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Abstract- Accurate R peaks detection in electrocardiogram 
(ECG) is an important process to assess the cardiovascular 
health of an individual (e.g. heart arrhythmia, heart rate 
variability, etc.). Many studies have presented various 
methods to detect R peaks in ECG using single physiologi-
cal signal (i.e. ECG) and are highly subjective to the quality 
of the ECG signal. In this paper, an accurate R peaks detec-
tion algorithm is proposed based on the use of electro-
mechanical physiological signals (i.e. ECG and 
photoplethysmography (PPG)). Concurrent processing of 
both ECG and PPG is able to reduce the need to have high 
quality ECG and allows the use of simple signal processing 
algorithms to identify the locations of R peaks in ECG sig-
nals. The flexibility of our method was demonstrated 
through concurrent implementation on a low cost platform 
(i.e. BeagleBone Black (BBB)) and FPGA platform (i.e. 
myRIO from National Instrument), achieving respective 
accuracy of 96% and 98%, using physiological signals ac-
quired in real-time. The accuracy provided by our method is 
able to be applied on wearables and supports accurate real-
time assessment of cardiovascular health. 

Keywords- Electrocardiogram (ECG), QRS complex, R-
peaks, Photoplethysmography (PPG). 

I-   INTRODUCTION 

The electrocardiogram (ECG) is an important and well-
studied biological signal used in multiple medical applica-
tions. ECG comprises of multiple features where most life-
style application is focused on the detection of the R-peaks 
within the QRS complex. The ability to determine R-peak 
accurately is often required in R-R intervals analysis to 
determine ECG anomaly due to heart arrhythmia.  

Many research had been conducted on methods to detect 
QRS complex1-2-3. The best known methods are the differ-
entiation methods4, digital filters5-9, neural networks10-12, 
filter banks13, hidden Markov models14, genetic algorithm15 
and maximum a posterior (MAP) estimator16-17. In the paper 
by Balda RA18, they proposed the differentiator operator to 
detect QRS complex, and this method was later used by 

Ahlstrom and Tompkins19, Friesen20 and Tompkins21 to 
develop methods that are able to determine the sensitivity of 
QRS complex to noise. Finally, methods based on the Hil-
bert transform22-23-24 have the ability to distinguish between 
dominant peaks in signal among other peaks. Though these 
methods have shown good results, however they may fail in 
cases of low amplitude R wave.  

An effective way to pre-process R-peaks generally re-
quires the setting of a threshold value, which is manually 
fixed at the lowest value possible aiming at preventing the 
detection of P and T waves; and baseline noise. However, it 
is a challenge to determine a threshold value that fits the 
ECG signal due to baseline wondering, motion artefacts and 
variations in P and T waves. Xu and Li25 have shown that 
using adaptive thresholding for automatic determining of 
threshold provides suitable results for the detection of R-
peaks. However, this algorithm dependent on the quality of 
ECG signal acquired.  

To-date, concurrent acquisition of ECG and 
photoplethysmography (PPG) has become possible. In this 
paper, an algorithm to automatically detect R-peaks in ECG 
with poor signal to noise ratio (SNR) through concurrent pro-
cessing of ECG and PPG signals was developed. This algo-
rithm was implemented onto low-cost embedded platforms to 
demonstrate accurate real-time ECG R-peaks detection.  

II-   METHODOLOGY 

The algorithm developed in this paper is divided into 3 
parts. The first part is the pre-processing of the raw ECG and 
PPG signals to remove environmental noise. The second part 
is to apply an adaptive threshold to detect dominant peaks in 
the pre-processed ECG and PPG signals. Finally, cross com-
parison of peaks detected in ECG and PPG signals is used to 
enhance the accuracy of R-peak detection in ECG. 

A   ECG and PPG signal acquisition 

To acquire the ECG signal, commercially available 
Plessey’s EPIC sensors were used. The sensors come in a 
pair and are used as dry electrodes held by each hand to 
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Through experimentations, it was found that a cluster 
of a five ECG and PPG peaks is able to give reliable and 
repeatable PTT. Equation 2 was derived from these experi-
ments to define the lower and upper limits of PTT to differ-
entiate ECG R-peaks from noise and artefacts.  

 
LimitsPTT = MeanPTT ± (3.182/2) * StdPTT       Equation 2 
 
where MeanPTT = Mean PTT from cluster of 5 peaks 

 StdPTT = Standard Deviation PTT extracted from 5 peaks 

III-   RESULTS 

The algorithm outlined above was implemented on both 
the BBB and myRIO platforms. Measurements were con-
ducted on 6 volunteers where data were analysed in real-
time and at the same time, stored. Post processing, using 
manual counting of peaks, was done to extract the accuracy 
of each implementations and the results are tabulated in 
Table 1 and Table 2.  

Table 1. Measurement results using myRIO platform 

Volunteer   Accuracy Average accuracy 

1 99%  
 

98.6% 
2 99% 
3 100% 
4 100% 
5 95% 
6 99% 

 

Table 2. Measurement results using BBB platform 

Volunteer   Accuracy Average accuracy 

1 99%  
 

96.5% 
2 99% 
3 95% 

4 99% 
5 92% 

6 94% 
 

IV-   CONCLUSIONS 

Concurrent processing of both ECG and PPG is able to 
reduce the need to have high quality ECG and allows the 
use of simple signal processing algorithms to identify the 

locations of R peaks in ECG signals. This method is able to 
improve the accuracy in the detection of R-peaks in ECG 
with Signal to Noise Ratio (SNR) of 1-3dB, which is a chal-
lenge in existing methods due to the presence of noise; P 
and T-waves in ECG. The flexibility of our method was 
also demonstrated through concurrent implementation on a 
low cost platform (i.e. BeagleBone Black (BBB)) and 
FPGA platform (i.e. myRIO from National Instrument), 
achieving respective accuracy of 96% and 98%, using phys-
iological signals acquired in real-time. The accuracy pro-
vided by our method is able to be applied on wearables and 
supports accurate real-time assessment of cardiovascular 
health. 
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