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Abstract
This paper proposes an idea that utilizes near-infrared (NIR) imaging technique and
embedded system to construct a low-cost device for detecting and visualizing veins of
patients, who have problems with vein visibility, directly on the skin. The use of NIR light
has received a considerable attention as it is non-invasive and can reveal much more
information than visible one. By convention, biological materials of blood (hemoglobin,
etc.) has larger attenuation coefficient than those of the skin (collagen, melanin, etc.),
especially in the NIR region. Accordingly, vein patterns would appear darker, whereas skin
would appear lighter. The embedded system then captures image of the interest area and
conducts image processing in order to enhance contrast between veins and the
surroundings. The experimental results show that, even in a preliminary implementation,
images of vein pattern and location obtained by using the device exhibit promising
consistency, accuracy and time-performance. It is anticipated that, with further investiga-
tion and optimization, the proposed system can develop and construct 3D depth image of
veins.
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1 Introduction

Determining and extracting blood from veins is among the
most frequent practiced procedures in any hospitals. How-
ever, there are various factors that cause difficulty even for
experienced nurses or physicians such as alternation of
subcutaneous fat distribution caused by obesity. There are
more than 90% of hospitals require a peripheral cannula to
deliver therapy, and more than 1 billion venipunctures per
year are performed to obtain blood samples for testing [1].
Clinical statistics have shown that 25–50% of patients
require multiple attempts to achieve intravenous access [2].

Several imaging technologies have been introduced to
help improve the success rate, including transillumination,

ultrasound and near-infrared imaging devices. Transillumi-
nation is a method that focusing light through tissues. The
method has been limited to infants and small children as it
tends not to penetrate through thicker tissues or be
anatomically useful beyond the hand or wrist area [3].
Ultrasound is a method that utilizes high frequency sound
waves to provide excellent resolution of vessels and tissue
on a screen. However, the limitation of the method is that it
requires users to hold a probe with one hand and perform the
vascular puncture with the other hand, and the skill to think
three dimensionally as one is looking at a two-dimensional
image while attempting to place the needle in the center of
the vessel [4].

The use of NIR imaging technique in vein detection is rel-
atively less explored compared to other areas of imaging
technique.However, it appears to have tremendous potential to
deliver high-end result at low development cost. NIR imaging
technique is safe, non-invasive, accurate, simple and fast.
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2 Background

The technique works based on the principle as follows.
There are two types of hemoglobin in blood: oxyhemoglobin
(HbO2) which is bound to oxygen and deoxyhemoglobin
(Hb) which is unbound to oxygen. They are the main
absorber of NIR light. For illustrative purpose, Fig. 1 shows
absorption coefficient of biological materials with respect to
the NIR region of the electromagnetic spectrum. It can be
seen that the absorption coefficient of blood is higher than
those of the skin in general. Because of the different in
absorption coefficient, areas with vessels underneath would
have lower brightness intensity than those without. In
addition, around the wavelength of 800 nm, the Hb has
larger absorption coefficient than the HbO2 which enable us
to identify the veins, which contain more Hb.

Choosing the right wavelength is the important key to
achieve good contrast between veins and surroundings.
There are various experiments has been conducted to
determine the best wavelength. Lin et al. and Zhang et al.
state that vein image can be well distinguished from sur-
rounding tissue by infrared camera when infrared spectrum
is 720–1100 nm [5, 6] while Wang et al. claims that 850 nm
NIR light produces better contrast between vein and sur-
rounding tissue [7]. On the other hand, Li and Yuan [8] and
Zharov et al. [9] consider 880 and 760–960 nm would result
in the best contrast respectively.

3 Methodology

The proposed device is an embedded system which consists
of a computer with MATLAB and Simulink software, a
Raspberry Pi 2 (a credit card-sized single-board computer), a
NIR light source and camera, an intensity diffuser filter and a
pico projector. Figure 2 demonstrates the basic operation of
the device. A cluster of 830 nm high power IR LEDs, which

is the best available option economically, has been chosen as
main illumination source. The light source emits NIR light
into the area of interest. Before hitting the surface of the
skin, the light passes through a diffuser filter so its intensity
can be adjusted to reduce glare. When the adjusted light
comes in contact with the skin surface, parts of it are
reflected immediately; parts of it penetrate into deeper layers
and then are reflected or completely absorbed.

Scientifically, human eyes cannot see light in the NIR
region (wavelength from 700 to 2500 nm). Therefore, we
cannot see the veins even when they are shone by NIR light
and made more visible. This is where the proposed
embedded system plays its important role: to enhance image
quality and visualize the veins. An integrated IR camera
captures analog signals reflect from the area of interest and
convert them to digital signals. In other words, an image is
digitized to form a 2D discrete-space signal x[n1, n2]. The
digitized samples of an image are referred to as pixels. Most
commonly, the value of the pixel x[n1, n2] is interpreted as
the light intensity of the image at the point (n1, n2). These
pixels would then be transmitted to a Raspberry Pi 2 and be
processed and enhanced. Simulink and MATLAB are used
to construct the model and logics and then deploy into the
Raspberry Pi 2 in order to make it operate as a standalone
image processing unit.

Image enhancement refers to image processing that makes
an image more suitable for inspection by human observer.
Image enhancement is usually needed when an image is
captured under bad lighting conditions. Since our light source
is placed really near the target area of interest and device
itself is not fixed, there would be glare and non-uniform
brightness. Various techniques are applied to improve the
quality, i.e. Median Filter, Histogram Equalization, Local
Grey Level modification, Image Sharpening. In addition,
Image Segmentation is being investigated to derive depth and
other characteristics of the veins from digitized pixels.

Fig. 1 The absorption coefficient as function of wavelength for
specific biological materials

Fig. 2 Basic operating diagram
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Firstly, Median Filter is applied to eliminate impulsive
noise (salt-and-pepper noise), which is characterized by
large spikes in isolated pixels. The filter calculates the
median value of all the neighborhood pixels, i.e. all the
pixels in a specific window, and then replaces the pixels
being considered with that value. The window scans through
the entire image, pixel by pixel, to remove all the noise.

y m; n½ � ¼ median x i; j½ �; i; jð Þ 2 xf g; ð1Þ
where w represents the neighborhood pixels.

Secondly, Histogram Equalization is applied to enhance
the image contrast. Plotting histogram of the image deter-
mines the distribution of its pixel values. When all the pixel
values lie in a narrow range, the contrast is inadequate. The
technique enhances contrast by changing the distribution of
brightness. That is to say the original brightness levels are
remapped to widen the distribution of intensities. As a result,
a new image is formed. Let f m; n½ � is a given image with
pixel intensity range 0; L� 1½ �: L is the number of possible
intensity value, often 256. Let p denote the normalized
histogram of f with a bin for each possible intensity. So

Pn ¼ number of pixels with intensity n
Total number of pixels

n ¼ 0; 1; . . .;L� 1
ð2Þ

The histogram equalized image g will be defined by

gi;j ¼ floor L� 1ð Þ
Xfi;j

n¼0

pnð Þ
 !

ð3Þ

This is equivalent to transforming the pixel intensity, k, of
f by the function

T kð Þ ¼ floor L� 1ð Þ
Xk

n¼0

pnð Þ
 !

ð4Þ

Considering that the intensities of f and g are continuous
random variables X, Y on 0; L� 1½ �. Therefore the new
intensities Y is defined by

Y ¼ T Xð Þ ¼ L� 1ð Þ
ZX

0

pX xð Þdx; ð5Þ

where pX is the probability density function of f. T is the
cumulative distributive function of X multiplied by (L − 1).
By calculation, it can be shown that Y defined by T(X) is
uniformly distributed on 0; L� 1½ �; namely that pY yð Þ ¼ 1

L�1
:

However, because the image has non-uniform brightness,
the brightness distribution is sufficiently broad and global
gray scale modification will not provide any real enhance-
ment. The solution is to apply a technique that adjusts the

intensity of each pixel based on the intensity of its neighbors.
The value of a pixel x[n1, n2] is changed by the mean and
variance of the brightness in the neighborhood of the pixel.
As a neighborhood of ±M pixels, the mean and variance are:

l n1; n2½ � ¼ 1

2Mþ 1ð Þ2
XM

k1¼�M

XM

k2¼�M

x k1; k2½ � ð6Þ

r2 n1; n2½ � ¼ 1

2Mþ 1ð Þ2
XM

k1¼�M

XM

k2¼�M

x k1; k2½ � � l k1; k2½ �ð Þ2

ð7Þ
Hence, the transformation to create a new image y[n1, n2] is

y n1; n2½ � ¼ A

r n1; n2½ � ðx n1; n2½ � � l n1; n2½ �Þ þ gðl n1; n2½ �Þ

ð8Þ
The first part of the transformation increases or decreases

the deviation of x n1; n2½ � from the local mean depending on
whether the local variance is low or high. This has the effect
of making the local contrast more uniform. The constant A is
chosen. The second half of the transformation represents a
gray scale remapping of the local mean with the function g(�).

Segmentation is being investigated to extract character-
istics of the vein and create patterns. Segmentation is a
process to dividing an image into multiple parts. It means
that vein patterns can be extracted, mapped and trained for
auto-recognition. Edge detection is a crucial process. Image
sharpening make edges more detectable and vibrant by
emphasizing them. To sharpen the image is simply to apply
high-pass filter to the image.

4 Results and Discussion

The processed image was able to illuminate clearly most of
superficial veins, especially cephalic veins (of limbs),
superficial epigastric veins (of stomach) and jugular veins
(of neck). Figure 3 illustrates the final results when examines
a hand and a stomach.

Figure 4 shows the original image in comparison with
their processed counterparts. It can be seen that vein patterns
are much easier to notice after the image are processed. The
figure also shows two displaying mode, i.e. normal
gray-scale and inverting gray-scale.

The device is able to deliver high resolution with sufficient
rate 10 fps. The processing time is also fast as the average
time delay between original image and processed image is
0.032 s. However, the device has not been able to project the
vein patterns back onto the skin of patients. It suffers great
dislocation as the real position of veins and the image are not
matched.
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5 Conclusions
The work in this study provides the mean to limit diffi-
culty in determining vein location and extracting blood
from them. The device has been able to detect and display
peripheral veins with sufficient rate and high resolution
on screen.
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Fig. 3 Result images of cephalic vein (left) and superficial epigastric vein (right)

Fig. 4 Original image and their processed counterparts a Original image. b Normal gray-scale. c Inverting gray-scale
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