d = TerminateTask();
excent2++; } return,

ercd = ActivateT ask(task3); i ——

ercd = ActivateTask(task3); 'fg()éifﬂir X

ercd = ChainTask(task2);

return: ercd = SetIntr(1);

ercd = Terminate Task();

} )
if(excent2 == 3){ } return;
/* if branches continue */ if(excentd == 3){

/* if branches continue */

}

Fig. 5.9 Test case and test program
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5.6.4 Test Results

Figure 5.10 shows results of generating test cases and programs by TCG and TPG.
Three tasks and two resources are named TaskA, TaskB, TaskC, ResourceA, and
ResourceB respectively. An ISR and event are omitted in this figure. Priority assign-
ments of the tasks and resources are described in their rows. For example, upper-left
of Fig.5.10 represents that the priorities of TaskA, TaskB, and TaskC are 1, 2, and
3 respectively. Furthermore, there exist six variations of ceiling priorities of the
resources. Regarding to these values, greater values mean higher priorities. Note
that variations of priority assignments are reduced by considering their symmetry.
The row of ‘#test cases’ represents the number of test cases generated by TCG. The
rows of ‘pan exe. time’, ‘TCG exe. time’, and “TPG exe. time’ represent amounts
of time which are taken to search reachable states by Spin, generate test cases by
TCG and generate test programs by TPG respectively where time units are seconds.
We generated the test cases and test programs by a computer whose specification is
Intel(R)Core2Duo CPU 3.00 GHz with 1 Gbyte memory. The total number of test
programs generated by these configurations is 742,748.

Each of the generated test programs was compiled with REL OS and executed on
the simulator of V850. These test programs can be executed independently. Thus, it
is possible to perform testing in parallel in principle. However, we used a debugger
to check REL OS and the number of its licenses that we can use is limited to three. In
addition, some of the licenses are often occupied by engineers of REL and we need to
exclusively use them. Therefore, we executed the test programs in a single computer
in the daytime of weekdays, and in parallel on weekends and in the midnight of
weekdays. As a result, we took around 3 months to complete checking all the test
cases and no failure of test cases was found in the testing.

Priorities Priorities
TaskA 1 1
TaskB 2 1
TaskC 3 1
ResouceA 1 1 2 3 2 1 1 1 2 3 2 1
ResouceB 2 3 3 3 2 1 2 3 3 3 2 1
#Test cases 12483 | 15077 | 26373 | 37127 | 25035 | 8495 | 26489 | 26489 | 66361 | 66361 | 66361 | 13301
pan exe. time 129 16.8 26.0 38.7 26.7 10.7 276 306 66.3 669 68.3 146

TCG exe. time 19.0 249 679 731 58.5 127 818 937 289.2 2872 2826 272
TPG exe.time | 176.8 174.4 508.5 522.8 | 4339 95.0 5484 | 6269 | 22674 | 2694.1 | 26922 | 2325

Priorities Priorities
Task A 1 1
TaskB 1 2
TaskC 2 2
ResouceA 1 1 2 3 2 1 1 1 2 3 2 1
ResouceB 2 3 3 3 2 1 2 3 3 3 2 1

#Test cases 17151 | 22427 | 44723 | 60707 | 39457 | 10331 | 13011 | 20707 | 33117 | 56281 | 25459 | 9425
pan exe. time 19.0 22.7 45.0 60.5 40.2 11.5 137 219 334 556 255 99
TCG exe. time 356 447 117.6 179.7 99.4 16.8 218 388 78.3 1618 551 141
TPG exe. time | 290.7 3202 799.8 | 13535 | 6044 138.9 175.2 3179 5468 | 1486.5 | 4428 126.3

Fig. 5.10 Test results
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We could not measure exact time taken to check all of them because testing
was parallelize in an ad-hoc way. As a representative, we measured time taken to
execute a part of the test programs instead. For example, it took 165.75h to check
26,489 test programs where time to compile and execute them are 42.5 and 127.25h
respectively. It took 265 h to check 44,723 test programs where time to compile and
execute them are 80.25 and 184.75 h. The test programs were complied and executed
by a computer whose specification is Pentium4 3.2 GHz CPU with 1 Gbyte memory.
We can estimate the whole of time to be taken to complete the execution of the
test programs based on these data as around 4,535 h, that is, 189 days. We can say
from this estimation that our parallelization (even though it is ad-hoc) contributed to
the reduction of time taken for the testing because around 3 months were taken to
complete it in fact.

5.7 Discussion

5.7.1 Practical Applications of Model Checking

An important technical achievement of this study is that we succeeded in seamlessly
connecting two verification activities; verification of a design model with model
checking and testing of a product. A point to achieve this is to regard a design model
as a test oracle after making much effort to ensure its correctness with respect to
the specification. We rely on the design model when we generate test cases and pro-
grams. In this approach, construction and verification of the design model are directly
associated with testing of products which are recognized as an important activity in
industries. That fact makes it easier to motivate engineers to construct a formal design
model and use model checking. We could concentrate on constructing and verifying
the design model by showing a way to effectively use them in developments.

It is ideal to apply formal methods to every phase of developments in principle;
however, it is often not feasible in practice due to their high cost. Therefore, it is
important to find an activity to be concentrated on and apply formal methods in the
activity. In addition, making the best use of an artifact obtained by the application of
formal methods in other activities is also important. Such concentration and effective
use of the artifact make the cost to apply formal methods reasonable in practice. It
is needless to say that this is a trade-off between theory and practice. The degree
of correctness will be decreased in a sense, by restricting activities to apply formal
methods. In our approach, we concentrate on the construction and verification of
a design model in addition to adopting testing to check a product. As a result, we
succeeded in keeping the cost reasonable so that model checking can be applied to
a commercial product. The reason why we concentrated on the design model is that
it is easy to characterize behavior of OSs like OSEK OS in an imperative specifica-
tion language which is used to the design model. Actually, a ready queue appeared
in the standard specification of OSEK/VDX to explain the behavior of the OSs.
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Such precise behavior of the OS is taken into account from an early stage of develop-
ments. Thus, constructing a formal design model is relatively natural in development.

5.7.2 Verification Results

Our project consists of two researchers of JAIST and several engineers of REL and
DENSO. The construction and verification of the design model were conducted by
the JAIST side in which both of two researchers are involved. The review of the design
model and verification results was conducted by all of members of this project. We
took around 6 months to construct the design model. Although we did not measure
the exact period to obtain the design model, it must be actually much less than 6
months since they had not only this project but also the other works. On the other
hand, REL is developing this kind of OSs including REL OS more than ten years.
In addition, REL OS was extensively verified by REL and DENSO before it was
assembled in the current series of cars. Actually, they discovered and fixed bugs
many times at that point. REL OS was already sufficiently checked when we started
our project.

It was still surprising that no bug of REL OS was discovered in our verification
because testing was conducted by a huge number of the test cases. Furthermore, we
were surprised at the fact that the quality of the design model is as same as REL OS
even though the development period of the design is shorter than that of REL OS.
Remind that the design model was constructed by the researchers of the JAIST side
who have little experience than the engineers of REL and DENSO with respect to
OS developments. We initially, before the start of the testing, expected that if testing
would fail, that should be due to bugs of the design model or misunderstanding of
behavior of REL OS. However, all the test cases have been passed at a time. There was
no backtrack to improve the design model once we started the testing. We succeeded
in making the design model whose quality is similar to REL OS in 6 months. We
can say from this fact that model checking effectively works for ensuring the quality
of the design model. Although an objective of the testing is not to check the design
model but the implementation, effectiveness to apply model checking to the design
model has been proved consequently.

Our approach is based on exhaustive search methods. We encounter state explo-
sion problem as far as we use the exhaustive search methods. Thus, we introduced
techniques to prevent the state explosion problem as follows. Firstly, we bounded
variations of configurations such as the numbers of tasks and resources in the veri-
fication of the design model. Secondly, we separated the possible behavior of envi-
ronments into twelve cases. Finally, we bounded variations of configurations in the
testing. We could not guarantee to cover the whole behavior of the design model
and implementation due to the techniques. In addition, the verification of the design
model relies on the environment models. Even though the environment models are
simpler than the design model, they might still be incorrect. Our verification depends
on the validity of such bounds and environment models.
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To convince that the environment models and bounds are valid, we made effort
to conduct manual inspection of the environment models and variations of config-
urations. There are techniques to make the validity more convincing. For example,
we use theorem proving to verify the design model for unbounded variations. We
construct a formal specification of OSEK OS, then verify the design model and
environment model against it to make sure that they meet the specification. On the
other hand, we have to pay additional cost if we adopt those techniques furthermore.
We need to carefully decide what techniques we should choose from not only the
theoretical but also practical point of view. The combination of techniques including
model checking and testing as shown in this chapter is an approach whose cost is
acceptable in the field of automotive systems.

5.7.3 Meaning of Testing

As mentioned so far, REL OS was already sufficiently checked by REL and DENSO.
This check was conducted based on ordinary testing and review methods. Some bugs
were found with respect to the scheduling of REL OS then. We confirmed that those
bugs could be also detected by testing with our approach. As all the test cases have
been passed, we can say that no such bug exists within behavior represented by them.

Test cases generated by our approach contain invocation sequences of API func-
tions which we do not usually make because they are obtained by searching reach-
able states of non-deterministic invocation of those functions. Such test cases allow
us to check behavior which is not realized in current applications but will be realized
in future ones. This is similar to acceleration testing applied in the field of materials.
One can say that we conducted acceleration testing of software in a sense. We think that
this testing is important for OSs since they are used in various ways for a long time.

A test case generated can be regarded as an application performed with REL OS.
In this sense, we gained evidence to perform a number of applications on the OS.
The evidence is important for satisfying safety standards such as IEC61508 [29] and
1SO26262 [1].

5.7.4 Creating the Confidence in Correctness

In the verification of seL4 kernel [16, 17], C implementations of the kernel as well as
specifications described in Haskell were automatically translated into descriptions
of Isabelle/HOL according to pre-defined translation rules. The kernel was verified
based not on the implementations themselves but on the translated descriptions.
Theorem proving with Isabelle/HOL allows us to create strong confidence in the
correctness of proofs done in the verification. On the other hand, a gap between the
descriptions of Isablelle/HOL and the implementations still remains. In our approach,
the implementation of REL OS was exhaustively executed within specific bounds in
testing. We think that executing the implementation itself is very important in order
to create the confidence in its correctness. Even though the translated descriptions are
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verified, it is unimaginable to release the implementations without executing them.
Although it is impossible to check all of cases which may happen in the testing, the
testing provides evidence that the implementation really works well.

In the existing works on the verification of OSEK OS [19, 21, 23, 24], source
codes are only targets to be verified. Since we suspect that the source codes might be
incorrect, we need another description which we rely on. In our approach, we rely on
the design model which was verified by the model checking. We made much effort
to verify the design model so that we could agree that it realized correct behavior of
the OS. That is, we created the confidence in the correctness via such design model.

5.8 Conclusion

Applying formal methods to developments of commercial products is often recog-
nized as hard in industry. In fact, we have experience to educate engineers in formal
methods [30, 31] and heard such opinions from many of them. In order to persuade
them so that formal methods can be practically applied, it is important to show a
successful case study of a practical system. In this chapter, we showed a case study
that model checking, which is one of formal methods, was applied to an automotive
OS. What we should emphasize here is that our target is a commercial product, that
is, REL OS. In addition, engineers who develop the product are involved in this
project. Showing evidence that model checking has been successfully applied to the
commercial product is a primary contribution of this chapter.

We encountered various pragmatical problems in the application of model check-
ing as discussed in the chapter. We solved them by combining engineering techniques
such as review and testing. We used informal methods with formal methods for mak-
ing our approach practical. No bug was found as a result; however, we obtained the
confidence that the quality of REL OS is very high. We think that obtaining the con-
fidence is quite different from finding bugs by testing. Clearly, the former is much
harder than the latter. The exhaustive techniques that we have adopted allow us to
convince that REL OS is correct.

REL OS is going to use in a next series of cars not only for parts which it is
currently embedded to but also the other ones. We are convinced that REL OS
performs correctly even for the other parts since we have conducted the exhaustive
testing which can be regarded as the acceleration testing. The same approach is being
applied to the other functions of REL OS. We continue to verify it and extend the
approach so that we can acquire more confidence with respect to the quality.
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Chapter 6
Formal Methods for Aerospace Systems

Achievements and Challenges

Marco Bozzano, Harold Bruintjes, Alessandro Cimatti,
Joost-Pieter Katoen, Thomas Noll and Stefano Tonetta

Abstract The size and complexity of control software in aerospace systems is
rapidly increasing, and this development complicates its validation within the con-
text of the overall spacecraft system. Classical validation methods are both labour
intensive and error prone as they rely on manual analysis, review and inspection.
Thus there is a growing trend to incorporate the use of automated formal meth-
ods. This chapter introduces the ESA-funded COMPASS project, which aims at
an integrated system-software co-engineering approach focusing on a coherent set
of specification and analysis techniques for evaluation of system-level correctness,
safety, dependability and performability of on-board computer-based aerospace sys-
tems. Its modelling features and supporting toolset provide a unifying framework for
system validation, employing state-of-the-art temporal-logic model checking tech-
niques for infinite-state transition systems, both qualitative and probabilistic, with
extensions to fault detection, identification and recovery (FDIR) and safety analysis.
We provide an overview of the technology and of the results that have been achieved
so far, and address several challenges for future developments. Current efforts of the
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project consortium concentrate on improving and advancing both process as well as
technology of the COMPASS approach, with the goal of bringing the methods to
higher levels of technology readiness.

Keywords Safety and dependability analysis < Performance analysis + Model
checking -+ AADL modelling language

6.1 Introduction

Verification and validation (V&V) are key processes in the engineering of safety-
critical hardware and software systems. Their goal is to check whether the system
under construction or its artefacts meet their requirements and its intended functions.
The current industry practices for conducting V&V are rather labour intensive [4].
There are severe concerns on scaling these techniques to deal with the ever-growing
complexity of systems and in particular of software. The trend is to incorporate the
use of formal methods [44, 47, 62]. In particular, automated verification techniques
are attractive for supporting more rigorous V&V. Formal methods, however, tend to
require a high degree of expertise and specialised know-how. These incur substantial
investments before their cost and efficiency benefits can be reaped.

To tackle this problem, the European Space Agency (ESA) has initiated an inte-
grated system-software co-engineering approach focusing on a coherent set of speci-
fication and analysis techniques for the evaluation of system-level correctness, safety,
dependability and performability of on-board computer-based aerospace systems.
The work has been and is still being carried out in an ESA-funded project entitled
COMPASS, which stands for COrrectness, Modelling and Performance of AeroSpace
Systems [39].

This chapter gives an overview of the technology and of the results that have been
achieved so far, and addresses several challenges for future developments. Current
efforts of the project consortium concentrate on improving and advancing process as
well as technology of the COMPASS approach, with the goal of bringing the methods
to higher levels of technology readiness.

With regard to technology, several directions to be pursued have been identified,
and corresponding methods and implementations are currently under development.
Many of them are dealing with failure modelling and analysis. Originally, the COM-
PASS toolset supports performability evaluation: given an AADL model with asso-
ciated error probabilities, probabilistic model-checking techniques are employed to
determine the likelihood of a system failure occurring up to a given deadline. In many
cases, however, the probabilities of basic faults are not (exactly) known. It would
therefore be worthwhile to consider parametric error models, and to automatically
compute the maximal tolerable fault probabilities such that the overall model satis-
fies its performability requirements. A related problem is model repair, where one
tries to tune the error probabilities of a given model such that a given performabil-
ity property holds. Moreover, there is increasing demand for verification techniques
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that are able to cope with several (interdependent) performance measures, such as
reliability and energy consumption. In this setting, multi-objective model checking
is a promising approach.

Another error modelling concept to be investigated further are Timed Failure
Propagation Graphs (TFPG), which enable a precise description of how and when
failures originating in one part of a system affect other parts — a fundamental feature
for successfully designing contingency mechanisms. The latter require the careful
design and analysis of FDIR strategies, which in turn are based on the automated
synthesis of observability requirements to ensure sufficient diagnosability of fail-
ure situations. Another safety-related concept is Dynamic Fault Trees, an expressive
extension of standard Fault Trees that additionally cater for common dependability
patterns. In COMPASS, their analysis relies on the extraction of an underlying sto-
chastic model, which is a time-consuming process. This can be improved by reducing
the size of this model prior to analysis using graph transformation techniques, and
by accelerating the state space generation by leveraging reduction techniques from
model checking.

Another direction which is currently under development, is the enhancement of
the tool support to formalise the requirements into formal properties and to validate
with formal techniques that the specification is correct and complete. Related to this,
the specification of formal properties in terms of component assumptions and guar-
antees enables contract-based design, including the verification of contract-based
refinement and contract-based compositional verification of the system behaviour.

The following section sketches a systematic space systems engineering approach
as advocated by ESA and related institutions. In the subsequent two sections, we
address both the results that have been achieved in the COMPASS project and some
of the remaining challenges, and then conclude with a brief summary.

6.2 Space Systems Engineering

ESA and related institutions develop and maintain a series of standards for the man-
agement, engineering and product assurance in space projects and applications,
known as European Cooperation for Space Standardization (ECSS). Among oth-
ers, Standard ECSS-E-ST-10C [48] specifies the system engineering implementation
requirements for space systems and space products development. More concretely,
it states that

Systems engineering is defined as an interdisciplinary approach governing the total technical
effort to transform a requirement into a system solution. A system is defined as an integrated
set of elements to accomplish a defined objective. These elements include hardware, software,
firmware, human resources, information, techniques, facilities services, and other support
elements.
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Moreover, [48] partitions system engineering into the following activities:

requirements engineering which consists of requirement analysis and validation,
requirement allocation, and requirement maintenance;

analysis  which is performed for the purpose of resolving requirements conflicts,
decomposing and allocating requirements during functional analysis, assessing
system effectiveness (including analysing risk factors); and complementing test-
ing evaluation and providing trade studies for assessing effectiveness, risk, cost
and planning;

design and configuration which results in a physical architecture, and its com-
plete system functional, physical and software characteristics;

verification whose objective is to demonstrate that the deliverables conform to
the specified requirements, including qualification and acceptance;

system engineering integration and control which ensures the integration of the
various engineering disciplines and participants throughout all the project phases.

The following section describes to what extent these activities are supported in
our COMPASS approach.

6.3 Achievements

The COMPASS project funded by the European Space Agency (ESA) aims at an inte-
grated system-software co-engineering approach focusing on a coherent set of spec-
ification and analysis techniques for evaluation of system-level correctness, safety,
dependability and performability of on-board computer-based aerospace systems.
Its main contributions are a tailored modelling language and a toolset for supporting
(semi-)automated validation activities. The modelling language is a dialect of the
Architecture Analysis and Design Language (AADL) and enables engineers to spec-
ify the system, the software, and their reliability aspects. The COMPASS toolset pro-
vides a unifying framework for validation, employing state-of-the-art temporal-logic
model checking techniques for infinite-state transition systems, both qualitative and
probabilistic, with extensions to fault detection, identification and recovery (FDIR)
and safety analysis. Its applicability has been demonstrated in several case studies in
the space domain, ranging from thermal regulation and mode management in satel-
lites with associated FDIR strategies to an industrial-size satellite platform. Here we
provide a brief overview of our framework. A more comprehensive description is
given in [24, 65, 72].

6.3.1 The COMPASS Approach

The COMPASS toolset addresses, in a coherent manner, different aspects that are
relevant to the engineering of complex systems, such as co-engineering of hardware
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and software, performability and dependability, reliability, availability, maintainabil-
ity and safety engineering (RAMS). COMPASS offers a multi-disciplinary approach
that supports the early design phases by considering systems at the architecture level.
Thus it mainly targets the “requirements engineering” and “analysis” functions of
system engineering, but also tackles the “design and configuration” and ““verification”
phases.

More concretely, COMPASS provides a specification language that offers conve-
nient ways to describe nominal hardware and software operation, hybridity, (proba-
bilistic) faults and their propagation, error recovery, and degraded modes of opera-
tion. This language is discussed in Sect. 6.3.2 in greater detail. It is equipped with a
formal semantics that opens up the possibility to apply a wealth of formal methods
for various kinds of verification and validation activities. Most of these are based on
formal requirements as introduced in Sect. 6.3.3. V&YV is supported by an integrated
toolset, described in Sect.6.3.4, that covers the following functionalities according
to the ECSS standards.

Requirements Validation [48] In order to ensure the quality of requirements, they
can be validated independently of the system. This includes both property con-
sistency (i.e., checking that requirements do not exclude each other), property
assertion (i.e., checking whether an assertion is a logical consequence of the
requirements), and property possibility (i.e., checking whether a possibility is
logically compatible with the requirements). Altogether these features allow the
designer to explore the strictness and adequacy of the requirements. Expected
benefits of this approach include traceability of the requirements and easier shar-
ing between different actors involved in system design and safety assessment.
Furthermore, high-quality requirements facilitate incremental system develop-
ment and assessment, reuse and design change, and they can be useful for product
certification.

Functional Verification [48] Analysing operational correctness is the first step to be
performed during the system development lifecycle. It consists in verifying that
the system will operate correctly with respect to a set of functional requirements,
under the hypothesis of nominal conditions, that is, when software and hardware
components are assumed to be fault-free. This can be accomplished by both
simulation and exhaustive model checking techniques.

Safety and Dependability Analysis [49, 51-53] Analysing system safety and
dependability is a fundamental step that is performed in parallel with system design
and verification of functional correctness. The goal is to investigate the behaviour
of a system in degraded conditions (that is, when some parts of the system are not
working properly, due to malfunctions) and to ensure that the system meets the
safety requirements that are required for its deployment and use.

Performability Analysis [50] To guarantee the required system performance in the
presence of faults, integrated hardware and software models can be evaluated
with respect to their performance behaviour in degraded modes of operation.
In line with the approach for the functional correctness, again model checking
techniques are employed for assessing this type of requirements.
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Fault Detection, Identification and Recovery (FDIR) Analysis [49] System mod-
els can include a formal description of both the fault detection and identification
sub-systems, and the recovery actions to be taken. Based on these models, tool
facilities are provided to analyse the operational effectiveness of FDIR mea-
sures, and to investigate the observability requirements that make the system
diagnosable.

In summary, the overall process of analysing system specifications in the COM-
PASS framework involves the following steps:

1. System specifications (describing the nominal and, if applicable, the error behav-
iour) are entered using a text editor, and loaded into the toolset (cf. Sect.6.3.2).

2. Some of the subsequent analyses require writing properties. COMPASS offers
several ways to specify such properties (cf. Sect. 6.3.3).

3. To interactively explore the dynamic behaviour of the system, the model simula-
tion feature of the toolset can be employed (cf. Sect. 6.3.4).

4. Finally, depending on the type of the system, a plethora of analyses can be applied
(cf. Sect.6.3.4).

6.3.2 System Modelling

AADL [84] is an industry standard for modelling safety-critical system architectures,
which is developed and governed by SAE. This language provides a cohesive and
uniform approach for modelling heterogeneous systems, consisting of software (e.g.,
processes and threads) and hardware (e.g., processors and buses) components, and
their interactions. It enables analysis of system designs prior to implementation and
supports a model-based and model-driven development approach throughout the
system life cycle.

Our dialect of AADL was designed to meet the needs of the European space
industry. The original language is mainly focused on the architectural organisation
of a system under nominal and degraded modes of operation. The nominal modes
indicate that the system is operating normally, whereas degraded modes typically
signify that the system’s functions are (partially) impaired due to some anomaly.
Our goal was to extend AADL’s scope on defining the architecture of a system by
also allowing to analyse its dynamic behaviour, namely both its nominal and degraded
modes of operation and their interweaving.

In particular, quantitative aspects such as the timing of operations and the likeli-
hood of faults should be covered. To this end, we built on a core fragment of AADL
Version 1 [83] and extended it, essentially by supporting the following features:

e Modelling both the system’s nominal and faulty behaviour. To this aim, primitives
are provided to describe software and hardware faults, error propagation (i.e.,
turning fault occurrences into failure events), sporadic (transient) and permanent
faults, and degraded modes of operation (by mapping failures from architectural
to service level).
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e Modelling (partial) observability and the associated observability requirements.
These notions are essential to analyse the effectiveness of fault management sys-
tems. These subsystems, being part of the overall system, monitor it, identifying
when a fault has occurred, pinpointing the type of fault and its location, and finally
recovering from it by, for example, switching to a backup system configuration.

e Specifying timed and hybrid behaviour. In particular, to analyse physical systems
with non-discrete behaviour, such as mechanics and hydraulics, the modelling
language supports continuous real-valued variables with (linear) time-dependent
dynamics.

e Modelling probabilistic aspects, such as random faults and repairs, that are subject
to stochastic timing.

A complete system specification consists of three parts, namely a description
of the nominal behaviour, a description of the error behaviour, and a fault injection
specification that describes how the error behaviour influences the nominal behaviour.
This separation approach is different from the one taken in AADL and its Error
Model Annex [81], which interacts through an explicit specification of mangling
error and nominal events. In contrast, our dialect provides an automated mechanism
(called model extension) that enables engineers to keep the nominal model completely
separate from the error model. A comprehensive presentation of our specification
language and its formal semantics is given in [25].

6.3.3 Requirements Specification

An important aspect of V&V of requirements is the consistent and complete specifi-
cation of formal properties associated with the requirements. As the (correct) spec-
ification of such properties requires a significant amount of technical expertise, the
COMPASS toolset has striven to alleviate this burden from its users as much as
possible.

The approach initially taken by COMPASS was to allow the user to specify prop-
erties by means of patterns [5, 46]. These provide a structured way of generating a
formal property given a template with placeholders, where the user provides basic
propositions (statements about the current state of the system) for each of these
placeholders. The use of these patterns relies on the fact that the requirements them-
selves often use recurring shapes. For example, one pattern describes the absence of
particular behaviour in the system, e.g., reaching a state of critical failure.

Various logics are supported by this approach, in particular qualitative, timed
and probabilistic logics, such as LTL/CTL, MITL and CSL respectively. A formal
property expressed by a pattern is converted into the appropriate logic depending on
the pattern used, and given to a model checker for analysis. An appropriate model
checker in the toolset will be provided the input model and one or more properties,
and checks whether the property holds, thus providing the formal verification of the
requirement associated with it.
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Recently, support has been added to COMPASS for the Catalogue of System and
Software Properties (CSSP) in the CATSY project [18]. The CSSP defines a set of
design attributes which are used to automatically derive formal properties. A require-
ments taxonomy has been set up, with a focus on the space engineering domain, to
allow various project requirements to be classified (e.g., requirements related to
monitoring, protocols or availability). For each of these classes, associated design
attributes have been identified. Such design attributes may refer to the presence of
elements in the model (e.g., redundant components or mode transitions) or to prop-
erties associated with such elements (e.g., timing of events, or reactions to events).
The latter are collected in the CSSP. This way, for appropriate requirement classes,
a user can simply specify the value of the associated properties. A formal property
is generated automatically for such model properties, allowing for the verification of
the corresponding requirement.

Moreover, still within the CATSY project, the specification language has been
enriched with the possibility to specify properties on components directly in temporal
logics, thus without the help and limitation of the pattern-based approach. Finally,
the properties attached to components (either specified directly in temporal logic or
by means of patterns or the CSSP) can be structured into contracts [38], i.e., pairs of
assumptions and guarantees, to enable the verification of contract-based refinement
and contract-based compositional verification and safety analysis.

6.3.4 COMPASS Toolset

The COMPASS toolset is the result of a significant implementation effort carried out
by the COMPASS Consortium. The GUI and most subcomponents are implemented
in Python, using the PyGTK library. Pre-existing components, such as the NuSMV
and MRMC model checkers, are mostly written in C. Overall, the core of the toolset
consists of about 100,000 lines of Python code. Figure 6.1 shows the functionality
of the toolset. Its main features are introduced in the COMPASS Tutorial [41]. It is
complemented by the COMPASS User Manual [40], which can be consulted for a
more systematic reference.

COMPASS takes as input one or more AADL models, and a set of properties.
As pointed out before, the latter are provided in the form of generic properties or
instantiated property patterns, which are templates containing placeholders that have
to be filled in by the user. The COMPASS toolset provides templates for the most
frequently used patterns, that ease property specifications by non-experts through
hiding the details of the underlying temporal logic. The tool generates several out-
puts, such as traces, Fault Trees and FMEA tables, diagnosability and performability
measures.

The toolset builds upon the following main components. NuSMV (New Symbolic
Model Verifier, [34, 74]) is a symbolic model checker that supports state-of-the-art
verification techniques such as BDD-based and SAT-based verification for CTL and
LTL [8]. nuXmyv [32] is an extension of NuSMV for the SMT-based verification of
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Fig. 6.1 Functional view of the COMPASS platform

infinite-state systems. MRMC (Markov Reward Model Checker, [67, 71]) is a prob-
abilistic model checker that enables the analysis of discrete-time and continuous-
time Markov reward models. Specifications are written in PCTL (Probabilistic
Computation Tree Logic) and CSL (Continuous Stochastic Logic [6], a probabilis-
tic real-time version of CTL). SigRef [88] is used to minimise, amongst others,
Interactive Markov Chains (IMC; [61]) based on various notions of bisimulation.
It is a symbolic tool using multi-terminal BDD representations of IMCs and applies
signature-based minimisation algorithms. xSAP [13] is a tool that supports model-
based safety analysis including Fault-Tree Analysis, FMEA, and diagnosability.
OCRA [36] takes in input a system architecture specification and allows to perform
contract-based validation and verification.

The tool also supports a graphical notation of our AADL dialect, which is derived
from the graphical notation of AADL [82]. We developed a graphical drawing editor
enabling engineers to construct models visually using the adopted graphical notation.
This editor is called the COMPASS Graphical Modeller and is part of the COMPASS
toolset. Figure 6.2 shows the main window of the COMPASS toolset after loading a
system model and performing a fault injection.
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COMPASS Toolset
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State Inhibited Ports
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Edit
Output Console:
Compiling 'examples/adder/adder discrete/adder.slim'... OK
Compiling 'examples/adder/adder discrete/adder err.slim'... OK
No top-level contracts have been found.

Compiler | Logging Extended Model = Metrics

Fig. 6.2 Main window of the COMPASS toolset

6.3.4.1 Properties Validation

Figure 6.3 gives an example of a property specification by means of patterns. Before
analysing the correctness of the behavioural model against the specified properties,
the properties themselves can be validated to search for errors in the requirements or
in their formalisation. COMPASS supports this activity of properties assurance [79]
by allowing the user to specify and check property validation problems. These can
be a simple check of consistency (i.e., logical satisfiability) of a set of properties or
can consist of specifying a new property to be consistent with or entailed by a set of
existing properties. In case of inconsistency or failed entailment, an execution trace
is generated as a witness of the result. In case of proved inconsistency or entailment,
a minimal subset of properties that are sufficient for the proof can be extracted.
When properties are structured into contracts, COMPASS supports the verification
of their refinement as described in [38]. In contract-based design, the assumptions
of a component are properties to be satisfied by the component environment, while
the guarantees are properties to be satisfied by the implementation when the assump-
tions hold. A correct contract refinement ensures that any correct implementation
of the subcomponents form a correct implementation of the composite component,
and, together with an environment satisfying the assumptions, form a correct envi-
ronment for each subcomponent. This is verified by generating and proving a set
of proof obligations, which are validity problems for the underlying temporal logic.
For every refined contract, there is a proof obligation to ensure that the guarantee
of the composite component is entailed by the conjunction of the assumption of the
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Formula:  [] {sys.is_alive}

cancel Save

composite component and the contracts of the subcomponents, and similarly for each
assumption of each subcomponent.

If the contract refinement is not correct, the tool provides an execution trace
for every invalid proof obligation. In case the refinement is correct, the tool can
provide some feedback by presenting viable fightenings of the contract refinement,
i.e. stronger/weaker versions of the assumptions/guarantees that still yield a correct
contract refinement, as described in [35].

6.3.4.2 Functional Correctness

COMPASS supports random and guided model-based simulation of AADL models.
Guided simulation can be performed by choosing either the next transition to be taken,
or a target value for one or more variables. The generated traces can be inspected
using a trace manager that displays the values of the model variables of interest
(filtering is possible) for each step.

Property verification is based on model checking [8], an automated technique
that verifies whether a property expressed in temporal logic holds for a given model.
Symbolic techniques [10, 11, 60] are used to tackle the problem of state space
explosion. COMPASS relies on the NuSMV [34, 74] and nuXmv [32, 75] model
checkers, which support both BDD-based and SAT-based verification for finite-state
systems, and SMT-based verification techniques for timed and hybrid systems, based
on the MathSAT solver [20, 69]. On refutation of a property, a counterexample
is generated, showing an execution trace of the model violating the property. An
example of this is shown in Fig. 6.4. It is also possible to run deadlock checking, in
order to pinpoint deadlocks (i.e., states with no outgoing transitions) in the model.
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Fig. 6.4 A model-checking counterexample

The verification of properties can be enhanced by contract-based specification to
perform it in a compositional way. In this case, COMPASS interacts with OCRA [36],
first, to check that the contract refinement is correct and, second, to individually verify
each atomic component with respect to its local contract. These checks ensure the
correctness of the overall system by compositional reasoning.

6.3.4.3 Safety and Dependability Assessment

COMPASS implements model-based safety assessment techniques, based on sym-
bolic model checking [26, 28], and supports traditional techniques such as Failure
Mode and Effects Analysis (FMEA; [49]) and Fault Tree Analysis (FTA; [52]). FMEA
is an inductive technique that starts by identifying a set of (combinations of) failure
modes and, using forward reasoning, assesses their impact on a set of system prop-
erties. The results are summarised in an FMEA table. It is also possible to generate
dynamic FMEA tables, i.e., to enforce an order of occurrence between failure modes.
FTA is a deductive technique, which, given a top-level event (TLE), i.e., the speci-
fication of an undesired condition, constructs all possible chains of basic faults that
contribute to its occurrence. Pictorially, these chains are organised in a Fault Tree
with a two-layer logical structure, corresponding to the disjunction of its minimal cut
sets (MCSs; [28]), where each MCS is a conjunction of basic faults. COMPASS also
supports the generation of (a subset of) Dynamic Fault Trees [45], where ordering
constraints between basic faults are represented using priority AND (PAND) gates.
Figure 6.5 depicts a Fault Tree.
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Fig. 6.5 A generated fault tree

Itis also possible to exploit a contract-based specification to obtain a fault tree that
follows the hierarchical decomposition of the system [27]. In this case, COMPASS
interacts with OCRA to compute a fault tree where each intermediate event represents
the failure to satisfy either the guarantee or the assumption of a contract. The fault tree
represents the dependency between such failure and the failures of other components.
For example, the failure of a composite component can be caused by the combined
failure of two of its subcomponents or by the failure of its assumption, which in turn
can be caused by the failure of other components. Compared to the “monolithic”
FTA described above, the contract-based FTA is more pessimistic with regard to
the identification of possible system failures because it follows the conservative
approximation given by the contract-based refinement. The resulting fault tree is
however often more intuitive because it uses intermediate events corresponding to
the components in the system architecture.

6.3.4.4 Diagnosability and FDIR Analysis

The COMPASS toolset supports diagnosability and FDIR (Fault Detection, Isolation
and Recovery) effectiveness analysis. These analyses work under the hypothesis of
partial observability. Variables and ports in our AADL dialect can be declared to be
observable.

Diagnosability analysis investigates the possibility for an ideal diagnosis system
to infer accurate and sufficient run-time information on the behaviour of the observed
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system. The COMPASS toolset follows the approach described in [37], where the
violation of a diagnosability condition is reduced to the search of critical pairs in
the so-called twin plant model, i.e., pairs of execution traces that are observationally
equivalent but hide conditions that should be distinguished. Figure 6.6 shows such a
pair of traces.

FDIR effectiveness analysis refers to a set of analyses carried out on an existing
fault management subsystem. Fault detection is concerned with detecting whether a
given system is malfunctioning, namely searching for observable signals such that
every occurrence of the fault will eventually trigger them. Fault isolation analysis
aims at identifying the specific cause of malfunctioning. It generates a Fault Tree
that contains the minimal explanations that are compatible with the observable being
triggered. Finally, fault recovery analysis is used to check whether a user-specified
recoverability property holds.

6.3.4.5 Timed Failure Propagation Graphs

COMPASS supports Timed Failure Propagation Graphs (TFPGs; [1, 70, 76]) as
a means to model and analyse how failures originating in one part of a system
affect other parts. Traditionally, TFPGs can be used for both diagnosis and progno-
sis. TFPGs describe the occurrence of failures and the temporal interrelationships
between failures and their direct and indirect effects. They constitute a very rich
formalism that can express Boolean combinations of basic failures, intermediate
consequences, and transitions across them, labelled with propagation times and pos-
sibly dependent on the system’s operational modes. TFPGs are increasingly used for

Fig. 6.6 Diagnosability counterexample
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the design of autonomous systems, in particular for the design of FDIR procedures.
Compared to other techniques such as FTA and FMEA, TFPGs have substantial
advantages. They present a more comprehensive and integrated picture than Fault
Trees, as they focus on propagation paths in response to individual feared events.
Moreover, in comparison to FMEA tables they provide additional and more precise
information, such as timing information and AND/OR correlations between propa-
gation causes and effects.

As shown in Fig. 6.7, COMPASS enables the modelling and analysis of TFPGs.
The available analyses include behavioural validation, that is, verification that a
TFPG is a complete representation of failure propagation with respect to a given
system model, and effectiveness validation, that is, verification that a TFPG is a suit-
able model for diagnosis, i.e., contains sufficient information to carry out diagnosis,
discriminating between different possible causes. Finally, COMPASS supports the
automatic synthesis of a TFPG, given a set of nodes and a system model.

6.3.4.6 Performability Analysis

We use probabilistic model checking techniques [7, 8] for analysing a model with
respect to its performance. The COMPASS toolset in particular supports performance
properties expressed by the probabilistic pattern system presented in [5]. It allows
for the formal specification of steady-state, transient probabilities, timed reachability
probabilities and more intricate performance measures such as combinations thereof.
An example of a typical performance parameter is “the probability that the first
battery dies within 100 h” or “the probability that both batteries die within the mission

Model  Propertien  Misslon | TFPG. | veldation Correctnens Peformabiity afety  fom
Lt of TRRCS
|rras

| ExampleTrPe

| e wew || # Edt || = Remowe | o Bgportas. |-

Fig. 6.7 Example of a TFPG
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duration”. These properties have a direct mapping to Continuous Stochastic Logic
(CSL; [6]) and are input to the underlying probabilistic model checker.

The probabilistic model checker furthermore requires a Markov model as input.
This is obtained from the integrated nominal and error model through several steps.
First, the extended model’s reachable state space is generated through an exhaustive
symbolic exploration. Second, the probabilistic rates as specified in the error models
are interwoven through the state space by replacing the transition label with the
associated probabilistic rate. The resulting state space is a symbolic representation of
an Interactive Markov Chain (IMC), i.e., a Continuous-Time Markov Chain (CTMC)
that may exhibit non-determinism [61]. This IMC is passed through the third phase,
in which its size is reduced using weak bisimulation minimisation [43, 86]. In the
final phase, CSL formulae are extracted from the performance requirements, and
are fed together with the reduced IMC to a probabilistic model checker, to compute
the desired probabilities. If the reduced IMC is a proper CTMC, the MRMC model
checker [67] is used for this purpose, otherwise the IMCA model checker [58] is
employed. As can be seen in Fig. 6.8, the result is a graph showing the cumulative
distribution function over the time horizon specified in the performance requirement.
Similar techniques are also used for Fault Tree evaluation, i.e., for computing the
probability of the top-level event in Dynamic Fault Trees [19].

- COMPASS Toolset
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Fig. 6.8 Performing performability analysis



6 Formal Methods for Aerospace Systems 149

6.3.5 Case Studies

The COMPASS methodology has been progressively assessed by several industrial
case studies, steadily increasing in size and scope. Table 6.1 summarises the results,
respectively giving appropriate references, the number of components of the system
model (“#C”), the main aspect to be investigated, and the major technological chal-
lenges that have been solved and those that were left open (and will be addressed in
Sect. 6.4).

Thales Alenia Space conducted the first evaluation. They developed two case
studies of their satellite subsystems, respectively dealing with mode management
and thermal regulation, and analysed them using the COMPASS toolset [65]. These
subsystem case studies demonstrated the potential of understanding the subtle inter-
actions between the system, software, and the fault management system. They fur-
thermore raised follow-up questions: how would models with a greater level of detail
be handled? In which phases of the systems engineering life cycle is the COMPASS
methodology particularly suitable?

To address these issues, ESA conducted a laboratory project to model a full satel-
lite platform using the COMPASS methodology. This was performed at phase B of
the space systems engineering life cycle, the preliminary system design [24, 54].
A subsequent laboratory project was initiated afterwards to model a full satellite
platform at phase C, the detailed system design. Here, special focus was put on diag-
nosability analysis, which in the phase B pilot was deemed intractable. This analysis
increasingly gains importance in the engineering life-cycle as fault management
designs become more involved to meet mission demands. Our experiences indicate
a clear need for enhanced diagnosability analysis algorithms that also account for
delayed diagnostic means. The outcomes of this study are discussed in detail in [24].

Moreover, [31] presents a case study performed together with Airbus Defense
and Space, which was carried out to demonstrate the applicability of stochastic
model checking (Monte Carlo methods) to analyse timed reachability properties
of a simplified launcher system. The evaluation revealed the need to support more
expressive kinds of stochastic logics.

Recently, a case study on the application of TFPGs for the on-going Solar Orbiter
project [85] was performed internally at ESA. It shows the feasibility of using TFPG-

Table 6.1 Overview of case studies

Case study #C Aspect Solved Open

Mode mgmt. [65] |3 Fault mgmt. Scalab. of analysis —

Thermal reg. [65] | 12 Hybrid behav. | Zeno paths —

Platform B [24, 54] | 86 FDIR Fairness —

Platform C [24] | 246 Diagnosab. Effic. diagnosab. anal. | Delayed diagnosis
Launcher [31] |37 Prob. reachab. | Effic. performab. anal. | Expressivity of logics
Solar Orbiter [12] | 15-39 | Failure propag. | TFPG analysis Fault recov. synthesis
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based analyses to study time-critical failure propagation at a unit to subsystem level.
When using focused modelling, also the analysis of timed failure propagation in
detailed physical models is feasible. In general, TFPGs have been found to be a
promising technology to formally integrate various key aspects of FDIR design,
including discrete failure propagations across all levels of a system, time bounds on
the delays, mode constraints, and monitors. This is very important, because informal
analysis usually done with FMEA makes it difficult to demonstrate completeness
and timing properties of the proposed design. Indeed, by application of TFPGs in
the case study one case of a propagation link missing in the FMEA tables has been
identified.

6.4 Challenges

With regard to technological challenges, several directions to be pursued have been
identified, and corresponding methods and implementations are currently under
development.

6.4.1 Formal Validation of Probabilistic Properties

As explained in Sect. 6.3.3, system requirements are formalised by temporal logics.
The toolset described in Sect.6.3.4 supports the validation of such properties by
means of satisfiability/validity checking, i.e., the problem of deciding whether a
given formula is satisfied by at least one or, dually, by every system model. This is
currently supported for qualitative logics like LTL and CTL, which only allow to
describe the order of system actions but cannot express quantitative properties such
as timing or probabilities. These logics possess the so-called finite model property,
and the complexity of checking satisfiability has been explored for various fragments.

However, the satisfiability problem for probabilistic versions of CTL such as
PCTL and CSL, which are employed to express quantitative properties of system
models, is almost unexplored [33]. These logics are quite popular in the field of
probabilistic verification as their model-checking problem is known to be decidable.
When it comes to satisfiability, however, the analysis turns out to be a much more
difficult endeavour. In fact, this is a long-standing open problem for PCTL. Results so
far are restricted to logical fragments such as qualitative PCTL [29], or are obtained
by considering variations of the satisfiability problem. One of the most recent results
is given in [33], where the satisfiability problem for a bounded fragment of PCTL is
shown to be decidable.

Therefore, there is strong demand for identifying richer fragments of PCTL and
for studying their satisfiability, complexity, and finite/rational model properties.
A promising direction is to start from the characterisation of safety and liveness
fragments of this logic [66].
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6.4.2 Contract-Based Fault Injection

As discussed in Sect. 6.3.4, Fault Tree Analysis can be performed either by means of
a more traditional model-based approach, which computes the minimal cut set for
a top-level event, or by means of contract-based safety analysis, which produces a
hierarchical Fault Tree that follows the specified contract refinement (and thus the
architectural decomposition). The two analyses are currently disconnected: while
the model-based safety analysis exploits the error model specification to automati-
cally inject faulty behaviours into the nominal model, the contract-based approach
identifies a failure by the fact that the component implementation violates a guar-
antee or that the component environment does not satisfy an assumption. Thus, in
the contract-based approach, in case of failure, any behaviour is possible. This may
result in Fault Trees that describe combinations of failures which can never occur in
the real system. An interesting research direction is to find an effective way to inject
the faults in the contract specification in order to have degraded assumptions and
guarantees in case of failures.

6.4.3 FDIR Design and Diagnosability

The area of diagnosability and fault detection, identification [and recovery] (FDI[R])
design is particularly challenging. Recent work [22, 23] has addressed the extension
of diagnosis and FDI to incorporate the notion of delay, and to address cases where
diagnosability cannot always be guaranteed for all system executions.

The diagnosis delay characterises situations where diagnosis requires a time delay
in order to be carried out. The notion of alarm condition formalises the relation
between the condition to be diagnosed (e.g., presence or absence of a fault, isola-
tion between different faults) and the raising of an alarm by the diagnoser; an alarm
condition may specify diagnosis with an exact delay (after exactly a given time),
a bounded delay (within a given time) and finite delay (eventually). Moreover, the
notion of trace diagnosability formalises cases where diagnosability cannot be guar-
anteed globally, but only locally, on a subset of traces, and the notion of maximality
formalises the capability of a diagnoser to raise the alarm as soon as possible and
as long as possible. Finally, FDI effectiveness properties state the correctness and
completeness of an FDI design with respect to the FDI requirements. In [23], all of
these properties of an FDI design can be specified using a general framework and
language based on temporal epistemic logic. Verification can be performed using an
epistemic model checker. Alternatively, the diagnosability check can be reduced to
standard temporal logic model checking based on the twin-plant approach described
in Sect. 6.3.4. The original version of the latter was introduced in [37] and is being
employed in the current COMPASS toolset, while [22, 57] shows how to extend it
to deal with epistemic logic. In addition, an algorithm for the automatic synthesis of
correct-by-construction FDI components is available [23].
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Another interesting research area concerns the analysis of observability require-
ments for diagnosis, and the synthesis of a set of observables that are sufficient to
ensure diagnosability [16]. It is possible to rank configurations of observables based
on cost, minimality, and diagnosability delay, thus helping designers in finding the
most appropriate configuration.

The automatic synthesis of FDIR components has been considered in two projects
related to COMPASS, namely AUTOGEF [2] and FAME [15], also funded by ESA.
The problem is cast in the frame of discrete event systems and finite delay diagnosis,
and is tackled by synthesizing the fault detection and fault recovery components
separately, with the idea that fault recovery implements a plan (recovery strategy) to
respond to the alarms generated by the fault detection component. FAME addresses
the problem of FDIR synthesis for continuous-time systems, where the diagnoser
communicates with the plant by sampling the values of the sensors at periodic time
intervals. Another outcome of the FAME project is the definition of a general process
for FDIR design that spans the different phases of system development (definition of
mission and FDIR requirements, safety assessment, FDIR design and verification).
This process aims at enabling a consistent and timely FDIR conception, development,
verification and validation, overcoming several shortcomings of existing practices.
FDIR synthesis, along with other functionality described in this section, is under
consideration for inclusion in the COMPASS toolset.

6.4.4 Timed Failure Propagation Graphs

Recent work has focused on techniques for validating TFPG models. In particular,
[21] studies several validation problems using advanced techniques based on satisfia-
bility modulo theory, namely possibility and necessity, refinement and diagnosability.
Moreover, [17] addresses both the completeness of a TFPG with respect to a sys-
tem model, and the problem of fightness of TFPG edges, that is, the possibility that
certain parameters, specifically time bounds, of the TFPG can be reduced without
breaking its completeness. Finally, the problem of automatic synthesis of a TFPG is
thoroughly investigated in [14]. Automatic tightening of the TFPG nodes, coupled
with the synthesis of the graph, may be used to automatically produce a complete
and tight TFPG from a system model, given the definition of the TFPG nodes.

6.4.5 Parametric Error Models

Originally, the COMPASS toolset supports performability evaluation (cf. Sect. 6.3.4):
given an AADL model with associated error probabilities, the likelihood of a system
failure occurring up to a given deadline is determined. The underlying technique
is probabilistic model-checking. In many cases, however, the probabilities of basic
faults are not known, or at best can be estimated by lower and upper bounds. It
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would therefore be worthwhile to consider parametric error models, in which the
probabilities of faults are (partially) left open.

Parameter synthesis focuses on automatically computing the maximal tolerable
parameter values such that the resulting model satisfies its performability require-
ments. Although this problem is inherently harder than (probabilistic) model check-
ing, firstresults indicate that for a limited number of parameters, solutions are feasible
and scalable [42, 63]. They would allow to derive quality requirements for electronic
[80] or mechanical parts [73] or software components [3] of a system to be developed.

A related problem is model repair, where one tries to tune the error probabili-
ties of a given model such that the resulting model satisfies a given performability
requirement. Current approaches only consider changes of the transition probabili-
ties, whereas modifications of the underlying topological structure are not considered.
Different methods exist, such as global repair [9] and the more recent technique to
perform local repair operations in an iterative fashion [77].

6.4.6 Dynamic Fault Trees

Fault Tree Analysis (cf. Sect.6.3.4) is a widespread industry standard for assessing
system reliability [52]. Standard (static) Fault Trees model the failure behaviour of
a system dependent on its component failures. To overcome their limited expressive
power, Dynamic Fault Trees (DFT) have been introduced to model advanced depend-
ability patterns, such as spare management, functional dependencies, and sequencing
[45]. Currently, in addition to static Fault Trees the COMPASS toolset only supports
sequencing, by representing ordering constraints between basic faults using priority
AND (PAND) gates. However, there is strong demand for improving safety assess-
ment by supporting more expressive constructs in DFTs. They often lead to fault
models that are more succinct, and thus better comprehensible.

DFT analysis relies on the extraction of an underlying stochastic model, such as
a Bayesian Network, a Continuous-Time Markov Chain, a Stochastic Petri Net, or
an Interactive Markov Chain. This is a time-consuming process, in particular for
more expressive dependency patterns, raising the need for approaches to make it
simpler and cheaper (in terms of computational resources). A key technique is the
reduction of the state space of DFTs prior to (and during) their analysis. Here, one
technique is to consider DFTs as (typed) directed graphs and to manipulate them by
graph transformation, a powerful technique to rewrite graphs via pattern matching.
In [64], a catalogue of 28 (templates of) rules is presented that convert a given DFT
into a smaller, equivalent one having the same system reliability and availability
characteristics. Experiments with 170 DFTs, originating from standard examples
from the literature as well as industrial case studies from aerospace and railway
engineering, showed encouraging results. The rewriting approach enabled us to cope
with 49 DFTs that could not be handled before. But also for static Fault Trees the
processing pays off, rendering analysis much faster and more memory efficient, up to
two orders of magnitude.
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More state-space reductions can be obtained by tailoring two successful tech-
niques from the field of model checking, namely, symmetry reduction and partial-
order reduction [87]. In the DFT setting, this amounts to the detection of isomorphic
sub-DFTs, of stochastic independencies, and of sub-DFTs that become obsolete
after the occurrence of some faults. In addition, certain failure orderings arising
from superfluous non-determinism can be ignored in the analysis. All this comes at
no run-time penalty: as the results in [64, 87] indicate, structural transformations of
DFTs operate very fast, and the stochastic model generation is significantly acceler-
ated due to the reduction. This opens the possibility of supporting more expressive
types of Fault Trees, and considering techniques on how to analyse them efficiently
in the COMPASS toolset.

In addition, one can exploit that some stochastic analyses such as assessing the
reliability of a system—how likely is it operational up to a certain point in time?—are
compositional: the measure can directly be computed from its sub-DFTs’ measures.
This means that the analysis can be carried out in a modular way by considering only
a part of the state space in each step, and by re-computing measures incrementally
after local changes in DFTs.

Last but not least, the parameter synthesis techniques as sketched in Sect. 6.4.5
can also be applied to DFTs. Classical analyses require all component failure rates
to be known, which often does not hold in practice. Thus, a relevant problem is to
synthesise the allowed component failure rates ensuring, e.g., a given mean minimal
time between failures. This is clearly an instance of the parameter synthesis problem
as described earlier.

6.4.7 Multi-objective Verification

Besides the correctness of their functional behaviour, systems are required to exhibit
adequate performance characteristics. The latter can be measured by, e.g., its average
and peak energy consumption, construction costs, and its availability and reliability.
These measures are often contradictory: while using more power for data transmis-
sion typically increases the reliability level of communication, it also entails a higher
energy consumption. But also less obvious mutual dependencies can emerge: opti-
mising a system for (long-run) availability might reduce the (short-term) reliability.

In order to systematically investigate such effects, multi-objective model checking
can be employed. This is a fully automatic technique by which, based on a model
of the system under consideration and some measures-of-interest, a so-called Pareto
curve is deduced [56]. The latter gives an (often graphical) representation of the
optimal strategy for resolving non-deterministic choices in the system with respect
to a given weighting of these measures. Currently, only Markov Decision Processes
can be handled by this technique [55, 68]. While these support non-deterministic
choices (to be optimised) and discrete probabilities, they lack continuously distrib-
uted random delays, which are typically used to describe, e.g., mechanical wear or
other sources of failures.
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Markov Automata [59] constitute a highly expressive formalism which extends
Markov Decision Processes by such random delays. They are known to provide a
suitable model for, e.g., Dynamic Fault Trees (cf. Sect.6.4.6) or to define formal
semantics of Stochastic Petri Nets. Previous work is only able to cope with optimis-
ing single measures on Markov Automata [59]. Our aim is therefore to extend the
techniques that have been developed for Markov Decision Processes to this richer
setting. Here, we will have to distinguish time-bounded analysis problems from oth-
ers. With regard to the former, our idea is to employ the digitisation approach from
[59] to derive upper and lower bounds for time-bounded reachability probabilities.
In the unbounded case, it will be possible to completely abstract from the continuous
behaviour of the Markov Automaton by instead considering the underlying Markov
Decision Process.

6.5 Conclusion

To tackle the problem of correctness and reliability of control software in the aerospace
domain, formal methods are increasingly being employed. They enable the exhaustive
and mathematically founded analysis of all possible behaviours of a computer pro-
gram and of its interaction with the overall system and the verification of properties
such as functional correctness. They also allow to reduce the effort and, thus, the cost
of testing activities [4]. Due to their benefits, they are increasingly becoming an inte-
gral part of the development cycle of safety-critical systems [44, 47, 62].

We have given a sketch of the ESA-funded COMPASS project, the related toolset
and its underlying techniques. COMPASS provides an integrated approach to inte-
grated system-software co-engineering covering modelling, analysis, and verification
activities. While these methods turned out to be very useful in practical applications,
there is still room for technological improvements. In the second part of this chapter,
we have identified current bottlenecks and possible solutions. This comprises tech-
niques that cover both the nominal and the error behaviour of systems, such as the
formal validation of quantitative requirement specifications (Sect. 6.4.1) and multi-
objective verification (Sect. 6.4.7).

Other methods focus on fault management, with the goal of improving the expres-
sivity of error modelling and related analysis methods. In this category, we find
approaches such as contract-based failure analysis (Sect. 6.4.2), Timed Failure Prop-
agation Graphs (Sect.6.4.4), parametric error models (Sect.6.4.5), and Dynamic
Fault Trees (Sect.6.4.6). Last but not least, there is demand for better support for
fault diagnosis and management in the form of FDIR design (Sect. 6.4.3).

To guarantee a smooth embedding of such technologies in the overall system
development process, additional support by accompanying process-oriented mea-
sures is required. Here, the main concern is the integration of the modelling, analysis,
and validation activities enabled by COMPASS with the design and implementation
steps as provided by other tools supporting AADL (such as TASTE [78]) or other
specification languages (such as Simulink). Moreover we note that our approach is
completely model based. Thus, methods for generating code from AADL specifica-
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tions and for checking the conformance of a hardware/software implementation with
respect to the AADL model are required. For the latter, model-based testing [30] can
be employed, which is an automated technique in which the test generation process
is steered by the AADL model.
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