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Abstract This paper presents a single-precision floating point (IEEE 754 standard)
matrix multiplier module. This is constructed using subblocks, which include
floating point adder and floating point multiplier. These subblocks are designed to
achieve the goal of low power consumption. Different architectures of subblocks
are compared on the basis of energy-delay product. Design and simulations have
been performed for 180 and 45 nm technology node. Simulation results show that
design of floating point matrix multiplier is better at 45 nm than 180 nm technology
node in terms of lesser delay by 43% and energy-delay product by 97.86% at 1 V.
Also, 45 nm technology cells occupy only 6.25% of the area as compared to
180 nm cells.

Keywords Arithmetic and logic circuits � Energy-delay product (EDP)
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1 Introduction

Technology advances brought together large number of devices on a small silicon
area, thereby increasing power density on a chip. Low-power designs of these
devices are therefore needed to prolong lifetime of a chip as well as the battery. One
way to reduce power of a bigger module is to reduce power dissipation at subblocks
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level. This requires implementation of judicial design strategies and architectures to
obtain the best result for any application. Matrix multiplication unit is used in
digital signal processing applications such as, digital imaging, signal processing,
computer graphics, and multimedia. So, it is very crucial that it occupies less area,
works fast, and consumes low power. IEEE standard 754 floating point (FP) is a
representation for real numbers on computers. The goal of this paper is to present a
low-power design for FP matrix multiplier. Paper publications in this area have
been limited to building algorithm [1, 2] and subblocks required for floating point
matrix multipliers, which include floating point multiplier [3] and floating point
adder [4]. The circuit level simulation of designs at 180 and 45 nm technology
nodes is performed using low-voltage and low-power design techniques in
Virtuoso-Cadence environment.

The rest of the paper is organized as follows. Section 2 presents architecture of
FP matrix multiplier along with its subblocks like multiplexer, FP multiplier, FP
adder, and register. Section 3 presents the simulation results and comparison of
delay, power, and energy-delay product (EDP) at 180 and 45 nm node for
low-power design. Finally, conclusion is drawn in Sect. 4.

2 Matrix Multiplier Implementation

FP matrix multiplication is performed basically in two steps, FP multiplication and
FP addition. In this paper, power is reduced by reusing the adder architecture to
perform addition one after the other [1, 2]. This is an efficient technique to reduce
power consumption by breaking the main circuit in partially sequential and partially
parallel parts. Matrix multiplication operation is performed as follows:
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where

Z11 ¼ X11Y11 þX12Y21 þX13Y31 þX14Y41; ð2Þ

Z12 ¼ X11Y12 þX12Y22 þX13Y32 þX14Y42; ð3Þ

and so on…
The block diagram of FP matrix multiplier along with its subblocks is shown in

Fig. 1a–e. Figure 1a depicts the 4 � 4 matrix multiplier. Figure 1b shows opera-
tion of each cell of the matrix multiplier. It comprises of 4:1 MUX, FP multiplier,
FP adder, and memory register. The circuit diagram of 4:1 MUX is presented in
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Fig. 1 Representation of FP matrix multiplier and its subblocks. a Architecture of 4 � 4 FP
matrix multiplier. b FP matrix multiplier block diagram. c MUX schematic. d FP multiplier block
diagram. e FP adder block diagram. f 1-bit register circuit
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Fig. 1c. MUX selects the inputs of the two matrices to be multiplied. These are 4:1
MUX for matrices of size 4 � 4. Each MUX gives output as a 32-bit
single-precision floating point number. These are inputs to the floating point
multiplier unit.

The FP multiplier unit has three subparts as shown in Fig. 1d. Floating point
multiplication [3] is done in three steps: sign calculation, exponent calculation, and
mantissa calculation. The multiplier unit used for mantissa calculation is the slowest
path as it has to perform operation on 24 bits (23 bits mantissa and 1 bit normalizing
bit). So, in order to make this subblock fast, different architectures of multipliers
have been studied. FP multiplier can be implemented using several designs as
divide and conquer multiplier [5], Wallace tree multiplier [6], and Barun multiplier
[5]. Divide and conquer multiplier is used mostly in FPGAs, as this leads to fast
calculation. However, this comes at the expense of more hardware. Wallace tree
multiplier has less number of bits in each level, but delay is not evenly distributed.
So, it may cause glitches. Also, the tree structure uses a lot of interconnection;
therefore uses a lot more area. Barun multiplier shown in Fig. 2 offers evenly
distributed delay for the inputs of a full adder and it can be extended to multiply
higher number of bits. Based on the simulation results presented in Sect. 3 for all
the above three multipliers, it has been inferred that Barun multiplier offers lesser
EDP. Consequently, this is incorporated in the present low-power FP matrix
multiplier design.

The basic block in FP matrix multiplier is a full adder. Different architectures of
full adder like 17-T, 14-T, 10-T have been discussed in [7]. The 17-T adder proves
to be the best architecture in terms of power, delay, and power-delay product.
A 17-T adder was made using pass transistor logic, but there is a probability of
getting wrong logic at the output. For example, say when a = b = 0 the output at
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Fig. 2 Barun multiplier
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a ⊕ b is Vtp and that at Ex-NOR is Vdd − Vtn. This problem increases when adders
are cascaded as inputs a and b can be output of any previous adder. So, modified
17T architecture is proposed here and used in this work. This is shown in Fig. 3. In
this, transmission gate is used instead of pass transistor which transfers full logic.

The addition of two FP numbers is the trickiest part. The algorithm for FP
addition is taken from [4] and block diagram for the same is shown in Fig. 1e. FP
adder performs addition of partial products, as shown in Eqs. (2) and (3). First, there
is a need to make exponent of both the operands equal in order to perform addition.
According to Fig. 1e, if jBexpj[ jAexpj ðBexp ¼ Bh30 : 23i andAexp ¼ Ah30 : 23iÞ,
then swapping of the numbers is required, which implies that the signal swap
select = 1. The mantissa of smaller number (A) is shifted right by the shift amount to
make exponent of both equal and then added to or subtracted from other number, as
per the signs of the two numbers. Normalizing unit normalizes the output to IEEE
754 format again.

A 32-bit register stores the value of the adder block, such that it can be added
again to the new multiplied value. Figure 1f shows the circuit diagram of 1-bit
register.

Power of the FP matrix multiplier in the present design is reduced by,

(1) Using multiplier module with sleep transistor logic.
(2) Reducing the bit width for the floating point multiplier input from 24 to 12 bits

[8]. This method is called bit truncation.

The inputs to the multiplier in Fig. 1d are of 24 bits, so after multiplication
output is of 48 bits. But as this output needs to be fitted in FP format again,
rounding has to be done. This requires more power. Consequently to reduce power,
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Fig. 3 Proposed full adder
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bit truncation is used in which inputs are reduced to 12 bits, giving output of 24
bits. This can be effectively used in most of the applications like sensors, image
processing, etc., where limited accuracy can be tolerated.

3 Simulation Results

Simulations are performed on circuits made using UMC 180 nm and gpdk 45 nm
technology node library in Cadence Virtuoso, so as to compare low-power designs
of both technologies in terms of EDP. Figure 4a shows the comparison of EDP for
different multiplier architectures. It is evident from the figure that Braun multiplier
is best in terms of lower EDP and minimum energy-delay point is observed at 1 V.
So, this multiplier is built again using 45 nm technology cells and compared under
same conditions with 180 nm circuit. It is clear from Fig. 4b that the best case (1 V)
value of 45 nm circuit is lower than the best case (1 V) value of 180 nm circuit.

The functionality of FP multiplier and adder units have been analyzed. It has
been investigated that FP multiplier discussed here has an improvement of 61.9% in
EDP with respect to [9] (904.2E−21 J) and FP adder has an improvement of 94.8%
in power with respect to [10] (5.6 mW). For logic and functionality verification,
single element of the FP matrix multiplier is implemented and presented below.
Using Eq. (2), the first element of the output matrix is computed as:

Z11 ¼ X11Y11 þX12Y21 þX13Y31 þX14Y41;

Let,

X11 ¼ �16:23998; X12 ¼ �12:55799; X13 ¼ 1:26839; X14 ¼ 1:26839;

Y11 ¼ �12:2398; Y21 ¼ 0:01246; Y31 ¼ 124:8939; and Y41 ¼ 0:01246:
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Fig. 4 a EDP of different multipliers at 180 nm technology node. b EDP comparison of Barun
multiplier at 180 and 45 nm technology nodes
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Here X11, X12, X13, and X14 are the inputs to MUX1, which is first element in
Fig. 1b. These comprise row vector. While Y11, Y21, Y31, and Y41 are the inputs to
MUX2, these comprise column vector. M1 (X11 � Y11), M2 (X12 � Y21), M3
(X13 � Y31), and M4 (X14 � Y41) are corresponding products of the row and col-
umn values. Z is the final output, which is M1 + M2 + M3 + M4. The output from
the simulator ADE-XL of virtuoso is shown in Fig. 5. Table 1 shows the simulated
result of a single element Z (equals to M1 + M2 + M3 + M4) for floating point
matrix multiplier. It is analyzed that the error between desired and simulated output
is 0.044% which is because of rounding the product of multiplication to 24 bits as
in FP multiplication algorithm. Table 2 presents power, delay, and EDP obtained
from the simulation results of FP matrix multiplier at 180 nm for normal voltage of
1.8 V and low-power design at 1 V. The same FP matrix multiplier circuit is
implemented for 45 nm technology node. Table 3 compares the results for 180 and
45 nm technology at 1 V.

Fig. 5 Simulation table for floating point matrix multiplier

Table 1 Output of first element of floating point matrix multiplier (180 nm)

Quantity Decimal value 32-bit floating point binary value

Desired output 357.0476 0 10000111 01100101000011000011000

Simulated output 356.89 0 10000111 01100100111000111101100

Table 2 Simulation results
of floating point matrix
multiplier at 180 nm

Parameters At 1.8 V At 1 V

Total power (mW) 5.006 0.805

Static power (µW) 145.2 48.09

Dynamic power (mW) 4.8608 0.757

Delay (ns) 55.6478 91.8

EDP (Js) 15.5E−18 6.783E−18
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4 Conclusion

The floating point matrix multiplier operating at low voltages is designed and
simulated at 180 and 45 nm technology nodes. Various parameters like propagation
delay, power dissipation, and energy-delay product have been studied. Based on the
study, it is concluded that best performance (in terms of EDP) is achieved by fixing
supply voltage to 1 V at 180 nm node. The FP matrix multiplier circuits made by
using 45 nm technology reduce delay by 43%, power by 93.44%, and EDP by
97.86% as compared to circuits made at 180 nm technology cells at 1 V. In
addition, the 45 nm technology cell occupies only 6.25% of the area as compared to
180 nm cells.
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