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Chapter 17
Circulating Exosomes in Cardiovascular 
Diseases

Yihua Bei, Ting Chen, Daniel Dumitru Banciu, Dragos Cretoiu, 
and Junjie Xiao

17.1  Circulating Exosomes and Exosomal Cargos

Numerous studies demonstrated that exosomes in the early phase are formed into a 
structure which is regarded as a multivesicular body (MVB) through endocytic 
invagination [1, 2]. Subsequently, the MVB fuses with the cytoplasmic membrane 
and is secreted with its cargos of lipids, proteins, functional mRNAs, and microR-
NAs (miRNAs, miRs) into the extracellular environment. The Rab-family GTPases, 
Annexins, SNAREs, and Endosomal Sorting Complexes Required for Transport 
(ESCRT) associated proteins are essentially involved in the formation and secretion 
of exosomes [2, 3]. Some of the exosomes are eventually released into the circula-
tion, known as circulating exosomes [4]. Circulating exosomes could arrive in 
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distant tissues via blood circulation, thus directly communicating with target cells 
and rapidly regulating intracellular signalings.

In various physiological and pathological conditions, different patterns of pro-
teins, lipids, and non-coding RNAs such as miRNAs can be detected in the circula-
tion [5, 6]. The cell-free non-coding RNAs could be stably present in blood 
circulation via being packaged into exosomes [7]. The circulating exosomes can be 
uptaken by recipient cells, whereby transferring the composite cargos or activating 
the signaling pathways [8–11]. Particularly, the various types of cargos loaded in 
exosomes and the signaling diversity are closely related to the different tissue and 
cell types from which exosomes are originated [12–15]. Among the diverse exo-
somal cargos, miRNAs can effectively regulate the target genes and influence the 
biological functions of target cells. miRNAs are a large group of small (18–25 
nucleotides in length) noncoding RNAs that regulate target gene expressions at post 
transcriptional level [16, 17]. It has been increasingly reported that exosomal com-
ponents, especially miRNAs, play important roles in regulating cardiac function 
and protecting the heart against acute myocardial infarction (AMI) and ischemia 
reperfusion injury (IRI) [18, 19]. For example, exosomes derived from chemokine 
receptor CXCR4-overexpressing mesenchymal stem cells (MSCs) were reported to 
activate the IGF-1/PI3K/Akt signaling pathway in cardiomyocytes, thereby reduc-
ing myocardial apoptosis, promoting angiogenesis, decreasing ventricular remodel-
ing, and protecting cardiac function after MI [20]. Since it is difficult to obtain 
cardiac tissue samples from patients, detecting changes of circulating exosomes 
from peripheral blood might be useful strategy to attain information about the 
pathophysiological processes of cardiovascular diseases [21–23] as well as to guide 
the treatment for patients [24–26].

17.2  Circulating Exosomes in Cardiovascular 
Pathophysiology

Intercellular communication is one of the essential mechanisms for cells exerting 
their biological functions in all multicellular organisms. Almost all cells exchange 
messages by direct interaction or the secretion of signaling molecules. Studies have 
revealed that circulating exosomes can mediate comprehensive interactions among 
various cell types and exert biological functions by transmitting exosomal cargos to 
recipient cells [2, 27]. Exosomes were proved to be secreted from the injured heart 
and participate in cardiovascular pathophysiology [28–30]. Although real success 
has been achieved in experimental studies of exosomes in cardiovascular physiolog-
ical and pathological progresses, the molecular mechanisms remain incompletely 
understood [2, 31, 32].

Exosomes derived from cardiomyocytes are initially found under the hypoxia 
and reoxygenation condition, which may contain biological molecules such as 
HSP70 [33–35]. Likewise, exosomes function as messenger of intercellular 
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 communication among cardiomyocytes, fibroblasts, smooth muscle cells, and endo-
thelial cells, and participate in the regulation of cardiac regeneration, ventricular 
remodeling, and angiogenesis in cardiovascular diseases [31]. Due to the perfect 
peculiarity as carriers of signal molecules, circulating exosomes deliver both pro-
tective and detrimental information [36–39]. Circulating exosomes generally regu-
late cardiovascular pathophysiology, such as cardiomyocyte hypertrophy, apoptosis, 
and angiogenesis (Fig. 17.1).

17.2.1  Cardiomyocyte Hypertrophy

Various forms of stress in the heart can contribute to activate cardiac myocyte 
hypertrophy [40, 41]. The general cardiac hypertrophy is characterized by myocyte 
enlargement and the re-expression of embryonic genes. Cardiomyocyte hypertro-
phy is a common response upon the increased heart hemodynamic state (such as 
high blood pressure or valvular stenosis), myocardial injury, and neurohormonal 
stress in the compensatory period. Early compensatory cardiac hypertrophy can be 
adapted to the enhanced post-ventricular load and maintain normal cardiac output. 
However, sustained cardiac hypertrophy will eventually lead to cardiac ventricular 
dilatation, reverse remodeling, and heart failure [40].

Circulating exosomes were reported to be involved in the regulation of patho-
logical cardiac hypertrophy. Circulating exosomes loaded with miR-1 and  miR- 133a 
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Fig. 17.1 Circulating exosomes regulate cardiomyocyte hypertrophy, apoptosis, and 
angiogenesis
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were found to be significantly increased in the serum of patients with AMI [42].
miR-1 and miR-133 are preferentially expressed in skeletal muscle and cardiac tis-
sue and are involved in the pathogenesis of cardiac hypertrophy [43]. It was previ-
ously demonstrated that miR-133a via targeting RhoA, Cdc42, and NELF-A/
WHSC2, while miR-1 via targeting Ras GTPase-activating protein (RasGAP), 
Cdk9, Rheb, and fibronectin, could inhibit cardiac hypertrophy [42, 44–46].

It was previously demonstrated that fibroblast-derived exosomes enriched with 
miR-21-3p were able to induce cardiomyocyte hypertrophy via targeting SH3 domain-
containing protein 2 (SORBS2) and PDZ and LIM domain 5 (PDLIM5). Inhibition of 
miR-21-3p resulted in reduced cardiac hypertrophy in Angiotensin II-treated animals 
[47]. In addition to circulating miR-29 and miR-30 that have been identified as possi-
ble biomarkers for left ventricle hypertrophy, the relevance of circulating miR-21 in 
the diagnosis and prognosis of cardiac hypertrophy deserves further investigation [48].

17.2.2  Cardiomyocyte Apoptosis

Cardiomyocyte apoptosis is a significant issue underlying ischemic cardiac diseases 
[49], and occurs with dilated cardiomyopathy [50] and aging-related cardiac dys-
function [51]. Myocardial ischemic injury is associated with a shared characteristic 
patterns of cell death and metabolic changes which could result in irreversible myo-
cardial injury [52, 53]. Apoptosis is involved in the whole process of myocardial 
ischemic injury, which could range from the initial phase after myocardial infarc-
tion to reperfusion stage [54, 55]. However, the specific molecular mechanisms 
underlying cardiomyocyte apoptosis are not fully understood.

Inhibition of miR-155 was previously demonstrated to inhibit cardiomyocyte 
apoptosis and cardiac dysfunction in lipopolysaccharide (LPS)-treated mice, via 
targeting Pea15a. Furthermore, increased circulating miR-155 was found to be 
associated with cardiac dysfunction in sepsis patients [56]. In this regard, the 
increased circulating miRNA-155, whether packaged in circulating exosomes or 
not, deserves further investigation in sepsis-induced cardiac dysfunction [56]. 
Notably, plasma exosomes isolated from healthy human and rats were recently 
demonstrated to be able to protect against cardiomyocyte apoptosis and ischemia 
reperfusion injury, indicating that endogenous circulating exosomes at baseline 
have protective effect for the heart [57].

17.2.3  Angiogenesis

Angiogenesis is a biological process of growing new vessels from the existing vas-
cular structure and promoting endothelial cell proliferation to form vascular net-
work. Many factors, such as fibroblast growth factor (FGF) and vascular endothelial 
growth factor (VEGF) can stimulate the formation of new vessels. Exosomes were 
reported to participate in the regulation of angiogenesis which is an essential 
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process contributing to cardiac repair after injury. The CD34-positive stem cell-
derived exosomes enriched with angiogenesis-related miR-126 and miR-130a were 
found to be significantly reduced in the peripheral blood of patients with chronic 
heart failure [58]. miR-126 and miR-130a were previously reported to stimulate 
angiogenesis by down-regulating the angiogenic negative regulator SPRED1 and 
HOXA5, respectively [59–61]. SPRED1, the member of Sprouty protein family, 
blocks angiogenesis through negatively regulating the VEGF-C/VEGFR-3 signal-
ing [62]. HOXA5 also suppresses angiogenesis by upregulating the anti-angiogenic 
gene Thrombospondin-2. Besides that, HOXA5 also downregulates many pro- 
angiogenic genes including VEGFR2, Ephrin A1, HIF1alpha, and COX-2 [63].

17.3  Circulating Exosomes in Myocardial Ischemia 
Reperfusion Injury

The early reperfusion of the myocardium is considered as an important intervention 
in the treatment of myocardial ischemia which can efficiently attenuate further dam-
age to the myocardium [64]. However, some infarct areas could be expanded when 
the blood flow regains after ischemia, which is known as myocardial ischemia 
reperfusion injury (MIRI) [65]. Ultimately, MIRI can lead to ventricular remodeling 
and even progressive heart failure [66, 67]. MIRI is associated with a complexity of 
multiple pathophysiological features [68], such as calcium overload, accumulation 
of oxygen free radicals, endothelial dysfunction, immune activation, mitochondrial 
dysfunction, cardiomyocyte apoptosis and autophagy, platelet aggregation, and 
microembolization [69–74]. However, the molecular mechanisms underlying MIRI 
are not completely understood.

Circulating exosomes can be markedly altered after MIRI and may serve as extra-
cellular messengers through endocytosis, membrane fusion, and cell-receptor interac-
tion to facilitate cell-cell communication [32]. Mounting evidence has shown that 
exosomes, especially stem cell-derived exosomes, have protective effects against 
MIRI [19, 28, 75, 76]. Mesenchymal stem cell-derived exosomes were demonstrated 
to promote cardiomyocyte viability and prevent adverse remodeling after MIRI, by 
enhancing the generation of ATP, reducing oxidative stress, and activating the PI3K/
Akt pathway [28]. More interestingly, circulating exosomes isolated from healthy 
human and rats were also proved to be able to transmit signals to the heart and provide 
protective effects against MIRI [57]. The exosomes packed with HSP70, could acti-
vate Toll-like receptor 4 (TLR4) signaling and induce ERK1/2 and p38MAPK activa-
tion and subsequent HSP27 phosphorylation in cardiac myocytes (Fig. 17.2) [57]. 
Increasing evidence suggests that the activation of ERK1/2 and/or PI3K/AKT signal-
ing pathways are crucial for the cardioprotective effects [77, 78]. HSP70, a member 
of small HSP family, can be loaded in exosomes [33] and is present in the circulation 
of normal individuals [79]. Moreover, the HSPs, especially HSP27 which is abundant 
in the myocardium, can be generated upon adverse stresses (e.g. heat) thus offering 
protective effects for the heart [80]. These studies highly suggest that circulating exo-
somes may provide a promosing non-cellular approach for the treatment of MIRI.
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17.4  Circulating Exosomes in Myocardial Infarction

Myocardial infarction (MI) is occurred when the flow of oxygen-rich blood is 
blocked in a section of myocardium, which is frequently caused by atherosclerosis- 
related coronary artery luminal occlusion and plaque rupture [81]. Simultaneously, 
MI is usually associated with a dramatic decrease of myocardial contractility and 
reduction of cardiac output [82]. In addition, MI may cause arrhythmia, cardiogenic 
shock, and heart failure. In pathophysiological aspects, cardiomyocyte apoptosis 
and necrosis are the essential causes of cardiomyocyte damage and loss in MI [83]. 
In the late stage, severe MI will ultimately progress to adverse cardiac remodeling 
and heart failure [84]. In these cases, controlling excessive inflammatory response, 
inhibiting cardiomyocyte death, preventing ventricular fibrosis, and facilitating 
angiogenesis are considered as potential therapeutic strategies for improving the 
prognosis of MI patients.

It has been reported that exosomes are highly involved in the pathophysiological 
processes of MI [20, 29]. Some exosomes derived from stem cells such as embry-
onic stem cells (ESCs), mesenchymal stem cells (MSCs), and cardiac progenitor 
cells (CPCs) were proved to improve cardiac function after MI, likely by reducing 
cardiomyocyte apoptosis, inhibiting myocardial fibrosis, and promoting angiogen-
esis [75, 85, 86]. However, some exosomes may exacerbate myocardial injury after 
MI and also be associated with vascular damage and cardiovascular risk [87, 88]. 
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For example, exosomes containing HSP60, released from highly differentiated 
adult cardiomyocytes in an anoxic condition, are detrimental to cardiomyocytes 
during acute MI [34, 89]. Extracellular HSP60 was shown to cause cardiomyocyte 
apoptosis through activating TLR4 [90]. Nonetheless, HSP20 contained in circulat-
ing exosomes derived from cardiomyocytes was identified as a novel cardiokine 
which may promote myocardial neovascularization via activating vascular endothe-
lial growth factor receptor 2 (VEGFR2) after MI [91].

Intriguingly, circulating miRNAs that are changed upon MI could also be pack-
aged in the exosomes (Fig.  17.2). It was found that miR-1 and miR-208 which 
might be contained in exosomes were significantly increased in the serum of rats 
with AMI and in the urine of AMI patients [92]. Equally, the cardiac muscle-specific 
miRNAs including miR-208b and miR-499 were shown to be increased in the cir-
culation of MI patients [93, 94]. As well, circulating p53-responsive miR-192, miR-
194, and miR-34a, particularly enriched in exosomes, were significantly increased 
in the early stage of MI [95]. Notably, the miR-194 and miR-34a levels were cor-
related with left ventricle end-diastolic dimension 1 year after MI, indicating that 
circulating miR-194 and miR-34a might serve as predictors for heart failure devel-
opment in MI patients [95].

17.5  Circulating Exosomes in Other Cardiovascular Diseases

17.5.1  Atherosclerosis

Atherosclerosis, the primary cause of MI, is a chronic inflammatory-immune dis-
ease of vasculature [96]. Atherosclerosis is associated with the thickening of vessel 
walls and the formation and deposition of lipid plaques in the cerebral, aortic, and 
peripheral arteries, which can be regulated by multiple cellular and molecular 
mechanisms. It was previously reported that high shear-stress or the shear- responsive 
transcription factor Krüppel-like factor 2 (KLF2) can induce vascular endothelial 
cells to secret exosomes enriched with miR-143 and miR-145 and subsequently 
regulate the target genes such as CAMK2d and ELK1 in smooth muscle cells [97], 
thus may regulate proliferation and de-differentiation of smooth muscle cells [98]. 
In addition, extracellular vesicles derived from KLF2-expressing endothelial cells 
can attenuate atherosclerosis formation in vivo [97]. Equally important, macrophage- 
derived exosomes from both atherosclerotic plaques and the peripheral blood were 
demonstrated to participate in the development of atherosclerosis [99, 100]. The 
atherosclerotic patients have higher levels of leucocyte-derived extracellular vesi-
cles in the circulation compared to healthy participants [101]. Furthermore, the cir-
culating exosomes originated from macrophage foam cells were proved to promote 
smooth muscle cell adhesion and migration in atherosclerotic lesion through acti-
vating the ERK and AKT pathways [101].
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17.5.2  Hypertension

The renin-angiotensin system (RAS), principally composed of renin, angiotensino-
gen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and Ang II type 
1 and type 2 receptors (AT1R and AT2R), plays key roles in the development of 
hypertension. It was previously reported that the AT1R-enriched exosomes were 
secreted from cardiomyocytes into the serum of mice undergoing cardiac pressure 
overload, thus regulating the blood pressure under hemodynamic stress [102]. 
Moreover, exogenously delivered AT1R-enriched exosomes were demonstrated to 
be uptaken by recipient cells such as smooth muscle cells and endothelial cells, 
which contributed to the regain of blood pressure response induced by Ang II in 
AT1R knockout mice [102]. Thus, the circulating exosomes containing AT1R, 
released from cardiomyocytes during pressure overload, may play important roles 
in regulating the blood pressure in detrimental conditions such as hypertension and 
heart failure.

17.5.3  Sepsis Cardiomyopathy

Sepsis cardiomyopathy is common in clinic and is predominantly caused by sys-
temic bacterial infection. Although the pathogenesis of sepsis cardiomyopathy is 
quite complex, the out-of-control immuno-inflammatory response, oxidative stress, 
cardiomyocyte apoptosis, and mitochondrial dysfunction are recognized as critical 
mechanisms. The platelet-derived extracellular vesicles isolated from septic patients 
were previously shown to induce vascular cell apoptosis through the NADPH 
oxidase- dependent release of superoxide [103]. The nitric oxide (NO) and bacterial 
toxin were proved to be positive factors for the secretion of platelet-derived exo-
somes. The circulating exosomes may further induce endothelial cell apoptosis via 
generating the peroxinitrite radical and activating Caspase 3 [104]. Further studies 
will be needed to investigate the potential of circulating exosomes and exosomal 
cargos in the diagnosis and prognosis of sepsis cardiomyopathy.

17.6  Perspective and Future Directions

Cardiovascular diseases are one of the major threats to human health [105, 106]. To 
date, a detailed understanding is available for stem cell transplantation in the treat-
ment of myocardial injury and heart failure, however, there are still many problems 
in stem cell therapy such as ethical issue, limited source, low viability in  local 
damaged myocardium, and immune rejection [107–109]. Although the induced 
pluripotent stem cells (iPSCs) are more likely to survive in the damaged myocar-
dium compared to mesenchymal stem cells (MSCs) [110], iPSCs-associated 
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tumorigenesis remains a critical issue. Initially, it is thought that stem cells can 
differentiate into cardiomyocytes and promote cardiac regeneration and repair. 
Nevertheless, subsequent detection revealed few new cardiomyocytes derived from 
transplanted stem cells, suggesting that stem cells are likely to promote the process 
of myocardial regeneration and angiogenesis by other mechanisms [111]. 
Circulating exosomes enriched with various types of bioactive molecules can be 
changed not only in the number but also in the composite cargos upon cardiac 
injury, which may influence cardiomyocyte function and contribute to cardiac 
regeneration and repair [57, 112]. In particular, compared with stem cell therapy, 
exosome-based therapeutic strategy would also decrease the risk of disordered dif-
ferentiation and tumorigenesis induced by stem cells [75, 112, 113].

Circulating exosomes can mediate local and distant cell communication through 
the horizontal transfer of their contents such as miRNAs and proteins or the activa-
tion of signaling pathways in the target cells [12, 36]. Notably, the exosomal con-
tents can be selectively enriched or modified by bioengineering, thus providing 
desirable effects in the treatment of cardiovascular diseases [114]. Moreover, given 
the particular lipid bilayer structure, exosomes can be used as a new drug carrier 
though it remains to be solved whether and how the delivered exosomes would 
reach the specific target tissues and cells to exert their biological therapeutic effects 
[115–117]. Also importantly, exosomes are naturally secreted into the extracellular 
environments, which may faultlessly overcome immunogenicity compared with 
other developed delivery devices. Last but not least, more preclinical and clinical 
studies will be needed to investigate the potential of circulating exosomes as bio-
markers for the diagnosis, risk stratification, treatment, and prognosis of cardiovas-
cular diseases [118, 119].
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