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Abstract In this work, an extension of the algebraic formulation of the Shannon
wavelets for the numerical solution of a class of Volterra integro-differential equation
is proposed. Our approach is based on the connection coefficients of the Shannon
wavelet and collocation method for constructing the algebraic equivalent represen-
tation of the problem. Also, the Shannon approximation is applied to solve one type
of nonlinear integral equation arising from chemical phenomenon. An analysis of
error for the problem is given. The obtained numerical results show the accuracy of
the presented method.
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1 Introduction

Integral, integro-differential, ordinary and fractional differential equations are used
in modelling problems of engineering and science fields, including mathematical
biology, electromagnetic theory, potential theory and chemical engineering, see
[1, 2, 5, 7, 8, 11, 14] and references therein.

Themain purpose in this article is to develop and to provide a numerical algorithm
based on the coefficients of the Shannon wavelets for the following form of integro-
differential equation

1∑

i=0

�i u
(i)(x) = f (x) +

∫ x

a
k(x, t)u(t)dt, (1)
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u(a) = a0,

where �i are constants, k and f are given functions and u(x) is a solution to be
determined. Noting that for �1 = 0, (1) be transformed to integral equation.

Over the past few decades, the numerical solvability of these type of equations
has been studied intensively by many authors, such as Chebyshev spectral solution
[6], rationalized Haar functions [12] and Sinc-Legendre collocation method [13].

Wavelets are very powerful and useful tool in data compression, signal and oper-
ator analysis. The real part of the harmonic wavelets is Shannon wavelets. These
wavelets can be used to study frequency changes as well as oscillations in a small
range time interval [4].

This paper is organized as follows: Sect. 2 introduces some basic definitions and
preliminaries of the Shannon wavelets. We derive formulas for a class of IDEs and
give a numerical scheme based on proposed method in Sect. 3. Error analysis of
our method is considered in Sect. 4. Finally, in Sect. 5, we report several numerical
experiments to clarify the efficiency and accuracy of the proposed method.

2 Preliminary Definitions

Here, we give some basic definitions of the Shannon wavelets family [4, 9]. The Sinc
function is defined on the whole real line by:

Sinc(x) =
{

sin(πx)
πx , x �= 0,

1, x = 0.

The Shannon scaling functions and mother wavelets can be defined as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ j,k(x) = 2 j/2Sinc(2 j x − k) = 2 j/2 sin π(2 j x − k)

π(2 j x − k)
, j, k ∈ Z ,

ψ j,k(x) = 2 j/2
sin π(2 j x − k − 1

2 ) − sin 2π(2 j x − k − 1
2 )

π(2 j x − k − 1
2 )

, j, k ∈ Z ,

we recall the following theorem from [3]:

Theorem 2.1 If u(x) ∈ L2(R), then

u(x) =
∞∑

k=−∞
αkϕ0,k(x) +

∞∑

j=0

∞∑

k=−∞
β j,kψ j,k(x), (2)

with

αk =< u,ϕ0,k >=
∫ ∞

−∞
u(x)ϕ0,k(x)dx, (3)
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β j,k =< u,ψ j,k >=
∫ ∞

−∞
u(x)ψ j,k(x)dx . (4)

Using a finite truncated series of the above theorem, we can define an approxi-
mation function of the exact solution u(x) as follows:

u(x) �
M∑

k=−M

αkϕ0,k(x) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(x). (5)

The nth derivatives of u(x) in terms of the Shannon wavelets can be written as
(see e.g. [9] for further details):

u(n)(x) �
M∑

k=−M

αkϕ
(n)
0,k(x) +

N∑

j=0

M∑

k=−M

β j,kψ
(n)
j,k(x), (6)

on the other hand, we have the following relations [4]:

ϕ(n)
0,k(x) =

M∑

h=−M

λ(n)
kh ϕ0,h(x) (7)

ψ(n)
j,k(x) =

M∑

h=−M

γ
(n) j j
kh ψ j,h(x). (8)

Therefore, (6) rewritten as:

u(n)(x) �
M∑

k=−M

αk

M∑

h=−M

λ(n)
kh ϕ0,h(x) +

N∑

j=0

M∑

k=−M

β j,k

M∑

h=−M

γ
(n) j j
kh ψ j,h(x), (9)

where

λ(n)
kh =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k−h in

2π

∑n
s=1

l!πs

s![i(k − h)]n−s+1
[(−1)s − 1], k �= h,

i nπn+1

2π(n + 1)
[1 + (−1)n], k = h,

(10)

γ
(n) j j
kh =

⎧
⎪⎪⎨

⎪⎪⎩

i n2 jn

2π
�n

m=1(−1)n
n!πm(2m − 1)

m![i(h − k)]n−m+1
[(−1)m − 1], k �= h,

i n2 jnπn+1

2π(n + 1)
[1 + (−1)n][2n+1 − 1], k = h,

(11)

which λ(n)
kh and γ

(n) j j
kh are known as the connection coefficients.
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Moreover, it is

γ
(n) j j
kh = 2n( j−1)γ(n)11

kh . (12)

3 Numerical Treatment of the Problem

In this section, we will obtain formulas for numerical solvability of (1), based on the
previous results. We define an approximation function u

′
(x) as follows:

u
′
(x) �

M∑

k=−M

αk

M∑

h=−M

λ(1)
kh ϕ0,h(x) +

N∑

j=0

M∑

k=−M

β j,k

M∑

h=−M

γ
(1) j j
kh ψ j,h(x). (13)

By taking n = 1 in (10), (11) and using simple computations, we obtain the following
relations for λ(1)

kh and γ
(1) j j
kh :

λ(1)
kh =

{− (−1)k−h

k−h , k �= h,

0, k = h,
γ

(1) j j
kh =

{
2 j

(h−k) , k �= h,

0, k = h,
(14)

and due to (12), we can write γ
(1) j j
kh = 2( j−1)γ(1)11

kh , for j > 1.
Now, we are ready to apply the obtained results for constructing the algebraic

equivalent presentation of (1). Equation (1) can be rewritten as:

�0u(x) + �1u
′
(x) = f (x) +

∫ x

a
k(x, t)u(t)dt,

by substituting (5), (13) and (14) in the above equation, we have:

�0

⎡

⎣
M∑

k=−M

αkϕ0,k(x) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(x)

⎤

⎦

+ �1

⎡

⎣
M∑

k=−M

αk

M∑

h=−M

λ(1)
kh ϕ0,h(x) +

N∑

j=0

M∑

k=−M

β j,k

M∑

h=−M

γ
(1) j j
kh ψ j,h(x)

⎤

⎦

= f (x) +
∫ x

a
k(x, t)

⎡

⎣
M∑

k=−M

αkϕ0,k(t) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(t)

⎤

⎦ dt,
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and by rearranging the above equation based on unknowns αk and β j,k , we get

M∑

k=−M

αk

[
�0ϕ0,k(x) + �1

M∑

h=−M

λ
(1)
kh ϕ0,h(x) −

∫ x

a
k(x, t)ϕ0,k(t)dt

]
(15)

+
N∑

j=0

M∑

k=−M

β j,k

[
�0ψ j,k(x) + �1

M∑

h=−M

γ
(1) j j
kh ψ j,h(x) −

∫ x

a
k(x, t)ψ j,k(t)dt

]
= f (x).

We may set

�k(x) = �0ϕ0,k(x) + �1

M∑

h=−M

λ(1)
kh ϕ0,h(x) −

∫ x

a
k(x, t)ϕ0,k(t)dt,

� j,k(x) = �0ψ j,k(x) + �1

M∑

h=−M

γ
(1) j j
kh ψ j,h(x) −

∫ x

a
k(x, t)ψ j,k(t)dt,

therefore, we can write (15) as:

M∑

k=−M

αk�k(x) +
N∑

j=0

M∑

k=−M

β j,k� j,k(x) = f (x). (16)

For obtaining (2N + 1)(2M + 2) unknowns αk and β j,k , we take x = xi for i =
1, . . . , (2N + 1)(2M + 2) − 1, where xi be collocation points. So, we have

M∑

k=−M

αk�k(xi ) +
N∑

j=0

M∑

k=−M

β j,k� j,k(xi ) = f (xi ). (17)

On the other hand, u(a) = a0 can be written as

M∑

k=−M

αkϕ0,k(a) +
N∑

j=0

M∑

k=−M

β j,kψ j,k(a) = a0. (18)

According to above equations, a system of (2N + 1)(2M + 2) linear equations is
obtained. By solving the resulting system, unknowns αk and β j,k can be determined
and so the approximate solution u(x) will be obtained.
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The following algorithm summarizes our proposed method:

Algorithm 1. The construction of Shannon method for a class of IDEs

Step 1. Input:
�0, �1, f (x), k(x, t),ϕ0,h(x),ψ j,h(x), a, a0.

Step 2. Choose N , M;
Step 3. Compute:

λ(1)
kh =

{− (−1)k−h

k−h , k �= h,

0, k = h,
γ

(1) j j
kh =

{
2 j

(h−k) , k �= h,

0, k = h.

Step 4. Compute �k(xi ),� j,k(xi ), f (xi ); for i = 1, . . . , (2N + 1)(2M + 2) − 1;
Step 5. Compute αk and β j,k from (17) and (18);
Step 6. Set: u(x) � ∑M

k=−M αkϕ0,k(x) + ∑N
j=0

∑M
k=−M β j,kψ j,k(x).

4 Error Analysis

In this section, we will provided a convergence analysis of the numerical algorithm
for a class of integro-differential equation (1).

Theorem 4.1 Assume that ũ(x) be the approximate solution of Eq. (1). If u(1)(x) ∈
L2(R), then the obtained approximation solution of the proposed method converges
to the exact solution, where αk and β j,k are given in Theorem 2.1.

Proof Note that

ũ(x) =
∞∑

k=−∞
< u,ϕ0,k > ϕ0,k(x) +

N−1∑

j=0

∞∑

k=−∞
< u,ψ j,k > ψ j,k(x) (19)

=
N−1∑

j=−∞

∞∑

k=−∞
< u,ψ j,k > ψ j,k(x).

Due to [9], the following relation holds

‖D(n)

⎡

⎣
N−1∑

j=−∞

∞∑

k=−∞
< u,ψ j,k > ψ j,k(x) − u(x)

⎤

⎦ ‖2 → 0, as N → ∞,
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or

‖
[ ∞∑

k=−∞
< u,ϕ0,k > ϕ(n)

0,k(x) +
N−1∑

j=0

∞∑

k=−∞
< u,ψ j,k > ψ(n)

j,k(x) − u(n)(x)

]
‖2 → 0,

as N → ∞,

according to definitions of αk and β j,k in Theorem 2.1 and Eqs. (7) and (8), for n = 1
above relation can be written as

lim
N→∞

⎡

⎣
∞∑

k=−∞
αk

∞∑

h=−∞
λ(1)
kh ϕ0,h(x) +

N−1∑

j=0

∞∑

k=−∞
β j,k

∞∑

h=−∞
γ

(1) j j
kh ψ j,h(x)

⎤

⎦ = u(1)(x),

which proves the theorem. �
Theorem 4.2 Let u(1)

M (x) be the first-order derivative of the approximate solution
of Eq. (1), then there exist constants C1 and C2 independent of N and M, such that

∣∣∣u(1)(x) − ũ(1)
M (x)

∣∣∣ ≤ |C1(u(−M − 1) + u(M + 1))

−C2

[
3
√
3

π
[u(2−N−1(−M − 1

2 )) + u(2−N−1(M + 3
2 ))]

]
|,

where C1 = Max{|∑k

∑
h λ(1)

kh |}, C2 = Max{| ∑k

∑
h γ

(1) j j
kh |} and M, N refer to

the given values of j and k.

Proof See [10].

Detailed analysis of the proof of this theorem can be found in [9, 10], so we refrain
from going into details.

5 Numerical Results

In this section, several test problems are considered to demonstrate the accuracy of
the proposed method.

Example 5.1 Consider the following equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
′
(x) − 2u(x) = f (x) + ∫ x

0 k(x, t)u(t)dt,

f (x) = 1 − 2x − x4

2
− x3

3
,

k(x, t) = x2 + t,
u(0) = 0,

(20)

with the exact solution u(x) = x .
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Example 5.2 Consider the following equation

⎧
⎪⎪⎨

⎪⎪⎩

u
′
(x) − 3u(x) = f (x) + ∫ x

0 k(x, t)u(t)dt,

f (x) = −1 + x − 2xex − ex ,
k(x, t) = x + t,
u(0) = 1,

(21)

with the exact solution u(x) = ex .
The computational results of Examples 5.1 and 5.2 have been reported in Tables1

and 2, to show the accurate solution of mentioned algorithm. The exact and approx-
imate solution of these examples for different values of M and N are compared in
Figs. 1 and 2.

Example 5.3 Consider the following equation with the exact solution

u(x) = 1 − sinh(x).

⎧
⎪⎪⎨

⎪⎪⎩

u(x) = f (x) + ∫ x
0 k(x, t)u(t)dt,

f (x) = 1 − x − x2

2
,

k(x, t) = x − t.

(22)

Table 1 Numerical results of
Example 5.1 using Shannon
approximation

x Absolute errors

M = 1, N = 3 M = 2, N = 4

0 1.11 × 10−16 0

0.2 3.50 × 10−2 3.43 × 10−2

0.4 9.33 × 10−3 2.57 × 10−2

0.6 1.26 × 10−1 3.65 × 10−3

0.8 2.92 × 10−1 2.05 × 10−2

1 4.08 × 10−1 4.65 × 10−4

Table 2 Numerical results of
Example 5.2 using Shannon
approximation

x Absolute errors

M = 1, N = 3 M = 2, N = 4

0 2.20 × 10−16 1.11 × 10−16

0.2 6.50 × 10−2 9.62 × 10−2

0.4 2.09 × 10−1 6.13 × 10−2

0.6 4.16 × 10−1 4.73 × 10−3

0.8 6.45 × 10−1 1.48 × 10−3

1 8.40 × 10−1 1.80 × 10−1
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Fig. 1 Exact and approximate solution of Example 5.1 for different values of M and N using
presented method

Fig. 2 Exact and approximate solution of Example 5.2 for different values of M and N using
presented method

Table 3 Numerical results of Examples 5.3 and 5.4 using Shannon approximation

x M = 1, N = 1 M = 2, N = 3

Example 5.3 Example 5.4 Example 5.3 Example 5.4

0 6.98 × 10−4 1.25 × 10−4 2.32 × 10−10 3.51 × 10−11

0.2 3.62 × 10−5 4.79 × 10−6 2.46 × 10−13 4.20 × 10−14

0.4 1.73 × 10−5 1.10 × 10−6 5.43 × 10−13 7.71 × 10−14

0.6 2.29 × 10−5 8.40 × 10−7 8.40 × 10−13 1.12 × 10−13

0.8 6.79 × 10−5 5.67 × 10−6 1.16 × 10−12 1.44 × 10−13

1 1.89 × 10−3 2.56 × 10−4 1.19 × 10−10 1.74 × 10−11

Examples 5.3 and 5.4, which are obtained by taking �1 = 0, are integral equations.
The numerical results of these examples are reported in Table3. Also, Figs. 3 and 4
show the exact and approximate solution of Examples 5.3 and 5.4 for M = 2 and
N = 3, respectively.



286 M. Attary

Fig. 3 Exact and
approximate solution of
Example 5.3 for M = 2 and
N = 3 using presented
method

Fig. 4 Exact and
approximate solution of
Example 5.4 for M = 2 and
N = 3 using presented
method

Table 4 Numerical results of
Example 5.4 using Shannon
approximation

x Absolute errors

N = 4 N = 5

0 2.64 × 10−6 2.61 × 10−9

0.2 1.19 × 10−8 1.16 × 10−10

0.4 8.70 × 10−9 2.92 × 10−10

0.6 7.13 × 10−9 2.33 × 10−10

0.8 6.00 × 10−9 3.07 × 10−10

1 1.30 × 10−16 1.68 × 10−15

Example 5.4 Consider the following equation

⎧
⎨

⎩

u(x) = f (x) + ∫ x
0 k(x, t)u(t)dt,

f (x) = 1,
k(x, t) = −x + t,

(23)

with the exact solution u(x) = cos(x).
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Example 5.5 Consider the following equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x) = f (x) + ∫ 1
0 k(x, t)(u(t))−1dt,

f (x) = 21 − 11e10

100
e(−10(1+x)) + 1

1 + x
,

k(x, t) = e−10(x+t),

(24)

with the exact solution u(x) = 1

1 + x
. This problem is a nonlinear Hammerstein

integral equation which arising from chemical phenomenon. By choosing Shannon
scaling functions, Example 5.5 has been solved. The reported results in Table4
show that the Shannon approximation has produced highly numerical results. Good
numerical results can be achieved by additional numerical experiments (e.g. with
N ≥ 2). This problem has been solved by u(x) � ∑2N

k=1 αkϕN ,k(x).

6 Conclusions

In this present work, we applied an accurate and efficient method for solving a
class of IDEs. We consider a special class of IE, which is a quantum chemistry, by
the Shannon scaling functions. Our obtained results are in a good agreement with
the exact solutions and are given to demonstrate the applicability of our proposed
method.
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