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Chapter 11
Experimental Evidences Supporting 
the Benefits of Exercise Training  
in Heart Failure

Marcelo H.A. Ichige, Marcelo G. Pereira, Patrícia C. Brum, 
and Lisete C. Michelini

Abstract  Heart Failure (HF), a common end point for many cardiovascular dis-
eases, is a syndrome with a very poor prognosis. Although clinical trials in HF have 
achieved important outcomes in reducing mortality, little is known about functional 
mechanisms conditioning health improvement in HF patients. In parallel with clini-
cal studies, basic science has been providing important discoveries to understand 
the mechanisms underlying the pathophysiology of HF, as well as to identify poten-
tial targets for the treatment of this syndrome. In spite of being the end-point of 
cardiovascular derangements caused by different etiologies, autonomic dysfunc-
tion, sympathetic hyperactivity, oxidative stress, inflammation and hormonal 
activation are common factors involved in the progression of this syndrome. 

M.H.A. Ichige 
Department of Physiology & Biophysics, Institute of Biomedical Sciences,  
University of Sao Paulo, Sao Paulo, Brazil
e-mail: marcelo.hiro@uol.com.br 

M.G. Pereira 
Department of Biodynamics of Human Body Movement, School of Physical Education  
and Sport, University of Sao Paulo, Sao Paulo, Brazil
e-mail: pereiramg@usp.br 

P.C. Brum (*) 
Department of Biodynamics of Human Body Movement, School of Physical Education  
and Sport, University of Sao Paulo, Sao Paulo, Brazil 

National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ),  
Rio de Janeiro, Brazil
e-mail: pcbrum@usp.br 

L.C. Michelini 
Department of Physiology & Biophysics, Institute of Biomedical Sciences,  
University of Sao Paulo, Sao Paulo, Brazil 

National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ),  
Rio de Janeiro, Brazil
e-mail: michelin@usp.br

mailto:marcelo.hiro@uol.com.br
mailto:pereiramg@usp.br
mailto:pcbrum@usp.br
mailto:michelin@usp.br


182

Together these causal factors create a closed link between three important organs: 
brain, heart and the skeletal muscle. In the past few years, we and other groups have 
studied the beneficial effects of aerobic exercise training as a safe therapy to avoid 
the progression of HF.  As summarized in this chapter, exercise training, a non-
pharmacological tool without side effects, corrects most of the HF-induced neuro-
hormonal and local dysfunctions within the brain, heart and skeletal muscles. These 
adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neuro-
hormonal control and improve both cardiovascular and skeletal muscle function, 
thus increasing the quality of life and reducing patients’ morbimortality.
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1  �Introduction

Heart failure (HF) is a syndrome of poor prognosis in which patients present dys-
pnea and exercise intolerance due to the lack of the heart capacity of in maintaining 
the cardiac output required to preserve the metabolic needs of the organism. As a 
common end point for many cardiovascular diseases, more than 20 million people 
worldwide are estimated to have HF. This scenario tends to worse mainly because 
of the higher life expectancy and the increasing mean age of the population. The 
impairment of the cardiac function is the most classical mechanism described in this 
syndrome. Cardiac dysfunction can be of two types: a systolic and/or a diastolic 
dysfunction. Whilst most patients show both dysfunctions, there is usually a pre-
dominant pattern. The predominance of the systolic dysfunction, characterized by 
an inadequate emptying of the ventricle, defines a HF with reduced ejection fraction 
(HFREF). When the diastolic dysfunction (characterized by an inadequate relax-
ation and filling of the ventricle) predominates, it is called HF with preserved ejec-
tion fraction (HFPEF). Nowadays, our knowledge regarding HFREF is much wider 
when compared to that of HFPEF. HFPEF, however, is showing an increasing preva-
lence, being usually predominant in the elderly people and women. Around half of 
the HF patients experience HFPEF; unfortunately, none of the current therapies 
used to treat HFREF have shown good results in treating HFPEF patients. Besides 
the pharmacological therapies, aerobic exercise training has also been used to treat 
HF. Similar to other treatments, the current knowledge of the effects of exercise 
training in HF is predominantly focused in HFREF, which will be the focus of the 
present chapter.

This chapter will start with a brief overview on the pathophysiology of HF. Then, 
the effects of aerobic exercise training with focus on its benefits on neurohormonal 
control as well as its effects to improve cardiac and skeletal muscles functions will 
be discussed.

M.H.A. Ichige et al.



183

2  �Overview on the Pathophysiology of the HF

The immediate response to a myocardial aggression, leading to decreased cardiac 
output, is the activation of compensatory neurohormonal mechanisms. Peripheral 
sensors, such as the baroreceptors and the cardiopulmonary receptors detect the 
alterations in arterial pressure, atrial distention and ventricular contractile function, 
which are integrated in central autonomic areas triggering the activation of several 
neurohormonal systems, the most important being the sympathetic nervous system, 
the renin-angiotensin-aldosterone system and the secretion of vasopressin [23]. In 
the early HF phase, these compensatory mechanisms aim to increase cardiac con-
tractility and heart rate, in order to normalize the reduced cardiac output. However, 
their continuous activation induces an elevated peripheral resistance, with a conse-
quent increase in the arterial blood pressure. Simultaneously an increased venous 
constriction and water/salt retention activated by the neurohormonal mechanisms, 
coupled with angiotensin II-induced increase in water intake, will result in a higher 
pre-load, activation of the Frank-Starling mechanism and increased ventricular con-
tractility, which characterize the initial compensated phase of HF [23].

While the Frank-Starling mechanism is critically important in regulating cardiac 
output in normal conditions, in the presence of myocardial dysfunction its effects 
are greatly impaired. As the ventricle is incapable of ejecting proper volume during 
the systolic phase of the cardiac cycle, the heart will enter in the subsequent dia-
stolic phase with increased residual blood volume, which, in addition to increased 
venous return, results in an even high pre-load. In the next cycle, again the heart is 
incapable of ejecting the proper systolic volume, leading the ventricle to work con-
tinuously under elevated filling pressures. In this condition, the heart works con-
stantly in the right end of the Frank-Starling curve, showing minimal alterations in 
the cardiac output in response to increases in the pre-load. Additionally, the failing 
heart shows a decrease in the peak cardiac output of the Frank-Starling curve, fur-
ther decreasing the relevance of this mechanism for the compensation of cardiac 
failure [147].

Along with the neurohormonal activation and the Frank-Starling mechanism, a 
third compensatory mechanism in HF is the ventricular hypertrophy. Left ventricle 
dilatation and/or sustained elevations in after-load result in higher wall stress. Both 
neurohormonal signaling and wall stress induce a hypertrophic response in cardio-
myocytes and fibroblasts, thus leading to hypertrophy and extracellular matrix 
deposition. The pattern of this response depends on the type of stimulus applied to 
the ventricle: volume overload will result in eccentric hypertrophy with the mainte-
nance of the wall thickness, while pressure overload results in concentric hypertro-
phy with increase in wall thickness [59]. While these adaptations at the beginning 
might help to reduce wall stress and maintain ventricular function, the exhaustion of 
this mechanism by the persistence of the injury triggers the chamber dilation and the 
reduction of its contractile function.
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In spite of the importance of these mechanisms in the maintenance of the organ-
ism homeostasis in the acute HF, the persistence of such aggression, leading to a 
chronic activation of neurohormonal systems, will result in further deterioration of 
the cardiac function. The excessive activation of sympathetic, renin-angiotensin-
aldosterone and vasopressin systems results in maladaptive responses of the myo-
cardium, inducing apoptosis [79] and abnormal function even in the viable 
myocardium. Otherwise, the viable myocardium subjected to chronic neurohor-
monal stimulation shows impaired calcium handling and abnormal production and 
use of high-energy phosphates and reactive oxygen species [23, 41]. Sympathetic 
hyperactivation induces desensitization, thus reducing the capacity of the heart to 
respond adequately to autonomic stimuli. Catecholamines, angiotensin II, aldoste-
rone and inflammatory cytokines altogether can trigger apoptotic responses in car-
diomyocytes [79]. The worsening of cardiac function causes further stimulation of 
the neurohumoral systems, resulting in a deleterious positive feedback mechanism. 
This feedback loop of progressive worsening in cardiac function and compensatory 
increases of neurohumoral activation will eventually reach a limit when the cardio-
vascular system can no longer maintain an adequate perfusion of the organism, 
resulting in the HF syndrome.

3  �Mechanisms Conditioning the Benefits of Exercise 
Training in HF-Neurohormonal Systems

3.1  �Autonomic Nervous System

Autonomic nervous system dysfunction is a hallmark for HF. The exaggerated sym-
pathetic activation simultaneously with withdrawal of vagal outflow drives the 
organism towards progressive worsening of cardiac function. Several methods and 
models of HF have been used to assess and confirm sympathetic nervous system 
(SNS) hyperactivity in animal models of HF: sympathetic nerve recordings [39, 
135], dosage of plasma cathecolamines [123], norepinephrine turnover [122], 
immunohistochemistry in brain autonomic areas [69], as well as functional record-
ings [69]. The relevance of SNS in the pathophysiology of the HF is highlighted by 
the great impact of blocking sympathetic hyperactivity in reducing the mortality of 
HF patients [22, 53]. Exercise training, on the other hand, is capable of reducing or 
even normalizing SNS activity in HF animals [69, 185]. Even in patients that are 
already in the use of β-blockers, exercise training can induce further reductions in 
sympathetic nerve activity [48].

Many mechanisms have been proposed to explain the SNS dysfunction in 
HF. Impairment of inhibitory and hyperactivation of excitatory reflexes controlling 
the SNS outflow were pointed as important mechanisms leading to sympathetic 
hyperactivity in HF. Indeed, reduced sensitivity of the sympathoinhibitory arterial 
baroreflex [39] and cardiopulmonary reflexes [128] and increased sensitivity from 
exercise pressor reflex [164] and other sympathoexcitatory reflexes such as the 
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carotid body chemoreflex [145] and the cardiac afferent sympathetic reflex [163] 
were found in animal models of HF. Exercise training can attenuate several of these 
reflex dysfunctions. HF animals submitted to chronic exercise training show 
increased baroreflex sensitivity [94, 111] through a mechanism that seems to be 
dependent on the parasympathetic nervous system [95]. Exercise training also ame-
liorates cardiopulmonary reflexes [128], attenuates carotid body afferent activity 
and normalizes the chemoreflex through mechanisms dependent on NO and angio-
tensin signalling [91]. The exercise pressor reflex driven by metaboreceptors and 
mechanoreceptors afferents is also attenuated by exercise training, which prevents 
the sensitization of those receptors [164, 165].

Second order neurons in the nucleus tractus solitarii (NTS), the first synaptic 
relay of peripheral receptors in the central nervous system, receive barosensitive 
and chemosensitive inputs and project to brainstem areas controlling vagal (nucleus 
ambiguus, NA, and dorsal motor of the vagus, DMV) and sympathetic (caudal and 
rostral ventrolateral medulla, CVLM and RVLM, respectively) outflow to heart and 
vessels [36, 106]. Upon loading of baroreceptors, NTS is activated and increases the 
firing of NA and DMV pre-ganglionic parasympathetic neurons projecting to the 
heart; NTS also activates gabaergic inhibitory neurons within the CVLM that proj-
ect and inhibit RVLM premotor neurons projecting to sympathetic pre- and post-
ganglionar neurons innervating the heart and vessels [108]. As a consequence, 
venous return, cardiac output and peripheral resistance are reduced decreasing arte-
rial pressure, which returns to control levels [107, 108]. When peripheral chemore-
ceptors are activated (reduced PO2 and pH, increased PCO2), the firing of NTS 
chemosensitive neurons directly excite the RVLM premotor neurons augmenting 
sympathetic outflow and increasing blood pressure [130, 171]. Opposed responses 
are observed to baroreceptors unload and during reduced activation of peripheral 
chemoreceptors, respectively. Brainstem integration of cardiovascular control is 
continuously modulated by preautonomic neurons located in the paraventricular 
nucleus of hypothalamus (PVN) and other supramedullary pathways [108, 149]. 
Considering the role of brainstem and supramedullary autonomic nuclei in the con-
trol of sympathetic and parasympathetic activity, it makes sense that plastic and 
functional changes in these nuclei could condition both deleterious and benefic 
autonomic adaptations to HF and training, respectively.

Studies in HF animals described significant reductions in the nitric oxide content 
(NO, a sympathoinhibitory molecule) within the NTS [67, 140], increased expres-
sion and higher functional response to AT1 receptors blockade [166]. Indeed, aug-
mented availability of angiotensin II was proposed to be one of the mediators of 
sympatoexcitation in the brain. Indeed, angiotensin converting enzyme (ACE, 
responsible for the conversion of angiotensin I to angiotensin II) gene and protein 
expression is elevated and that of angiotensin converting enzyme 2 (ACE2, which 
metabolizes angiotensin II to angiotensin-(1–7)) is reduced in autonomic areas of 
the hypothalamus (PVN) and brainstem (NTS, RVLM) of chronic HF rabbits [73]. 
Coherently, exercise training, by reversing ACE/ACE2 ratio, is able to attenuate the 
increased angiotensinergic signaling in these nuclei [73]. Other experimental studies 
investigating the sympathetic hyperactivity in HF found increased angiotensinergic 
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[182] and glutamatergic [90] and decreased GABAergic [30] and NO [177] signal-
ing within the PVN.  Again exercise training reduced sympathetic overactivity 
simultaneously with decreased angiotensinergic [73, 182] and glutamatergic [77] 
and increased GABAergic [121] and NO [181] signaling in the PVN. Similar profile 
was observed within the RVLM, the main nucleus controlling the sympathetic out-
flow to the cardiovascular system: increased glutamatergic [167] and decreased NO 
signaling [67] simultaneously with an imbalance between AT1 and AT2 receptors 
[51], which contribute to sympatoexcitation in HF animals. All these alterations are 
attenuated by exercise training [73].

Apart of numerous studies confirming the role of sympathetic outflow in the 
genesis of cardiovascular deficits in HF, as well its withdrawal in the improvement 
of circulatory control in trained HF animals, the parasympathetic, the counter-
regulatory axis of the autonomic nervous system whose activity is depressed in HF 
patients and animals [18, 69] has received much less attention. Although there is 
evidence that low vagal activity is a predictor of high mortality rates [34, 82], phar-
macological activation of vagal outflow is not generally recommended given the 
several side effects of cholinergic drugs and the lack of drugs capable of specifically 
stimulating the vagal activity to the heart. So, the impact of the parasympathetic 
nervous system is not as clear as the effects of the sympathetic activity in 
HF.  Pharmacological stimulation of parasympathetic tonus with pyridostigmine 
improves cardiac and circulatory parameters in HF rats [84, 137]. In chronic HF the 
increased vagal activity through parasympathetic nerve stimulation has shown to be 
effective to improve prognosis in animals [89, 179] and patients [37, 146]. However, 
in large randomized trials this intervention failed to show significant results [57].

Besides knowing that HF animals show alterations in parasympathetic ganglia 
and depressed parasympathetic activity [17], information regarding the mechanisms 
leading to vagal dysfunction in HF are lacking. In a recent paper we observed that 
decreased parasympathetic tonus in HF rats is positively correlated with the reduc-
tion of choline acetyl transferase (ChAT) positive neurons in the NA and DMV and 
that training-induced improvement of parasympathetic control of the heart is 
accompanied by a significant increase in the number and density of ChAT-positive 
neurons within these nuclei [69]. Figure 11.1 illustrates these findings showing in 
addition that elevated basal heart rate, which is driven by the increased sympathetic 
outflow to the heart in HF sedentary rats, is reduced and driven by the augmented 
parasympathetic tonus in trained HF rats. Our data also confirmed that increased 
sympathetic activity in HF sedentary rats is accompanied by augmented dopamine 
β-hydroxylase immunoreactivity (DBHir) within the RVLM and that exercise train-
ing reduces both [69]. However, the correlation between sympathetic tonus and 
DBHir within the RVLM does not attain significance [69]. These observations rein-
force the potentiality of training to improve vagal control of the heart in HF indi-
viduals, with the advantage to avoid noxious side effects that accompanied 
pharmacological therapies. In spite of our still limited knowledge regarding the 
parasympathetic axis of autonomic nervous system in the treatment of chronic HF, 
exercise training seems to be an essential therapeutic tool to normalize vagal dys-
function in this syndrome.
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Therefore, by attenuating sympathoexcitation and by restoring the vagal control 
of the heart, exercise training is able to restore autonomic balance in HF individuals, 
even in the persistence of ventricular deficits, therefore improving its prognosis 
besides reducing mortality rates.

3.2  �Renin-Angiotensin-Aldosterone System (RAAS)

Along with the autonomic nervous system, the RAAS is an essential key in the 
understanding of HF pathophysiology. The RAAS is a complex system composed 
of several regulatory and counter-regulatory molecules that act in order to control 
the water and salt balance and the arterial blood pressure. Viewed in the past as a 
hormonal circulating system, it is now accepted as an important local regulatory 
system present in all tissues, able to control specific tissue functions independently 
of the circulating RAAS. This hormonal/local system exerts its functions through 2 
axes: the ACE-angiotensin II-AT1 receptor axis with vasoconstrictor, proliferative 
and pro-inflammatory effects and the ACE2-angiotensis-(1–7)-Mas receptor axis, 
with opposite vasodilator, anti-proliferative and anti-inflammatory effects. In 

Fig. 11.1  (a) Comparison of cardiac sympathetic (ST, open bars) and parasympathetic tonus (PT, 
filled bars), intrinsic heart rate (intersection between ST and PT) and resting heart rate (indicated 
by arrows) in infarcted (HF) and SHAM rats submitted to sedentary (Sed) and training (ET) pro-
tocols. Significances (P  <  0.05) * vs. SHAM; † vs. Sed. (b) Photomicrographs comparing the 
effects of heart failure and exercise training on Choline Acetyl Transferase (ChAT) immunoreac-
tivity within the nucleus ambiguus pars sub-compacta of SHAM and HF rats submitted to seden-
tary (Sed) or training (ET) protocols. (c) Number of ChAT-positive neurones in pars sub-compacta 
of the nucleus ambiguus. Significant difference (P  <  0.05): * vs. SHAM; † vs. respective Sed 
controls (Modified with permission from Ref. [69]
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addition to increased angiotensin II availability within the brain leading to increased 
sympathetic outflow [94, 111], ACE-angiotensin II-AT1 receptor axis is hyperacti-
vated in HF [13, 58, 73, 94, 125], the increased angiotensin II levels being respon-
sible for fibroblasts’ proliferation and myocardium hypertrophy, thus facilitating the 
worsening of cardiac function in an already dysfunctional heart [139].

The efficacy of RAAS blockade (renin and ACE inhibitors, AT1 receptors’ 
antagonists, aldosterone receptors’ antagonists) in reducing the neurohormonal acti-
vation of the heart and reducing mortality [83] highlight the importance of these 
therapeutic tools to improve prognosis in HF patients. Importantly, exercise training 
is effective in attenuating RAAS activity not only in the brain, but also in peripheral 
tissues, thus avoiding additive deleterious effects in the progression of HF. Indeed, 
HF animals submitted to exercise training show decreased plasma angiotensin II 
concentration [94] simultaneously with reduced tissue content in the heart [125], 
skeletal muscle [58] and brain [51, 73, 182]. Despite accumulating evidence for the 
importance of RAAS in HF and the benefits of exercise training in reducing its acti-
vation in several peripheral tissues, the most abundant information available was 
obtained in the central nervous system. Exercise training, by modulating RAAS 
activity can correct/normalize blunted reflexes that regulate autonomic circulatory 
control, such as the baroreflex [111] and the carotid body chemoreflex [91]. In addi-
tion, as described before, the enhanced angiotensinergic signaling in autonomic 
areas of HF individuals (increased AT1 receptors and ACE expression, decreased 
ACE2 expression, etc.) [61, 73, 182] determining sympathoexcitation is corrected 
by exercise training.

Angiotensin II-induced increases in sympathetic activity are mediated, at least in 
part, by increases in oxidative stress [49, 183] and exercise training has been shown 
to decrease sympathetic hyperactivity by reducing oxidative stress: it increases the 
expression of antioxidant enzymes in the brain and other tissues [50, 85, 93, 154], 
thus attenuating intracellular signaling triggered by angiotensin II.

Aldosterone, a mineralocorticoid secreted in response to angiotensin II signaling 
that is mostly known for its role in sodium reabsorption in the kidney. Nonetheless, 
aldosterone receptors are present in the heart [96, 124], as well as in vessels [96, 
104] and brain [176]. In the heart of HF individuals, aldosterone induces marked 
cardiac fibrosis worsening the cardiac function [24, 133]. On the other hand, block-
ade of aldosterone effects by mineralocorticoid receptors antagonists has been 
shown to reduce mortality of HF patients [103]. There is scarce information regard-
ing the effects of exercise training on aldosterone effects in HF. Braith et al. [21] and 
Wan et al. [162] have shown that exercise training reduces circulating levels of aldo-
sterone, thus contributing to attenuate its deleterious effects in HF.

3.3  �Inflammatory Response

The increased inflammatory profile also plays an important role in the pathophysiol-
ogy of the HF. Plasma levels of pro-inflammatory cytokynes, such as tumor necrosis 
factor - alpha (TNF-α) and interleukins (IL) as IL-1β, IL-6 and IL-18, are elevated 
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in several tissues of HF individuals while anti-inflammatory cytokines, such as the 
IL-10, are reduced [60]. Intact rats chronically infused with TNF-α showed 
depressed cardiac function and left ventricle dilatation, a pattern that resembles the 
effects induced by HF [20]. These effects are partially reversed by stopping the 
TNFα infusion [20]. A murine model that overexpresses TNF-α in the heart also 
develops cardiac hypertrophy and dilatation, with reduced ejection fraction and pul-
monary congestion, a phenotype very similar to HF [81]. Elevated levels of TNF-α 
is also related to the skeletal muscle apoptosis found in HF rats [35]. Dysfunction of 
human cardiomyocytes submitted to ischemia-reperfusion injury is attenuated by 
simultaneous inhibition of IL-1β and IL-18 [129]. In rats the chronic exposure to 
IL-6 induces myocardial fibrosis, cardiac concentric hypertrophy and diastolic dys-
function [102] while IL-6 knockout mice submitted to pressure overload show 
attenuation of both left ventricle hypertrophy and cardiac dysfunction [180].

While the relevance of the immune response in the context of HF is clear, studies 
aiming to modulate it with drugs administration are still ensuing. A trial using anti-
TNF-α antibodies showed no improvement and had to be stopped because of 
increased mortality in the group receiving the higher doses of the drug [32]. As 
reviewed by Gullestad et al. [60], other studies using different approaches to modu-
late the immune response in HF showed that with few exceptions those treatments 
are neutral or even harmful, calling our attention for the need to expand the knowl-
edge in this field. In contrast exercise training has shown significant effects in reduc-
ing pro-inflammatory profile in HF in rats and patients. HF rats submitted to exercise 
training show increases in plasma levels of the anti-inflammatory cytokine IL-10 
[119] and reduction of LPS-stimulated TNFα production by macrophages [15]. 
Exercised HF patients show reduced plasma levels of TNF-α and its receptors 
(sTNF-RI and sTNF-RII), IL-6 and its receptor (sIL-6R) and of the apoptosis 
inducer sFasL [3]. Markers of the monocyte/macrophage system granulocyte-
macrophage colony-stimulating factor (GM-CSF) and macrophage chemoattractant 
protein-1 (MCP-1) are also reduced [2]. These findings indicate that exercise train-
ing is a better choice than recombinant antibodies and/or pharmacological blockade 
to modulate immune response in HF.

4  �Mechanisms Conditioning the Benefits of Exercise 
Training in HF – Cardiovascular System

4.1  �Heart

As commented above, impairment of cardiac function is a hallmark of HF.  The 
progression of the syndrome induces progressive deleterious remodeling of the 
heart leading to dilation of the chambers and loss of its elliptical shape [78]. Exercise 
training is able to prevent most of these alterations. Some studies have shown ame-
lioration of cardiac function or reverse remodeling in trained HF animals [77, 182] 
and patients [42, 64, 157]. Others have found no significant effects in both animals 
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and patients [61, 73, 94, 136, 143]. These discrepancies could result from differ-
ences in the intensity, duration and type of the exercise protocol used [169]. 
Therefore, the beneficial effects of exercise training on myocardial remodeling and 
function seems to be only mild. Nonetheless, exercise training is capable improve 
other deficits induced by HF.

The impaired coronary blood flow and coronary reserve in HF are improved by 
exercise training, which activates myocardial angiogenesis [87, 143]. This finding is 
of relevance since the high coronary flow reserve has significant prognostic value in 
the context of HF [132]. Decreased coronary blood flow in HF is related to an 
increased production of reactive oxygen species in the coronary arteries and 
decreased levels of antioxidant enzymes [31], leading to increased NO scavenging 
and impaired endothelial NO synthase (NOS) function [16, 168]. Excessive oxida-
tive stress, as demonstrated by increased levels of reactive oxygen species and 
decreased levels of antioxidant enzymes, also affects the myocardium itself [65, 66, 
70]. The consequences of this dysfunction is the injury of cardiomyocytes, with 
contractile abnormalities [72], impairment of the proteasome, leading to accumula-
tion of misfolded proteins [46], and eventually culminating in cell death. Exercise 
training induces cardioprotection through the reduction in oxidative stress simulta-
neously with the increase of antioxidant enzymes [12], thus restoring the cellular 
protein quality control [29].

Another feature of HF is impaired Ca2+ handling. The calcium homeostasis 
within cardiomyocytes is regulated by several proteins. Special attention has been 
given to those responsible for the control of the Ca2+ uptake and release within the 
sarcoplasm and sarcolemma. Those include the sarcoplasmic reticulum Ca2+ATPase 
(SERCA2) and its regulator phospholamban (PLN), the ryanodine receptor, Ca2+ 
channels, and the Na+/Ca2+ exchanger. While it is consensual that HF leads to Ca2+ 
handling dysfunction and excitation-contraction uncoupling, the mechanisms lead-
ing to those alterations are very complex and studies show conflicting results [11, 
98]. Nonetheless, it seems that exercise training is able to ameliorate the HF-induced 
Ca2+ handling alterations, whichever directions they occur [76, 101, 134, 152, 170].

The heart in HF, submitted to excessive sympathetic signaling, show β-adrenergic 
receptor desensitization [56]. This results from a reduction in the density of β1-
adrenergic receptor, a decreased β1 / β2 ratio [26] and uncoupling of β1-adrenergic 
receptor from the Gs protein caused by enhanced βARK expression [156]. Exercise 
training can attenuate this desensitization thus increasing β-adrenergic response 
[87], likely through increases in the expression of β1-adrenergic receptors and 
cAMP levels [38, 87]. Therefore, exercise training can restore cardiac contractility 
reserve in HF.

HF also results in a dysfunction of the sinus node pacemaker cells leading to 
decreased intrinsic pacemaker heart rate (see Fig. 11.1) [69, 141, 174]. This sinus 
node dysfunction is characterized by increased recovery time and intrinsic cycle 
length, a caudal shift of the pacemaker location and slower sinoatrial conduction 
[141]. Molecular alterations that might explain these alterations include widespread 
changes in the expression of ion channels, gap junction channels, Ca2+, Na+, and 
H+-handling proteins and receptors [174]. This sinus node dysfunction, along with 
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the β-adrenergic desensitization, lead the organism to require a higher sympathetic 
activation to maintain a similar heart rate when compared to normal subjects [69]. 
Exercise training also reverses this dysfunction, restoring intrinsic pacemaker heart 
rate of HF rats to similar levels when compared to control animals [69]. Whether the 
other mechanisms (for instance the anatomical change in the pacemaker location) 
are also corrected it remains to be investigated.

4.2  �Endothelium

Impaired endothelium-derived vasodilatation is characteristic of HF [80]. This dys-
function is caused by reduced production of endothelial-derived relaxing factors, 
most notably NO [74, 131] and increased levels of endothelin [88]. Increased pro-
duction of both reactive oxygen species (that inactivates NO) [16] and pro-
inflammatory cytokines (such as the TNF-α that decreases endothelial NOS activity) 
[4, 172] are among the mechanisms that lead to the depletion of NO. The relevance 
of endothelial dysfunction in HF is of great importance and its severity can predict 
deleterious outcomes [105]. Exercise training increases NOS expression, restores 
NO production and decreases oxidative stress [75, 158] improving endothelium-
mediated dilation and attenuating deleterious alterations. Exercise can also restore 
the number and function of endothelial progenitor cells [142, 144] and increase the 
levels of proangiogenic cytokines, such as the vascular endothelial growth factor 
(VEGF) and the stromal cell-derived factor (SDF-1) [144], suggesting that exercise 
also ameliorates angiogenesis.

5  �Mechanisms Conditioning the Benefits of Exercise 
Training in HF – Skeletal Muscle

5.1  �Skeletal Myopathy

The HF-related skeletal myopathy can induce a severe syndrome known as cardiac 
cachexia. This syndrome is defined by an ongoing loss of skeletal muscle mass that 
cannot be fully reversed by conventional nutritional support and that leads to pro-
gressive muscle functional impairment. This severe clinical complication is also 
observed in many other chronic disease conditions, such as cancer, diabetes and 
HIV infection, affecting different types of skeletal muscles that are involved not 
only in force production, but also in posture maintenance and respiration. 
Epidemiological data demonstrate that in comparison with non-cachectic patients, 
the average stay at the hospital for cachectic patients is twice longer, and cost 70% 
more [7]. Thus, the reduced muscle mass and muscle dysfunction in HF are strongly 
associated with a reduced quality of life and a poor prognosis. Curiously, no specific 
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therapy are current available to block or attenuate the process of HF-related skeletal 
myopathy, leading the patients to develop cardiac cachexia.

In addition to muscle mass loss and decreased muscle function, HF-related skel-
etal myopathy has been characterized by capillary rarefaction, mitochondrial dys-
function, altered myofiber phenotype (causing a shift from type I slow twitch toward 
type II fast twitch myofibers) and reduced muscle endurance [160]. Together, these 
features contribute to the increased fatigability leading patients to dyspnea, fatigue 
and exercise intolerance.

The sustained hyperactivities of SNS and RAAS, described in the previous top-
ics are directly associated with the pathogenesis of HF, can directly contribute to the 
changes in morphofunctional features related to skeletal myopathy. One of the main 
pharmacological therapies of HF is the blockade of the sympathetic and RAAS 
hyperactivity, through the use of β-blockers and ACE inhibitors or AT1 receptor 
antagonists, respectively; however, the effect of these treatments on skeletal myopa-
thy has not been clarified yet. In contrast, it was already demonstrated that aerobic 
exercise training (AET) emerges as a potent non-pharmacological strategy to coun-
teract HF-related skeletal myopathy and the evidences from basic science are strong 
enough to recommend it as an adjuvant therapy.

5.2  �Sympathetic Hyperactivity and Skeletal Myopathy

The sympathetic activation in skeletal muscle tissue is mediated by β-adrenergic 
receptors (β-AR) and this activation can improve muscle regeneration process 
[151], increase force production, promote a shift toward type II glycolytic myofi-
bers and increase muscle mass [99]. This hypertrophic response was described by 
studies which used β-AR agonists, such as clenbuterol and formoterol (selective 
β2-AR agonists) and isoproterenol (a nonselective β-AR agonist) [71, 99, 173]. The 
cellular mechanisms involved in this process include, an inhibition in muscle prote-
olysis, mainly by  ubiquitin-proteasome system (UPS), concomitantly with an 
increased protein synthesis, mainly associated with Insulin Like Growth Factor1/
Phosphoinositide-3-kinase/Akt-protein kinase B/mammalian-mechanistic Target 
Of Rapamycin (IGF-1/PI3K/Akt/mTOR) signaling pathway [114–116].

Based on aforementioned hypertrophic effect, β-AR activators were prescribed 
to counteract the HF-related muscle myopathy in late 80’s decade. In fact, some 
beneficial effects of β-AR agonists on muscle mass were observed; however, tachy-
cardia was reported as a side effect [110]. Tachycardia occurred due to the β1-AR 
related cardiac effect, while the hypertrophic effect of β-AR activators was demon-
strated to be specific to selective β2-AR agonists which would be more efficient to 
combat skeletal myopathy [52]. In this sense, our group observed that β2-AR knock-
out mice displayed exercise intolerance and a severe muscle atrophy after myocar-
dial infarction induced-HF [161]. One possible explanation is that in previous stages 
of HF, increased sympathetic activity through the activation of β2-AR could be able 
to delay the onset of muscle proteolysis.
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This seems to be the case in a mice model of sympathetic hyperactivity induced-
HF, which was largely used in many studies of our group. At 3  months of age, 
although no signs of HF were present, these animals displayed sympathetic hyper-
activity associated with plantaris muscle hypertrophy mediated by β2-AR activation 
[10]. In the same mouse model, when HF syndrome turned severe, the plantaris 
atrophy and skeletal myopathy became evident. Therefore, while activation of β2-
AR by β2-agonists seems to counteract skeletal myopathy in early stages of the 
syndrome, long-term and sustained activation of SNS leads to HF-related skeletal 
myopathy, which might be related to β2-AR desensitization and downregulation 
reducing its anabolic effects. In fact, sympathetic hyperactivity besides being one 
hallmark of HF, it also contributes to the development of the skeletal myopathy [136].

5.3  �Renin-Angiotensin-Aldosterone System Hyperactivity 
and Skeletal Myopathy

Angiotensin II (Ang II) is the main effector molecule of the system and its high 
levels are also a hallmark of HF leading to vasoconstriction, pro-inflammatory 
effects and reduced muscle regenerative capacity [45, 175]. High levels of Ang II 
induce protein breakdown and decrease the levels of skeletal muscle protein synthe-
sis, leading to cardiac cachexia [47]. In addition to its direct effects on skeletal 
muscle, the indirect effects of Ang II can also contribute to muscle atrophy, due to 
its role in regulating circulating hormones and inflammatory cytokines. In this 
sense, Ang II increases interleukine-6 (IL-6) cytokine levels leading to an imbal-
ance in the ratio between skeletal muscle protein synthesis and protein degradation 
by inhibiting IGF-I/Akt/mTOR signaling pathway while activating UPS [178]. It 
was observed that Ang II, when infused in rodents through osmotic pumps for up to 
2 weeks, significantly decreased systemic IGF-I levels. In addition, the animals pre-
sented reduction in body weight and daily food intake, which are directly related to 
cardiac cachexia [25].

In addition to ACE inhibitors or AT1 receptor blockers, vasodilator agents are 
commonly used as hypertensive therapy in HF syndrome. However, it was shown 
that only the compounds that act directly in RAAS are able to block the changes in 
circulating IGF-I and body weight reduction, indicating that Ang II induces cardiac 
cachexia through a pressor-independent mechanism [5, 25].

Thus, pharmacological inhibition of RAAS can be recommended to avoid exer-
cise intolerance and increasing the quality of life related to an attenuated skeletal 
muscle myopathy. In fact, HF treatment with ACE inhibitors increases respiratory 
muscle strength in humans [33] and partially prevents HF-induced muscle myopa-
thy in rodents [184]. The same features were observed for AT1 receptor blockers 
which, at least in part, can attenuate the reduced muscle force in HF syndrome [44].

Even though the therapy with inhibitors of RAAS has demonstrated some posi-
tive outcomes in HF-related skeletal myopathy, AET also emerges as a potential 
non-pharmacological adjuvant therapy modulating RAAS.
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5.4  �Aerobic Exercise Training: An Important Non-
pharmacological Treatment for HF-Induced Skeletal 
Myopathy

The aerobic exercise training (AET) have been studied in its basis for more than 
50 years and nowadays it is recognized as an efficient and safe strategy in order to 
prevent and/or treat several cardiovascular diseases [43]. The beneficial effects of 
AET in HF have been demonstrated in heart, neurohumoral systems and skeletal 
muscle tissue. Therefore, both European [40] and American [68] guidelines have 
agreed upon the recommendation of AET in combination with an adequate pharma-
cological treatment. Interestingly, the responsiveness of skeletal muscle to AET is 
higher than to pharmacological therapy, which highlights the importance of the 
AET as strategy to counteract HF-related muscle myopathy. As will be described 
below, data from basic science provide strong evidence for AET as a prominent 
strategy to prevent and/or revert muscle metabolic and contractile dysfunction in HF.

5.5  �Effects of AET in the Metabolism and Function 
of the Skeletal Muscle

HF causes many metabolic changes in the skeletal muscle tissue [100, 127]. Those 
changes, such as a switch toward type II glycolytic myofibers and decreased mito-
chondrial density and function, trigger a reduced aerobic capacity leading to muscle 
fatigue and exercise intolerance. Indeed, a decrease in protein expression of PGC-1α 
(peroxisome proliferator-activated receptor gamma), a potent regulator of mito-
chondrial biogenesis, was observed in animal models of HF [159]. In contrast,  
AET is able to modulate those metabolic changes due to its capacity to improve the 
production and the utilization of energy substrates by the muscle cells in a more 
efficient way. Such improvements in muscle substrate supply and uptake are opti-
mized by the enhanced blood supply to skeletal muscle tissue, once AET prevents 
HF-induced capillary rarefaction [62]. In addition, AET promotes a shift toward 
oxidative type I myofibers in skeletal muscle tissue, which improves its oxidative 
features [10].

Due to the HF-related cachexia, the skeletal muscle contractile function is also 
impaired in HF and these features are strongly associated with changes in Ca2+ han-
dling. In fact, rodents with HF displayed low levels of sarcoplasmic Ca2+ associated 
with reduced rate of sarcoplasmic reticulum Ca2+ release and reuptake [97, 126]. 
These findings are also observed in patients, since a reduced Ca2+ release and reup-
take associated with decreased dihydropyridine receptors and sarco(endo)plasmic 
reticulum Ca2+-ATPase (SERCA)2a protein expression in vastus lateralis was 
observed [109].

Herein, AET shows its effectiveness by improving skeletal muscle Ca2+ handling. 
In fact, our group have demonstrated that AET at moderate intensity can improve 
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the net balance of Ca2+ handling proteins in soleus and plantaris muscle from 
sympathetic hyperactivity induced-HF mice, culminating in a better muscle func-
tion [28]. Interestingly, Ca2+ handling is also observed in HF patients since leg 
extension training was able to reduce Ca2+ leaking through ryanodine receptors in 
vastus lateralis muscle [112].

5.6  �Effects of AET in Neurohumoral Hyperactivity and for the 
Control of Skeletal Muscle Mass

As previously mentioned, cardiac cachexia is considered an independent predictor 
of morbidity and mortality in HF patients and animal models. This syndrome is trig-
gered by neurohumoral hyperactivity in association with impaired muscle function. 
Besides no specific therapy is available until now for treating muscle wasting in HF 
syndrome, AET can counteract the muscle myopathy by improving muscle function 
and metabolism (direct effect) or by attenuating neurohumoral hyperactivity (indi-
rect effect).

Regarding neurohumoral hyperactivity, it was demonstrated that a 4-month 
period of moderate intensity AET leads to a significant reduction in muscle sympa-
thetic nerve activity in HF patients [136]. Although the mechanisms behind this 
reduction are a topic under current investigation, some potential candidates were 
identified, such as afferent autonomic control coordinated by arterial baroreceptors, 
cardiopulmonary receptors and chemoreceptors [27, 150]. In fact, it was observed 
that AET is able to improve metaboreflex and mechanoreflex [6]. In addition, 
reduced AT1 receptors and normalized ACE levels in the brain of HF rodent models 
have been proposed as one of the possible mechanisms of reducing sympathetic 
hyperactivity by AET [186]. Indeed, it was demonstrated that AET reduces serum 
Ang II levels, and such effect is related to a lower sympathetic activity in HF [58, 117].

The neurohumoral hyperactivity is also associated with high concentrations of 
pro-inflammatory cytokines and muscle redox imbalance, which are involved in 
muscle catabolism. In fact, increased circulating TNF-α levels (a pro-inflamatory 
cytokine) were observed in patients with atrophy and muscle weakness [118]. 
Moreover, the increased muscle TNF-α expression contributes to the local protein 
degradation. The effects of TNF-α on HF-related skeletal muscle myopathy are 
mediated through the activation of a family of transcription factors known as nuclear 
factor kappa B (NF-kB), which regulate UPS [1]. Interestingly, AET is able to 
reduce serum TNF-α levels and plasma inflammatory markers in HF patients [2]. 
This response is accompanied by a reduced atrophy and improved muscle function. 
In addition, AET also reduces muscle expression of pro-inflammatory cytokines in 
HF patients [54].

The high levels of TNF-α in HF triggers an increase in reactive oxygen species 
(ROS) production which will ultimately lead to protein degradation by the UPS 
[92]. UPS is up regulated in HF due to its action in degradation of damaged proteins 
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in skeletal muscle [8]. The key effectors of the UPS are the enzymes known as 
E3-ligases (ubiquitin ligases), which couples activated ubiquitin to lysine residues 
on protein substrates conferring specificity to the system [92]. Two of these 
E3-ligases (Atrogin-1 and MuRF1) were already well described and their transcrip-
tional activities are elevated in skeletal muscle tissue under various atrophic condi-
tions; therefore, making them good markers of atrophy being known as atrogenes 
[86]. In fact, it was observed that AET reduces Atrogin-1 mRNA levels and normal-
izes proteasome activity in skeletal muscle from both rodent models and HF patients, 
highlighting the importance of AET to prevent UPS hyperactivity in HF [55].

On the other hand, protein synthesis is essential to the positive control of the 
skeletal muscle mass. Since IGF-I muscle levels are reduced in HF [63], the activa-
tion of IGF-I/Akt/mTOR signaling pathway could be considered a good strategy to 
counteract HF-induced muscle atrophy. In fact, it was demonstrated that muscle-
specific IGF-I transgenic expression or gene transfer procedure in muscles can sus-
tain muscle hypertrophy [113] and prevent muscle mass loss in different animal 
models of muscle atrophy, such as Duchenne dystrophy [14], dexamethasone injec-
tion [138], immobilization [155], Ang II infusion [153], and HF [148]. In this same 
line, it is known that Akt gene transfer procedure in skeletal muscles from rodents 
can induce hypertrophy and improve the regenerative process [120]. In addition, 
transgenic mice with muscle-specific overexpression of Akt displayed around 40% 
of increase in skeletal muscle mass accompanied by an improvement in force devel-
opment [19]. Therefore, another possible strategy to increase the expression of ele-
ments from IGF-I/Akt/mTOR could be through AET, since it is able to revert the 
reduced muscle IGF-I expression in HF patients [148].

These results highlight the fact that AET re-establishes the skeletal muscle 
homeostasis attenuating atrophy, and this was recently demonstrated by our group 
using a mice model of sympathetic hyperactivity induced-HF.  In order to verify 
whether AET could ameliorate the HF-related skeletal muscle myopathy, mice 
underwent to moderate intensity AET (5 days a week for 8 weeks) were evaluated. 
As expected, HF mice displayed atrophic soleus muscle in both type I and type IIa 
myofibers. Interestingly, AET was effective in attenuating this atrophy. This protec-
tive effect against muscle atrophy was associated with a reversion in exercise intol-
erance and an increase in motor performance. In addition, it was suggested, at least 
in part, that one of the possible mechanisms related with that improvement in skel-
etal muscle mass and function was the reestablished level of some components of 
IGF-I/Akt/mTOR signaling pathway [9]. However, up to now, no study investigated 
the real role of Akt, mTOR and any other downstream related proteins of that signal-
ing pathway in skeletal muscle tissue during the development of HF.

Collectively, it has been demonstrated that AET is able to promote remarkable 
beneficial adaptations in skeletal muscle tissue during the development of HF syn-
drome. Therefore, it can be considered the hypothesis that AET is a powerful non-
pharmacological therapy in order to prevent the onset of the HF-related skeletal 
myopathy and to avoid cardiac cachexia.
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6  �Conclusions

HF syndrome in different experimental models is accompanied by autonomic dys-
function, neurohormonal hyperactivity, oxidative stress and inflammation that trig-
ger progressive worsening of the cardiac function and a severe skeletal myopathy, 
that leads to the loss of functional capacity and poor quality of life. These chronic 
deleterious HF-induced alterations are responsible for the high mortality rates 
exhibited by HF patients. Experimental studies have provided ample evidence 
regarding the benefits of aerobic exercise training in this pathology, as summarized 
in Fig. 11.2. Exercise training is highly efficient in ameliorating HF-induced dys-
functions by acting in the same pathways targeted by current standard pharmaco-
logical care (i.e. β-blockers, ACE inhibitors and angiotensin receptor blockers, 
aldosterone-receptor antagonists). In addition, exercise training has been shown to 
correct vagal outflow, inflammatory response and skeletal myopathy, improvements 
not yet obtained through available pharmacological therapy. These findings support 
the efficacy of aerobic exercise training in the treatment of chronic HF with of the 
advantage of avoiding side effects.

Fig. 11.2  The effects of aerobic exercise training on heart failure patients. eNOS, endothelial 
nitric oxide synthase, RAAS, renin-angiotensin-aldosterone system
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