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Abstract The Natural transform is used to solve fractional differential equations for
various values of fractional degrees α, and various boundary conditions. Fractional
diffusion problems solutions are analyzed, followed by Stokes–Ekman boundary
thickness problem. Furthermore, the Sumudu transform is applied for fluid flow
problems, such as Stokes, Rayleigh, and Blasius, toward obtaining their solutions
and corresponding boundary layer thickness.
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1 Introduction

To obtain the solutions for engineering problems such as inmagneto-hydro-dynamics
or fluid dynamics whether through ordinary, partial or fractional differential equa-
tions, integral transform methods are often sought to the rescue. The advent is that
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they convert the differential problems to simplifiable algebraic problems in a possibly
new domain with proxy units, the solution of which are then often inverted back to
yield the sought solution. Fourier and Laplace transforms are the traditional integral
transform icons in this regard [24, 45]. Based on the type of kernel used, various
integral transforms and problem-solving techniques have risen to include Hankel,
Mellin, Hilbert Jacobi, Gegenbauer, Radon, Wavelet and Curvelet transforms, and
Z [43]. For instance, orthogonal polynomial kernels led to Legendre, Laguerre, and
Hermite transforms [43].

For the function f (t) defined in the set A = { f (t)|∃M, τ1, τ2 > 0, | f (t)| <

Me
|t |
τ j , if t ∈ (−1) j × [0,∞)}, Natural transform is given by,

N[ f (t)] = R(s, u) =
∫ ∞

0
e−st f (ut)dt = 1

u

∫ ∞

0
e− st

u f (t)dt

= 1

s

∫ ∞

0
e−t f

(
ut

s

)
dt ; Re(s) > 0, u ∈ (−τ1, τ2).

(1)

In (1), when u ≡ 1 gives Laplace transform and s ≡ 1 gives Sumudu transform,
hence second and third integral equations define the respective Natural-Laplace dual
(NLD) and Natural-Sumudu dual (NSD).

The above mentioned Natural transform combines the features of Laplace and
Sumudu transforms and hence converges to both transforms upon variable substi-
tutions in kernel. In this work, some Natural transform properties are reviewed and
applied to fractional order diffusion equation in semi-infinite medium for its solu-
tion, and then for different values of α, the solution is analyzed. Followed by same,
Natural transform is applied for Stokes–Ekman problem to obtain its layer thick-
ness. Table comprising all new Natural transforms for certain functions is given. In
the second half of this work, Sumudu transform applied for Stokes, Rayleigh, and
Blasius problems to obtain their solutions and hence their layer thickness.

2 Natural Transform Properties

Properties and table of elementary functions and N transform are given with solu-
tions of fluid flow over a plane wall is solved by the Natural transform (N-transform)
in [1]. Assuming both initial and boundary conditions were null, Maxwell’s simul-
taneous equations were solved by Natural transform in [2]. Extensive properties
including multiple shifting, dual nature to Laplace and Sumudu transforms, and all
other required properties of Natural transform with list of tables were studied in
[3]. A more generalized Laplace, Sumudu, and Natural transforms definitions are
given in [3], (Eqs (1.4-5), and (2.12-13) in [3]). Natural and its inverse transforms
were derived from Fourier integral in [3]. Bromwich contour integral and Heavi-
side’s expansions theorems for the inverse Natural transform were derived in [3]
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(Theorems 5.3 and 5.4, [3]). The same reference contains multiple shifting results
related to products and divisions which were derived in terms of s as well as u in [3].

Transverse electromagnetic planar waves propagating in lossy medium (TEMP)
are solved for electric field using Natural transform [4]. Maxwells equations were
extended for n dimensions and studied using Natural transform in [5]. The relations
of integral transforms and J0(2

√
vt) are studied in [6]. Fractional ODEs solved using

Natural transform in [7]. Natural transform in distribution spaceD′
and its dual space

D is studied in [8]. Natural transform in distribution space and Boehmians is studied
in [9]. Integral equations solved using Natural transform in [10]. Decomposition
method with Natural transform employeed for solving Schrödinger equations in
[11]. In [12] Q-theory of Natural transform discussed. Natural transform of basic
functions calculated by Adomain decomposition method (ADM) in [13]. Laplace,
Fourier, Sumudu, andMellin transformswere back tracked fromNatural transform in
[14]. In [15], fractional PDEs are solved byNatural transform. Fluid PDEs are solved
by Natural transform in [16]. Natural transform and the Homotopy Perturbation
method (HPM) were hybridly joined to solve fractional PDEs in [17]. Fractional
Natural transform, properties, and applications were studied in [18]. Some more
applications of Natural transforms in solving PDEs were given in [19, 20].

Theorem 2.1 If f (t + NT ) = − f (t), then

N[ f (t)] = − 1

u(1 + e− sT
u )

∫ T

0
e− st

u f (t)dt. (2)

Proof The proof is straightforward, rewriting the second integral of (1) in the interval
[0, T ] and [T,∞) so that [0,∞) = [0, T ] ∪ [T,∞) and applying f (t + NT ) =
− f (t), simplifying gives (2). �

Theorem 2.2

N

[{
0 ; t < b

a

f (at − b) ; t > b
a , a, b > 0

]
= 1

a
e− sb

au R
( s

a
, u

)
. (3)

Proof Applying second integral of (1) to the left-hand side of (3) and after simpli-
fying completes the result. �

3 Natural Transform Applications to Fractional
Order Diffusion Equation in Semi-Infinite Medium
and Stokes–Ekman Layer Problem

Example 3.1 (Fractional diffusion problem) The fractional order diffusion equation
in semi infinite medium z > 0, where initial temperature is zero in the wholemedium
and temperature at the boundary is X0 f (t) given in [42]. The problem is described
by the following equations.
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∂αx(z, t)

∂tα
= κ

∂2x(z, t)

∂z2
; z ∈ (0,∞) , t > 0. (4)

The initial and boundary conditions are, respectively, given by,

x(z, 0) = 0 ; z > 0. (5)

x(0, t) = X0 f (t) ; t > 0 and x(z, t) = 0 as z → ∞. (6)

LettingN[x(z, t)] = R(z, s, u) andN[ f (t)] = R(s, u),Natural transformof (4) after
initial condition (5) and boundary condition (6) is given by,

d2R(z, s, u)

dz2
−

(
sα

κuα

)
R(z, s, u) = 0 , z > 0. (7)

and
R(0, s, u) = X0R(s, u) ; R(z, s, u) → 0 as z → ∞. (8)

Now the solution of (7) along with (8) is given by,

R(z, s, u) = X0R(s, u) exp

(
−z

√
sα

κuα

)
. (9)

Inverse Natural transform of (9) from the application of convolution theorem of
Natural transform [3] gives the solution of (4).

x(z, t) = X0

∫ t

0
f (t − τ )g(z, τ )dτ = X0 f (t)g(z, t). (10)

where

g(z, t) = N
−1

[
exp

(
−z

√
sα

κuα

)]
.. (11)

Now the solution x(z, t) of (4) with boundary condition f (t) = 1 in (6) for different
values of α in (4) is given in the Table1.

Next the solution x(z, t) of (4) with boundary condition f (t) = t in (6) for dif-
ferent values of α in (4) is given in the Table2.

Hence, the general solution of (4) is given by (10) and (11). Finally, for different
values of α in (11), g(z, t) is given in Table3.

Example 3.2 (Stokes–Ekman problem)When both fluid and disk rotate with uniform
angular velocity � about z− axis, unsteady boundary layer flow in a semi-infinite
body of viscous fluid bounded by an infinite horizontal disk at z = 0 is given by the
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Table 1 Solutions of (4) with boundary condition f (t) = 1 in (6) for different valus of α in (4)

S. No α in (3.1) x(z, t)

1 –2 X0 J0

(
2
√
zt

κ1/4

)

2 –1 X0

[
0F2

(
; 1
2
, 1; z

2t

4κ

)
− 2z

√
t

πκ
0F2

(
; 3
2
,
3

2
; z

2t

4κ

)]

3 1 X0 erfc

(
z

2
√

κt

)

4 2 X0 H

(
t − z√

κ

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 ; t < z√
κ

undefined ; t = z√
κ

X0 ; t > z√
κ

Table 2 Solutions of (4) with boundary condition f (t) = t in (6) for different valus of α in (4)

S. No α in (3.1) x(z, t)

1 –2 X0κ
1
4

√
t

z
J1

(
2
√
zt

κ1/4

)

2 –1 X0

[
0F2

(
; 1
2
, 2; z

2t

4κ

)
t − 4zt

3
2

3
√

πκ
0F2

(
; 3
2
,
5

2
; z

2t

4κ

)]

3 1 X0

[(
z2 + 2κt

2κ

)
erfc

(
z

2
√

κt

)
− z

√
t

πκ
e− z2

4κt

]

4 2 X0 H

(
t − z√

κ

) (
t − z√

κ

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 ; t < z√
κ

undefined ; t = z√
κ

X0

(
t − z√

κ

)
; t > z√

κ

Table 3 Solutions g(z, t) in (11) for different valus of α in (11)

S. No α in (3.8) x(z, t)

1 –2 δ(t) − 1

κ
1
4

√
2

t
J1

(
2
√
zt

κ
1
4

)

2 1
z

2
√

πκt2
e− z2

4κt

3 2 δ

(
t − z√

κ

)
=

{
unde f ined ; t = z√

κ

0 ; otherwise
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following equations [42].

∂q(z, t)

∂t
+ 2�iq(z, t) = ν

∂2q(z, t

∂z2
; z > 0 , t > 0. (12)

q(z, t) = aeiωt + be−iωt on z = 0 , t > 0/ (13)

q(z, t) = 0 ; z → ∞ , t > 0. (14)

q(z, t) = 0 ; t ≤ 0 ∀ z > 0. (15)

Here, q is the complex velocity field, ω is frequency of oscillation of disk, and a and
b are complex constants [42].

Let N[q(z, t)] = R(z, s, u), Natural transform of (12) leads to,

d2R(z, s, u)

dz2
−

(
s + 2�ui

uν

)
R(z, s, u) = 0. (16)

Solution of (16) after initial and boundary conditions (8) and (7), respectively, yields,

R(z, s, u) = a

s − iωu
exp

(
−z

√
s + 2�ui

uν

)
+ b

s + iωu
exp

(
−z

√
s + 2�ui

uν

)
.

(17)

Inverse Natural transform of (17) gives the solution q(z, t) of (12).

q(z, t) =aeiωt

2

[
exp

(
−z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
− √

t (2� + ω)i

)]

+ aeiωt

2

[
exp

(
z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
+ √

t (2� + ω)i

)]

+ be−iωt

2

[
exp

(
−z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
− √

t (2� + ω)i

)]

+ be−iωt

2

[
exp

(
z

(
(2� + ω)i

ν

))
erfc

(
z

2
√

νt
+ √

t (2� + ω)i

)]

(18)

Upon ω = 0 in (18) gives the Ekman layer thickness of order
√

ν
2� .

For the functions in [41], table constituting list of exponential functions and their
Natural transforms is given which will be useful for future study.
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4 Sumudu Transform Literature Review

Over the past decade, a new theoretical framework has been developed to model
anomalous diffusion. The new framework is based around the physics of contin-
uous time random walks and the mathematics of fractional calculus. One can ask
what would be a differential having as its exponent a fraction. Although this seems
removed from Geometry . . . it appears that one day these paradoxes will yield useful
consequences. Gottfried Leibniz Fractional Diffusion.

When s ≡ 1 in (1), Natural transform converges to Sumudu transform, namely

S[ f (t)] =
∫ ∞

0
e−t f (ut)dt = 1

u

∫ ∞

0
e− t

u f (t)dt ; u ∈ (−τ1, τ2). (19)

Sumudu transform is shown to dual of Laplace transform and used to solve produc-
tion equation [21], followed by multiple shifting, convolutions, and table of Sumudu
integral transforms given in [22]. Properties of shifting and derivative of functions,
Taylor’s theorems, Sumudu transform applications and its relations to number the-
ory and matrices given in [23]. From the Fourier integral, Sumudu transform is
derived and applied for TEMP waves in [24]. Inverse Sumudu transform is applied
and obtained the solution for Bessel’s differential equations and shown its relation
to Laplace transform through Bessel function in [25]. In [26, 27, 29, 31, 32, 34]
Sumudu transform applications used for fractional differential equations. In [28]
Laplace transform defined for trigonometric functions and then new infinite series of
trigonometric functions alongwith tables, examples discussed. Fractional Schnaken-
berg solved numerically in [30]. Fractional order systems in electrical circuits were
studied in [33]. Boundary problems of double diffusiveness are studied in [35].
Sumudu transform applied for continuous everywhere and nowhere differentiable
functions for smoothening the fracture in [36]. Sumudu computation in series for-
mat was derived through symbolic C++ pseudocode, using the Sumudu definition
without any additional decomposition schemes, in [37]. From the bimodular elliptic
functions, Sumudu transform of tan(x) and sec(x) is derived as continued fractions in
[38]. In [39] different Sumudu transform definition, its properties for trigonometric
functions including table of new infinite series expansions of trigonometric functions
were studied. Magnetic field solution of TEMP waves, numerical results and Maple
graphical study were given in [40].

5 Sumudu Transform Applications to Stokes,
Rayleigh and Blasius Problems

Example 5.1 (Stokes problem) Flow in unsteady boundary layer induced in semi-
infinite viscous fluid is bounded by an infinite horizontal disk at z = 0 due to oscil-
lations of disk in its own plane with given frequency ω. Corresponding PDE is given



114 F.B.M. Belgacem et al.

by [42],
∂x(z, t)

∂t
= ν

∂x(z, t)

∂z2
; z > 0 , t > 0. (20)

Initial conditions are
x(z, t) = 0 ; z → ∞ , t > 0. (21)

x(z, 0) = 0 ; t ≤ 0 , ∀z > 0. (22)

and the boundary condition is

x(z, t) = X0e
iωt ; z = 0 , t > 0. (23)

Here, x(z, t) is velocity of fluid and ν kinematic viscosity of fluid.
LetS[x(z, t)] = G(z, u). Sumudu transform of (20) and after initial and boundary

conditions yields,

G(z, u) = X0

1 − iωu
exp

(
−z

√
1

uν

)
. (24)

Sumudu inverting (24) gives velocity in unsteady boundary layer.

x(z, t) = X0eiωt

2

[
e−z

√
iω
ν erfc

(
z

2
√

νt
− √

iωt

)
+ ez

√
iω
ν erfc

(
z

2
√

νt
+ √

iωt

)]
.

(25)

From which the thickness of Stokes boundary layer is
√

ν
ω
.

Example 5.2 (Rayleigh problem) When the frequency ω = 0 in Stokes problem,
motion is generated from rest with constant velocity X0 in fluid [42]. Therefore,
from (24).

G(z, u) = X0 exp

(
−z

√
1

uν

)
. (26)

Sumudu inverting (26) gives the velocity x(z, t).

x(z, t) = X0 erfc

(
z

2
√

νt

)
. (27)

Thickness of Rayleigh boundary layer is
√

νt .

Example 5.3 (Blasius problem) Unsteady boundary layer flow in semi-infinite body
of viscous fluid is enclosed by infinite horizontal disk at z = 0 [42].
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When the boundary condition is t in Stokes problem Example 5.1 leads to the Bla-
sius problem. Therefore, Sumudu transformed (20)–(23) with x(z, t) = X0t yields,

G(z, u) = X0u exp

(
−z

√
1

uν

)
. (28)

Inverse Sumudu transform of (28) using Maple gives the velocity profile of Blasius
problem.

x(z, t) = X0

2

[(
z2 + 2νv

ν

)
erfc

(
z

2
√

νt

)
− 2z

√
t

πν
e− z2

4νt

]
. (29)

6 Conclusion

With respect to fractional diffusion problem, following observations were found.
When the boundary condition is constant.

• For α = −2, velocity profile x(z, t) is in terms of Bessel’s function.
• For α = −1, velocity profile x(z, t) is in terms of hypergeometric function.
• For α = 1, velocity profile x(z, t) is in terms of complementary error function
[42].

• For α = 2, velocity profile x(z, t) is in terms of Heaviside’s function.
• When the boundary condition is t , velocity profiles for different α are given in
Table2.

• For α > −2 and α > 2, velocity profile x(z, t) does not exists.
• Therefore, for constant and t boundary conditions, velocity x(z, t) is defined for

α ∈ [−2, 2].
Sumudu reciprocity property of [24] is shown in the realm of Stokes fluid flow

problem and its descendent variations, and obtained solutions and layer thickness
are in exact concordance with results in the literature [42].

For future studies, we relegate the still open problems regarding finding the veloc-
ity x(z, t) when α takes fractional values in the interval [−2, 2]. Lists of Natural
transforms of elementary functions given in Table4 will be useful for further study.
Moreover, we declare that we remain open to our readers comments, communica-
tions, and suggestions.
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Table 4 Natural transform of elementary functions

S. No f (t) N[ f (t)]
1 e−αt 1

s + αu

2 te−αt u

(s + αu)2

3 tv−1e−αt uv−1�(v)

(s + αu)v

4 e−αt − e−βt

t

1

u
log

(
s + βu

s + αu

)

5 (1 − e−αt )2

t2

(
s + 2αu

u2

)
log

(
s + 2αu

u

)

+ s

u2
log

( s

u

)
− 2

(
s + αu

u2

)

× log

(
s + αu

u

)

6
!
t

− (t + 2)(1 − e−t )

2t2

(
2s + u

2u2

)
log

(
s + u

s

)
− 1

u

7
1

1 − e−t

1

2u
ψ

(
s + u

2u

)
− 1

2u
ψ

( s

2u

)

8
(
1 − e− t

α

)v−1 α

u
B

(αs

u
, v

)

9
tn(

1 − e− t
α

) (−α)n+1

u
ψ(n)

(αs

u

)

10
tv−1(

1 − e− t
α

) αv�(v)

u
ζ

(
v,

αs

u

)

11
1

t (1 − e−t )
− 1

t2
− 1

2t

1

u

[ s
u

(
1 − log

( s

u

))
+ log�

( s

u

)]

+ 1

u

[
1

2
log

( s

2uπ

)]

12
1 − e−αt

1 − e−t

1

u

[
ψ

(
s + αu

u

)
− ψ

( s

u

)]

13
1 − e−αt

t (1 + e−t )

1

u

⎡
⎣ �

( s
2u

)
�

(
2(s+αu+u)

4u

)

�
(
2(s+u)
4u

)
�

(
2(s+αu)

4u

)
⎤
⎦

14
(1 − e−t )v−1

(1 − ze−t )μ

1

u
B

( s

u
, v

)
2F1

(
μ,

s

u
; s + uv

u
; z

)

(continued)
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Table 4 (continued)

S. No f (t) N[ f (t)]

15 (1 − e−αt )(1 − e−βt )

1 − e−t

1

u

[
ψ

(
s + αu

u

)
+ ψ

(
s + βu

u

)]

− 1

u

[
ψ

(
s + (α + β)u

u

)
− ψ

( s

u

)]

16
(1 − e−αt )(1 − e−βt )

t (1 − e−t )

1

u

⎡
⎣�

( s
u

)
�

(
s+(α+β)u

u

)

�
( s+αu

u

)
�

(
s+βu
u

)
⎤
⎦

17
(1 − e−αt )(1 − e−βt )(1 − e−γt )

t (1 − e−t )

1

u

⎡
⎣�

( s
u

)
�

(
s+(α+β)u

u

)

�
( s+αu

u

)
�

(
s+βu
u

)
⎤
⎦

× 1

u

⎡
⎣�

(
s+(β+γ)u

u

)
�

(
s+(γ+α)u

u

)

�
( s+γu

u

)
�

(
s+(α+β+γ)u

u

)
⎤
⎦

18
[α + √

1 − e−t ]−v + [α − √
1 − e−t ]−v

√
1 − e−t

2(s+u)/ue(s−uv)/uiπ�(s/u)

u�(v)

× (α2 − 1)s/2u−v/2Qv−s/u
s/u−1(α)

19

⎧⎨
⎩
0 ; 0 < t < β[
e−β

√
1−e−2t−e−t

√
1−e−2β

]v

√
1−e−2t ; t > β

√
π�(s/u)�(v + 1)e− β((s+uv)/u)

2

u2s/2u+v/2�(s/2u + v/2 + 1/2)

× P(−s/2u−v/2)
(−s/2u+v/2) (

√
1 − e−2β)

20
e(μ−1)t (1 − e−t )μ

−1/2

× [(1 − e−t ) sin(θ) − i(1 − e−t ) cos(θ)]μ−1/2

2μ−1
�(μ + 1/2)�(s/u − μ + 1) sinμ(θ)

u
√

π�(s/u + μ + 1)

× e(s/u+1/2)iθ+μ/2−1/4iπ

× [πPμ
v (cos(θ)) + 2i Qμ

v (cos(θ))]
21

{
0 ; 0 < t < β

e− t2
4α ; t > β

√
αueas

2/u2

u
Erfc

[
s
√

α

u
+ β

2α

]

22 te− t2
4α

2α

u
− 2

√
πsα3/2e

as2

u2

u2
Erfc

[
s
√

α

u

]

23 e− t2
4α√
t

√
sα

u3/2
e

αs2

2u2 K 1
4

(
αs2

2u2

)

24 tv−1e− t2
8α

�(v)2vαv/2

u
e

αs2

u2 D−v

(
2
√

αs

u

)

25 e− t
4α

√
α

u
√
s/u

K1

(√
sα√
u

)

26 √
te− t

4α

√
πu

2s3/2
(1 + √

sα/u)e−√
sα/u

(continued)
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Table 4 (continued)

S. No f (t) N[ f (t)]

27
e− t

4α√
t

√
π

u
√
s/u

e−√
sα/u

28 e− t
4α

t3/2
2
√

π

uα
e−√

sα/u

29 tv−1e− t
4α

@

u
(s/4αu)v/2Kv(

√
sα/u)

30
(e− t

4α − 1)√
t

√
π

u
√
s/u

(e
√
sα/u − 1)

31 e−2
√

αt 1

s
−

√
απu

s3/2
eαu/sErfc(

√
αu/s)

32
√
te−2

√
αt −u

√
α

s2
+

√
πs3/2

u3/2
(α + s/2u)eαu/s

× Erfc(
√

αu/s)

33
e−2

√
αt

√
t

√
π

u
√
s/u

eαu/sErfc(
√

αu/s)

34
e−2

√
αt

√
2t

1

u

√
αu/2seαu/2sK1

4
(αu/2s)

35 (2t)v−1e−2
√

αt uv−1�(2v)

sv
es/2αuD−2v(

√
2αu/s)

36 exp(−αe−t )
1

uαs/u
γ(s/u,α)

37 exp(−αet )
αs

u
F(s/u,α)

38 (1 − e−t )v−1 exp(−αe−t )

�(v)�(s/u)

u�(v + s/u)
α−v/2−s/2ueα/2

× Mv/2−s/2u,v/2+s/2u−1/2(α)

39 (1 − e−t )v−1 exp(−αet )

�(v)

u
α−1/2−s/2ueα/2

× W1/2−s/2u−v,−s/2u(α)

40
(1 − e−t )v−1

(1 − λe−t )μ
exp(−αe−t )

�(v)�(s/u)

u�(v + s/u)
�1(s/u.μ, v; λ,α)

41 (et − 1)v−1 exp(−α/et − 1)

1

u
F(s/u − v + 1)eα/aαv/2−1/2

× Wv/2−1/2−s/u,v/2(α)
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