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Abstract
This paper proposes an algorithm to estimate two parameter values vs, transcription of frq
gene, and vd, maximum rate of FRQ protein degradation for an existing 3rd order
Neurospora model in literature. Details of the algorithm with simulation results are shown
in this paper.
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1 Introduction

For almost every living species on Earth, there exist internal
periodic oscillations that control their daily biological
activities. These oscillations are known as circadian rhythms
and are governed by a biological clock, which is placed at
suprachiasmatic nucleus (SCN) (for human). SCN has
independent rhythms and the ability to re-adjust its own
rhythms with the external rhythms [1]. Research results have
shown that losing this ability will cause the health to
degrade, even leading to dangerous symptom such as cancer
[2, 3]. Because of its importance, circadian rhythm is a topic
that has attracted researchers over many years. Some results
have been published, notably with the discovery of key
genes that are parts of circadian rhythms [4, 5], the mathe-
matical models that describe characteristics of circadian
rhythms [6, 7], and circadian phase recovery [8, 9].

System identification is one of the inspired research areas
for circadian rhythm [10]. Although several mathematical
models of circadian rhythms have been created successfully,
the measurements made for exact parameter values that can
be used for these models are still a challenge. Some results
have been achieved in identification of circadian system [9],
[11]. In this paper, we propose a method based on Genetic
Algorithm to estimate two parameter values of a Neurospora
model given in [6]. The parameters that required to estimate
are vs, transcription of frq gene, and vd, maximum rate of
FRQ protein degradation. According to the research on
sensitivity analysis performed in [5], vs and vd are among the
parameters that show the most sensitivity to light entrain-
ment, which make them unpredictable.

The search for the correct parameter values is an opti-
mization problem where a suitable cost function needs to be
minimized. Although this is simple for the search of one
parameter value, it becomes more challenging when multiple
parameters are being searched for. If in addition there is a
wide search space and the cost function presents local
minimums, the traditional search algorithms become
unsuitable for the task. In this type of parameter optimization
problems, Genetic Algorithms (GA) [12] have been suc-
cessfully used [13, 14]. They are based on the way biological
populations evolve from generation to generation. It will be
shown that GAs are capable of estimating both vs and vd
from the state variables evolution.
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2 Circadian Model

The circadian rhythm of Neurpspora crassa is characterized
by the synthesis of the FRQ protein inside the Neurospora
cell. The transcription process of frq gene produces frq
mRNA. In the cytoplasm (outside the nucleus), the transla-
tion process will synthesize the FRQ proteins. A portion of
synthesized FRQ proteins goes back to nucleus to inhibit the
transcription process of frq gene. The FRQ protein synthesis
process acts like a negative feedback mechanism and is
described in [6] with the set of differential equations
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where state variables M;FC;FNf g ¼ r1; r2; r3f g are respec-
tively the concentration of frq mNRA, the concentration of
FRQ protein synthesis and the concentration of nucleus FRQ
protein. All parameters involved in (1), (2) and (3) are given
in [6] and shown in Table 1.

With initial conditions set as 10:51:25½ �T , the fluctuation
of the state variables M;FC;FNf g exhibits an oscillation
around 21.5 h and is depicted in Fig. 1.

3 Genetic Algorithm

The estimation of the system parameters (shown in Table 1)
that result into the periodic evolution shown in Fig. 1 is, in
general, a very difficult problem to solve. In this section it
will be shown how a Genetic Algorithm can be an effective
way to estimate the values of up to 2 parameters in the
system of Eqs. (1)–(3). It will be seen that the estimation of a

single parameter ðvsÞ is relatively easy and only requires a
sweep in the parameter’s domain followed by the application
of a traditional search algorithm. However, for the estima-
tion of more than one parameter, the traditional search
algorithms are not effective anymore requiring the aid, for
example, of a genetic algorithm.

Assuming that measurements of the 3 state variables are
available at times tk where k ¼ 1; 2; . . .;Nkf g and Nk is the
number of available measurements for each state variable

r targetð Þ
j (with j ¼ 1; 2; 3), then the fitness of the each possible
solution for the unknown parameters can be assessed by the
following cost function
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which is defined in a least squares sense as the relative

difference between the target state variables evolution r targetð Þ
j

and the estimated state variables evolution r estimatedð Þ
j ðtkÞ at

the available time stamps tk. The objective is to minimize the
relative difference between the target and estimated evolu-
tion of the state variables.

3.1 Estimation of vs Parameter

When all parameters are known, except vs, it is possible to
search for the value that minimizes the cost function (4). In
this case, a sweep in the parameter vs was performed in the
range [0; 10] since the state variables must have a periodic
evolution in a circadian cycle. For each candidate vs, the
system of differential Eqs. (1)–(3) was solved resulting in an

estimated evolution of the state variables r estimatedð Þ
j ðtkÞ which

Table 1 Parameter values of the circadian model

Parameter Value Unit

vs 4 nMh�1

KI 1 nM

n 4

vm 0.505 nMh�1

Km 0.5 nM

ks 0.5 h�1

vd 1.4 nMh�1

Kd 0.13 nM

k1 0.5 h�1

k2 0.6 h�1
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Fig. 1 Circadian oscillations with the parameters shown in Table 1

628 F.M. Janerio et al.



is then used in (4) to estimate the suitability of the candidate
value. The result of the sweep is shown in Fig. 2 which
presents a minimum when the value of vs is 4, which cor-
responds to the correct value as shown in Table 1. The
actual minimum can be found by applying a traditional
search algorithm, such as the Nelder-Mead simplex algo-
rithm, using a vs in the neighborhood of the absolute mini-
mum as the initial search value.

It can be concluded that, if only one parameter is
unknown, it is relatively easy to estimate its value from the
evolution of the measured state variables. However, when
more than one parameter needs to be estimated, it is not
anymore practical to perform sweeps in the parameters to be
estimated. A different approach should be used.

3.2 Genetic Algorithm

Genetic algorithms are inspired in the evolution, through the
generations, of biological populations. It is based on the
survival of the fittest paradigm in the sense that the fittest
population members have a greater probability of repro-
ducing, thus passing their good characteristics to the next
generations.

The algorithm starts by randomly creating a population of
N = 30 candidate solutions. Each individual of the popula-
tion is made up of genes, with each gene encoding the value
of an unknown parameter. For example, if the problem
consists in estimating 5 parameters, the number of genes in
each individual (i.e., candidate solution) would be 5. Each
gene would then contain a potential value of each of the
parameters to estimate. Once the population is created each
individual is tested by solving the system described in
Eqs. (1)–(3) to obtain the estimated state variable evolution

and compare it with the target evolution through the appli-
cation of the cost function (4). The population is then sorted
according to the fitness of each individual (a fit individual
will have a low cost function value). Next, pairs of indi-
viduals will be randomly selected for reproduction. The fit-
test candidates have a higher probability of being chosen to
reproduce because a rank-based biased roulette wheel
selection scheme is used. Once the individuals are chosen,
they have a probability pcross ¼ 0:8 of crossing over (thus
creating offspring). If they do not reproduce, then they will
pass into the next generation unchanged. After crossover, a
mutation operation is applied where an individual has a
probability pmut ¼ 0:2 of suffering a mutation in a randomly
chosen gene. At this stage a new generation of potential
solutions has been created. Their fitness is evaluated and the
process of crossover and mutation repeats itself until a
maximum number of generations is reached or the cost
function is below a certain predefined threshold (in this
paper, the threshold is set to 0.001).

However, it should be noted that a Genetic Algorithm is
very efficient in finding the absolute minimum region of the
cost function, but has difficulties in fine-tuning the solution
onto the absolute minimum. Therefore, when the Genetic
Algorithm provides an estimate of the solution, a traditional
search method is applied using the GA solution as starting
point for the search. This way the absolute minimum of the
cost function can be efficiently found.

The crossover and mutation operations are essential to the
success of the Genetic Algorithm. Crossover allows the good
characteristics of the candidates to pass from generation to
generation. Mutation is essential since it provides a way to
increase the diversity of the population [12].

3.3 Estimation of vs and vd Parameters

This subsection describes the results of the parameter esti-
mation when 2 parameters are unknown. The unknown
parameters are the vs and vd values. In this case, performing
a parameter sweep is not practical due to the
two-dimensional nature of the problem. However, Fig. 3
shows the cost function value as a function of the two
unknown parameters. While it is still possible to plot this
function, for problems with more parameters to estimate, it
would not be possible. Additionally, the search space is
relatively wide and the cost function presents many grooves
and local minimums. Therefore, a traditional search algo-
rithm cannot be applied because it will most likely get
trapped in a local minimum. Fortunately, Genetic Algo-
rithms are very well suited to this class of problems which
have wide search spaces, local minimums and various
parameters to estimate.
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Fig. 2 Cost function as a function of the vs parameter
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The GA explained in previous section was used to search
for the vs and vd values that resulted in an evolution of state
variables that matched the target results shown in Fig. 1. The
search range was [0, 10] for both parameters since the
evolution must have a periodic behavior. The target data was
sampled to simulate measurements with 1 h sampling time.
The target evolution of the 3 state variables is shown with
crosses in Figs. 4, 5 and 6. The estimated values by the
Genetic Algorithm, followed by the Nelder-Mead simplex
algorithm, are shown in Table 2 along with the relative
estimation error. The evolution of the state variables
obtained with the estimated parameters is also included in
Figs. 4, 5 and 6 as continuous lines. The cost function value
for this case was e ¼ 7:9x10�9:

4 Conclusions
A Genetic Algorithm has been used to estimate the
parameters that govern the circadian cycle of Neurospora.
It was shown that when only one model parameter is
unknown, a parameter sweep followed by a traditional
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Fig. 3 Cost function as a function of parameters vs and vd
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Fig. 4 Evolution of the state variable M. The crosses represent the
target data available every hour. The continuous line represents
the evolution obtained with the vs and vd parameters obtained by the
Genetic Algorithm
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Fig. 5 Evolution of the state variable FC. The crosses represent the
target data available every hour. The continuous line represents
the evolution obtained with the parameters vs and vd obtained by the
Genetic Algorithm
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Fig. 6 Evolution of the state variable FN. The crosses represent the
target data available every hour. The continuous line represents
the evolution obtained with the parameters vs and vd obtained by the
Genetic Algorithm

Table 2 Estimated parameters values and relative estimation errors

Parameter Estimated value Relative error

vs 4 1.18 � 10−10

vd 1.4 6.63 � 10−10
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search algorithm suffices to estimate that parameter.
However, when two parameters are unknown, it is not
practical to perform a parameter sweep. Therefore, a
Genetic Algorithm was successfully used to estimate two
parameters of the circadian model of Neurospora.
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