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Abstract
This study aims to evaluate the performance of 4 commercialized wearable devices in
scoring sleep stages with the ground-truth from polysomnography (PSG) system. The
comparisons were performed using data from 14 human subjects simultaneously wearing 4
wearable devices with sleep monitoring function monitored by polysomnography overnight
at a Type 1 sleep lab. The compared features were categorized into 2 groups including
(1) sleep–wake pattern and (2) sleep distribution. Wearable devices with sleep monitoring
functions used in this study are from 4 different brandnames including Misfit, Garmin,
Jawbone and Fitbit. These devicesare anonymously named as Device A, B, C and D.
Using PSG system as benchmark, wearable devices earned good sensitivity, especially in
detecting sleep onset and sleep period time in contrast to poor specificity, particularly in
monitoring sleep stages. However, specificities in terms of wake–sleep transition features
reported from wearable devices are low compared to those reported from polysomnography.
Among 4 wearable devices, device C with the sensors to capture the heart rate, respiratory
rate, body temperature, galvanic skin response as well as an accelerometer proved the best
device in detecting not only sleep–wake transition but sleep stages as well. From the device
perspective, we suggest that the usage of both actigraphy and heart rate sensors in the
wearable devices and proper selection of sleep features can yield better agreement between
wearable devices and the gold standards—PSG—in determining the sleep stages.
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1 Introduction

Actigraph-based methods have been used widely for the
monitoring of sleep although its accuracy is still question-
able. In 1995, Sadeh et al. [1] made the comparison between

actigraphy and PSG and concluded that actigraphy did
provide useful information and might be a promising method
for detecting some sleep disorders. In 2003, there was a
review of AASM (American Academy of Sleep Medicine)
using 171 articles of actigraphy comparison and concluded
that actigraph was valid and reliable in the normal popula-
tion; it is still questionable in the population of sleep-related
disorder patients. Also, while actigraph was good at
detecting sleep, it was poor at wake detection [2]. Since that
time, this technology has been developed rapidly both in
hardware and algorithm; as a result, comparative research
becomes necessary. In addition to actigraphy, wearable
devices recently have been facilitated with more sensors for
the recording of other physiological parameters during sleep
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time; hence, their performances have been improved con-
siderably [3]. However when it comes to a detailed sleep
stage classification that consists of all wake, light sleep, deep
sleep, and REM stages, the current wearable devices do not
show moderate agreement in comparison with PSG [4].

The drawbacks of the previous work are the lack of
assessing methods to compare sleep architecture detected by
actigraph-based devices and justifications to explain the
differences between wearable devices and PSG in detailed
structures of sleep under different health conditions. The
primary goal of this study is to make the comparison
between the gold standard—PSG system and 4 commercial
wearable devices, which is separated into 2 types—the first
ones scored sleep based on actigraphy while the second one
derived the results from actigraphy combining with other
bio-signals. The compared sleep parameters were classified
in a wide range of features characterizing normal human
sleep [4–6] and common sleep disorders [7]. Additionally,
the secondary objective of this study is to provide reasonable
explanations for the discrepancies between sleep monitoring
system and the PSG system.

2 Methodology

2.1 Experimental Design and Data Collection

Fourteen volunteers (9 males, 5 females) in the age range of
20.2 ± 2.0 took part in this study for 17 overnight data
acquisitions. During the experiment, the participants are
required to wear four types of wearable devices on wrist
along with the PSG system and asked to sleep comfortably
for at least 8 h per night. After average of 8 h of data col-
lection, PSG data and wearable devices’ data will be col-
lected and stored anonymously. Hypnograms—graphs that
indicate the sleep stages—from the wearable devices as well
as from the PSG system are collected for further sleep stage
analysis. Type1 PSG system-Alice5 PhilipsTM system
(Fig. 1) utilized in the research consists of 11 types of sen-
sors including EEG, EOG, ECG, leg EMG, chin EMG,

thermal flow and snore, respiratory inductance plethysmog-
raphy bands at the chest and abdomen, position sensor, and
pulse oximeter. The signals were presented graphically on a
computer screen for the real-time monitoring by technicians.
The PSG signals were used to categorize sleep into 5
stages-Wake, NREM (including N1, N2, and N3) and
REM-using American Academy of Sleep Medicine (AASM)
scoring manual.

Each of the commercial wearable devices with sleep
monitoring functions will be named respectively as device
A, device B, device C, and device D and compared
anonymously. In detail, device A, B, C, and D use
accelerometer sensors to detect the 3-axis motion of the
subject’s wrist over the night and associate it with the sleep
stages. In addition to the accelerometers, Device B is
equipped with an additional optical sensor for heart rate
detection. Device C uses the bio-impedance sensor to mea-
sure heart rate, respiratory rate, body temperature, galvanic
skin response as well as an accelerometer to detect stages of
sleep. These devices stream data automatically into the
server therefrom the algorithms classify sleep into different
stages. In particular, devices A, B and D classify sleep into
Wake, Light and Deep stages while device C divides sleep
into Wake, REM, Light and Deep stages.

2.2 Sleep Feature Extraction

Features for the comparisons have been categorized into 2
groups namely wake–sleep analysis and sleep distribution.
The first group is wake–sleep analysis including 3 groups of
sleep features: sleep quality, sleep disturbance and wake–
sleep transition. The sleep quality which includes sleep
features having impacts on human health based on three
components of health–mental, social, and physical, identi-
fied by World Health Organization (WHO) [8]. These fea-
tures are sleep period time and sleep efficiency. Considering
the AASM guideline, we define the sleep duration as the
time from sleep onset to the last epoch of sleep and the sleep
efficiency is the percentage of total sleep time per sleep

Fig. 1 PSG system and wearable
device setups
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period time. The other two groups are sleep disturbance and
wake–sleep transition comprising 5 parameters which are the
important diagnostic factors for several popular sleep dis-
orders like insomnia, narcolepsy and depression [9]. These
features include Wake After Sleep Onset, REM latency (time
from sleep onset to first REM), sleep onset and wake after
sleep. These four characteristic features are recommended to
be evaluated between the benchmarked system and wearable
devices [5]. These 3 groups of sleep features technically
distinguish when subjects wake or sleep, statistical com-
parison of this group show how imprecise wearable devices
can analyze between awake and sleep stages.

The second comparative group is sleep distribution fea-
tures which characterize the relative of different sleep
stages’s durations over the sleeping time. Criteria related to
sleep distribution have been used to evaluate a normal
human sleep. Besides characterizing the normal human
sleep, sleep architecture can help to understand sleep
pathology. These features is also the gap of previous
research, which mostly focused on Wake–sleep analysis
features only while sleep distribution is necessary in medical
diagnosis. Comparisons in sleep distribution help us to know
how exactly wearable devices identify sleep stages.

The description and estimation of each parameter were
shown in Table 1; Fig. 2.

2.3 Statistics Tests

To investigate the accuracy of the wearable devices in scor-
ing sleep with the references of PSG system we performed
pairwise statistical analysis over sleep features aforemen-
tioned. In this study, we used paired sample t-test to consider

Table 1 Description of two groups of sleep feature

Category Features Description Formula Unit

Sleep
distribution

Percentage of light
sleep
(PLS)

The ratio of total light sleep time (TLST) during total sleep
time (TST)

PLS ¼ TLST
TST

%

Percentage of deep
sleep
(PDS)

The ratio of total deep sleep time (TDST) during total sleep
time (TST)

PDS ¼ TDST
TST

%

Percentage of
REM sleep
(PRS)

The ratio of total REM sleep time (TRST) during total
sleep time (TST)

PRS ¼ TRST
TST

%

Minor
features

Total sleep time
(TST)

The time subject spends on sleep during sleep period time TST ¼ TLST þ TDST þ TRST Min

Sleep
disturbance

Sleep period time
(SPT)

The elapsed time from sleep onset (SO) to last epoch of
sleep (LSP)

SPT ¼ LSP� SO Min

Sleep efficiency
(SE)

The ratio of total sleep time (TST) and sleep period time
(SPT)

SE ¼ TST=SPT %

Wakefulness after
sleep onset
(WASO)

Minutes of awake time (AWT) during sleep onset (SO) to
light on (Azagra Calero et al.)

WASO ¼ SPT � TST þWAS Min

Sleep onset
(SO)

The point of time when the subject undergoes a transition
from wakefulness into sleep

1st N1=N2=N3=REM hh:
mm:
ss

Fig. 2 Sleep recording
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the statistical differences between the sleep features from
PSG system and those from wearable devices. Besides, we
also utilized the cohen’s d effect size value to characterize the
differences between the features.

3 Results

We reported our results regarding the pairwise comparisons
of the 2 groups of aforementioned features. In this session,
we summarized the comparisons in 2 groups namely wake–
sleep analysis, sleep distribution and reported features from
the investigated wearable devices that are significantly dif-
ferent from those from PSG system. A full list of all feature
comparison and the statistical significant values were
reported finally.

3.1 Wake–Sleep Analysis

The Wake–sleep analysis comparisons compare between
wearable devices and polysomnography system in 4 sleep
features: sleep period time (SPT), sleep efficiency (SE),
wakefulness after sleep onset (WASO), and sleep onset
(SO).

Figure 3 demonstrates how accurately 4 wearable devices
scored sleep period time. The results were compared to PSG
system. In case number 1 and 3, 3 over 4 devices detect a
wrong SPT which is very different from PSG result. The
reason for this mistake is subject took off these devices

without turning off so they cannot detect any motion and
give out results that subject still sleeping while he/she is not.
These two cases make the range of different value (error)
large. It is evident from the graphs that apart from device D,
other devices performed quite well and device C are best fit
to the PSG with the lowest error besides outlier cases.

Figures 4 and 5 describes the accuracy of 4 wearable
devices in scoring sleep efficiency (SE) and wake after sleep
onset (WASO) compared to PSG. These two features stand
for the ability of detecting wake after subject go to sleep of
wearable devices. From the formula, SE and WASO are
inversely propotional. Results from device A, B and D
shows that in most of the case, SE nearly 100% while
WASO almost 0 min. In general, device C showed the best
result and it was followed by device D. In contrast, other
devices seemed to fail in detecting this sleep feature. In the
other words, after analyse that subject goes to sleep stage,
wearable devices fail to detect wake during his/her sleeping
time.

Figure 6 provides information about how well 4 wearable
devices scored sleep onset in comparison with PSG. Overall,
in most of the cases, Device A, B and D detect SO before
subject actually sleep (base on PSG result). The reason is that
when subjects did not sleep but lying still, devices considered
they slept while they did not, which leads to the large range of
error. Results also shows that there was a considerable
accuracy of device C over other devices in detecting sleep
onset. Particularly, the average error of device C is
7.15 + 7.10 min which is 2 times lower than the others’.

Table 2 summarizes the overall t-test statistics and the
cohen’s d values.

It is evident from the table that apart from device A and
B, device C and D performed quite well in wake–sleep
analysis and device C are best fit to the PSG with the lowest
error. Results also give out 2 problem of wearable devices in
detecting wake and sleep stage. Firstly, when patients lie
still, these devices will give the wrong diagnoses. Secondly,
wearable devices are erratic in recognizing whether patients
are wearing them or taking off. In this case, actigraphy will
identify no motion, that cause of wrong analysis.

Fig. 3 Sleep period time of wearable devices versus PSG. Data series
on horizontal axis does not represent for object, only represent for order Fig. 4 Sleep efficiency of wearable devices versus PSG
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3.2 Sleep Distribution Features

Because four wearable devices define sleep stages differently
(Wake–Light–Deep or Wake–REM–Light–Deep) and dif-
ferent from PSG’s definition (Wake–REM–N1–N2–N3),
especially while in medical field, REM sleep is not classified
as light or deep sleep. Therefore, in order to find out the best
corresponding definition to PSG’s definition to use these
devices for medical diagnosis, statistical test is done with 4
different ways of classification as shown in Table 1.
Device C has REM sleep detection therefore there are only 2
possible definitions (group 1 and 2).

Table 4 summarizes statistical results systematically
between 4 wearable devices in 4 groups of definition.

The result shows that Device C detects REM sleep quite
accurately with PSG’s result (There is no statistical differ-
ence between 2 results) but in both cases of definitions, it
cannot detect Light and Deep sleep correctly. The best result
is when classifying N1 and N2 as light sleep, N3 as deep
sleep.

Also, levels of accuracy depend on wearable devices
(sensors) and their sleep stage definition (algorithm). In
general, the closest result belongs to Device A, which
defines stage N1 and N2 as light sleep, N3 and REM as deep
sleep; follow is Device B and D, which considers N1 as light
sleep, and combine 3 other stages as deep sleep.

Overall, among the 4 ways of definition, device B gives
the most incorrect detection while device D gives significant
different result in all 4 groups. Besides, statistical tests show
that results from group 3 and 4 definition are most inaccurate
among 4 devices.

4 Discussions

It is concluded that the wearable devices earned good sen-
sitivity in detecting sleep onset and sleep period time in
contrast to poor specificity, particularly in monitoring sleep
stages. We proposed two possible reasons that affect the
accuracy of wearable devices. The first reason came from
how commercialized wearable devices classify sleep stages.
The other factor affecting the result was the devices’ sensors.

The first reason of the discrepancy comes from the way
the devices group sleep stages as shown in Table 3. It has
been shown that sleep stage N3 was extremely different from

Fig. 5 Wake after sleep onset of wearable devices versus PSG

Fig. 6 Sleep onset detected from the wearable versus PSG system
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REM sleep both in brain activity and body movement [5].
To be specific, during stage N3, the brain undergoes the
most restful status [6] and there is a minimum in muscle
activity compared to other sleep stages [10]. In contrast,
REM sleep shows a highly activated brain, especially in
motor area of the cortex and despite the inhibition of vol-
untary motor system, the body motion level of this sleep
stage only less than wake stage and stage N1 as shown the
following sequence: Wake>N1>REM>N2>N3 [10]. In sta-
tistical tests showed above, group 4 is divided base on levels
of body movement: (N1 + REM + N2) = Light sleep,
N3 = Deep sleep and gives inaccuracy results among 4
devices. As the result a new way to classify sleep stage into
Wake, REM and NREM should be considered to improve
the accuracy of the sleep scored by wearable devices.

The second reason was related to the low sensitivity of
the motion sensors in capturing the sleep stage transitions.
Besides autonomic nervous system, sleep stages are mani-
fested by the somatic nervous system [11]. In the current
commercial wearable devices, sleep stages are characterized
by various somatic signals of the peripheral nervous system
that are captured by the motion. However due to the low
muscle tone threshold in the wake stage right after a REM
sleep, it is too hard for devices to detect this wake. In other
words, REM sleep experiences the inhibition of the volun-
tary motor system or the skeletal muscles; therefore, the
muscles require more energy to overcome the inhibition
threshold to move. As a result, sometimes subjects could not
move immediately although there were changes in EEG and
EMG which were considered as wakefulness by PSG

Table 2 Summary of statistical comparisons of wake–sleep analysis

The shaded values indicate the sleep features that are significantly different while “No sig. dif.” means “There is no significant difference between
Device and PSG system”, “Sig. dif.” means “There is a significant difference between Device and PSG system”, is significant value of t-test, the
larger, the more accurate of the results, shows power of the test, the smaller, the closer between wearable devices and PSG detection

Table 3 Corresponding sleep
stages definition for comparison

Devices Sleep stages

Group 1:

PSG N1 N2 N3 REM Wake

Device C Light Deep REM Wake

Device A, B, D Light Deep Wake

Group 2:

PSG N1 N2 N3 REM Wake

Device C Light Deep REM Wake

Device A, B, D Light Deep Wake

Group 3:

PSG N1 N2 N3 REM Wake

Device A, B, D Light Deep Wake

Group 4:

PSG N1 N2 REM N3 Wake

Device A, B, D Light Deep Wake
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system. Hence, characteristic signals generated by the
autonomic nervous system need to be accounted due to their
stability in capturing the voluntary movements in scoring
sleep stages [11, 12]. Furthermore, the classification training
should include different factors affecting sleep structure. We
recommend 5 groups of factors which may affect the sleep
which are (1) lifespan, (2) daytime habits including inactive
(TV/game addiction, working in office) and overactive ones
(manual labors), (3) diseases like mental problems or limb
movement disorders, (4) usage of medications (antianxiety)
or beverages (caffeine, alcohol) before bedtime, and (5) sleep
conditions like temperature, skin conductance.

5 Conclusions
In conclusion, the fast growth of polysomnographic
alternatives for point-of-care applications has urged more
standardized comparative research conducted to validate
the sleep monitoring devices and improve the current
design of wearable sleep monitoring system. In this
paper, we proposed a list of sleep characteristic features
and statistical comparison to specify the impact of gender
on devices as well as the deviation of commercialized
sleep monitoring products with the PSG ground truths.
The results were that among 4 wearable devices, device C
with the bio-impedance sensor was the best one which
detect well not only sleep–wake patterns but REM sleep
as well. Meanwhile, device D showed good results on
sleep–wake patterns but inaccurate result in sleep distri-
bution. In contrast, the remaining devices cannot be used

for medical purposes because of their poor scoring in
stages and sleep–wake patterns. For the device
improvement, we came up with two possible causes
which were sleep-stage synchronization, and data acqui-
sition process. Besides, we also proposed two suggestions
which were to classify training data and to consider the
autonomic signals such as heart rate used in device C.
Temporal localized correlation coefficients of the com-
parative features have been investigated to characterize
quantitatively the discrepancies between wearable devi-
ces and PSG. We expect that from the results of this test,
the causes of the poor detection will become more evi-
dent. It helps to increase the accuracy of the machine
learning algorithms in to the current PSG system to
enhance the diagnosis and prediction of the other sleep
disorders [13, 14].
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