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Introduction

The physical and functional transformation of rural landscapes into urban forms is
recognized as urban growth (Thapa and Murayama 2010). According to Clark
(1982), urban growth is a spatial and demographic process that is characterized by a
change in population distribution from a village to a town or city. Currently, rapid
urban growth is a major worldwide trend, involving a variety of resources and
environmental problems, such as habitat loss, species extinction, land-cover
change, and alteration of hydrological systems (Hahs et al. 2009; Jain 2011). Driven
by this trend, the understanding of urbanization has pushed to the forefront of
environmental and development agendas (Mertes et al. 2015).

The typical spatial organization of individual urban areas is explained in von
Thünen’s (1826) bid-rent theory, Burgess’s (1925) concentric zone model,
Christaller’s (1933) central place theory, and Hoyt’s (1939) sector model. Although
these studies have formed foundations for subsequent work, they are predominantly
descriptive models that assume cities grow in a uniform or linear manner, and most
do not contribute to the understanding of the spatiotemporal patterns of urban forms
or growth (Dietzel et al. 2005). In addressing this limitation, various new and
sophisticated methods have been developed and successfully applied for charac-
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terizing urban growth. Batty and Longley (1994) considered urban growth a cellular
fractal stochastic process and modeled urban growth through the cellular automata
method. Dietzel et al. (2005) suggested that the process of urban growth could be
characterized through diffusion and coalescence. To connect the theory of diffusion
and coalescence, three indicators of urban growth patterns—infill, extension, and
leapfrog development—have also been identified (Estoque and Murayama 2015).
In addition, in urban planning initiatives, the importance of the low, moderate, and
high sublevels of each indicator has been highlighted.

By addressing the lack of more detailed urban growth identification, the remote
sensing of urban landscapes has recently led to a number of new approaches to
characterize urban growth on various spatial scales (Antrop 2004; Kantakumar et al.
2016; Xian and Crane 2005). Among them, ULU change analysis with a spatial
metric has been widely applied (Aguilera et al. 2011; Estoque and Murayama
2011). Two major methods of land change analysis developed are spectrally based
(image-to-image) and classification-based (map-to-map) change detections (Xian
and Crane 2005). Furthermore, a large volume of successful research studies has
employed both of these methods when characterizing ULU change in general and
urban growth in particular (Dorning et al. 2015; Guindon et al. 2004; Mertes et al.
2015).

However, remote sensing applications for the urban growth evaluation still pose
several limitations. Fundamentally, inconsistency in ULU definitions has created
challenges in urban growth detection and evaluation (Taubenböck et al. 2012). Due
to this inconsistency, remote sensing studies typically describe built environments
as ULU, and the non-built environments as non-urban land use (Estoque and
Murayama 2015; Liu et al. 2016; Su et al. 2011). However, some non-built land use
dominates urban areas (e.g., parks and runways) in reality, and function as ULU.
Thus, characterizing the urban area using only the built environments confound our
understanding of urban growth (Mertes et al. 2015). In such a context, character-
izing ULU classification based on their locational contexts or neighborhood
interaction is vital and helps us to detect urban growth in a more realistic manner.
Moreover, the neighborhood interaction of a surrounding area can be employed to
elucidate low, moderate, and high levels of urban growth by determining major
patterns.

In general, morphological spatial pattern analysis (MSPA) allows the integration
of neighborhood interaction in defining ULU categories and helps to determine the
levels of urban growth in a contextual manner (Ostapowicz et al. 2008; Vogt et al.
2007). Using MSPA, Vogt et al. (2007) developed a forestland classification (e.g.,
core, patch, perforated, and edge) based on forest and non-forest land categories.
Angel et al. (2010) developed an urban land classification (urban, suburban, rural,
fringe open space, exterior open space, and rural open space) based on built and
non-built land categories. They have employed only binary land classification to
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classify the forest- related or urban- related land use categories. However, devel-
oping ULU classifications using binary land use or cover categories may be
insufficient due to existence of a higher complexity of ULU (Jiao 2015; Zhou et al.
2015). In such a context, incorporation of ancillary data and multiple land cate-
gories with MSPA will provide more advancement in ULU classification and a
clearer understanding of growth patterns.

In this study we present a new approach to recognize the spatial pattern of urban
growth by integrating the neighborhood interactions of ULU categories. We called
our approach the Urban Growth Evaluation Approach (UGEA); it was tested using
a case study of the Colombo metropolitan area, Sri Lanka.

Concept of Neighborhood Interaction

Neighborhood interactions are an important component of many land use models
connecting to the Tobler’s (1970) first law of Geography (“Everything is related to
everything else but near things are more related than distance things”). Cellular
automata (CA) is commonly used to implement neighborhood interactions in land
use models through Vin Neumann’s adjacent four cells rule (Fig. 1a) or Moor’s
adjacent eight cells rule (Fig. 1b). In reality, a cell does not only influence the state
of adjacent cells but also those located at a certain distance, although with less effect
(Barreira-González et al. 2015). In this respect, distance decay function can be used
to integrate neighborhood interaction to the cells (Fig. 1c) (Zhao and Murayama
2011).

Fig. 1 a Van Neumann’s concept (4 cells), b Moore’s concept (8 cells), and c distance decay
concept (i = processing cell)
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Methods

Data

To test our UGEA, we acquired Landsat TM/ETM + images from the United State
Geological Survey (USGS) website during the study area’s wet seasons in 2001 and
2014. One Landsat scene (path 141 and row 55) covering the entire study area was
collected for these two time points. The two images collected were Landsat-7
ETM + of 2001 and Landsat-8 OLI/TIRS of 2014. The Landsat-7 ETM + of 2001
and Landsat-8 OLI/TIRS images were Standard Terrain Correction (L1T)
(Taubenböck et al. 2012) and cloud free. Therefore, geometric correction and
atmospheric corrections were not preformed. In addition to Landsat images, Google
Earth™ images and topographical maps (Department of Survey, Sri Lanka) were
used for accuracy assessment and to delineate boundaries of some land use (i.e.,
protected areas, runways, etc.).

Determining Spatial Patterns of Urban Growth

Basically, UGEA turns the ULU change maps into an urban growth map through
the several processes. All the processes can be summarized into three major steps
(Fig. 2): (1) ULU mapping, (2) identification major spatial patterns of urban
growth, and (3) development of sublevels of urban growth.

ULU Mapping

As the first step of UGEA, we developed a method to map ULU rationally.
The ULU categories in the maps were mainly defined based on neighborhood
interactions of the study area’s land use categories.

We employed the hybrid classification (pixel-based and segment-based) to
develop the initial study area’s land use classification. With a method, first, we
classified Landsat images using pixel-based (PB) classification techniques
employing the maximum likelihood supervised classification approach available in
the ENVI 5.2™ software package. This PB classification produced three land use
categories: built (meaning built-up lands), non-built (meaning non-built up lands),
and water (meaning bodies of water). Second, we classified the study area’s land
uses using segment-based (SB) classification. In SB classification, Landsat images
were segmented using the ENVI 5.2 software package and produced two land uses:
protected areas, and urban open space (runways, playgrounds, and parks),
employing region merging techniques of SB classification technique. The SB
classification method is the most appropriate classification method to classify land
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use categories having specific boundaries or edges such as parks, protected areas
etc. (Blaschke 2010). Third, the results of PB classification and the SB classification
were integrated using the raster algebra tool in the ArcGIS™ software package. The
final output of this hybrid classification contained five land use categories: built,
non-built, protected areas, urban open spaces (parks, playgrounds, and runways),
and water. It is agreed that a higher level of accuracy can be maintained with the
hybrid land use classification method than individual PB or SB classification
methods (Li et al. 2013). The accuracy of land use classification was checked using
300 samples at each time points (2001 and 2014) through careful and rigorous
visual inspection. Google Earth images were used as reference data for accuracy
assessment and the overall accuracy was (Congalton 1991) 90.33, and 92.66% for
2001, and 2014 respectively in this hybrid classification method.

Neighborhood interaction rules were processed using MSPA to convert the study
area’s land use into ULU mapping. To process the neighborhood rules, we first
defined the active land use categories and inactive land use categories in the study
area. The active land use category means the land use categories that influence ULU

Fig. 2 Flowchart showing all the steps in UGEA
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classification as a neighborhood. Inactive land use means the land use categories
that do not influence ULU classification as a neighborhood. Here, we considered
built and non-built land categories as active land use categories and protected areas,
urban open space (parks, playgrounds), and water as inactive land use categories.
Second, the neighborhood interaction rules (Table 1) were processed and defined
ULU categories. The neighborhood rules were performed for each pixel of land use
using the urban growth analysis (UGA) tool, developed by the Center for Landuse
Education and Research Institute (CLER), and the ArcGIS focal analysis tool. As a
result of this process, seven ULU categories (urban dense, urban sparse, urban open
space, captured urban open space, urban fringe and non-urban area) were classified.

Figure 3 illustrates how the neighborhood interaction rules are processed on a
cell space.

Later, these seven ULU were integrated with protected areas, urban open spaces,
and water, which are classified in hybrid classification. The protected area was
converted into non-urban open space and the final ULU map was contained eight
categories: urban dense, urban sparse, urban open space, captured urban open
space, urban fringe, non-urban built, non-urban open space, and water. In the
present study, we produced two ULU maps with eight categories for 2001 and 2014
to detect the spatial patterns of urban growth.

Table 1 Neighborhood interaction rules of ULU categories

ULU categories Description of neighborhood interaction rule

Urban dense 50–100% built-up pixels in a 1-km2 area of neighborhood: Buffer with
564 m map unit (18 pixels) distance from built pixel was employed to
determine a 1-km2 area

Urban sparse 10–50% built-up pixels in a 1-km2 area of neighborhood: Buffer with
564 meters map unit (18 pixels) distance from built pixel was employed
to determine a 1-km2 area

Urban open space Non-built land within a 100-m distance from urban area: Buffer with
100 meters map units (3 pixels) distance from urban built was
employed to determine a 1-km2 area

Captured urban
open space

Patches of non-built, less than 2 km2, completely surrounded by
urbanized area (included urban dense, urban sparse, and urban open
space)

Urban fringe 100-m (3 pixels) distance edge in between urbanized (included urban
dense, urban sparse, and urban open space) and non-urban area
(included non-urban built and non-urban open space)

Non-urban built 0–10% built up pixels in a 1-km2 area: buffer with 564 m map unit (18
pixels) distance from built pixel was employed to determine a 1-km2

area

Non-urban open
space

All other land use

Note All the measures are computed based on raster data 30 m � 30 m pixels
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Identification of Major Spatial Pattern of Urban Growth

To spatially characterize urban growth, we distinguished the three major spatial
patterns of urban growth—infill, extension, and leapfrog development. The ULU
transition from the initial time point and the final time point were used to detect
these growth patterns (Table 2).

Briefly, each urban growth pattern contains the following characteristics:
(1) infill, characterized by new urban development that occurs in an already

Table 2 ULU changes used to characterize the three major urban growth patterns

Urban growth pattern Change from Change to

Infill Urban open space Urban dense

Urban open space Urban sparse

Captured urban open space Urban dense

Captured urban open space Urban sparse

Leapfrog Non-urban built Urban dense

Non-urban built Urban sparse

Non-urban open space Urban dense

Non-urban open space Urban sparse

Extension Any above transition occurs in the urban fringe area
and connected new development to the extension

Fig. 3 The neighborhood interaction area: a and b the percentage of built pixels is calculated
within a 1 km2 area, and c distance from non-urban areas is determined
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urbanized area (Fig. 4a); (2) extension, characterized by new urban development
which occurs in the urban fringe area and connects it to new development,
(Fig. 4b); (3) leapfrog development, characterized by new development that occurs
in a non-urban area (Fig. 4c).

Concept of Urban Growth Sublevels

We further separated the major patterns of urban growth into three sublevels: low
level, moderate level, and high level. These sublevels were determined based on the
nature of the development in the surrounding area or neighborhood interaction. In
doing so, the nature of urban dense land category and urban sparse land category
was considered within a 1-km2 area (same as ULU classification). A buffer with
564 m of distance was employed to delineate the area of neighborhood interaction
(a 1-km2 area). Figure 4 illustrates examples for locational characteristics of each
sublevel separation.

Figure 5a illustrates the urban growth occurring in an area where the sur-
rounding area is characterized by a low level of development. Figure 5b illustrates
urban growth occurring in an area where the surrounding area is characterized by a
moderate level of development. Figure 5c illustrates urban growth occurring in an
area where the surrounding area is characterized by a high level of development.

Sublevel Separation Process

We employed the Map algebra tool in ArcGIS to calculate the proportion of urban
dense area and urban sparse area as a percent of the total land area (except water)
within a 1-km2 area. In this processing, two main raster layers were used. Figure 6

Fig. 4 Locational characteristics of each development pattern: a infill, b extension, and c leapfrog
development
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illustrates a simplified example the calibration process used for sublevel separation.
The first layer containing only urban dense and urban sparse calibrated was cali-
brated (urban dense value = 1, and urban sparse = 0.5). The second layers contain
ULU categories, which were calibrated with ULU value = 1, except water (wa-
ter = no data). The percentage of the first layer was calculated according to the
presence of the second layer. This calculation is simply explained in Eq. 1.

Sl ¼
P ðDpþ SpÞ

UL
� 100 ð1Þ

where Sl is the percentage of the development level of the surrounding area, Dp is
the total value of urban dense pixels in the first layer, Sp is the total value of urban
sparse pixels in the first layer, and UL is the total value of ULU categories in the
second layer.

Fig. 6 Calibrated values of land use: a first layer containing only urban dense and urban sparse
areas, b second layer containing all land uses (except water), and c resulting layer with percentage
values

Fig. 5 The sublevels of urban growth patterns
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Depending on the produced percentage of development for each pixel, the main
patterns of urban growth (infill, extension, and leapfrog development) were sub-
divided into low level (0–20%), moderate level (20–70%), and high level (70–
100%).

Results

Figure 7 presents the results of ULU mapping for 2001 and 2014.
The major spatial patterns of urban growth, derived from the ULU change, are

presented in Fig. 8a, and the sublevels of each pattern are presented in Fig. 8b.

Fig. 7 ULU maps for 2001 and 2014
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Discussion

UGEA as a Geographic Approach

Fundamentally, an approach contains a set of methods and techniques with clear
starting points, transition points, and end points. Geographic approaches allow us to
understand the world by organizing, analyzing, and modeling various geographic
data (Dangermond 2007).

McHarg (1969) articulated the philosophical context of the geographic approach
for managing human activities within natural and cultural landscapes. His approach
created a fundamental factor for geographers to analyze our world. The geographic
approach consists of five steps (Fig. 9).

Fig. 8 The urban growth patterns: a major patterns, and b sublevels
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The first step formulates the question from a location-based perspective. In
present study, as the research question, we ask, “What are the spatial patterns of
urban growth?” This question establishes the urban environment as the geographic
context as we attempt to understand the spatial patterns of urban growth. Analyses
integrating spatial aspects lead to a greater fundamental understanding of the
dynamic process involved and thereby aid in the development of actual solutions
(Ding and Elmore 2015).

The second step determines the necessary data that should be acquired by the
analysis. We deal with remotely sensed big data in a data-poor environment.
Satellite images are the main data and are to produce ULU maps by image pro-
cessing. Satellite image processing comprises four basic operations: (1) image
restoration, (2) image enhancement, (3) image classification, and (4) image trans-
formation (Thompson et al. 2002). In the present study, we mainly conducted
geometric corrections and visual enhancement for Landsat images, and image
processing with MSPA in relation to this step.

The third step examines the acquired data to understand whether the prepared
data is appropriate for achieving the objectives and answering the research ques-
tions. It is necessary to visually inspect it and understand how the data is organized.
Here, we visually inspected and assessed the accuracy of our outputs.

The fourth step performs the data analysis. After examining the data, here we
analyzed the spatiotemporal pattern of urban growth and separated it into sublevel
based on its neighborhood interaction. Furthermore, the difference in urban growth
was analyzed based on time intervals.

The fifth step presents the results visually. Visual presentation through maps,
tables, and charts is a common method with the geographic approach. The
International Cartographic Association’s research agenda identified four

Fig. 9 Five steps of the
geographic approach
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visualization goals: exploration, analysis, synthesis, and presentation (MacEachren
1994). In this study, we present our ULU classification results and urban growth
pattern visually using geospatial techniques.

Contributions of the UGEA

The problem of identifying a more realistic means of urban space representation and
urban growth identification appears to have been almost solved by high resolution
remote sensing imagers in the big data era (Barreira-González et al. 2015).
However, the practical applications of high resolution satellite images to charac-
terize the urban growth of large urban areas such as metropolitan areas (particularly
in developing countries) have been limited by the cost and availability of high
resolution satellite imagery. Similarly, the lack of socioeconomic data in developing
countries has also limited the urban growth evaluation.

There has been rapid and vital growth of urban areas in developing countries
over the last two decades, and drastic urban growth is predicted for these regions in
the future (Cohen 2006; Seto and Fragkias 2005). Thus, the main purpose of the
present study was to develop a new approach to characterize the spatiotemporal
patterns of urban growth with minimal data input and complexity for widespread
use and applications. The introduced UGEA can be performed with Landsat ima-
gery and widely available ancillary data (i.e., Google Earth images, and topo-
graphical maps). Because of this advantage, the application of this approach in
developing countries can be assured.

As previously mentioned, earlier approaches, which employed limited sources,
mostly used the built-up areas as urban areas, and urban growth was characterized
using the land use change from non-built to built. Our proposed UGEA uses the
advantages of the neighborhood interaction concept to overcome the narrow view
of previous studies, and introduced a wide range of urban land use categories and
urban growth patterns. In this sense, the UGEA enables a conceptual and practical
solution to characterize urban areas in a data-poor context.

Although the neighborhood interaction concept with remotely sensed land use
may be a good option, it also presents some limitations. An urban area not only
depends on the neighborhood land use types, but also on socioeconomic and
political factors, which are highly influential in the urban areas (Kantakumar et al.
2016). Thus, it is necessary to integrate these factors with remotely sensed data to
define an urban area. Furthermore, this study remained “blind to pattern” (Longley
2002) and it requires a knowledge of processes and driving forces to characterize
urban areas in a more comprehensive manner.

Technically, we analyzed urban growth patterns in the study area using ArcGIS
focal analysis and the UGA tool. The processing of this big data with neighborhood
interaction rules in the ArcGIS environment is very time consuming and costly;
therefore the use of Python code, a one of the widespread programming languages
in geospatial analysis and data management may be, an appropriate solution.
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Conclusions

The new approach introduced in this study—UGEA—addresses two key urban
application needs. As a key to urban growth evaluation, the UGEA initially
develops land use classification using the neighborhood interaction rules of land
use. In general, ULU classification is associated with several difficulties related to
medium resolution satellite imagery like Landsat due to the higher level of com-
plexity and heterogeneity of urban areas. Thus, the classification of ULU categories
from Landsat requires knowledge of the larger scale of the spatial context. The
concept of the neighborhood that is available in geospatial analysis enabled a
solution to incorporate a large-scale spatial context to our ULU mapping.

Subsequently, urban growth was detected using three patterns (infill, extension,
and leapfrog development) and separated into different levels depending on the
locational context. The incorporation of location context to the sublevel classifi-
cation of urban growth is a new idea introduced in this study; it can be further
developed in the future. Here, we used only the distribution of urban dense and
urban sparse land categories to separate the sublevels, but the incorporation of
additional urban features (i.e., industries, administrative, and services) can lead to
more sophisticated sublevel classification.

This approach is more applicable to comparative urban studies than to individual
case studies. Comparative analysis would help to elucidate the urbanization process
of each city separately and compare the difference in urbanization processes. In
such a context, the development of a GIS-based tool to conveniently run all the
steps of UGEA would be useful in future research activities.
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