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Abstract
Human activity recognition (HAR) has become an active research topic in the various fields.
Depth sensor-based HAR recognizes human activities using features from depth human
silhouettes via classifiers such as Hidden Markov Model (HMM), Conditional Random
Fields Model etc. In this paper, we propose a new HAR system via Convolutional Neural
Network (CNN), one of deep learning algorithms. We extract joint angles from multiple
body joints changing in time and create a spatiotemporal feature matrix (i.e., multiple body
joint angles in time). With these derived features, we train and test our CNN for HAR. In
order to evaluate our system, we have compared the performance of our CNN-based HAR
against the HMM- and Deep Belief Network (DBN)-based HAR using a database of
Microsoft Research Cambridge-12 (MSRC-12). Our test results show that the proposed
CNN-based HAR is able to recognize twelve human activities reliably and it outperforms
the HMM- and DBN-based systems. We have achieved the average recognition accuracy of
98.59% for the activities. The results are 6.1% more accurate than that of the HMM-based
HAR and 1.05% more accurate than that of the DBN-based HAR.
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1 Introduction

Human activity recognition (HAR) is to recognize various
human activities via external sensors such as acceleration or
video sensors. In recent years, HAR from video has evoked
significant interest among researchers in the areas of

computer vision, e-healthcare, lifecare, human computer
interface, etc. [1]. In fact, human activity recognition exhi-
bits practical applications such as human computer interac-
tion, automated surveillance, and human healthcare. For
instance, in a smart environment, an automatic human
activity recognition system can recognize residents’ activi-
ties and can create daily, monthly, and yearly activity logs.
These life logs can provide residents’ habitual patterns,
which medical doctors evaluate for further healthcare sug-
gestions. For elderly people, a HAR system can recognize
their falls or unusual activity patterns and alert or inform
their caregivers.

The basic methodology of activity recognition involves
activity feature extraction, modeling, and recognition tech-
niques. Video-based HAR is a challenging task as it has to
consider whole body movement and does not follow rigid
syntax like hand gestures or sign languages. Hence, a
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complete representation of a full human body is essential to
characterize human movements properly in this regard.
Though many researchers have been exploring video-based
HAR systems due to their practical applications, accurate
recognition of human activities still remains as a major
challenge.

Generally, video-based HAR can be divided into two
categories according to motion features: namely,
marker-based and vision-based. The former is based on an
optic wearable marker-based motion capture (MoCap) sys-
tem that is widely used as it offers an advantage of accurately
capturing complex human motions. However, it has the
disadvantage that the optical sensors must be attached to the
body and requires multiple camera settings. The latter is
based on RGB or depth image sensors and it is marker-free.
This approach is getting more attention these days due to the
absence of tracking wearable markers, hence making the
HAR system easy to be deployed in daily applications.

As for the recognition techniques, until now HMMs have
been widely used in many HAR systems, as HMMs are
capable of temporal pattern decoding [2–4]. Recently, deep
learning is getting considerable attentions due to its power to
learn deep structures of patterns [5–11]. Basically, deep
learning refers to neural networks that exploit layers of
non-linear data processing for feature classification which is
hierarchically organized where each layer processing the
outputs of the previous layer. Deep learning techniques have
outperformed many traditional methods in computer vision
[7–11]. Deep learning techniques are very promising to
address the requirements of HAR in two ways. First, per-
formance can be significantly improved over existing
recognition techniques. Second, deep learning approaches
have the potential to uncover features that are tied to the
dynamics of human motion (i.e., from simple motion
encoding in lower layers to more complex motion dynamics
in upper layers of the network). This may be useful to
scaling up HAR to activities that are more complex.

Recently, in [5], the authors recognized activities via
Deep Belief Network (DBN) which is one of Deep Neural
Networks (DNNs) proposed by Hilton in 2004 [6]. DBN
uses Restricted Boltzmann Machines (RBMs) in learning
and it avoids local minimum problem with less training time.
In addition to DBN, Convolutional Neural Networks
(CNNs) are also attracting many researchers due to their
more discriminative power over DBN. CNN is a type of
DNN consisting of feature extractions and several convolu-
tional stacks to create a progressive hierarchy of more
abstract features. One of key attributes of CNN is to conduct
different processing units such as convolution, pooling,
sigmoid/hyperbolic tangent squashing, rectifier, and nor-
malization [7]. Such various processing units yield an
effective representation the features: this deep architecture
allows multiple layers of the processing units to be stacked

so that this deep learning model can characterize the salience
of features in different scales. Moreover, the features
extracted via CNN exhibit more discriminative power as it
can learn under the supervision of output labels. Yann Lecun
and Yoshua Bengio introduced the concept of CNN in 1995
[8]. Later on, various structures of CNN were proposed
including AlexNet [7], VGGNet [9], and GoogleNet [10].

In this paper, we present a CNN-based HAR system. We
have performed HAR with the features of body joint angles.
The performance of CNN for HAR has been compared to
other conventional recognizers such as HMM and DBN.

2 Materials and Methods

In this section, we introduce our CNN-based HAR system.
Our HAR system proceeds to the following steps. First, we
create an input feature matrix of joint angles computed from
the MSRC-12 activity dataset [12]. Second, we train CNN
with the training feature matrix. Third, we evaluate the
trained CNN using test data sets recognizing twelve human
activities. The recognition performance is compared to the
results from the conventional HMM- and DBN-based HAR
systems.

2.1 MSRC-12 Gesture Dataset and Features

We have evaluated the HAR systems using the MSRC-12
dataset. This dataset consists of sequences of human activ-
ities containing 594 sequences and 719,359 frames (approx.
6 h. 40 min.) collected from 30 people performing 12
activities. In total, there are 6244 activities. Twelve different
activities are denoted as G1–G12, indicating the following
activities: lift arms, duck, push right, goggles, wind it up,
shoot, bow, throw, had enough, change weapon, beat both,
and kick respectively.

For HAR, from 14 key body parts, we derive 28 joint
angle features (i.e., two joint angles from each part). The 14
key body parts include spine, neck, right lower arm, right
upper arm, right shoulder, left lower arm, left upper arm, left
shoulder, right hip, right upper leg, right lower leg, left hip,
left upper leg, and left lower leg respectively. Finally, we
create the input feature matrix with 28 joint features from 50
frames, making the size of each input feature matrix
(28 � 50). Each row of the feature matrix represents a
change in joint angle in time.

2.2 HMM-Based HAR

On the feature matrix, we perform Principal Component
Analysis (PCA) to reduce a dimension of the feature vector
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from 28 to 17, which includes more than 99% of information
of the frame. Then each of the reduced feature vectors of
(1 � 17) is clustered to be one of 64 codes via
Linde-Buzo-Gray algorithm [13]. Then a set of 50 frames is
represented in a (50 � 1) sequence of codes. Lastly, HMMs
are trained with the sequences of codes via Baum-Welch
algorithm. Details of our settings for HMMs are available in
[4]. After training HMM, we have applied it for HAR.

2.3 DBN-Based HAR

For DBN-based HAR, we use a vector of (1 � 1400) from
28 joint features from 50 frames. Training DBN requires two
steps: pre-training and fine-tuning. Pre-training is a process
of determining the appropriate initial weight to avoid local
minimum solution in network. This step initializes Restricted
Boltzmann Machines [14]. The weights of RBMs are
adjusted in a fine-tuning step through backpropagation. After
training DBN, we have applied the system for HAR. More
details can be found in [5].

2.4 CNN-Based HAR

Convolutional Neural Network is a kind of multilayer per-
ceptron that is designed to use minimum preprocesses [10].
In general, the structure of CNN consists of multiple layers
including convolution layer, pooling layer, and fully con-
nected layer. Compared to other deep learning structure,
CNN shows a good performance in the video and audio
sector. CNN has the advantage of using a small number of
the bias values and weight values than other deep learning
approaches.

Figure 1 shows the structure of our proposed CNN for
HAR. This structure consists of seven layers, including three

convolution layers, three pooling layers, and one fully con-
nected layer. The convolution layers and pooling layers pass
input feature matrix 3 times repeatedly. The output is clas-
sified into 12 activities through a single fully connected
layer.

The first layer is the convolution layer called c1. In this
layer, the input matrix is convolved with a 1 � 3 convolu-
tion kernel and the matrix of (28 � 48) is generated. Note
the convolution kernel is 1D, since each body joint is
independent of each other and only temporal convolution is
performed in each row. Equation (1) represents the convo-
lution layer.

cðlþ 1Þ
k ðm; nÞ ¼ ReLU

Xu
ðg¼1Þ

xðm; n� gþðuþ 1Þ=2Þwl
kðgÞþ blk

0
@

1
A
ð1Þ

where clþ 1
k m; nð Þ indicates (m, n) coordinates of the l + 1-th

layer and k-th convolution map. wl
k represents the l-th layer

and k-th convolution kernel. blk represents the l-th layer and
k-th bias value. x represents the map of previous layer and u
represents the size of kernel. ReLU is one of the active
functions, which receives the weight sum value of the pre-
vious layer and then passes to the next layer. CNN usually
uses ReLU which is expressed as Max(0,x) to the active
function [11].

The second layer is the pooling layer called s1. This layer
converts the result of the c1 layer to a matrix of (28 � 24)
using a (1 � 2) max pooling. Equation (2) represents the
pooling layer. We select the maximum value in the 1 � 2
window of previous map.

plþ 1
k m; nð Þ ¼ max1� g� ux m; n� 1ð Þ � uþ gð Þ ð2Þ

Then repeat the convolution layer and pooling layer two
more times. In the c2 and s2 layers, the result of s1 is

Fig. 1 Structure of our proposed CNN for HAR consisting of seven layers, including three convolution layers, three pooling layers, and one fully
connected layer
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convolved with a 1 � 5 convolution kernel and convolution
map is reduced in its size, so we generate a matrix of
(28 � 10). In the c3 and s3 layers, we generate a matrix of
(28 � 4) using a 1 � 3 convolution kernel and 1 � 2
max-pooling.

Finally, we generate a fully connected layer using the
result of s3. Equation (3) represents the pooling layer. wl

ij

represents the i-th node of the l-th layer to the j-th node of
the l + 1-th layer weight value.

f ðlþ 1Þ
j ¼ ReLU

X
i

xliw
l
ij þ blj

 !
ð3Þ

Now we need to train the CNN. First, we initialize the
weight and bias values with random numbers. Second, we
calculate error using the ground truth and the output from the

initialized CNN. Third, we update the weight and bias values
of all the layer of our CNN structure via backpropagation
[15]. These processes are repeated until the error is smaller
than the maximum error tolerance or exceed the maximum
iteration.

3 Result

To evaluate our HAR system, we compared the accuracy of
HAR based on HMM, DBN, and CNN using the same
MSRC-12 dataset. Table 1 shows the comparison results in
terms of recognition accuracy. The results by HMM show
the lowest performance compared to the other two cases.
The results show that the average accuracy of 92.49% with
standard deviation of 4.48.

Table 1 Comparison of accuracies of HAR based on HMM, DBN and CNN

Activities HMM (%) DBN (%) CNN (%)

G1 87.5 94.3 97.7

G2 98.8 98.8 100

G3 84.2 98.8 97.6

G4 91.8 96.9 94.9

G5 86.1 98.7 100

G6 97.6 100 100

G7 92.9 98.8 98.8

G8 95.1 93.8 100

G9 93.9 98.0 98.0

G10 94.8 96.1 96.1

G11 92.4 98.7 100

G12 94.9 97.4 100

Mean (STD) 92.49 (4.48) 97.54 (1.92) 98.59 (0.69)

Table 2 The confusion matrix of HAR with the proposed CNN-based HAR system

G1 97.7 1.14 1.14

G2 100

G3 97.6 2.44

G4 94.9 2.04 3.06

G5 100

G6 100

G7 1.19 98.8

G8 100

G9 98.0 2.02

G10 1.30 96.1 2.60

G11 100

G12 100

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
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The results by DBN show the higher recognition rate than
those of HMM. The accuracy of DBN-based HAR is
97.54% with standard deviation of 1.92. The results by CNN
show the best recognition accuracy of 98.59% with standard
deviation for 0.69. The CNN-based HAR is 6.1% more
accurate than those of HMM-based HAR are and 1.05%
more accurate than those of DBN-based HAR. Table 2
shows a confusion matrix for 12 activities using CNN.

4 Conclusions
In this paper, we present a work of CNN-based HAR.
Our CNN-based HAR results show that CNN outper-
forms HMM and DBN. The proposed CNN-based HAR
system can be adopted as a smart system in smart hos-
pitals for better healthcare of patients and in smart homes
for better elderly care of residents.
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