
Chapter 10

Repurposing CRISPR System
for Transcriptional Activation

Meng Chen and Lei Stanley Qi

Abstract In recent years, Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the

most popular one for genome editing. When the nuclease domains of Cas9 protein

are mutated into deactivated form (dCas9), CRISPR/dCas9 still retains the ability to

bind the targeted DNA sequence, but loses the endonuclease cleavage activity.

Taking advantage of the characteristics of this engineered nuclease inactive Cas9,

the CRISPR/dCas system has been repurposed into versatile RNA-guided,

DNA-targeting platforms, such as genome imaging, gene regulation, and epigenetic

modification. Specifically, fusion of dCas9 with activation domains allows specific

and efficient transcriptional activation on a genome-wide scale among diverse organ-

isms. The purpose of this chapter is to review most important the recently published

literature on CRISPR/dCas9-based transcriptional activation systems. Compared with

the conventional approaches for enhancement of the expression of specific genes

of interest, CRISPR/Cas9-based system has emerged as a promising technology for

genome regulation, allowing specificity, convenience, robustness, and scalability

for endogenous gene activation.
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10.1 Introduction

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-asso-

ciated (Cas) protein systems provide adaptive immunity against viruses and plas-

mids in bacteria and archaea. In contrast to type I and III CRISPR/Cas systems

which employ a set of Cas proteins for RNA-guided immune surveillance, the type

II bacterial CRISPR/Cas system uses only a single Cas protein, known as Cas9, to

mediate foreign DNA recognition and cleavage [16]. In the process, CRISPR RNA

(crRNA) hybridizes with cognate trans-activating crRNA (tracrRNA) to form a

unique dual-RNA structure that directs Cas9 to specific DNA target site that is

complementary to the 20-nucleotide (nt), guide-RNA sequence and further intro-

duces site-specific double-stranded breaks (DSBs) in target DNA upon recognition

of the protospacer adjacent motif (PAM) sequence [12, 17]. Notably, the single

chimeric guide RNA (sgRNA) mimicking the natural dual RNA by fusing crRNA

with tracrRNA via a tetraloop is sufficient to guide the endonuclease Cas9 to

specific DNA target site for DNA degradation (Fig.10.1a). By changing the

20-nucleotide guide-RNA sequence located on the 50 end of sgRNA, this simplified

two-component CRISPR–Cas9 system can be easily programmed to target virtually

any DNA sequence of interest in the genome. In the cells, the generated site-specific

DSBs by CRISPR–Cas9 can be further repaired, either by the error-prone

nonhomologous end joining (NHEJ) pathway or by high-fidelity-homology-

directed repair (HDR) pathway when a repair DNA template is present [11]

(Fig. 10.1a). Since the first demonstration of its power for genome editing in

mammalian cells [9, 22], CRISPR RNA-guided Cas9 system has drawn worldwide

attention due to its simplicity and robustness and quickly become the most common

tool for genome engineering in a variety of organisms [11].

Cas9 is a multidomain and multifunctional DNA endonuclease [16]. It contains

two distinct nuclease domains responsible for double-stranded (ds) DNA cleavage:

the HNH domain of Cas9 cleaves the target DNA strand, while the RuvC-like

domain of Cas9 cleaves the nontarget DNA strand [12, 17]. Mutations in both

nuclease domains (D10A: Asp10 ! Ala, H840A: His840 ! Ala) result in an

RNA-guided DNA-binding protein without endonuclease activity [17, 24]. This

engineered nuclease-deficient Cas9, termed dCas9, when fused to effector domains

with distinct regulatory functions, enables the repurposing of the CRISPR–Cas9

system to a general platform for RNA-guided DNA targeting without cleavage

activity (Fig. 10.1b), thereby allowing versatile genome modification beyond per-

manent genome editing [10], such as gene regulation [13, 24], epigenetic modula-

tion [19], and live-cell imaging [7]. Specifically, fusion of dCas9 to activation

effector domains allows specific and efficient transcriptional activation on a

genome-wide scale in diverse organisms [14].
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10.2 CRISPRa Activation Systems

CRISPR/dCas9-mediated gene activation (hereafter referred to as CRISPRa) sys-

tems, consisting of dCas9-activation domain fusion proteins and sgRNA, can target

the specific promoter or enhancer region of the gene of interest. The activation

domain can be one or several activation domains, such as VP64 acidic

transactivation domain (four copies of Herpes simplex virus protein 16), or can

be full length or part of an epigenetic modifier, such as the core of histone

acetyltransferase p300. Therefore, CRISPRa can function by either directly acti-

vating transcription, or modifying the chromatin conformation, or function through

recruiting additional transcriptional and/or epigenetic activators to the targeted

region. Basically, depending on which component of CRISPR/dCas9 is fused

with the activation domain, there are at least three categories of CRISPRa systems:

dCas9-activation domain fusion protein, sgRNA-activation domain fusion protein,

or combined CRISPRa system with both dCas9- and sgRNA-conjugated with

activation domains. For each category, they can also be further classified depending

on what the activation domain is. These CRISPRa platforms will be discussed in

detail in the following sections (Fig. 10.2).
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Fig. 10.1 Schematic diagram showing how CRISPR/Cas9 system is used for genome engineering.
(a) Cas9 is guided by an sgRNA to a specific DNA locus, where HNH and RuvC nuclease domains

cut the double-strand DNA to form a double-stranded break (DSB). The generated DSB is further

repaired, either by the error-prone nonhomologous end joining (NHEJ) pathway or by high-fidelity

homology-directed repair (HDR) pathway when a repair DNA template is present. (b) Activation
or repression domain is fused to the catalytically inactive Cas9 variant for gene regulation
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10.2.1 The dCas9–VP64 CRISPRa System

The dCas9–VP64 CRISPRa system, first reported in 2013 as being able to activate

targeted endogenous genes, represents the first-generation CRISPRa system, while

all the other further improved versions are generally considered as second-

generation activation systems. When dCas9 is genetically fused with a C-terminal

VP64 acidic transactivation domain (four copies of Herpes simplex virus protein

16), it can activate both reporter gene and endogenous genes with a single sgRNA

by transient delivery into mammalian cells (Fig. 10.2a). In addition, the use of

multiple sgRNAs was able to achieve synergistic activation of a broad range of

selected genes (interleukin 1 receptor antagonist, IL1RN), achaete-scute family

bHLH transcription factor 1 (ASCL1), nanog homeobox (NANOG), myogenic

differentiation 1 (MYOD1), hemoglobin subunit gamma ½ (HBG1/2), vascular

endothelial growth factor A (VEGFA), and neurotrophin 3 (NTF3). Furthermore,

RNA sequencing demonstrated that targeted gene activation was quite specific with

no detectable off-target gene activation [21, 23].
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Fig. 10.2 Different types of CRISPRa activation systems. (a) The dCas9–VP64 (or multiple

copies of VP16) system (b) The dCas9–VPR system (c) The dCas9–SunTag system (d) The

sgRNA-activation domain system (e) The SAM system (f) The dCas9–p300 core system
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As expected, increasing the number of VP16 repeat domains, such as dCas9–

VP96, VP64–dCas9–VP64, dCas9–VP160, and dCas9–VP192 (Fig. 10.2a), has

been shown to more efficiently upregulate the expression of endogenous genes,

such as interleukin 1 receptor antagonist (IL1RN), SRY-Box2 (SOX2), POU class

5 homeobox 1 (POU5F1 or OCT4), both at mRNA and/or protein levels [1, 4, 8,

18]. Among them, the dCas9–VP192 leads to the highest increase in OCT4 expres-

sion levels, up to about 70-fold. Furthermore, human skin fibroblasts can be

reprogrammed into inducing pluripotent stem cells (iPSCs) by replacing OCT4

overexpression with dCas9–VP192-mediated activation of endogenous OCT4. The

epigenetic changes at OCT4 distal enhancer induced by CRISPRa were investi-

gated and shown to have more active histone mark H3K27Ac, consistent with the

previous report that the VP64 transactivation domain recruits the activating com-

plex component p300 and facilitates histone acetylation [1]. In another study, Black

et al. found that VP64–dCas9–VP64-mediated endogenous gene activation of

mouse neuronal transcription factors Brn2, Ascl1, and Myt1l (BAM factors)

directly reprogrammed cultured primary mouse embryonic fibroblasts (PMEFs) to

functional induced neuronal cells[3]. Mechanistically, they found that the rapid and

sustained elevated levels of endogenous gene expression corresponded to an

increase of the epigenetically active markers H3K27ac and H3K4me3 at the target

loci. Similar to dCas9–VP64, the efficient activation of endogenous genes also

required multiple sgRNAs. In addition, the enhancement of gene activation was

also observed with multiple sgRNAs tiling the promoter region, which suggested

that recruitment of more activators could be helpful for increasing activation

efficiency. This strategy was applied for the development of the second generation

of CRISPR activation systems.

10.2.2 The dCas9–SunTag CRISPRa System

SunTag, a protein scaffold with repeating peptide epitope array, that can recruit

multiple copies of antibody–activator fusion protein, has been initially developed

for imaging of single molecule in living cells. When antibody–VP64 fusion protein

was delivered with dCas9-SunTag fusion protein, the system demonstrated strong

activation of endogenous gene expression. In one study, Marvin et al. used dCas9

fused with a carboxy-terminal SunTag array consisting of ten copies of a small

peptide epitope, and recruited theoretically ten copies of single-chain variable

fragment (scFV)–superfolded GFP (sfGFP)–VP64 (scFV–sfGFP–VP64) antibody–

activator fusion proteins to a single dCas9 (Fig. 10.2c). Using the dCas9–SunTag–

10x (scFV–sfGFP–VP64) system, 10–40-fold activation of the C-X-C Motif Che-

mokine Receptor 4 (CXCR4) gene was achieved with only one sgRNA, which led

to the manipulation of cell migration. Using the SunTag system, Gilbert et al.

performed a saturating screen in which they tested the activity of every unique

sgRNA broadly tiling around the transcription start sites (TSSs) of 49 genes known

to modulate cellular susceptibility to ricin, and observed a peak of active sgRNAs
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for SunTag CRISPRa system at �400 to �50 bp upstream from the transcription

start site (TSS) [26].

10.2.3 The dCas9–VPR CRISPRa System

The tripartite activator domain that consists of VP64, Nuclear Factor NF-κ-B P65

subunit activation domain (p65AD) and Epstein–Barr virus R transactivator (Rta)

(VPR) was developed to enhance the CRISPR/dCas9-based activation of endoge-

nous genes (Fig. 10.2b). A set of genes related to cellular reprogramming, devel-

opment, and gene therapy were activated with three to four gRNAs delivered in

concert. When compared to the dCas9–VP64 activator, dCas9–VPR showed sig-

nificantly (22–320-fold) greater activation of endogenous targets than dCas9–

VP64. Furthermore, in accordance with previous studies, we noted an inverse

correlation between basal expression level and relative expression gain induced

by CRISPR activation systems [5].

10.2.4 The sgRNA-Activation Domain of CRISPRa System

In addition to fusing different transactivation domains to either the amino or

carboxy terminus of the dCas9 protein, sgRNA can also be engineered to gain

more robust activation. Zalatan et al. first introduced a single-RNA hairpin domain

to the end of the sgRNA, connected by a two-base linker. For the recruitment RNA

modules, they used the well-characterized viral RNA sequences MS2, PP7, and

Com, which are recognized by the MCP, PCP, and Com RNA-binding proteins,

respectively. Then they fused the transcriptional activation domain VP64 to each of

the corresponding RNA-binding proteins for the purpose of the activation of

targeted genes (Fig. 10.2d). On the other hand, when a repression domain KRAB

is engineered into RNA-binding proteins, the system is good for transcriptional

inhibition. Overall, the successful application of scaffold RNA-mediated transcrip-

tional control in human and yeast cells paves the way for simultaneous ON/OFF

gene regulatory switches mediated by orthogonal RNA-binding proteins fused to

transcriptional activators (VP64) or repressors (KRAB) [29].

10.2.5 The Combined CRISPRa System

Based on the crystal structure of the Streptococcus pyogenes dCas9 (D10A/H840A)
in complex with a single-guide RNA (sgRNA) and complementary target DNA,

Konermann et al. developed synergistic activation mediator (SAM) system

[20]. They selected a minimal hairpin aptamer, which selectively binds dimerized
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MS2 bacteriophage coat proteins (MCP), and appended it to the sgRNA tetraloop

and stem loop 2 (Fig. 10.2e). Together with MS2-mediated transactivation factors

MCP-p65AD-heat shock factor 1 (HSF1), dCas9–VP64 significantly enhanced the

efficiency of activation of protein-coding genes and long noncoding RNAs

(lincRNA) with one single-guide RNA, and enabled multiplexed activation of ten

genes simultaneously. The ability to activate target genes using individual sgRNAs

greatly facilitates the development of pooled, genome-wide transcriptional activa-

tion screening. Based on the SAM system, they successfully performed a screening

for genes that confer resistance to a BRAF inhibitor in melanoma cells [20].

10.2.6 The dCas9–Epigenetic Modifier CRISPRa System

The dCas9 can also be fused with an epigenetic modifier to directly manipulate the

epigenetic states at the enhancer region, thereby activating the targeted genes. This

system uses different mechanism of action from the dCas9-activating transcription

factor fusion protein systems mentioned as above. While the activator domains used

in the previous engineered transcriptional factors such as VP64 act as scaffolds for

recruiting multiple components of the preinitiation complex including transcrip-

tional and epigenetic factors, and do not enzymatically modulate the chromatin

state directly, the dCas9–epigenetic modifier fusion protein directly alter the spe-

cific epigenetic marks at specific location.

In one study, fusion of dCas9 to the catalytic core of the transcription activator

acetyltransferase p300 (dCas9–p300core), a highly conserved acetyltransferase

involved in a wide range of cellular processes, has been demonstrated to activate

genes in human cells (Fig. 10.2f). The fusion protein catalyzes acetylation of

histone H3 lysine 27 at its target sites, leading to specific and robust transcriptional

activation of target genes including IL1RN, Myogenic Differentiation 1 (MYOD)

and OCT4 from both promoters and enhancers with an individual guide RNA [15].

With the expansion of the CRISPRa toolbox, it will be necessary to compare the

activation by these different systems across many endogenous genes in a variety of

cell types, in order to determine which tool is best suited for specific genes and cell

types. Recently, Chavez et al. performed a series of experiments in human embry-

onic kidney (HEK) 293T cells to compare the activation efficiency of many

published CRISPRa activation systems, and three from the second generation in

particular – VPR, SAM, and SunTag – appeared to be the most potent [6]. For nine

selected coding genes and noncoding genes, the activation levels can reach up to

several orders of magnitude higher than those of the first-generation dCas9–VP64

activator. Among the three, SAM seems to deliver high levels of gene induction

most consistently, although none of the three was obviously superior to the other.

In addition to the application of CRISPRa in mammalian cells, CRISPR/Cas9-

based activation system was also tested in the bacteria, Saccharomyces cerevisiae
andDrosophila melanogaster cells for activating endogenous loci [6]. For example,

a fusion of dCas9 with the ω-subunit of the E. coli polymerase allowed assembly of
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the holoenzyme for reporter gene activation in E. coli. Activation levels depended

on the distance between the dCas9 binding sequence and the promoter element. It is

possible that activation can be further optimized by changing the protein linker

between dCas9 and the activation domain and/or by using different activation

domains [2].

10.3 Advantages of CRISPRa System

The dCas9-guide RNA-mediated DNA target recognition requires both the PAM

sequence in target DNA and Watson–Crick base pairing between the 20-nt guide

RNA sequence and the complementary target DNA sequence. It has been shown

that the sequences fully complementary to the guide RNA but lacking a nearby

PAM are ignored by CRISPR/Cas9 system [25]. Compared with small activating

RNA-mediated gene activation which only depend on Watson–Crick base pairing

between mRNAs and saRNAs, the two-component requirement of CRISPR/Cas9

recognition renders more specificity with minimal off-target effects and we need

only consider off-targets adjacent to a PAM, because potential targets lacking a

PAM are unlikely to be interrogated.

In addition to small activating RNA, customized DNA-binding proteins such as

zinc-finger proteins or transcription activator-like effectors (TALEs) have been

used as tools for sequence-specific DNA targeting and gene regulation. These

proteins robustly target DNA through programmable DNA-binding domains and

can recruit effectors for transcription activation in a modular way. However,

because each DNA-binding protein needs to be individually designed, the construc-

tion and delivery for the purpose of simultaneously regulating multiple loci is

technically challenging. In contrast, one of the benefits of dCas9-based transcrip-

tion effectors over the customized DNA-binding proteins is the ease with which

multiple loci can be regulated, with only single-guide RNA (sgRNA) for each

additional locus one desires to activate.

The conventional methods for gene overexpression include the use of cDNA

overexpression vectors or cDNA libraries. However, cloning large cDNA

sequences into viral vectors and manipulating several gene isoforms simultaneously

are difficult. Also, the cDNA constructs often do not capture the full complexity of

transcript isoforms, and they are independent of the endogenous regulatory context.

Additionally, synthesizing large-scale libraries for genome-wide screening is not

cost effective. Therefore, CRISPRa system has emerged as an ideal technology for

genome regulation, providing specificity, convenience, robustness, and scalability

for gene activation.
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10.4 Applications and Limitations of CRISPRa System

CRISPR-based activation system could be applied to regulate gene expression in a

variety of biological processes, including stem cell differentiation, silenced gene

activation, genetic defect compensation, cell fate engineering, and genome-wide

screening. To study whether CRISPRa could be used for direct cell reprogramming,

Black et al. used a dCas9 with both N-terminal and C-terminal VP64 transactivation

domains (VP64–dCas9–VP64) to achieve multiplex activation of the neurogenic

factors Brn2, Ascl1, and Myt1l (BAM factors) and demonstrated direct cellular

reprogramming from fibroblast to induced neuronal cells through targeted activa-

tion of endogenous genes [3].

Another example is for HIV treatment. Although the combined antiretroviral

therapies (cARTs) have had a marked impact on the treatment and progression of

HIV/AIDS, the most significant limitation of currently available cARTs is the

inability to extinguish the integrated latent HIV reservoirs, resulting in a persistent

infection even under lifelong treatment. A promising strategy to eradicate latent

HIV reservoirs is to reactivate the dormant virus in the presence of combined

antiretroviral therapies (cARTs). Recently, several groups simultaneously reported

that CRISPR-based activation is highly effective at inducing transcriptional acti-

vation of latent HIV-1 infection specifically in human T cells, providing an exciting

new avenue towards latent HIV therapy (Saayman et al. 2016).

Whereas loss-of-function screens can be conducted using RNAi or Cas9-based

tools, gain-of-function screens have been confined to cDNA overexpression librar-

ies. Compared with all the limitations with the available cDNA libraries, CRISPRa-

based targeted gene regulation on a genome-wide scale is a powerful strategy for

interrogating, perturbing, and engineering biological systems. Taking advantage of

the robust SAM system, Konermann et al. performed a genome-wide screening for

genes that, upon activation, confer resistance to a BRAF inhibitor, using a library

consisting of 70,290 guides targeting all human coding isoforms. The screens

exhibited a high degree of consistency with 100% validation of the top ten hits.

The top hits included genes previously shown to be able to confer resistance, and

novel candidates were validated using individual sgRNA and complementary DNA

overexpression. Furthermore, gene expression signature based on the top screening

hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-

derived samples, proving the potential of Cas9-based activators as a powerful

genetic perturbation technology [20].

The discovery of the RNA-mediated programmable CRISPR/Cas9 technology,

has transformed the field of biology. While CRISPR/dCas9-mediated gene activa-

tion represents dramatic advantages over conventional approaches, there are several

concerns with its broad application. In addition to the general problems with

CRISPR system, such as off-target effects, delivery issue, and potential immuno-

genicity [28], the major concern is that the activation capability of endogenous

genes by CRISPRa system is not as robust as that of cDNA overexpression

approach and is heavily dependent on the selection of sgRNAs. This could be a
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potential concern for biological processes, such as direct reprogramming or

transdifferentiation from one mature cell type to another, which might require a

large amount of factors in order to overcome the force of gravity on the famous

Waddington’s epigenetic landscape [27]. Thus how to effectively design the most

robust and specific guide RNAs for transcriptional activation needs further

exploration.
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