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Chapter 18
Therapeutic Effects of Ischemic-
Preconditioned Exosomes in Cardiovascular 
Diseases

Shengguang Ding, Zhiqing Fan, Che Lin, Qiying Dai, Jinzhe Zhou, 
Haitao Huang, Yiming Xu, and Chongjun Zhong

18.1  �Introduction

Cardiovascular disease (CVD) has been an immense health and economic burdens 
globally for years. From 2003 to 2013, death rates attributable to CVD declined 
28.8%. In the same 10-year period, the actual number of CVD deaths per year 
declined by 11.7%. Yet in 2013, CVD still accounted for 30.8% (800,937) of all 
2,596,993 deaths, or ≈1 of every 3 deaths in the United States [1].

Acute myocardial infarction (MI) as the hallmark of CVD has been considered 
as the leading cause of mortality worldwide. For now, percutaneous intervention is 
the most effective strategy to save dying myocardium. However, the reperfusion of 
acute ischemic myocardium itself is able to cause cardiomyocyte death. The 
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underlying oxidative stress, intracellular Ca2+ overloading, rapid change in PH, 
inflammatory reaction and mitochondrial dysfunction all put the myocardium in 
danger [2]. Ischemic preconditioning (IPC) is a phenomenon that produce resis-
tance to loss of blood supply by creating intermittent short episodes of ischemia. 
Having been reviewed detailed, IPC might be a potential treatment for ischemic/
reperfusion (IR) injury [3–5]. A new concept that extracellular vesicles encompass-
ing exosomes participates in the ischemic preconditioning has been brought out [6]. 
In this chapter, we summarize the protective effects of IPC exosomes in CVD and 
the most relevant discoveries in basic science.

18.2  �Ischemic Preconditioning

As early as 1990s, it was hypothesized that episodes of brief ischemia would pre-
condition the myocardium for the following ischemia. It is a strategy of creating 
brief short cycles of non-lethal ischemia-reperfusion stimulus and followed by per-
sistent ischemia. It is expected that IPC would initiate a cardioprotective phenotype 
and render the myocardium resistant to a subsequent more severe sustained isch-
emic insult. The principle is to increase the myocardium tolerance to ischemia in 
various pathways.

To prove this, an ischemic model on the dogs was created. One group was 
treated with four 5 min circumflex occlusions, each separated by 5 min of reperfu-
sion, followed by a sustained 40 min occlusion. The other group got a single 40 min 
occlusion. Results shown that preconditioned group had a limited infarct size to 
25% of that seen in the non-preconditioned group [7]. Encouraging by this, another 
similar study was carried out to testify whether this protective effect also works in 
the remote virgin myocardium. Conclusions agree with the hypothesis and imply 
that preconditioning may be mediated by factors transported throughout the heart 
during brief ischemia/reperfusion [8]. Later, several studies found that short peri-
ods of ischemia and reperfusion of a tissue can protect a distant tissue against 
subsequent ischemia [9–13]. Furthermore, a reduction in the coronary resistance 
and subsequent increase in coronary artery flow was observed in a model exposed 
to intermittent ischemic conditioning [14]. Similar results were also obtained in 
human study [15]. With these evidence, remote ischemic preconditioning (RIPC) 
has been increasingly accepted as an effective method to improve cardiac function 
after IR injury. Some studies suspected that it is opioid receptor dependent [9, 16], 
while others support that the activity of a vagal pre-ganglionic neurons is essential 
in the remote ischemic preconditioning [17]. With all the evidence, the role of 
RIPC in IR injury is strongly supported [18]. Apart from that, myocardial postcon-
ditioning has been shown to benefit in reducing myocardial infarct size [19]. In 
spite of this, disagreement still exist. Researchers have been arguing that RIPC 
does not decrease ischemia-associated mortality, nor it reduce major adverse car-
diovascular events [20].
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18.3  �Mechanism of IPC

Several systems have been proven to participate in this process, including ATP-
sensitive potassium channels, reactive oxygen species, nitric oxide and various pro-
tein kinases [21]. In an ischemic rat model, remote ischemic preconditioning (RIPC) 
group was treated with four cycles of 5 min of limb ischemia. Followed by 5 min of 
reperfusion and subjected to 45 min of sustained ischemia by occluding the left coro-
nary artery. Controlled group were treated just with 45 min of sustained artery occlu-
sion. Mitochondrial ATP-sensitive K(+) (K(ATP)) channels were identified as an 
effector mechanisms for remote preconditioning [22]. Comparable conclusion was 
also made in a study for modulation of K(ATP) channels in endothelial IPC in human 
[23]. Another well explored mechanism is the regulation of inflammatory response 
during IPC.  It has been proven that RIPC stimulus modifies human inflammatory 
gene expression, leading to cardioprotective effect due to affecting the inflammatory 
process [24]. Circulating cytokines and hypoxia induced factor-1α were found to be 
influenced as well [25]. Other factors, including oxygen radicals [26], neurotransmis-
sion [27–29], cannabinoids [30], nitric oxide synthase [31], connexin 43 phosphory-
lation [32], mitogen-activated protein kinases (MAPKs) [33], miR-144 [34] and 
phosphatidylinositol-3-kinase system [35] are all testified. However, little is known 
about the role of exosomes in IPC. Exosomes has recently been gaining attention with 
regards to its inter-cellular communication during IR injury. It contains nucleic acid 
and other important messenger factors. Understanding the underlying mechanism 
will help us understand how the heart respond to injury and stress at a deeper level.

18.4  �Exosomes

Exosomes are small microvesicles (EV) that are released from late endosomal compart-
ments of cells [36]. They are 40–199-nm vesicles released during reticulocyte differentia-
tion as a consequence of multivesicular endosome fusion with the plasma membrane. 
They have been isolated from diverse body fluids, including semen, saliva, breast milk, 
amniotic fluid, ascites fluid, cerebrospinal fluid, and bile. EVs can be secreted and specifi-
cally taken up by other cells, mediating intercellular signal exchange [37]. Similarly to 
cytokines that constitute a network of communication, EVs may also exert their functions 
in a network, affecting distal organs [38]. In a study, rat’s heart was exposed to 3 × 5–5 min 
global ischemia and reperfusion or 30 min aerobic perfusion. The presence or absence of 
EVs was confirmed by dynamic light scattering, the EV marker HSP60 based on Western 
blot, and electron microscopy. It was found that IPC markedly increased EV release from 
the heart, indicating that EV is necessary for cardioprotection by RIPC [37]. mRNA 
intended for both small and large ribosomal subunits as well as mRNA coding for proteins 
involved in mitochondrial energy generation are found in the cardiomyocyte-derived EVs, 
which implies EVs might participate in some protein production in the targeted cells. 

18  Therapeutic Effects of Ischemic-Preconditioned Exosomes in Cardiovascular Diseases



274

These EVs, proven to belong to the exosome family, could be denoted “cardiosomes”. 
Microscopic findings suggested its role in metabolism of microenvironment [39]. 
Furthermore, by introducing the exosomes from the newts to the rat’s heart tissue, new 
proliferation of the rat cardiomyocyte and improvement in its function were observed 
[40]. These evidence confirm that exosome is closely associated with cardiac restoration.

18.5  �Exosomes and IPC

Ischemic preconditioning effects can be transferred to nonpreconditioned animals 
via whole blood transfusion [41] or directly cell implantation [40]. These findings 
suggested a humoral mechanism for preconditioning at a distance. Exosomes con-
tain many unique features like surface proteins/receptors, lipids, mRNAs, microR-
NAs, transcription factors and other proteins [41]. Stimulated by RIPC, exosomes 
acutely activate pro-survival kinases that rapidly prepare the heart against ischemia-
reperfusion injury [42]. For now, it has been well established that exosome play an 
essential role in tumor and infection disease, but increasing studies proposed that it 
is also crucial for cardioprotection during IR injury.

Cells from different organ systems are able to produce exosomes and working 
actively in RIPC.

18.6  �Cardiogenic Exosomes

It was discovered that human cardiomyocytes can produce exosomes-like vesicles 
via multivesicular endosome (MVE)-dependent pathway [43]. Released from the 
injured tissue, it carries signaling molecules to activate tissue repair. Isolated cardiac 
progenitor cells (CPC)-exosomes are found to express cardiac transcription factor, 
GATA4 and could be recognized by cardiac cells by H9C2. In vivo study demon-
strated that exosomes from CPC could inhibit apoptosis induced by IR injury [44]. 
Emerging evidence demonstrated that exosomes participate in RIPC-induced cardio-
protection. Coronary perfusates from preconditioned hearts contained more EVs than 
perfusates isolated from control. Correlating to the result that preconditioned group 
had smaller infarct size than the control group, it is concluded that the release of EVs 
from the heart after preconditioning stimuli is increased and that EVs are responsible 
for the transmission of remote conditioning signals for cardioprotection [37].

18.6.1  �Mesenchymal Stem Cell (MSC) Derived Exosome

MSC is one type of adult stem cell that have great plasticity and has shown great 
potential for the replacement of damaged tissues such as bone, cartilage, tendon, 
and ligament [45]. In skeletal muscle, it has been proven that hypoxic precondi-
tioned murine MSC enhanced muscle regeneration [46]. MSC are emerging as an 
extremely promising therapeutic agent for tissue regeneration and repair, proven by 
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animal models [47, 48]. Exosomes have been recognized as part of MSC’s paracrine 
system that potentiates its cardioprotective effect. These exosomes carry various of 
miRNA and humoral factors to the target cells [49]. miR-22, miR-210, miR-21 and 
HIF-1α are found in exosomes isolated from preconditioned MSCs. miR-22, previ-
ously known as a critical regulator of cardiomyocyte hypertrophy and cardiac 
remodeling [50], was shown to protect ischemic hearts by targeting Mecp2 [6]. 
Preceding study established miR-210 exerts cytoprotective effects in cardiomyo-
cytes [51]. It is elucidated that miR-210 as a potent negative regulator of stem cell 
apoptosis during ischemic preconditioning downstream of HIF-1α. During ischemic 
injury, MSC acts as a major source to deliver miR-210 to protect heart tissue [52]. 
More researches looking into the clinical therapeutic effect of MSC derived exo-
somes suggested the potential for using human embryonic stem-cell derived vascu-
lar cells on rescuing peri-scar border zone in myocardial infarction [53]. On the 
other hand, in an in vitro cardiac injury model, insulin-like growth factor 1 (IGF1) 
is proven to be part of the signal pathway in exosome-mediated cardiac repair [54].

18.7  �Endothelial Cell Derived Exosome

Cardiac endothelial cells could also communicate and regulate myocardium by pro-
ducing exosomes. Similarly, these exosomes are testified to have nearly twofold 
increase after preconditioning, and have more potent in reducing cardiac cell death 
[55]. What’s more, endothelial derived exosomes are found to overexpress hypoxia-
inducible factor-1 (HIF1) and higher contents of microRNAs. These factors increase 
tolerance of cardiac progenitor cells under hypoxic stress [56].

18.8  �IPC and Proteasome

Proteasome protects against ischemic injury by removing damaged proteins. It is a 
major intracellular proteolytic system which degrades oxidized and ubiquitinated 
forms of protein intracellularly. One of important mechanism of cardiac injury dur-
ing IR injury is the decrease in its function by oxidative modification and inhibition 
of fluorogenic peptide hydrolysis [57]. In recent studies, it has been proven that MSC 
derived exosomes ameliorates IR injury through proteomic complementation [58].

The combination of proteasome, ubiquitin, the ubiquitination machinery and the 
deubiquitinases, is called ubiquitin proteasome system (UPS). The major function 
of UPS is to prevent accumulation of non-functional, potentially toxic proteins. It 
contains one 20S subunit and two 19S regulatory cap units. The 20S proteasome is 
the central proteolytic structure which consists of two pairs of rings each contains 
seven subunits while the 19S subunit contains multiple ATPase active sites and 
ubiquitin binding sites. It confers selectivity for ubiquitin-conjugated proteins. 
Dysfunction of UPS was observed during IR injury, which could be one of the 
important factor contributing to the heart injury. Recent studies also revealed that 
IPC protect against ischemic injury by preserving UPS function [59]. IPC protects 
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UPS by diminishing oxidative damage to 19S regulatory subunits [60] and increas-
ing the degradation of δPKC [61]. A way to quantify the cardioprotective effect 
from IPC could be to measure the postischemic levels of oxidized and/or ubiquiti-
nated proteins. These levels could predict eventual cardiac function [62].

The 20S subunit of the UPS is found to be attached to the cell plasma membrane 
and certain observations are interpreted as to suggest that they may be released into 
the extracellular medium [63]. Once released, they are recognized as circulating 
proteasomes. Study comparing the features of circulating proteasomes with those of 
proteasomes isolated from major blood cells found out that the subtype patterns of 
the circulating ones are clearly different [64]. Circulating proteasome is related to 
cell damage. Increased serum level is seen in various autoimmune disease [65].

18.9  �Exosome and Proteasome

Several studies have been done to explore the correlation between exosome and 
proteasome. Profiled by mass spectrometry and antibody array, proteasomes of exo-
somes have been found to contain 857 unique gene products. A predominant feature 
of MSC exosome proteome is the presence of α and β chain of the 20S proteasome. 
Further work was done to explore the proteomic profiling of exosome. In vivo 
mouse myocardial infarction model was created by temporarily ligation of the 
LCA. Exosomes were injected in the treatment group before reperfusion. Proteins 
in the LCA ligated area was extracted, using a cell extraction buffer. Then sequenced 
protein analysis confirm the hypothesis that 20S proteasome exists in exosomes and 
could contribute to the cardioprotective activity. The presence of 20S proteasome in 
MSC exosomes further suggested that cells extruded 20S proteasome through exo-
somes [66]. Using the exosome as a carrier, we could deliver therapeutic protea-
some specifically to different part of the organ systems.

18.10  �Therapeutic Effect of Exosomes and Undetermined 
Questions

Exosomes have great impact on recipient cells. The distinct transmembrane proteins 
of exosomes directly interact with the receptors from the target cells [67]. This pro-
tein-receptor relationship makes exosomes as ideal carriers to deliver treatment or 
miRNA to specific cells. What’s more, exosomes are non-immunogenic in nature, 
and have no accumulation in the liver. Based on this, exosomes are hypothesized as 
a promising medication-carrier [68]. Also, many aspects of exosome suggested itself 
as a novel means to identify cancer biomarkers for early detection and therapeutic 
targets, and therapeutic devices to ameliorate the progression of the disease [69].

Great interest has been raising on the remedial role of exosomes in coronary 
artery disease. Both in vitro and in vivo study have proven that MSC preserve car-
diac function by paracrine system in which exosomes is fundamental. Since there is 
concern for potential tumor formation in vivo in stem cell therapy [70], the paracrine 
theory provide an alternative method for using MSC in treatment of coronary artery 
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disease. In addition, exosomes could accumulate in human atherosclerotic plaques, 
where they affect the physiologic balance [71]. The emergence of exosomes as alter-
native to cell therapy, opens a new insight into the treatment of cardiac disease. 
However, our knowledge of the transport, target cell biologic reaction and the com-
plexity of interaction of pathways in exosomes remains immature. It is highly urgent 
to determine if exosomes from plasma after IPC would be more cardioprotective.

18.11  �Summary

CVD has been considered as the number one killer worldwide. Tons of researches 
have been done to look into the ischemic process and mechanisms during ischemia. 
IPC is cardioprotective. Various factors, such as inflammatory factors, miRNA and 
proteins have been proved to play a role in mediating the cardioprotective effects of 
IPC. Increasing evidence suggested that exosome, a well-known messenger in cell-to-
cell communication, is associated with IPC-related cardioprotection. Encouraged by 
this, exosomes are testified to apply to the injured heart tissue and was found that it 
improves cardiac function. These finding brings up a possible new treatment for CVD.

Traditional management for ischemia is timely effective restoration of blood flow. 
Besides that, cell and targeted molecular therapy have gained increasing interest as 
potential therapies. Large amount of cardiomyocytes dead during ischemia. Although 
emerging evidence support that human heart has the capacity to regenerate itself [72, 
73], the endogenous proliferation rate of cardiomyocytes is too low to compensate for 
the loss of cardiomyocytes [54]. Stem cell based therapy solved this problem but still 
has its limitations, since it may also has the tumorigenic potential [70]. Based on this, 
the idea of exosome-centered therapy was developed and testified [74, 75]. However, 
more clinical studies need to be done to confirm the therapeutic effect of exosomes.
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