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Introduction

Uncertainty and error are unavoidable in spatial ecology mapping just as in other
geographical applications. There are several common approaches, mapping poly-
gons directly on air photographs, classification of digital remote sensed data or,
often the most accurate, the spatial extension of good point data obtained by field
survey (Predictive Vegetation Mapping or PVM). The focus of this paper is PVM.
Huang and Lees (2004, 2005, 2007) looked at two main types of error in the sorts of
models used to spatially extend good, point, vegetation data, inherent and opera-
tional. Inherent error is error resulting from inaccurate input data, while operational
error is the error which results from the modelling itself. All spatial data, whether
they are paper maps or digital layers, in vector or raster format, having categorical
or numerical values, contain errors to some extent. This is due to not only instru-
ment and human errors, but also the age of the data and the inherent complexity of
the real world. Models tend to reduce the complexity of the real world using
approximations and the cost of these approximations is increased error, uncertainty
and less precision. Errors in input data can be transmitted through the modelling
process and become manifest in the final products. Different models transmit error
in different ways. The exact error propagation modes for most models are unclear
and need careful analysis (Huang and Lees 2005). Van Niel et al. (2004) did this for
error in elevation data, a common input to PVM, and Huang (Huang and Lees
2004) did this for PVM more generally. Huang and Lees (2007) and Hagen-Zanker
et al. (2005) went further and looked at the effects of learning sample location and
class error.
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Once we properly identify the types and sources of error, track the error trans-
mission through the modelling process, measure and quantify the magnitude of the
error with suitable error indices, and visualise the error measurements for the users,
sensible strategies need to be implemented to reduce or manage the error if possible.
Common sources of error in predictive vegetation modelling are DTM inaccuracy,
which flow through to slope, wetness estimates and aspect/insolation calculations,
and soil/lithology data. Given the problems of circularity with soil mapping which
is now often based on a model integrating vegetation, geology and slope data
(McBratney et al. 2003), vegetation modellers often resort to geology maps rather
than soil maps. However, geology maps are rarely produced at fine scale and often
the classes depicted relate to the age of a unit rather than its varied lithology. These
issues have been dealt with elsewhere.

This paper looks at one of the common sources of error in predictive vegetation
mapping, the actual style of mapping, although the principles are more generally
applicable to other forms of natural resource mapping. The style of mapping
commonly used for vegetation is the area-class map (Mark and Csillag 1989; Bunge
1966). This is a form of thematic map often described as a choropleth map, but
Mark and Csillag (1989) point out that this usage is incorrect and that the term
‘choropleth map’ should be restricted to situations where the bounding polygons are
defined by other than the phenomena being mapped. For example, the adminis-
trative boundaries used by McHarg and Mumford (1969) for forest type polygons in
his Potomac River Basin Study are correctly choropleth maps but give a quite
misleading impression of the land cover around Washington because they are
inappropriate for the phenomena being mapped and suffer badly, as a result, from
the Modifiable Areal Unit Problem.

Background

In 1977 David Sinton wrote a seminal paper on ‘the inherent structure of infor-
mation as a constraint to analysis’. He used mapped thematic data of natural
resources as a case study. Thematic mapping dates back to the early 17th Century,
well before computer databases were available. However, thematic mapping of
natural resource information of the type discussed by Sinton is properly area-class
mapping although he didn’t use that term. In these types of map the structure is of
discrete polygons with the boundaries between categories or classes of the theme.
These occur over contiguous regions of geographic space. The polygon structure
can be seen as enclosing an Entity but Goodchild et al. (2009) suggest it can also be
seen as is a Nominal Field. The structure both reflects the way we think and, to
some extent, how we go about collecting data.

Sinton made the point that certain types of information are collected in such a
way that there are steps which include generalisation inherent in the collection
process. This generalisation of the information collected limits the types of analysis
which can be carried out later.

40 B. Lees



This sounds like an obscure and abstract point, but it is not. For example, during
the 1980’s the Australian Government decided, as a result of considerable conflict
between those supporting the logging of native forests and those opposing this on
environmental grounds, to have a National Forest Inventory. This was intended to
produce a master data set to avoid the conflict which had arisen between datasets
produced by the competing interests. The first pass at joining up forest maps across
state borders revealed that there were serious inconsistencies in the ways each state,
and in some cases region, defined their forests. This should not have been a surprise
as similar problems had been observed when attempts have been made to mosaic
soil maps across administrative boundaries. Solving the problem by resorting to the
original observations to recode the data proved impossible as they had not been
retained.

Indeed, the practice in many field sciences was to observe, classify then record.
In many cases the detail of the original observation only existed in field notebooks,
which were not archived. In one legacy vegetation map close to home, of the
Australian Capital Territory, it was found that the map was a mosaic based on three
surveys, each by a different group, each at a different time, and each at a different
nominal scale. The apparent homogeneity of one part and the apparent hetero-
geneity of another part were artifacts of this mosaicking. The map was, as a result,
extremely misleading.

The situation described above is common. It is extremely costly to collect new
data and the temptation is to make do with what is to hand. So, it is important to
properly understand the process by which that data has been generated and stored.

Descriptions, Depictions, or Diagrams

The area-class map is a type of diagram. Maps and images, more generally, fall into
this class of media. Often field scientists use a mixture of descriptive writing,
symbolic equations and diagrams to communicate their ideas. These media appear
to be processed in our brains through different pathways. The distinction between
the way we believe these are processed are between model-based theories (in-
cluding graphical ones), and sententially based theories. These appear to be dealt
with by different parts of our brain. The issue has been presented as a choice
between reasoning being semantic or syntactic respectively (Engelhardt 2002). In
terms of syntax, written text and symbolic equations are essentially linear, while
diagrams need not be. This suggests that the common practice of supporting a piece
of difficult text with a graph or diagram works because we are delivering the
message to our brain through two different pathways.

We can discriminate between the way we understand descriptions (written text
and symbolic equations) and diagrams (Lemon and Pratt 1999). Most descriptions
are Fregean (Peregrin 2000) where the symbol bears no resemblance to the thing it
represents in terms of its properties. But, with analogical representations where
relationships are explicit, there is such a resemblance. This is the first key difference
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between written text and symbolic equations (Fregean), and diagrams (analogical).
The second key difference is that there is a sense in which text (and equations) are a
sequential set of symbols. Text (and equations) rely for much of their meaning on
this sequence. Usually what is written later in a sentence assumes that the reader
knows what has been written beforehand. Because written text is processed by
people in a sequential fashion it is hard for humans to store all the things that we
have just read in our working memory, especially when the number of items
appearing in the text is large. Diagrams can avoid this problem. However, sentential
descriptions may allow a more accurate and precise description of a phenomenon
than diagrams.

Only those diagrams in the bottom half of Table 1 can deal with spatial data
spatially. This distinguishes tables and charts from diagrams of the sort we are
concerned with. Why is a sentential representation not as effective as a diagram in
helping us to solve a problem? (Larkin and Simon 1987);

• Diagrams can group together all the information that is used together. This
effective use of display space is an important attribute as it thus avoids lengthy
searches for the elements needed to make a problem-solving inference.

• Diagrams avoiding the need to match symbolic labels by using location to group
information about a single element.

• Diagrams automatically support a large number of perceptual differences, which
are extremely easy for humans to understand. In addition to the relationships in
space, the meanings of relative size and colour are all easily understood by
humans.

Diagrams appear to operate best when cognitive reasoning, which must extract
the structural information from the sentential data by laborious comparisons and
computations, is supported by a visual representation from which the user can

Table 1 Types of diagram (modified after Lemon and Engelhardt in TwD 1997)

Type of diagram Characteristics Treatment of spatial data is

Columns/list Partitioning in one dimension Aspatial

Table/matrix Partitioning in two dimensions Aspatial

Time line Metric in one dimension Aspatial

Two-axis chart Metric in the Cartesian plane Aspatial

Bar chart Partitioning in one dimension combined
with Metric in one dimension

Aspatial

Picture or image Realistic; planar metric combined with
planar topology

Spatial

Map Symbolic; planar metric combined with
planar topology

Spatial

Network diagram Planar topology Spatial

3D/CAD graphics Metric and topology in Cartesian 3-space Spatial
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easily perceive the structure of the data. The use of graphs, tables and bar charts in
the scientific literature is the best example of this phenomena. Maps, on the other
hand, are quite often ‘stand-alone’ with the only text accompanying them being
peripheral to the image. Some types of map rely on only the users’ familiarity with
the style of representation to carry their message. The area-class map has been
successful because the message that it carries is easy to comprehend.

Collecting Data

Sinton (1977) breaks down the process of creating useful data for area-class
mapping from initial observation. He argues that one must record the Theme, the
Location and the Time of the observation. At least three types of generalisation take
place;

• Aggregation—the transformation of the structure from point to polygon usually
involves a loss of detail in Spatial Location of the original observation.

• Classification—observations are categorized with other like observations. In
practice ‘like’ becomes ‘similar’ and the breadth of what ‘similar’ means is an
important source of error.

• Induction—where a series of samples are generalised to include locations
assumed to have the same characteristics. Thus aggregating places with similar
(but not the same) characteristics as the places sampled into Classes.

Sinton (1977) defines this more precisely (in the case of vegetation mapping).

• One of the Attributes of the data (Time) is held constant.
• A second Attribute (Theme) is permitted to vary in a controlled way.
• The third Attribute (Location) is measured for its variation within the second

(controlled) Attribute.

In thematic mapping, time is rarely not held constant. For some themes, such as
elevation, soils or geology, this is rarely a problem. But for other more dynamic
themes, such as vegetation, land use, land cover or population, the freezing of the
theme at the time of data collection does present a major source of error. Allowing
the theme to vary ‘in a controlled way’ runs the risk of falling foul of the Modifiable
Area Unit Problem (Openshaw 1983). In this, poorly represented classes tend to be
incorporated into larger classes, and so disappear. Also in many cases a continuum
of change is represented as a series of classes, which are essentially overlapping
gaussians. This, of course, leads to the creation of errors of omission and com-
mission in the theme. Allowing the location to vary from a point to a polygon leads
to similar errors. Generalisation can be seen as inducing error with regard to the
original observations.

So, the form of an area-class map certainly aids perception and processing of the
information presented. But this is at the cost of considerable generalization.
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Changing the Data Model

In a previous paper (Lees 1996b) we investigated a method of representing vege-
tation data which avoided many of the errors which inherent in the use of the area
class map. In this earlier paper we investigated how the processing of data to suit
this format perpetuates the use of an inappropriate data model and places an upper
limit on the accuracy of spatial extension of point data by most predictive modelling
techniques.

A number of projects based on the Kioloa data set to develop and test new
predictive modelling tools were set up to use standard (forest) industry data as
input, and forest types as output (Moore et al. 1991; Lees and Ritman 1991;
Fitzgerald and Lees 1993, 1994, 1996). Using the same modelling methods,
learning sample and independent variables, but not classifying the learning samples
into communities or forest types beforehand, it was shown to be possible to achieve
a significant improvement in predictive accuracy over area-class mapping. If one
deals with the point observations of vegetation without classifying them before-
hand, then another form of visualisation can be used. Because we are dealing with
digital information, we are no longer constrained to produce a single ‘map’ as the
data storage medium and visualisation medium. We can now store and retrieve a
considerable amount of information about any point, either in geographic, envi-
ronmental or spectral space. This is a database-oriented approach. If we retain
geographic space as the most convenient operational data space for users of pre-
dictive modelling, we are also selecting the domain with least database complexity
where each point exists in only one location in each of the other domains (Lees
1994; 1996a, b; Aspinall and Lees 1994). We can then model the spatial extension
of each relevant attribute of each entity observed in the ground truth plots.

The Database Oriented Technique

In Lees (1996b) the original observations were recoded as fuzzy membership of the
canopy, species by species. A simple Back Propagation neural net was set up for
each species. In order to provide an ongoing comparison of methods, the input layer
was the same as that described in Fitzgerald and Lees (1993, 1994), and used the
same datasets as Lees and Ritman (1991). A 9/10/10 structure was used with one
hidden layer of ten nodes and an output layer of ten nodes. No spatial or temporal
context was used. Each output node represented a range of fuzzy memberships
(0–0.1; 0.1–0.2 and so on). The highest number in the output range was taken to
indicate the membership of that cell and the whole output range for each cell was
treated as a distribution and the probability of the membership was calculated. So,
for each species, it was possible to estimate its fuzzy membership of the canopy and
the probability of that estimate. For the species chosen as an example, Eucalyptus
maculata, and using only the fuzzy memberships, the RMS error was calculated to
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be 0.2324. Calculating a distribution based on the ten output nodes is, of course, not
optimal, but it seemed more sensible than setting the network up with, say, a
9/10/30 structure.

The constraints we placed on our earlier work to make it match existing user
expectations resulted in an upper limit to predictive accuracy, for all the models
tested, of about 65%. Those themes which were more appropriately represented by
this data structure (land/sea discrimination) could be predicted with up to 99%
accuracy. The later work (Lees 1996b) which expressed species distribution as a
fuzzy membership of the tallest stratum (in a forest), midstratum or understorey,
and lower stratum or ground layer, allows the prediction of a series of data layers
which represent surfaces of spatially varying fuzzy memberships appeared to offer a
significant gain in accuracy. Further, the use of a simple neural net configuration
enables both fuzzy membership and the probability of this membership to be
estimated. This made it possible to track error through subsequent uses of the
modelled estimates. Methods of comparing the two methods have subsequently
been investigated and this paper presents some of these findings.

Just How Bad Is an Area-Class Map of Forest Types?

The method used in Lees (1996b) required the information to be stored in some
form of a database and no integration of species distributions was suggested. For
use in the field this meant that a small computer system would have to be utilised.
A fieldworker wishing information about a point would have to scroll through, in
the case of the Kioloa data set, the distributions of forty-one tree species,
ninety-four shrubs and one hundred and eight understorey species. Together with an
error map for each, a database of 486 coverages would be needed for the Kioloa
area. It would certainly be possible to query the database to return the information
relating to a point but the overview of the immediate local area would still be
elusive.

The increase in accuracy gained is seriously offset by the indigestible nature of
the output. For real, practical, use some form of synthetic product is needed. This
inevitably leads back to a classification of the data into communities, forest types,
and so on. Depiction of this sort of synthesis naturally leads to an area-class map. It
was argued in Lees (1996b) that it was easy to show that this is a major source of
error but there is no insight into what might be the most appropriate replacement. In
this exercise we have examined whether this claim was as accurate as thought. Just
how bad is an area-class map of forest types for the normal user of these products?

To evaluate this question Allison (1998) decided to move away from the simple
measure of ‘overall accuracy’ and investigate other measures. The calculation of
‘overall accuracy’, or ‘proportion of samples correctly classified’, used in many of
our earlier papers, ignores any difference between the accuracy of individual
classes. She used the Kioloa data set and one of our early models based on it (Lees
and Ritman 1991) for the evaluation. This model was one of the earliest we
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developed, and one of the least accurate. The data set used covers an area of coastal
plain and beach which runs back into a sandstone ridge with elevations ranging
from sea level to 285 m. Land cover varies from wet sclerophyll rainforest, highly
disturbed dry and wet sclerophyll forests with a complex fire history parts of which
have been logged in the past, through heath to cleared grassland. There are small
pockets of rainforest with palms. PVM models based on this dataset using the
ground data pre-classed into forest types typically give predictions of ‘Sea’ at better
than 95%, ‘Paddock’ at better than 80% and the other forest types at accuracies of
less than 65%.

The ‘Overall Accuracy’ calculation of the Lees and Ritman (1991) model gave
only a moderate result of 47.64%, based on the error matrix (Table 2), ‘User’s
Accuracy’ and ‘Producer’s Accuracy’ calculations (Table 3) and errors of omission
and commission (Table 4) were calculated for each class. These quite effectively
demonstrate the problem of treating the continuum of change within this type of
forest as a set of overlapping gaussians, or classes. Classes which were clearly
separable, such as ‘Sea’, were predicted with low values of errors of omission or
commission and high values of both Producer’s and User’s Accuracy. The difficult
ecotonal ‘classes’ such E.botryoides forest and Lower Slope Wet forest, which
appear to be separable in geographic space, are not separable in environmental data
space and have very large errors associated with them (Lees 1996b). Whilst it is
tempting to interpret this as meaning that better results are impossible using classed
data, it is worth examining the degree of error involved in these measures.

Forest maps are specifically targeted at a particular type of user, the forest
manager. Traditionally, the major concern of such a user was to accurately predict
the timber volume in a forest coupe. Multi-use forests have extended the range of
concerns foresters must address, but it is possible to look at each use and categorise
the level of unsuitability of the map for a particular purpose. In uses where species
composition is important, one could generate a table such as this (Table 5).

Table 2 The error matrix for Lees and Ritman (1991)

Reference data Total

1 2 3 4 5 6 7 8 9

Predicted class

1 167 15 15 35 35 4 2 7 0 280

2 13 3 1 7 8 2 2 8 0 44

3 13 1 1 4 1 1 1 1 0 23

4 32 20 14 126 43 73 60 45 8 421

5 52 18 8 46 70 6 6 17 2 225

6 6 0 2 17 5 9 3 0 0 42

7 22 8 10 16 19 2 12 18 3 110

8 1 1 1 0 0 0 1 48 1 53

9 0 0 0 0 0 0 0 2 259 261

Total 306 66 52 251 181 97 87 146 273 1495
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It can be seen that disagreement at both levels 1 and 2 is not likely to be very
significant to the sort of user described above, the prediction is ‘fairly close’ to the
actuality. Level 4 disagreement, however, is simply wrong. Here the prediction is
completely at odds with the actuality. Disagreement at level 3 is harder to cate-
gorise, it may be as serious as level 4 for some users. But a ranking of the levels of
disagreement such as this allows us to categorise the misclassifications in Lees and
Ritman (1991) as shown in Table 6.

Table 3 User’s and producer’s accuracy (Allison 1998)

Vegetation class User’s accuracy (%) Producer’s accuracy (%)

1 Dry Sclerophyll forest 59.64 54.58

2 E.botryoides forest 6.82 4.55

3 Lower slope wet forest 4.35 1.92

4 Wet (E.maculata) forest 29.93 50.20

5 Dry (E.maculata) forest 31.11 38.67

6 Rainforest ecotone 21.43 9.28

7 Rainforest 10.91 13.79

8 Paddocks and cleared 90.57 32.88

9 Sea 99.23 94.87

Table 4 Errors of omission and commission (Allison 1998)

Vegetation class Error of omission (%) Error of commission (%)

1 Dry Sclerophyll forest 45.42 40.36

2 E.botryoides forest 95.45 93.18

3 Lower slope wet forest 98.08 95.65

4 Wet (E.maculata) forest 49.80 70.07

5 Dry (E.maculata) forest 61.33 68.89

6 Rainforest ecotone 90.72 78.57

7 Rainforest 86.21 89.09

8 Paddocks and cleared 67.12 9.43

9 Sea 5.13 0.77

Table 5 Levels of disagreement (Allison 1998)

Level 0 No disagreement Predicted vegetation type matches actual
vegetation type exactly

Level 1 Low level disagreement Predicted vegetation type incorrectly assigned, but
both predicted and actual vegetation types contain
at least one identical main indicator species

Level 2 Moderate disagreement Predicted vegetation type main species occurs as
associated species or vice versa

Level 3 High level disagreement Only predicted associated species occurs (as
associated species)

Level 4 Total disagreement No predicted main or associated species found
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We can then go on to quantify the errors by looking at our test sample (Table 6)
or even plot these as a map of levels of disagreement. From Table 6 one could
suggest that, for a vegetation scientist checking the model, the accuracy would
certainly be only 47.64%, but for a forest manager the accuracy would, in practical
terms, be between 60.66 and 82.05% as the predicted species does, in fact, occur at
level 2 disagreement. This suggests that it can still be a usable product at these
levels. Importantly, the latter level of accuracy is slightly higher than that achieved
by Lees (1996b).

Conclusion

All of this suggests that some our efforts to identify error and to reduce it have, if
not been misguided, ignored the practicalities of field use. Even with all the
miniaturized electronic tools available for field use, the database model is too
cumbersome a vehicle for easy comprehension of all the necessary information. The
traditional form of delivery, and use, of vegetation and soils information, the
area-class map, may indeed perpetuate the use of an inappropriate data model and
place an upper limit on the accuracy of spatial extension of point data by most
predictive models, but it remains a practically useful form of delivering spatial
information for most users. Clearly a combination of both methods, that described
by Lees (1996b) and the synthesized area-class map, would allow access to the
advantages of both. The former is clearly best suited to the office system, and the
latter to the field.
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