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Preface

This book contains a collection of research papers on optimization and dynamics
with their applications celebrating academic achievements of Ferenc Szidarovszky
for half of a century from 1968 to Present. He made outstanding contributions to
various fields including decision theory, numerical analysis, system dynamics in
economics, game theory, optimal maintenance and replacement policies, to name
only a few. The authors of the chapters of this book are his colleagues, ex-students
and friends and have been collaborated in the past. They are, like other researchers
who read his papers, inspired by his deep insight and wisdom and agree to con-
tribute their new findings to a special book.

Ferenc Szidarovszky, currently Full Professor at Department of Applied Math-
ematics, University of Pécs in Hungary, has been a distinguished researcher, a best
teacher and big buddy who loves jokes. Born as the only son of intellectual family
where his mother as well as his three sisters were school teachers and his father was
a civil engineer, he found himself to shine at mathematics during high school years
when he won two second prizes in the International Student Mathematics Olym-
pics. Without an entrance examination, he was admitted as a mathematics student at
the Eötvös Loránd University of Sciences in Budapest and obtained his B.Sc.
degree and Master’s degree in 1966 and 1968. At the same university, he continued
the graduate program in mathematics and completed his Doctorate degree in 1970
by writing a thesis on numerical methods. After graduation, he became a faculty
member at the Department of Geometry and then the newly founded Department of
Numerical and Computer Methods at the Eötvös Loránd University of Sciences.
After spending 9 years, he moved to University of Horticulture in 1977 and spent 9
years teaching numerical analysis, operations research and computer science while
he served as the acting head of Department of Computer Science. During these
years, he, as a young assistant professor, attended the game theory seminar orga-
nized by Prof. Jenő Szép at the Karl Marx University of Economics and encoun-
tered with one of his life-long research subjects, game theory, in particular,
oligopoly theory. He obtained another Doctorate degree in Economics from Karl
Marx University of Economics in 1977 and joined its Institute of Mathematics and
Computer Science in 1986. He became a member of the Department of Systems and
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Industrial Engineering, University of Arizona in the US, first as a visiting professor
between 1988 and 1990, then as tenured full professor in 1990 and stayed there
until he retired in 2011.

Looking back his academic life after graduation, Szidar encountered five special
events that were critical for his future. The first one occurred just after graduating at
the Eötvös University of Sciences in June 1968 when he was offered a faculty
position. During his student years he was a member of the violin session of the
University Symphony Orchestra, so did not have time and willingness to be
involved in any political activity. Based on this, the Communist Party leadership
was against his hiring. The department head offered him to go to Soviet Union with
a group of Hungarian students during the summer to an International Student Camp,
what he did. So there was no more objection for hiring him, so he became an
assistant professor at the Department of Geometry teaching graphical and numerical
methods. In 1972, with one of his collaborators he could develop a good personal
relation with a couple of professors from the University of Arizona. Based on their
scientific discussions, the American partners submitted a research proposal to NSF
for collaborative research with them. They got the research fund, so as a result, from
1973 until 1986 he was able to visit Arizona in almost every year and in two
occasions he was also invited to be a visiting professor for one and three semesters.
This connection was very helpful for him to join the faculty of the Systems and
Industrial Engineering Department of the University of Arizona in 1988. Third, at
the end of the 70s, the famous Japanese economist, Koji Okuguchi, was a referee of
one of his papers. After submitting the report he contacted Szidar, and after
exchanging several letters he visited Hungary, and this visit was then repeated in
almost every year. Professor Okuguchi even learned the Hungarian language. This
cooperation became very successful resulting in a great number of joint papers on
different aspects of oligopoly theory and a book, The Theory of Oligopoly with
Multi-Product Firms (Springer-Verlag, 1990), which had a second edition as well.
In 1991, Prof. Okuguchi organized a special session in a conference in Dublin,
where Szidar met Carl Chiarella, a professor with the University of Technology,
Sydney. Their meeting was followed by a more than a decade long cooperation,
dealing mainly with continuously distributed time delays in oligopolies and in other
dynamic economic models. They also coauthored a book with two other scientists,
Nonlinear Oligopolies: Stability and Bifurcations (Springer-Verlag, 2010). In the
late 90s, Szidar met the editor of this volume in a conference held in Odense,
Denmark. They immediately found many common research areas and a very suc-
cessful cooperation started, which continues even today. Their joint work on
revisiting dynamic monopolies, oligopolies and a great number of classical eco-
nomic models resulted in a large number of papers, in addition to a monograph on
game theory, Game Theory and its Applications (Springer-Verlag, 2015) as well as
to editing a conference volume of the 9th International Conference on Nonlinear
Economic Dynamics held in Tokyo, Essays in Economic Dynamics (Springer
Science, 2016).

Szidar published 24 books not including second editions, more than 400 journal
papers, 37 book chapters and 114 papers in conference proceedings, advised 67 MS

vi Preface



students and supervised 12 Ph.D. students. He was involved in many scientific
assignments, some of them are an Associate Editor of Pure Mathematics and
Applications, an Editorial Board Member of International Review of Pure and
Applied Mathematics, an Area Editor (North America) of International Journal of
Internet and Enterprise Management, an Advisory Editorial Board Member of
Scientia Iranica. He received various professorial awards including National Award
for Outstanding Academic Merit from Ministry of Education of Hungary in 1969,
Candidate in Mathematical Science from Hungarian Academy of Science in 1975,
Doctor of Engineering Science from Hungarian Academy of Science in 1986,
Doctor Habil in Engineering from Budapest Technical University in 1998 and
Dr. Honoris Causa from University of Pécs in 2014.

During those days, he managed to balance his two loved ones, mathematics and
classical music; in day time, he conducted mathematical research with enthusiasms,
taught undergraduate and graduate students in a passionate way, while in the
evening, he took a music trip, relaxed himself and sat back listening to classical
music, which relieves stress and improves vigor. He also shared his love to classical
music with friends and colleagues, as well as his house any time when they visited
Tucson.

We appreciate financial supports: Graduate School of Economics of Chuo
University with the MEXT-supported Program for the Strategic Research Foun-
dation at Private University 2013–2017, the Japan Society for the Promotion of
Science (Grant-in-Aid for Scientific Research (C) 24530202, 25380238, 26380316
and 16K03556) and Joint Research Grant of Chuo University.

We academically and socially owe much to Ferenc Szidarovszky. The present
collection of papers expresses a modest sign of our gratitude.

Tokyo, Japan Akio Matsumoto
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Introduction

Summary of Szidar’s Works

Ferenc Szidarovszky deals with a wide spectrum of scientific topics ranging from
pure mathematics to applications for industrial problems, and without doubt, has
made outstanding contributions in many research areas. He is a great team player
having collaborators, students and coauthors from all continents. Knowing that it is
almost impossible, we classified his main contributions into the six fields in which
widely cited papers, highly innovative papers and influential papers are published:
Numerical Analysis, Optimization, Dynamics, Game Theory and Oligopoly,
Industrial Applications and Economic Dynamics and briefly outlined each of them.

Numerical Analysis

Numerical analysis is the main subject in his earlier years. Szidar developed a
general scheme for matrices with nonnegative inverses including M-matrices. He
presented convergence conditions for algorithms modeled by point-to-set mappings
and also gave convergence conditions for several types of Newton-type methods,
for nonstationary multistep iterations and for modified contractions. He expanded
special methods for solving utilization equations, solved a special matrix equation
in microelectronics, introduced iteration technics for nonlinear systems of circuit
equations and estimated errors in solving polynomial equations. The earlier con-
tributions are summarized in a book with S. Yakowitz, Principles and Procedures
of Numerical Analysis (1978) and the one with I.K. Argyros, The Theory and
Applications of Iteration Methods (1993).
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Optimization

Developing a method for model choice in multiobjective optimization problems,
Szidar showed the relation between ordered weighted average (OWA) operator and
compromise programming and applied OWA operator for water resources prob-
lems. Further, he made several applications: he examined optimal control of
invasive species in Arizona, developed a model for conflict analysis in forest
management, constructed a multiobjective optimization model for wine production,
for optimal product structure in food industry, for the electric power industry and in
natural resources management. His book with M. Zarghami, Multicriteria Analysis.
Applications to Water and Environment Management (2011) contains some of his
contributions.

Dynamic Systems Including Simulations

Szidar developed stability conditions for adaptive control systems, presented a
general technique for finite memories data manipulation and smooth prediction as
well as for validating recursive filters. Delays are important in various fields of
natural and social sciences. He developed a simple, elementary method for stability
of dynamic systems with one or two delays. Numerical simulation is a complement
of analytical considerations, especially in the case when analytical methods are
limited. Szidar examined convergence properties of perturbation analysis estimate
and introduced correlated sampling in integration. He performed agent-based
simulations for public radio membership campaign, for social dilemma games, for
finite neighborhood binary games and for battle of sexes game. Further, he worked
out a method for weighted Monte Carlo integration. He gave general characteri-
zation of two-person binary games, and examined multi-agent learning models.

Game Theory and Oligopoly Theory

Attending the seminars given by Prof. Jenö Szép of Karl Marx University, Buda-
pest, Szidar came across game theory and was under his tutelage just after he
assumed his position. He has been working on game theory since then. Four books
on game theory were written under joint authorship with his Hungarian colleagues
and the editor of this book. In addition, many papers on game theory and oligopoly
were published in academic journals ranging from mathematics to economics.
Among them, concerning the bargaining game, Szidar examined it under uncer-
tainty and under fuzzy environment, gave a new classification of the Nash bar-
gaining solution with a modified version of alternating offer method and applied it
to train scheduling. He developed a dynamic game for computer network security,
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made equilibrium analysis in asymmetric contests with endogenous prices. He also
gave stability conditions for general quadratic games and examined rewards and
costs in strategic interaction. Concerning conflict, he first yielded sufficient and
necessary conditions of equilibria in general conflict models and analyzed
intergroup-conflicts in utilizing public goods. Oligopoly theory that can be traced
back to the middle of nineteenth century has been augmented with game theory.
Szidar jointly wrote two books on oligopoly theory, the latest one is Nonlinear
Oligopolies: Stability and Bifurcations (2010) with G-I Bischi, C. Chiarella and M.
Kopel while the earlier one is given in section Economics below. Independently of
Reinhard Selten who was a giant in Game Theory and won Nobel Memorial Prize
in Economic Science in 1994, he introduced best responses as functions of the total
industry output and gave a constructive proof of existence and uniqueness of
equilibrium in concave oligopolies with a simple computer method finding it. For
nondifferentiable concave oligopolies, he proved that industry output is unique and
set of equilibria is either a single point or a polyhedron. The following subjects are
thoroughly and rigorously examined in various oligopoly frameworks: existence
and uniqueness of equilibria with stability issues for modified oligopolies with
capacity constraints, market saturation, product differentiation, output adjustment
costs, oligopoly-oligopsony, labor managed oligopolies, rent seeking games, con-
sidering pollution treatments, and R&D. Multi-market models and leader-follower
models were constructed and examined under various environments: with uncer-
tainty, with partially cooperative firms, with intertemporal demand interaction, with
misspecified demand functions, with antitrust thresholds, with cost subsidies, with
advertisements, with cost externalities, with cartelizing groups, with socially con-
cerned firms, with contingent workforce and unemployment insurance system, with
discontinuous payoffs, with production adjustment and investment costs, with
incomplete information. He gave conditions for stability and controllability and also
for successful learning with different learning schemes. Comparing equilibrium
prices in Cournot and Bertrand oligopolies, he discovered the differences and
similarities between them. Furthermore he applied oligopoly theory for interna-
tional fisheries and examined some model types with one or two time delays.

Industrial Applications

Mainly working as a consultant for the Ministry of Industry, Hungary and for
several industrial organizations, Szidar has a lot of industrial experience and
accumulates special knowledge on water resources systems, decision making in
energy policy, modeling in hydrology, modeling earth quake protection devices and
using neural networks for prediction and optimization in water resources man-
agement. As a natural consequence, he has papers dealing with real problems in
society. He expanded a Bayesian method for analyzing underground flooding in
mines and constructed optimal observation network in the mining industry. He
developed mathematical models for optimal inspection, repair and preventive
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replacement strategies, and for optimal utilization system of mineral resources
whereas he proved the convergence of the geostatistical Kriging method, examined
optimal strategies in lease contracts with non-cooperative, cooperative game the-
ories and conflict resolution and estimated component reliability with missing
failure data. In connection with water resources, Szidar developed method for
optimal design of flood levees, multiobjective models for optimal water allocation
in agriculture and between several users. Further he applied oligopoly theory in
water management and leader-follower games in water allocation problem. He
described the motion of ice sheets and glaciers by a numerical method solving the
associated partial differential equations and used neural networks to predict tran-
sient underground water levels, to analyze conflict between water supply and
environmental health risk, to estimate saltwater upcoming and to forecast algae
counts in surface waters.

Economics

One of his mentors, Koji Okuguchi was a well-known economist and specialized in
oligopoly theory. Working with him, Szidar solved many challenging problems,
resulting in a large number of papers and a book, The Theory of Oligopoly with
Multi-Product Firms (1999). He gave a condition for solvability of nonlinear
input-output models and examined stability of dynamic consumer-producer mar-
kets. Moreover, cooperating with the editor of this book who is also an economist,
he expanded his range of work to considering more variety of economic problems
including dynamic analysis of subsidy games, duopolies with advertisements,
neoclassical growth model, multiplier-accelerator model, nonlinear cobweb model,
classic IS-LM model with tax collection, heterogeneous agent model of asset price,
Goodwin’s business cycle model, Kaldor–Kalecki model and Hicksian trade cycles.

Contributions

It may be convenient to group the contributions according to major points of
emphasis. Part I is concerned with operations research, the papers of Part II are
organized around dynamic analysis and Part III contains a collection of various
application results.

Let us start with Part I that is opened by Ioannis Konstantinos Argyros, a
professor of Cameron University and Szidar’s coauthor in many papers and a book.
His paper with Ángel Alberto Magreñán and Juan Antonio Sicilia is entitled,
Developments on the Convergence of Some Iterative Methods. It is well known that
nonlinear equations are important tools in solving optimization problems based on
the first order conditions. It is also well known that there are many different types of
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iteration schemes for their solutions and among them the Newton-type methods got
the largest attention in the literature. This paper reconsiders the classical Newton–
Kantorovich method and presents several improvements to the existing literature in
terms of the convergence domain and convergence ratio. Both can decrease com-
putational effort and time significantly, so in addition to the theoretical interest the
results have practical importance as well. The paper is clearly and well written, and
two numerical examples show the applicability of the new results when the classical
approach does not work.

The second paper, The Non-symmetric L-Nash Bargaining Solution is presented
by Ferenc Forgó, an old friend and a former colleague and coauthor of Szidar. In an
earlier paper, Forgó and Szidarovszky (2003, European Journal of Operational
Research), they examined a limiting property of the two-person Nash bargaining
solution if the disagreement vector converges to negative infinity in a give direction.
In this paper, he presents a nice generalization of that result in the more general case
of the non-symmetric Nash solution. The convergence of the non-symmetric Nash
solution is proved and a simple algorithm is presented to define and compute the
limiting vector. It is also proved that in the case of polyhedral feasible sets there is a
finite threshold such that the limit is reached if the disagreement point is finite and
below the threshold. As an example the well-known firm-union bargaining problem
is selected to illustrate the theoretical results. It is also shown that in most cases the
limit vector can be obtained as the solution of a multiobjective optimization
problem, and in addition the relation of the result of the paper with the alternating
offer method of Rubinstein (1982, Econometrica) is briefly outlined.

The third paper, Analyzing the Impact of Process Improvement on Lot Sizes in
JIT Environment When Capacity Utilization Follows Beta Distribution, is by József
Vörös, a former student and coauthor of Szidar and a professor at the University of
Pécs, collaborating with Gábor Rappai and Zsuzsanna Hauck. It addresses one
of the most important issues in management science. Their model and method is
closely related to a former article of the first two authors, Vörös and Rappai (2016,
Applied Mathematical Modelling). In JIT environment the employees have the
obligation to report all quality problems in an assembly line resulting in frequent
stoppages, and therefore the output is random, and based on the literature, Beta
distribution is assumed. Its parameters are related to process quality. Better quality
means that higher percent of the product can go to the market directly while the rest
has to go through repairs. The optimum lot size therefore depends on these factors.
This paper calculates the inventory cost, when several cases have to be considered
based on the capacity of the repair shop and the lot size. Closed form expressions
are derived; however, the optimum lot size depends on several random components.
Therefore the authors used simulation and examined how the optimum lot size and
the expected optimal annual cost depend on model parameters, especially on the
parameters of the Beta distribution. The variance of the annual total cost gives a
measure of economic risk to the management.

Yi Luo, a former Ph.D. student of Szidar who is currently a Research Lab
Specialists with the University of Michigan, Ann Arbor studies a behavioral game
theoretical model in the fourth paper Exploring Efficient Reward Strategies to
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Encourage Large-Scale Cooperation Among Boundedly Rational Players with the
Risk and Impact of the Public Good. It describes the players’ decision making
processes incorporating the risk and the impact of the public good. It is demon-
strated that the conventional reward to achieve large-scale cooperation can be
significantly reduced along the process and as the number of players increases, the
increased interaction among them makes their decisions more rational.

The first paper of Part II is Periodicity Induced by Production Constraints in
Cournot Duopoly Models with Unimodal Reaction Curves by Gian-Italo Bischi,
Laura Gardini and Iryna Sushko, the first two are professors at University of Urbino
(Italy) that has been a research center for nonlinear economic dynamics in Europe
and the third is a mathematician from Institute of Mathematics NASU in Ukraine.
They organize the Urbino group in which senior and junior researchers are involved
and take the lead role for developments of nonlinear dynamics. Szidar is one of the
most active members. It is well known that Rand (1978, Journal of Mathematical
Economics) augments a classical Cournot model with tent-shaped reaction func-
tions and shows the occurrence of robust chaos. They impose maximum production
constraints yielding flat-top shaped reaction functions and demonstrate that the
presence of such constraints can be a source of superstable cycles. Further they
analyze the appearance of border collision bifurcations and global bifurcation that
have become a focus topic in the literature on piecewise-smooth dynamic systems.

The second paper is developed by Haiyan Qiao, an ex Ph.D. student of Szidar
and now an associate professor at California State University San Bernardino. In
her paper, An Adaptive Learning Model for Competing Firms in an Industry, she
considers an N-firm oligopoly in which the firms know the marginal cost of each
firm as well as the marginal price. However, the reservation price is uncertain for
them and they develop an adaptive scheme to learn about it based on repeated
market observation comparing their believed prices with the actually received
market price. First, Haiyan proves the asymptotic stability of the learning process.
Then it is assumed that the firms get delayed price information from the market.
Second, fixed delay is assumed and it is shown that system remains stable if the
delay is below a certain threshold. It is also derived in the paper that beyond this
threshold, stability is lost forever. Then continuously distributed delay is assumed
with exponential kernel function and it is shown that the system remains stable
regardless of the expected length of the delay. This is an interesting but under-
standable result, since with exponential kernel function, small delays have the
largest weights.

The work of Jijun Zhao, an ex Ph.D. student of Szidar and now a full professor
at Qingdao University in China, is the third paper, The Coordination and Dynamic
Analysis of Industrial Clusters: A Multi-agent Simulation Study. She examines the
dynamic evolution of industrial clusters using oligopoly theory and agent-based
simulation. The literature review summarizes the main references on oligopoly
theory as well as on agent-based industrial cluster models. The cluster contains
supplier and producer agents. The production functions, prices of supplies and
products are assumed to be linear. The model also considers the innovation
development and spillover effects, the influence of the technology level on the final
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product prices, the needed labor level for both the suppliers and the producers, the
price of labor, innovation costs and the profit functions of all firms. The dynamic
system is based on discrete gradient adjustment with both linear and nonlinear
adjustment schemes. This complex system is analyzed by using agent-based sim-
ulation showing the time series of the outputs of the agents, average prices of the
products and labor, and total labor usage. The effect of the parameters in the
adjustment schemes as well as in the selection between linear and nonlinear gra-
dient adjustments is examined by showing their influence on the dynamic behavior
of the entire system.

The fourth paper is presented by Sándor Molnár, the director of the Institute of
Mathematics and Computer Science of the Szent István University in Hungary, an
old colleague, friend and coauthor of Szidar in several papers and four books,
Introduction to Matrix Theory (2002) and the other three are in Hungarian. In a
joint work with his son, Márk, Approximation of LPV-Systems with Constant-
Parametric Switching Systems, they introduce a new approximation of nonlinear
systems by special linear time varying systems. The approximation method pro-
vides the basis for a variety of switching-type systems. The optimization of linear
control systems shows similarities with linear programming, which is well estab-
lished by the main approximation theorem of this paper. The theory is applied to the
Buck-Boost converter circuit.

The last paper of Part II, Love Affairs Dynamics with One Delay in Losing
Memory or Gaining Affection by Akio Matsumoto who has been working with
Szidar from the beginning of 2000. He constructs a Romeo–Juliette model in which
the delayed time evolution of a love affair between two individuals called Romeo
and Juliette are examined. There exist multiple steady states and it is shown first
that the nonzero steady states are always stable and the stability of the zero steady
state depends on model parameters in a no-delay case and then that introducing
delay gives rise to stability switch under which the nonzero steady state can be
destabilized and bifurcated to a limit cycle.

Part III is started by Terry Bahill, a former colleague of Szidar at the University
of Arizona, who jointly worked with Szidar in the book, Linear Systems Theory
(1992). He is an internationally recognized expert of introducing mathematical
models in the science of baseball and his picture is in the Baseball Hall of Fames
exhibition. His paper, Optimizing Baseball and Softball Bats, first introduces a
mathematical model to describe the collisions between baseballs, softballs and bats
focusing on the speed and spin of balls and bats by using simple Newtonian
principles. The batted-ball speed is maximized first and then recommendations are
given to the batter to achieve optimal bat performance. Since the optimization
problem has no analytic solution, professional software is used.

The second paper of Part III, Reverse Logistic Network Design for End-of-Life
Wind Turbines, is presented by Suna Cinar, a Ph.D. student in Wichita State
University whom Szidar helped as an outside advisor and Mehmet Bayram
Yildirim. It is an example of the recovery of valuable material that can be
recycled/recovered or remanufactured at the end of wind turbines useful life by
designing an effective reverse logistics network. Clean energy is one of the most
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important issues in energy research today. Wind turbine is an important energy
source, it needs significant investment and at its end-of-life its disposal creates a
huge problem for the owner, who can benefit from a well-designed reverse logistic
network of best disposal alternative since it has a significant amount of reusable
material. The paper introduces a mixed integer linear programming model to
minimize the transportation and operating costs and also to find the best locations
for recycling and remanufacturing facilities. Since most readers are not familiar
with the relevant issues, the paper first gives a brief overview of the wind turbine
supply chain and then a mathematical model is formulated to optimize the reverse
logistic network. A case study illustrates the model and its solution is based on
actual data, where several scenarios are examined and compared. This model is
cost-minimizing which is then extended to a total profit maximizing model that is
also illustrated based on the same data. Since during the last three years with the
University of Arizona, Szidar was also involved with clean energy modeling,
mainly solar energy, we are sure that he would like this paper.

Maryam Hamidi, ex Ph.D. student of Szidar and Haitao Liao, ex-colleague in the
University of Arizona are coauthors in the third paper, Maintenance Outsourcing
Contracts Based on Bargaining Theory. They discuss a two-person game between
an owner of equipment and a servicing agent. The subject is to find a mutually
agreeable contract. Two models are introduced, both are based on Nash’s bar-
gaining solution, which is a good choice since it is the limiting outcome of a real
dynamic bargaining process. In the first model the strategies of the players are the
scheduled preventive maintenance times and the time when the agent orders the
spare parts. They affect the aging process of the equipment as well as the cost of the
servicing agent in possible inventory costs and penalties for late services. The Nash
bargaining solution is determined which is Pareto optimal but does not give the total
maximal benefit for the players. In the second model this bargaining solution is
selected as the disagreement point and the failure and preventive replacement costs
are also added as decision variables and the Nash bargaining solution is obtained
with the additional constraint that the total profit of the two players is on its
maximal level. They also relate this solution to the Shapley values if the game is
considered as a classical cooperative game. Both models are illustrated with
well-selected numerical examples.

The fourth paper is given by M.R. Salazar, a professor with the Universidad
Autónoma Chapingo, Mexico and a coauthor of Szidar in several papers. Her paper
with R.E. Fitz and S.F. Pérez, Agricultural Production Planning in a Fuzzy
Environment, deals with determining optimal cropping patterns in a region of
Mexico which usually faces with water shortage. Because of uncertainty of future
crop prices several price predictions are used. The objective function is the total
profit by selling the products, and the constraints include area limitations for all
seasons by available irrigation water amounts, annual water supply, the types of
water needed for certain crops and a minimal area for each crop by the minimum
possible demands. The objective functions are different for the different price
predictions, so the problem is modeled as a multiobjective programming problem.
The satisfaction level of each objective is modeled by transforming them into the
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unit interval [0, 1] which gives the satisfaction level between 0 and 100%. The
lowest satisfaction level is maximized based on Itoh’s fuzzy approach, which
reduces the problem to an LP model. A particular case study in the Alto Lerma
Irrigation District of Mexico illustrates the model and solution methodology.

The fifth paper by Qiuze Yu, Huairui Guo and Miklos Szidarovszky, Optimal
Replacement Decisions with Mound-Shaped Failure Rates, addresses one of the
most important problems of reliability engineering. The optimal timing of pre-
ventive replacement is critical in minimizing life-time costs. In the literature mostly
normal, Weibull, Gamma or Gumble distribution of time to failure is assumed,
where the failure rate function is monotonic. However, in many applications,
especially if fatigue is involved lognormal distribution is assumed and used for
which the failure rate is mound-shaped. The paper examines the existence of finite
optimum in such cases. In addition to the lognormal distribution log-logistic,
log-Gamma and log-Weibull variables are also considered. Conditions are derived
for the existence of finite optimum which gives the optimal replacement schedule
otherwise the item should be replaced upon the first failure. The mathematical
derivations are correct and the results might be very helpful in the industry. Nice
illustrative examples show how the methodology is used, and show the different
possible scenarios.

The sixth paper of Mahdi Zarghami, a professor of University of Tabriz, Iran,
and Mohammad AmirRahmani, A System Dynamics Approach to Simulate the
Restoration Plans for Urmia Lake, Iran, deals with the restoration plan of the Urmia
Lake in Iran, which supplies water for a large region of the country for agriculture,
industrial and domestic users. Because of several reasons and their combinations
the water level is shrinking continuously. To stop this tendency and start the
recovery of the lake, several long-term strategies were developed and this paper
examines the consequences of six restoration plans. The authors are not looking for
optimal plan, instead using simulation of the dynamic system describing the state of
health of the lake, they evaluate all of the selected six options and make recom-
mendations for long-term water management policies. The topic of the paper is very
important, shortage of water is expected to grow all over the world and might result
even in serious international conflicts.

Part III is concluded by Emery Coppola, a consultant in hydrology and water
resources management, a former Ph.D. student of Szidar. In his dissertation he
developed a special neural network-based methodology to control the quantity and
quality of groundwater resources. In his paper, A Decision Support System for
Managing Water Resources in Real-Time Under Uncertainty, coauthored with Suna
Cinar, they introduce a new model of watershed management including ground-
water and surface water resources. Groundwater elevations and surface water flows
are predicted by using artificial neural networks. The management objective is to
maximize total groundwater pumping while minimizing the potential negative
impacts including excessive drawdown in the unconfined and confined aquifers as
well as in the riparian corridor in addition to streamflow depletion of the river.
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Developments on the Convergence
of Some Iterative Methods

Ioannis K. Argyros, Á. Alberto Magreñán and Juan Antonio Sicilia

Iterative methods, play an important role in computational sciences. In this chapter,

we present new semilocal and local convergence results for the Newton-Kantorovich

method. These new results extend the applicability of the Newton-Kantorovich

method on approximate zeros by improving the convergence domain and ratio given

in earlier studies. These advantages are also obtained under the same computational

cost. Numerical examples where the old sufficient convergence criteria are not satis-

fied but the new convergence criteria are satisfied are also presented in this chapter.

1 Introduction

Let  and  be Banach spaces. Let U(x0,R) stand for the open ball centered at

x0 ∈  and of radius R > 0 and let ̄U(x0,R) stand for its closure. We shall also denote

by Ł( ,) the space of bounded linear operators from  to  .

In this chapter we are concerned with the problem of approximating a locally

unique zero x⋆ of F, where F is a Fréchet-differentiable operator defined on ̄U(x0,R)
and with values in . Many problems, including finding optimal solutions by solving

for the first order conditions, are reduced to finding zeros of operators using Math-

ematical Modelling (Argyros 2007; Argyros et al. 2012; Smale 1986). The zeros
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of these operators can be found in closed form only in special cases. That is why

most solution methods for these problems are iterative. In Computational Sciences

the practice of Numerical Functional Analysis is essentially connected to variants

of Newton’s method (Amat et al. 2004; Argyros and Szidarovszky 1993; Argyros

2004, 2007; Argyros and Hilout 2010a, b, 2012; Argyros et al. 2012; Argyros and

George 2015; Cianciaruso 2007; Ezquerro et al. 2010; Kantorovich and Akilov 1982;

Magreñán and Argyros 2015; Magreñán 2014a, b; Potra, and Pták 1984; Proinov

2010; Rheinboldt 1988; Smale 1986; Wang 1999; Zabrejko and Nguen 1987).

The Newton-Kantorovich method defined by

xn = xn−1 − F′(xn−1)−1F(xn−1) for x0 ∈  and each n ∈ ℕ (1.1)

is undoubtedly the most popular method for generating a sequence {xn} approximat-

ing the solution x⋆. The convergence analysis of iterative methods is usually divided

into two categories: semilocal and local convergence analysis. In the semilocal con-

vergence analysis one derives convergence criteria from the information around an

initial point whereas in the local analysis one finds estimates of the radii of con-

vergence balls from the information around a solution. There is a plethora of local

as well as semilocal convergence results for Newton’s method defined above. We

refer the reader to Amat et al. (2004), Argyros and Szidarovszky (1993), Argyros

(2004, 2007), Argyros and Hilout (2010a, b, 2012), Argyros et al. (2012), Ciancia-

ruso (2007), Ezquerro et al. (2010), Kantorovich and Akilov (1982), Potra, and Pták

(1984), Proinov (2010), Rheinboldt (1988), Smale (1986), Wang (1999), Zabrejko

and Nguen (1987) and the references therein. The celebrated Kantorovich theorem

is an important tool in numerical analysis, e.g. for providing sufficient criteria for the

convergence of Newton’s method to zeros of polynomials or of systems of nonlinear

equations. This theorem is also important in Nonlinear Functional Analysis, where

it is also used as a semilocal result for establishing the existence of a solution of a

nonlinear equation in an abstract space.

In the present chapter we are being motivated by the work of Cianciaruso (2007)

on approximate zeros for the Newton-Kantorovich method and optimization consid-

erations. We show how to extend the applicability of these results under the same

computational cost. In particular, we improve the convergence domain and ratio

given in earlier studies by Argyros and Szidarovszky (1993), Argyros and Magreñán

(2015), Magreñán and Argyros (2015), Cianciaruso (2007), Smale (1986) and Wang

(1999).

The chapter is organized as follows: In Sect. 2 we introduce some definitions and

state the earlier results as well as the results of this chapter. The semilocal and local

analyses are presented in Sect. 3 and Sect. 4, respectively. Numerical examples are

presented in the concluding Sect. 5.
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2 Preliminaries

It is well known that if the initial point x0 is close enough to the solution x∗, then

sequence {xn} is ultrafast convergent to x∗ (Argyros 2007; Argyros et al. 2012; Kan-

torovich and Akilov 1982). The ultrafast convergence of sequences {xn} is related to

the definition of approximate zero introduced by Smale (1986).

Definition 1 A point x0 is said to be an approximate-type zero of F if {xn} is well

defined and there exist A0 and A such that 0 < A0 < 1, 0 < A, 0 < A0A < 1 and

‖xn+1 − xn‖ ≤ A0(A0A)2n−1−1‖x1 − x0‖ for each n ∈ ℕ. (2.1)

In the literature they use A0 = A0A = 1∕2 (see e.g. Cianciaruso 2007; Smale 1986).

In this chapter A0 is at least as small as A (see the proof of Theorem 3.2 and Remark 1)

which leads to more precise estimates on ‖xn+1 − xn‖.

Clearly, if x0 is an approximate-type zero for F, then the sequence {xn} is conver-

gent and its limit point x∗ is a zero of F, F(x∗) = 0. The corresponding definitions

by Smale (1986) and Cianciaruso (2007) are

‖xn+1 − xn‖ ≤

(1
2

)2n−1
‖x1 − x0‖ for each n ∈ ℕ (2.2)

and

‖xn+1 − xn‖ ≤ A2n−1‖x1 − x0‖ for each n ∈ ℕ (2.3)

respectively. Notice that the new error estimates can be smaller than the old ones for

sufficiently small A0 and A.

Let F ∶ ̄U(x0,R) →  be analytic and F′(x0)−1 ∈ Ł( ,). Then, Smale (1986)

defined

𝛾 = 𝛾(x0) = sup
n>1

‖
F′(x0)−1F(n)(x0)

n!
‖

1
n−1 , (2.4)

𝜂 = 𝜂(x0) = ‖F′(x0)−1F(x0)‖ (2.5)

and

𝛼 = 𝛾𝜂, (2.6)

where F(n)
stands for the n-th Fréchet-derivative of operator F.

Smale proved that if

𝛼 < 0.130707, (2.7)

then x0 is an approximate zero of F. This result does not hold if F is not analytic on .

Later, Rheinboldt (1988) proved that if F ∶ d ⊆  →  , where D ⊂  is open and

𝛼 < 0.11909, (2.8)
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then, sequence {xn} converges. Smale’s proof was based on the Newton-Kantorovich

theorem (Kantorovich and Akilov 1982).

Theorem 2.1 Suppose: F ∶ ̄U(x0,R) →  is Fréchet-differentiable on U(x0,R) and
F′ is Lipschitz continuous; F′(x0)−1 ∈ Ł( ,). Set

l = sup
x≠y

‖F′(x0)−1(F′(x) − F′(y))‖
‖x − y‖

,

h = l𝜂, t∗ = 2𝜂

1 +
√
1 − 2h

,

t0 = 0, t1 = 𝜂,

tn+1 = tn +
l(tn−tn−1)2

2(1−ltn)
for each n ∈ ℕ

where 𝜂 is defined in (2.5).
If

h ≤
1
2

(2.9)

and
t∗ ≤ R, (2.10)

then the sequence {xn} generated by the Newton-Kantorovich method (1.1) is well
defined, remains in ̄U(x0, t∗) and converges to x∗. Moreover, the following error esti-
mates hold

‖xn+1 − xn‖ ≤
l

2(1−lt∗)
‖xn − xn−1‖

2 for each n = 1, 2,…

Argyros and Szidarovszky (1993) improved the result of Rheinboldt by proving

that if

𝛼 < 0.134854, (2.11)

then x0 is an approximate zero for F replacing
1
2𝜂

for a constant A such that 0 < A < 1.

This result was shown by using the following generalization of Theorem 2.2 (Argyros

2004).

Theorem 2.2 Under the hypotheses and notations of Theorem 2.2 excluding (2.9)

and (2.10), set

l0 = sup
x∈ ̄U(x0,R)

‖F′(x0)−1(F′(x) − F′(x0))‖
‖x − x0‖

,
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s0 = 0, s1 = 𝜂,

sn+1 = sn +
l(sn−sn−1)2

2(1−l0sn)
for each n ∈ ℕ.

If

h0 =
(

l + l0
2

)

𝜂 ≤
1
2
, (2.12)

then, scalar sequence {sn} converges to its unique least upper bound which we denote
by s∗. If s∗ ≤ R, then the sequence {xn} is well defined, remains in ̄U(x0, s∗) and
converges to x∗. Moreover, the following error estimates hold

‖xn+1 − xn‖ ≤
l‖xn−xn−1‖

2

2(1−l0‖xn−x0‖)
≤ sn+1 − sn, for each n ∈ ℕ.

In Cianciaruso (2007), Cianciaruso used Theorem 2.3 (i.e. used (2.12) which is

weaker than (2.9) if l0 < l) and showed that if

𝛼 < 0.1582547, (2.13)

then x0 is an approximate zero for F for some A such that 0 < A < 1. In Wang (1999),

Wang used an approach not based on the Kantorovich theorem and showed that, if

𝛼 < 0.157670781, (2.14)

then x0 is an approximate zero for F for some A such that 0 < A < 1. In the present

chapter we show that if

𝛼 < 0.164332458249868… , (2.15)

then x0 is an approximate zero for F for some A0 and A such that 0 < A0 < 1, 0 < A
and 0 < A0A < 1. Notice that (2.15) improves the earlier results. The proof is based

on the following refinement of our Theorem 2.3 in Argyros and Hilout (2012).

Theorem 2.3 Under the hypotheses and notations of Theorem 2.3 excluding (2.12),
set

r0 = 0, r1 = 𝜂, r2 = r1 +
l0(r1−r0)2

2(1−l0r1)
,

rn = rn−1 +
l(rn−rn−1)2

2(1−l0rn)
for each n = 3, 4,… .

If
h1 = L1𝜂 ≤

1
2
, (2.16)
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where
L1 =

1
8

(

4l0 +
√

l0l +
√

l0l + 8l20

)

,

then the scalar sequence {rn} converges to its unique least upper bound which we
denote by r∗. If r∗ ≤ R, then the sequence {xn} is well defined, remains in ̄U(x0, r∗)
and converges to x∗. Moreover, the following error estimates hold

‖xn+1 − xn‖ ≤
l1‖xn−xn−1‖

2

2(1−l0‖xn−x0‖)
≤ rn+1 − rn for each n = 1, 2,… ,

where
l1 =

{
l0 if n = 1
l if n > 1.

It is worth noticing that l0 ≤ l, l
l0

can be arbitrarily large (Argyros 2004, 2007; Argy-

ros and Hilout 2010b; Argyros et al. 2012) and

h ≤
1
2
⇒ h0 ≤

1
2
⇒ h1 ≤

1
2

but not necessarily vice versa unless l0 = l. We have that

h0
h

→
1
2
,

h1
h

→ 0 and
h1
h0

→ 0 as
l0
l
→ 0.

We have that the preceding implications show by how many times (at most) the

results of Theorem 2.3 expand the results of Theorem 2.2 which in turn expand the

results of the Kantorovich Theorem 2.1. It is expected that since (2.16) is weaker

than (2.12) used in Cianciaruso (2007), we can obtain a better result than (2.11).

This is the first advantage of our approach.

Moreover, concerning the error estimates sequence {rn} is tighter than {sn} (used

in Cianciaruso 2007) which is tighter than {tn} (Argyros 2004, 2007; Argyros and

Hilout 2012). Concerning to the local convergence of Newton’s method, we need the

following definition for approximate zeros.

Definition 2 Let F ∶  →  and let x∗ be a zero of F. A point x0 is said to be an

approximate-type zero of second kind of F if {xn} is well defined and there exist A0
and A such that 0 < A0 < 1, 0 < A, 0 < A0A < 1 and

‖xn+1 − x∗‖ ≤ A0(A0A)2n−1−1‖x0 − x∗‖2 for each n ∈ ℕ. (2.17)

The corresponding definitions given by Smale and Cianciaruso are

‖xn − x∗‖ ≤

(1
2

)2n−1
‖x0 − x∗‖ for each n ∈ ℕ

http://dx.doi.org/10.1007/978-981-10-4214-0_2
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and

‖xn − x∗‖ ≤ A2n−1‖x0 − x∗‖ for each n ∈ ℕ, (2.18)

respectively.

Notice that the new error estimates can be smaller than the old ones for sufficiently

small A0 and A.

Suppose that F′(x∗)−1 ∈ Ł( ,). Let

𝛾

∗ = 𝛾(x∗) = sup
n>1

‖
F′(x∗)−1F(n)(x∗)

n!
‖

1
n−1 . (2.19)

In Smale (1986), Smale showed that if F ∶  →  is analytic and

𝛾‖x − x∗‖ ≤
5 −

√
17

4
≈ 0.219224, (2.20)

then x0 is an approximate zero of second kind. Later, Argyros and Szidarovszky

(1993) showed that if F ∶ ̄U(x∗,R) →  is analytic and

𝛾‖x − x∗‖ ≤ 0.20629947, (2.21)

then x0 is an approximate zero of second kind. Later, In Cianciaruso (2007), Cian-

ciaruso improved Argyros’s result. Cianciaruso showed that, if

𝛾‖x − x∗‖ ≤ 0.2390211, (2.22)

then x0 is an approximate zero of second kind. In the present chapter we show that, if

𝛾‖x − x∗‖ ≤ 𝛼

∗
0 = 0.2489069896460221…… , (2.23)

then x0 is an approximate zero of second kind. Clearly, (2.23) improves the earlier

results. It is worth noticing that the ratio of convergence is also improved, if A0 < A.

3 Semilocal Convergence

Let F ∶ ̄U(x0,R) →  be Fréchet differentiable on U(x0,R). We assume that there

exists an increasing function 𝜑 ∶ [0,R] → [0,+∞) and x0 ∈  such that F′(x0)−1 ∈
Ł( ,) and

‖F′(x0)−1[F′(x) − F′(y)]‖ ≤ 𝜑(r)‖x − y‖ for each x, y ∈ ̄U(x0, r), 0 < r ≤ R. (3.1)

It follows from (3.1) that there exists an increasing function 𝜑0 ∶ [0,R] → [0,+∞)
such that
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‖F′(x0)−1[F′(x) − F′(x0)]‖ ≤ 𝜑0(r)‖x − x0‖ for each x ∈ ̄U(x0, r), 0 < r ≤ R.
(3.2)

Let

r0 ∶= sup{t ∈ (0,+∞) ∶ 𝜑0(t)t < 1}

It also follows from (3.1) that there exists an increasing function 𝜑1 ∶ [0,R] →
[0,+∞) such that

‖F′(x0)−1[F′(x) − F′(y)]‖ ≤ 𝜑1(r)‖x − y‖ for each x, y ∈ ̄U(x0, r) ∩ U(x0, r0)
(3.3)

Clearly,

𝜑0(r) ≤ 𝜑(r) for each r ∈ [0,R] (3.4)

and

𝜑1(r) ≤ 𝜑(r) for each r ∈ [0,R] (3.5)

hold in general and
𝜑

𝜑0
can be arbitrarily large (Argyros 2004, 2007; Argyros and

Hilout 2010a, b, 2012; Argyros et al. 2012). Notice that the computation of function

𝜑 requires the computation of 𝜑0 or 𝜑1 as special cases. Hence, (3.2) or (3.3) are not

additional hypotheses to (3.1).

We need the following version of a theorem by Zabrejko and Nguen (1987)

Theorem 3.1 Suppose that (3.3) is satisfied. Set

𝜓1(r) = 𝜂 − r +
∫

r

0
(r − t)𝜑1(t)dt, 𝜂 = ‖F′(x0)−1F(x0)‖. (3.6)

Suppose that 𝜓1 has a minimal zero denoted by r̄ in (0,R]. Then, sequence {xn}
is well defined, remains in ̄U(x0, r̄) and converges to x∗.

Next, we show the main semilocal convergence result for Newton’s method and

approximate zeros.

Theorem 3.2 (Argyros and Magreñán 2015) Let F ∶ ̄U(x0,R) →  be Fréchet-
differentiable on U(x0, r) with F′ satisfying (3.2) and (3.3). Moreover, suppose that
the function 𝜓1 given in (3.6) has a minimal zero denoted by r̄ in (0,R]. Furthermore,
suppose that

∫

r̄

0
𝜑0(t)dt < 1, (3.7)

∫

v

0
(2t − v)𝜑0(r̄ + t)dt ≥ 0,

∫

v

0
(2t − v)𝜑1(r̄ + t)dt ≥ 0,

𝜑0(v) ≤ 𝜑1(v), for 0 ≤ v ≤ r̄,

(3.8)
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A0 =
𝜂

∫

r̄

0
(r̄ − t)𝜑0(r̄ + t)dt

r̄2
(

1 −
∫

r̄

0
𝜑0(t)dt

) (3.9)

and

A =
𝜂

∫

r̄

0
(r̄ − t)𝜑1(r̄ + t)dt

r̄2
(

1 −
∫

r̄

0
𝜑0(t)dt

) . (3.10)

Then x0 is an approximate-type zero for F. That is, sequence {xn} is well defined.
remains in ̄U(x0, r̄) and converges to x∗. Moreover, the following error estimates hold

‖xn+1 − xn‖ ≤ A0(A0A)2n−1−1‖x1 − x0‖ for each n ∈ ℕ.

Proof Simply replace function 𝜑 by function 𝜑1 in the proof in Argyros and George

(2015) and notice that the iterates lie in ̄U(x0, r) ∩ U(x0, r0) which is a more precise

information on the location of the iterates, since ̄U(x0, r) ∩ U(x0, r0) ⊆
̄U(x0, r). □

Remark 1 (a) If 𝜑0 = 𝜑 = 𝜑1, then Theorem 3.2 reduces to Theorem 3.2 in Argy-

ros and Magreñán (2015). Otherwise, i.e., if 𝜑0 < 𝜑 = 𝜑1 it constitutes an

improvement of the work in Argyros and George (2015). Moreover, if 𝜑1 < 𝜑,

then the new result improves both old works in Argyros and George (2015);

Argyros and Magreñán (2015).

(b) The results can be improved even further, if we replace ̄U(x0, r) by ̄U(x1, r −
‖x1 − x0‖) in the hypotheses (3.1)–(3.3). Then, the corresponding functions “𝜑”

will be even tighter, since ̄U(x1, r − ‖x1 − x0‖) ⊆ ̄U(x0, r).

Next, we apply Theorem 3.2 to an operator F analytic on U(x0,R), we need the

following lemma from Cianciaruso (2007).

Lemma 3.3 Let F ∶ U(x0,R) →  be an operator analytic at interior points of
U(x0,R). Suppose F′(x0)−1 ∈ Ł( ,). Then, F satisfies the two following conditions

‖F′(x0)−1[F′(x) − F′(y)]‖ ≤ 𝜑(r)‖x − y‖ for each x, y ∈ ̄U(x0, r) ∩ U(x0, r0), 0 < r ≤ R,

with
𝜑1(r) =

2𝛾1
(1 − 𝛾1r)3

; (3.11)

‖F′(x0)−1[F′(x) − F′(x0)]‖ ≤ 𝜑0(r)‖x − x0‖, for each x ∈ ̄U(x0, r) ∩ U(x0, r0), 0 < r ≤ R,
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with
𝜑0(r) =

𝛾1(2 − 𝛾1r)
(1 − 𝛾1r)

. (3.12)

Notice that 𝛾1 ≤ 𝛾 , since (3.4) or (3.5) hold, and ̄U(x0, r) ∩ U(x0, r0) ⊆ ̄U(x0, r).

To prove the convergence of the method for an operator F analytic at interior

points of U(x0,R) it is sufficient to apply Theorem 3.2. In fact, function 𝜓1 becomes

𝜓1(r) = 𝛼 − 2r + r
(1 − 𝛾1r)2

,

(

0 ≤ r ≤
1
𝛾1

)

.

The function 𝜓1 admits at least a zero in its domain if, and only if, 𝛼 ≤ 3 − 2
√
2

and

r̄ = r̄(𝛼) = 1 + 𝛼 −
√
𝛼
2 − 6𝛼 + 1

4𝛾1
,

is the smallest zero of 𝜓1 (unique if 𝛼 ≤ 3 − 2
√
2). Then, if 𝛼 ≤ 3 − 2

√
2, the

Newton–Kantorovich approximations are well defined for all n ∈ ℕ, converge to a

zero x∗ of F. Now we can prove our theorem on approximate zeros of operators

analytic on U(x0,R).

Proposition 1 Let F ∶ ̄U(x0,R) by analytic on U(x0,R). Suppose that F′(x0)−1 ∈
Ł( ,),

𝛼 = 𝜂𝛾1 < 𝛼0 = 0.164332458249868…

and
r̄ ≤ R.

Then x0 is an approximate-type zero for F. That is, sequence {xn} is well defined,
remains in ̄U(x0,R) and converges to x∗. Moreover, the following error estimates
hold

‖xn+1 − xn‖ ≤ A0(A0A)2n−1−1‖x1 − x0‖,

where

g(r) = 1 + r −
√

r2 − 6r + 1
4

,

A0(r) =
r
[

2(1 − g(r)) log 1−g(r)
1−2g(r)

− g(r)
]

g(r)
[
1 − 2g(r) + (1 − g(r)) ln (1 − g(r))

] ,

A(r) = r
(1 − g(r))(1 − 2g(r))

[
1 − 2g(r) + (1 − g(r)) ln (1 − g(r))

] ,

http://dx.doi.org/10.1007/978-981-10-4214-0_3
http://dx.doi.org/10.1007/978-981-10-4214-0_3
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A0 = A0(𝛼)

and
A = A(𝛼).

Proof Using weaker hypothesis (2.14) instead of (2.10) used in Cianciaruso (2007)

accordingly to our Theorem 2.4 it suffices to show the estimates

0 ≤ A0(r)A(r) < 1,

0 ≤ A0(r) < 1

and

0 ≤ A0(r) ≤ A(r)

which holds true for each r ∈ [0, 𝛼0). Indeed, the verification of these estimates can

be seen from the Figs. 1 and 2. ■

A0(r) A(r)

Fig. 1 In the left hand it appears the graphic of A0(r), and in the right hand the graphic of A(r),
in both cases it is printed the line 1

A0(r) ≤ A(r) A0(r)A(r)

Fig. 2 In the left hand it appears the graphic of A0(r) and A(r) in which we observe that A0(r) ≤
A(r). In the right hand the graphic of A0(r)A(r)

http://dx.doi.org/10.1007/978-981-10-4214-0_2
http://dx.doi.org/10.1007/978-981-10-4214-0_2
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4 Local Convergence

We suppose that F has a zero x∗. In an analogous way to Sect. 3 we show the local

convergence results for Newton’s method and approximate zeros.

Theorem 4.1 Let F ∶ ̄U(x∗,R) →  be Fréchet-differentiable on U(x∗,R) with
F′(x∗)−1 ∈ Ł( ,) and F(x∗) = 0. Suppose that there exist increasing functions
𝜑̄

∗
, 𝜑

∗
, 𝜑̄

∗
1 ∶ [0,R] → [0,+∞) such that F′ satisfies

‖F′(x∗)−1[F′(x) − F′(y)]‖ ≤ 𝜑̄

∗(r)‖x − y‖ for each x, y ∈ ̄U(x∗, r), 0 < r ≤ R. (4.1)

‖F′(x∗)−1[F′(x) − F′(x∗)]‖ ≤ 𝜑

∗(r)‖x − x∗‖ for each x ∈ ̄U(x∗, r), 0 < r ≤ R. (4.2)

and

‖F′(x∗)−1[F′(x) − F′(y)]‖ ≤ ̄
𝜑

∗
1(r)‖x − y‖ for each x, y ∈ ̄U(x∗, r) ∩ U(x∗, r1),

(4.3)

where
r1 = sup{t ∈ (0,+∞) ∶ 𝜑

∗(t)t < 1}.

Moreover suppose that there exists r ∈ [0,R] such that

∫

r

0
𝜑

∗(t)dt < 1, (4.4)

v2𝜑∗(v) − 2
∫

r

0
t𝜑∗(t)dt ≥ 0, v2𝜑̄∗(v) − 2

∫

r

0
t𝜑1

∗(t)dt ≥ 0 for each 0 ≤ v ≤ r,

(4.5)

A0 =
∫

r
0 t𝜑∗(t)dt

r(1 − ∫
r
0 𝜑

∗(t)dt)
< 1 (4.6)

and

A =
∫

r
0 t𝜑1

∗(t)dt

r(1 − ∫
r
0 𝜑

∗(t)dt)
< 1. (4.7)

Then, x0 is an approximate-type zero of second kind. That is, sequence {xn} is
well defined and converges to x∗. Moreover, the following estimates hold

‖xn − x∗‖ ≤ A0(A0A)2n−1−1‖x0 − x∗‖2 for each n ∈ ℕ.

Proof It follows from (4.4) that functions 𝜌̄
∗

and 𝜌

∗
given by

𝜌̄

∗(v) =
∫

v
0 t𝜑1

∗(t)dt
v2
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and

𝜌

∗(v) =
∫

v
0 t𝜑∗(t)dt

v2

are increasing. We shall show using induction on n that

‖xn − x∗‖ ≤
∫

r
0 t𝜑

∗
1(t)dt

r2(1 − ∫
r
0 t𝜑∗(t)dt)

‖xn−1 − x∗‖2 for each n ∈ ℕ, (4.8)

where

̄
𝜑̄ =

{
𝜑

∗
if n = 1

𝜑1
∗

if n > 1.

It follows from (4.3) that

∫

‖x−x∗‖

0
𝜑

∗(t)dt < 1, (4.9)

implies that the operator F′(x∗)−1F′(x0) is invertible and

‖F′(x∗)−1F′(x0)‖ ≤
1

1 − ∫
‖x0−x∗‖
0 𝜑

∗(t)dt
.

Then for n = 1, we have

‖x1 − x∗‖ = ‖x0 − x∗ − F′(x0)−1(F(x0) − F(x∗))‖

≤ ‖F′(x0)−1F(x∗)‖‖F′(x∗)−1[F(x0) − F(x∗) − F′(x0)(x0 − x∗)]‖

≤
1

1 − ∫
‖x0−x∗‖
0 𝜑

∗(t)dt

×
∫

1

0
‖F′(x∗)−1[F′((1 − s)x0 + sx∗) − F′(x0)]‖ds‖x0 − x∗‖

≤
1

1 − ∫
‖x0−x∗‖
0 𝜑

∗(t)dt ∫

1

0
ds

∫

‖x0−x∗‖

(1−s)‖x0−x∗‖
̄
𝜑

∗
1dt‖x0 − x∗‖

= 1
1 − ∫

‖x0−x∗‖
0 𝜑

∗(t)dt ∫

‖x0−x∗‖

0
t ̄𝜑∗

1dt

≤

∫
r
0 t ̄𝜑∗

1dt

r2(1 − ∫
r
0 𝜑

∗(t)dt)
‖x0 − x∗‖2,
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since function 𝜌

∗
is increasing. Then x2 ∈ U(x∗,R), F′(x2)−1 ∈ Ł( ,) and

‖F′(x∗)−1F′(x2)‖ ≤
1

1 − ∫
‖x2−x∗‖
0 𝜑

∗(t)dt
.

Moreover, we have

‖x3 − x∗‖ = ‖x2 − x∗ − F′(x2)−1(F(x2) − F(x∗))‖

= ‖F′(x2)−1[F(x2) − F(x∗) − F′(x2)(x2 − x∗)]‖

≤ ‖F′(x2)−1F(x∗)‖‖F′(x∗)−1[F(x2) − F(x∗) − F′(x2)(x2 − x∗)]‖

≤ ‖F′(x2)−1F(x∗)‖

×
∫

1

0
‖F′(x∗)−1[F′((1 − s)x2 + sx∗) − F′(x2)]‖ds‖x2 − x∗‖

≤
1

1 − ∫
‖x2−x∗‖
0 𝜑

∗(t)dt ∫

1

0
ds

∫

‖x2−x∗‖

(1−s)‖x2−x∗‖
𝜑̄

∗
1(t)dt‖x2 − x∗‖

≤
∫

r
0 t𝜑̄∗

1(t)dt

r2(1 − ∫
r
0 𝜑

∗(t)dt)
‖x∗ − x2‖2,

and ‖x3 − x∗‖ ≤ A‖x2 − x∗‖. Suppose that (4.7) holds for n = 2, 3,…. We shall show

that it holds for n + 1.

‖xn+1 − x∗‖ = ‖xn − x∗ − F′(xn)−1(F(xn) − F(x∗))‖

= ‖F′(xn)−1[F(xn) − F(x∗) − F′(xn)(xn − x∗)]‖

≤ ‖F′(xn)−1F(x∗)‖‖F′(x∗)−1[F(xn) − F(x∗) − F′(xn)(xn − x∗)]‖

≤ ‖F′(xn)−1F(x∗)‖

×
∫

1

0
‖F′(x∗)−1[F′((1 − s)xn + sx∗) − F′(xn)]‖ds‖xn − x∗‖

≤
1

1 − ∫
‖xn−x∗‖
0 𝜑

∗(t)dt ∫

1

0
ds

∫

‖xn−x∗‖

(1−s)‖xn−x∗‖
𝜑1

∗(t)dt‖xn − x∗‖

≤
∫

r
0 t𝜑1

∗(t)dt

r2(1 − ∫
r
0 𝜑

∗(t)dt)
‖x∗ − xn‖

2
,
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The induction is complete. Then, using (4.5) we have for n = 1,

‖x1 − x∗‖ ≤ A21−1
0 ‖x0 − x∗‖,

then, for n = 2, we have that

‖x2 − x∗‖ ≤
A
𝜂

‖x1 − x∗‖2

≤ A22−1−1A22−1
0 ‖x0 − x∗‖2

then, continuing with the process we obtain that

‖xn − x∗‖ ≤ A2n−1−1A2n−1

0 ‖x0 − x∗‖2

≤
1
A
(A0A)2n−1

‖x0 − x∗‖2

≤ A0(A0A)2n−1−1‖x0 − x∗‖2.

■

In order to apply Theorem 4.1 to analytic operators, we need the following Lemma

given in Cianciaruso (2007).

Lemma 4.2 Let F ∶ U(x∗,R) →  be an operator analytic on U(x∗,R) with
F(x∗) = 0, F′(x∗)−1 ∈ Ł( ,) and 𝛾

∗
1R < 1. Then, F′ satisfies (4.1) and (4.2) with

𝜑

∗(r) =
𝛾

∗
1 (2 − 𝛾

∗
1 r)

(1 − 𝛾

∗
1 r)2

and

𝜑1
∗(r) =

2𝛾∗1
(1 − 𝛾

∗
1 r)3

.

Notice that 𝛾∗1 ≤ 𝛾

∗.

Then, we can apply Theorem 4.1 for analytic operators to obtain:

Proposition 2 Let F ∶ ̄U(x∗,R) by analytic on U(x∗,R) with F(x∗) = 0, F′(x∗)−1 ∈
Ł( ,),

𝛾

∗r < 𝛼

∗
0 = 0.2489069896460221… .

Then x0 is an approximate-type zero of second kind for F. That is, sequence {xn} is
well defined, and converges to x∗. Moreover, the following error estimates hold
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‖xn − x∗‖ ≤ A0(A0A)2n−1−1‖x0 − x∗‖, for each n ∈ ℕ,

where
A0(r) =

r
1 − 2r + (1 − r) ln (1 − r)

,

A(r) = r
(1 − r) [1 − 2r + (1 − r) ln (1 − r)]

A0 = A0(𝛾∗1 r)

and
A = A(𝛾∗1 r).

Proof As in the proof of Theorem 3.3 in Cianciaruso (2007) it suffices to show the

estimates

0 ≤ A0(r)A(r) < 1,

0 ≤ A0(r) < 1

and

0 ≤ A0(r) ≤ A(r)

which hold true for each r ∈ [0, 𝛼∗
0 ). Indeed, the verification of the estimates can be

seen from the Figs. 3 and 4. ■

Remark 2 (a) Notice that (4.1) implies (4.2),

𝜑

∗(r) ≤ 𝜑̄

∗(r) for each r ∈ [0,R]

and
𝜑̄

∗

𝜑
∗ can be arbitrarily large (Argyros 2004, 2007; Argyros and Hilout 2010b;

Argyros et al. 2012).

A0(r) A(r)

Fig. 3 In the left hand it appears the graphic of A0(r), and in the right hand the graphic of A(r),
in both cases it is printed the line 1
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A0(r) ≤ A(r) A0(r)A(r)

Fig. 4 In the left hand it appears the graphic of A0(r) and A(r) in which we observe that A0(r) ≤
A(r). In the right hand the graphic of A0(r)A(r)

(b) If 𝜑

∗ = 𝜑

∗
1 = 𝜑̄

∗
1, then Theorem 4.1 reduces to Theorem 4.2 in Cianciaruso

(2007). Otherwise, i.e., if 𝜑
∗
< 𝜑̄

∗
it constitutes an improvement over the results

in Argyros and George (2015). If 𝜑
∗
1 ≤ 𝜑̄

∗
then new result is better than old one

(Argyros and Magreñán 2015).

5 Numerical Examples

We present two examples one for the semilocal case and another for the local case.

Example 1 Let  =  = ℝ and consider the real function

F(x) = x3 − a

with a ∈ [0, 1] and we are going to apply Newton’s method.

First of all, it is easy to see that the derivatives of F are:

F′(x) = 3x2,

F′′(x) = 6x,

F′′′(x) = 6,

and the following ones are zero. Moreover we obtain:

𝜑(t) = 2(2 − a),

𝜑0(t) = 3 − a,
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𝜑1(t) = 2(1 + 1
3 − a

)

and

r0 =
1

3 − a
.

We choose the starting point x0 = 1 and we consider the domain Ω = B(x0, 1). In

this case, we obtain

𝜂 = |F′(x0)−1F(x0)| =
|1 − a|

3
,

and considering the following

F′(x0)−1F′′(x0)
2

= 1… ,

F′(x0)−1F′′′(x0)
6

= 0.693361… ,

and the next ones are null, we obtain

𝛾 = 1,

𝛼 = 𝜂𝛾 = |1 − a|
3

.

We see that with our new conditions we can ensure the convergence for 0.507003 <

a < 0.525236, for which the conditions (2.11), (2.13) and (2.14) are not satisfied but

condition (2.15) is satisfied, since 𝛼 < 0.164332458. So we can ensure the conver-

gence to the solution by means of applying our conditions.

Example 2 Let X = Y = ℝ3
, D = U(0, 1) and u∗ = (0, 0, 0)T . Define function F on

D for w = (x, y, z)T by

F(w) = (ex − 1, e − 1
2

, y2 + y, z)T . (5.1)

Then, the Fréchet derivative of F is given by

F′(w) =
⎛
⎜
⎜
⎝

ex 0 0
0 (e − 1) y + 1 0
0 0 1

⎞
⎟
⎟
⎠

http://dx.doi.org/10.1007/978-981-10-4214-0_2
http://dx.doi.org/10.1007/978-981-10-4214-0_2
http://dx.doi.org/10.1007/978-981-10-4214-0_2
http://dx.doi.org/10.1007/978-981-10-4214-0_2
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We choose w0 = (0, 0.4, 0)T . Then, we obtain that

F′(w0)−1F(w0) =
⎛
⎜
⎜
⎝

0
0.318532

0

⎞
⎟
⎟
⎠

F′′(w0)−1F(w0) =
⎛
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 1.01835 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟
⎟
⎠

F′′′(w0)−1F(w0) =
⎛
⎜
⎜
⎝

1 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0

⎞
⎟
⎟
⎠

Moreover we obtain:

𝜑

∗(t) = (e − 1),

𝜑

∗
1(t) = e

(
1

e − 1
)
,

𝜑̄

∗(t) = e,

r1 =
1

e − 1

and

r = 1.

And it is easy to see that

𝜂 = |F′(w0)−1F(w0)| = 0.318532… ,

𝛾 =
|F′(w0)−1F(w0)|

2
= 0.509177…

and

𝛼 = 𝜂𝛾 = 0.162189…

Notice that the conditions (2.11), (2.13) and (2.14) are not satisfied but condition

(2.15) is satisfied, since 𝛼 < 0.164332458. So we can ensure the convergence to the

solution by means of applying our conditions.
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The Non-symmetric L-Nash Bargaining
Solution

Ferenc Forgó

Dedicated to Ferenc Szidarovszky for his academic and research
achievements in the last 50 years.

Abstract It is demonstrated how the concept of the Limit-Nash bargaining solution

as defined in Forgó and Szidarovszky (Eur J Oper Res 147:108–116, 2003) can be

carried over to the non-symmetric case. It is studied how externally given weights

of the players and the relative magnitude of penalties for not being able to come to

an agreement influence the solution.

1 Introduction

The Nash bargaining solution as introduced by Nash (1950) is a fundamental concept

in game theory and conflict resolution. In its most simple form it is about two players

trying to come to an agreement on choosing an element from a given set of feasible

outcomes. The outcomes are evaluated according to the individual utility functions of

the players. Normally, this leads to a conflict. To resolve the conflict, mutual conces-

sions have to be made, otherwise a bad outcome (disagreement outcome) will realize

where both players are penalized for not having been able to agree. Nash approached

the problem from two directions. One is the axiomatic approach, Nash (1950) where

reasonable properties (axioms) are required of a solution to hold. Nash showed that

his axioms uniquely determine what is now called the Nash bargaining solution. The

other, Nash (1953), aims at devising a suitable bargaining process which realizes

in subgame perfect equilibrium the same outcome that the axiomatic approach pre-

scribes. This dual approach was later termed the “Nash program” see e.g. Thomson

(1994), Serrano (2005).

Since the Nash bargaining solution depends on both the feasible set of outcomes

and the disagreement point, it is a valid question to ask how it behaves if either of
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them changes in some way. Forgó and Szidarovszky (2003) showed that if the dis-

agreement point goes to negative infinity in a given direction, then the Nash bargain-

ing solution converges to a unique outcome which they termed L-Nash bargaining

solution (L stands for limit). It was also shown that the L-Nash bargaining solution

can also be obtained as a solution of a multiple criteria decision making problem

with weights that are the reciprocals of the components of the disagreement direc-

tion. The L-Nash solution can also be axiomatized within the context of multiple

criteria decision making.

One way of generalizing Nash’s bargaining model is to allow assigning weights

to the players meant to indicate their “importance” or “power” in the conflict. This

is outside information (just as the disagreement point), and critically influences

the final outcome. Several axiomatizations of the non-symmetric Nash bargaining

solution have emerged throughout the years e.g. Harsanyi and Selten (1972), Kalai

(1997), Roth (1979), Anbarci and Sun (2013) as well as non-cooperative bargaining

models that implement it, e.g. Kalai (1997), Laruelle and Valenciano (2008), Britz

et al. (2010), Anbarci and Sun (2013).

In this paper it is demonstrated how the non-symmetric Nash bargaining solution

behaves when the disagreement point goes to negative infinity in a fixed direction. It

turns out that in certain cases the two pieces of outside information, the power of the

players and the disagreement direction can be treated as one, while in other instances

they cannot.

2 Preliminaries

We consider two-person bargaining games. Let B(F, d, p, q) be a two-person non-

symmetric bargaining problem with convex, compact feasible set F ⊂ ℝ2
which is

assumed to have at least one positive element, d is a non-positive disagreement point,

and the positive integers p, q represent the “power” of the players. The game is played

as follows. If both players agree, then they choose a feasible point f ∈ F, f = (f1, f2)
in which the players get the components of f accordingly. If they cannot come to an

agreement, then a usually “bad” disagreement point d = (d1, d2) realizes.

Consider the following constrained maximization problem

P ∶ max (x1 − d1)p (x2 − d2)q

x ∈ F

where p, q are positive and p + q = 2.

This problem has a unique solution 𝜑 ∈ F which is called the non-symmetric

(asymmetric) Nash bargaining solution (NSNBS). In the special case p = q = 1 we

have the classical, symmetric bargaining solution (NBS) of Nash (1950) which is

uniquely determined by a set of axioms (feasibility, rationality, Pareto-optimality,
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independence of irrelevant alternatives, scale independence and symmetry). Among

the several axiomatizations of the NSNBS we only quote Roth’s (1979). From among

the Nash axioms Roth changed Pareto optimality and symmetry to the following

(Roth’s axiom).

Consider a bargaining problem B(G, 0, p, q), where the feasible set is defined by

G = {g = (g1, g2) ∈ G, g1 + g2 ≤ 2}.

It is required by Roth’s axiom that the solution of B(G, 0, p, q) be (p, q). Then the

unique solution of B(F, d, p, q) is the NSNBS.

3 The Main Result

Parametrize B(F, d, p, q) by taking d = −𝛼r, where r > 0 is the so-called disagree-

ment direction and the positive parameter 𝛼 represents how far we push the disagree-

ment point in the direction−r. Forgó and Szidarovszky (2003) introduced the L-Nash

bargaining solution as the limit of the Nash bargaining solution as 𝛼 → ∞. Several

interesting issues were addressed in Forgó and Szidarovszky (2003) concerning the

behavior of the L-Nash solution. It is a natural question to ask: what happens if we

consider non-symmetric bargaining problems and approach negative infinity with

the disagreement point in a given direction?

Let B(F,−𝛼r, p, q) be a two-person bargaining problem with positive parameter

𝛼. The parametrized two-person non-symmetric Nash bargaining solutionNSNBS(𝛼)
is the unique solution of the maximization problem

P(𝛼) ∶ max (x1 + 𝛼r1)p (x2 + 𝛼r2)q

x ∈ F.

It is not a significant loss of generality if we confine ourselves to rational weights

which amounts to allowing p and q to be positive integers.

For any given x and r, the objective function of P(𝛼) is a polynomial of order p + q
of the parameter 𝛼. The coefficient of the leading term 𝛼

p+q
is rp1r

q
2, independent of

x thus having no role in the maximization of the objective function of P(𝛼). The

coefficient h(x) of 𝛼
p+q−1

, however, does depend on x. In particular, as can be shown

by the application of the binomial formula

h(x) = prp−11 rq2x1 + qrp1r
q−1
2 x2,
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or equivalently

h(x) = rp1r
q
2(

p
r1
x1 +

q
r2
x2).

If 𝛼 is large enough, then the linear function h(x) should be as large as possible in

order to maximize P(𝛼). If

max h(x) (1)

x ∈ F

has a unique solution, then terms with degree less then p + q − 1 do not count if

𝛼 is large enough. If the above maximization problem has multiple solutions, then

the coefficient g(x) of the term 𝛼

p+q−2
comes into play. In particular, g(x) should

be maximized over the optimal set of (1) i.e. the following maximization problem

should be solved

max g(x)
h(x) = max

x∈F
h(x) (2)

x ∈ F.

Again, by using the binomial formula, it can easily be seen that

g(x) =
p(p − 1)

2
rp−21 rq2x

2
1 + pqrp−11 rq−12 +

q(q − 1)
2

rp1r
q−2
2 x22.

Define

f (x) = r2p1 r2q2 (
p
r21
x21 +

q
r22
x22).

Then, with simple algebra one can verify that

g(x) = 1
2rp1r

q
2
((h(x))2 − f (x)).

This means that problem (2) is equivalent to

min f (x)
h(x) = max

x∈F
h(x) (3)

x ∈ F

whose objective function is a strictly convex quadratic function, the feasible set is

convex, compact implying that problem (3) has a unique optimal solution x2.
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Define now x0 = x1 if problem (1) has the unique optimal solution x1, and x0 = x2
otherwise.

We can now state the main result.

Theorem 1 The NSNBS of the two-person nonsymmetric bargaining problem
B(F,−𝛼r, p, q) converges to x0 if 𝛼 → ∞.

Proof Along the lines of Theorem 1 in Forgó and Szidarovszky (2003).

x0 can rightly be called the non-symmetric limit-Nash bargaining solution, L-

NSNBS. For polyhedral feasible sets there is no need to go to infinity with 𝛼 to obtain

the L-NSNBS.

Theorem 2 If F is a polytope, then there is an 𝛼0 such that for all 𝛼 ≥ 𝛼0, the two-
person NSNBS coincides with the L-NSNBS.

Proof Along the lines of Theorem 2 in Forgó and Szidarovszky (2003).

4 Example

Let us consider a very simple example of firm-union bargaining over wage and

employment as in McDonald and Solow (1981). The firm has a profit function (rev-

enue less labor cost) R(L) − wL, where w denotes wage per worker and L denotes

the number of employed workers. The union’s utility function is given by L[U(w) −
U(w′)], where w′

denotes benefits if worker is unemployed, and U is each union

member’s utility function. Bargaining takes place in the region constrained by the

bounds 0 ≤ w ≤ W, 0 ≤ L ≤ N. The utility function of the union (total wage) is

increasing in both arguments and in order to have a conflict, the profit function of

the firm should be decreasing in w and L. For the model to be meaningful we assume

that wage is at least as high as the marginal revenue of labor, w ≥ R′(L). Bargaining

power of the two parties are p and q and we suppose that p < q (union is less pow-

erful than the firm). On the other hand, the firm is more vulnerable to the failure of

negotiations, i.e. r1 < r2.

We will determine the L-NSNBS for specific values of the parameters and specific

forms of the functions involved. In particular, let

U(w) − U(w′) = w
R(L) = 320L − 10L2

W = 400,N = 200
p = 2, q = 3
r1 = 1, r2 = 3.
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Then, to determine the L-NSNBS, problem (1) has first to be solved, which takes

now the form

max 2wL + 3
2
(320L − L2 − wL)

320 − 20L ≤ w ≤ 400
0 ≤ L ≤ 10.

Notice that the objective of the above problem is linear in the utilities of the parties

but nonlinear (quadratic) in the original decision variables w,L. The solution is in

favor of the union:

L = 10,w = 400, full employment and highest possible wages.

5 Discussion

Consider the case when problem (1) has a unique solution. As pointed out and also

observed in the context of this paper, in this case the L-NSNBS is the solution of a

multi-criteria decision problem (MCDP) by the method of linear weighting where

the weights are represented by the coefficients in the linear objective function of

problem (1). In the symmetric case, the additional information is supplied by the

relative magnitude of the components in the disagreement direction. The less the first

player is hurt relative to the other (r1 is small) by disagreement getting more costly,

the more weight her interest carries through the large coefficient
1
r1

in the objective

function of problem (1). In the non-symmetric case there seem to be two reference

points (outside information indicating the weight or importance of the players). One

is the direct weights p, q, the other is the relative costs of disagreement r1, r2. Our

analysis reveals, however, that when combining these together and using only the

disagreement directions
r1
p
,

r2
q

in the symmetric bargaining model, we get the same

limiting solution.

This is not the case when problem (1) has multiple optima. Then the coefficients

of the quadratic terms in the objective function of problem (3) are
p
r21

and
q
r22

while

in the corresponding symmetric bargaining model they would be
p2

r21
and

q2

r22
giving

rise to different solutions. It should also be noticed that if F is a polyhedron, then

problem (1) is a linear programming problem and multiple optima are unlikely to

occur in unstructured problems. Nevertheless, theoretically, L-NSNBS is determined

by two reference points.

There is, however, a significant difference between the “importance indicators”:

the direct weights and the disagreement direction. Direct weights do not explicitly

require interpersonal comparison of utilities since they are completely external to

the model. As we have interpreted the components of the disagreement direction

vector as an expression of the relative damage caused by prolonged negotiations, they
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implicitly mean comparison in utility (damage interpreted as disutility). Comparison

of power is less closely related to utilities. It is therefore somewhat of a surprise, that

these two things merge together in the L-NSNBS.

The whole analysis can be done for an arbitrary number of players and results

remain the same if adjustments are made accordingly. We confined ourselves to two

players in order to keep technicalities within reasonable bounds and because the two-

player case is of interest in its own.

Forgó and Fülöp (2008) showed how the L-Nash solution can be implemented by

proper adjustment of Rubinstein’s alternating offer bargaining scenario, Rubinstein

(1982) either exactly or asymptotically depending on F, r, and exactly by Howard’s

scheme, Howard (1992) for any F, r. There does not seem any special difficulty to

extend their results to the non-symmetric case if the weights p, q are externally given.

Howard’s implementation makes it possible to internalize not only the penalty para-

meter 𝛼 but the weights p, q as well. How this can technically be done in the frame-

work of a bargaining process remains an issue and calls for further research. It is also

left for further research how other bargaining processes for NSNBS can be adjusted

so that they implement L-NSNBS.
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Abstract Even after many years one kind picture still floating in my eyes: I see
professor Szidarovszky, facing the blackboard, sponge and chalk at the upheld left
and right hands, and writing and cleaning the lines simultaneously he put on the
table, to fill up our heads with numerical methods. This style expresses his very
dynamic and efficient research work at the same time, and hopefully this paper
indicates that his efforts have not been useless as numerical methods are very
intensively used in order to characterize the nature of lot sizing problems in JIT
environment. In JIT environment the jidoka principle empowers employees to
signal quality problems, and these result in frequent stoppages. This way we
consider the output of the assembly line random variable that follows Beta distri-
bution, but with low beta values. For specific beta values we derive explicit forms
of the expected values of the inventory related and the annual total costs as function
of alpha, the other parameter of the Beta distribution. But increasing alpha
expresses increasing process quality. We found that increasing process quality
decreases the expected annual cost, and the explicit forms give the saved cost
volumes. Two simulation analyses are conducted to reveal the development of the
variance of annual costs. The estimations of the variance of the minimum total
annual costs indicate that with process improvement the variance of the minimum
of the annual total costs will decrease.
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1 Introduction

Similarly to many categories in business and management, and in economics,
sometimes there are more definitions for one concept, like capacity. Meredith and
Shafer (2011) say that capacity is generally taken to mean the maximum rate at
which a transformation system produces outputs or processes inputs, though the
rate may be ‘all at once’. Slack et al. (2015) state that capacity is the output that an
operation can deliver in a defined unit of time, while Krajewki et al. (2013) define
capacity as the maximum rate of output of a process or a system. Seemingly there
are conflicts in these definitions, but one is better than the other in certain
dimensions. Measuring capacity as the rate of handling inputs is more appropriate
when the system produces wide varieties of goods, however when output is
homogenous, measuring capacity by outputs provides a better insight. As we are
going to analyze JIT systems, we should know that JIT systems are more efficient
when JIT principles are applied to standardized products, produced in large vol-
umes (see any operations management book, mentioned above), consequently, we
use the volume of outputs to measure capacities. Besides these, the literature
usually attaches different additional adjectives to capacity: it talks about designed
capacity, effective capacity, realized capacity. Designed capacity is taken as the
maximum rate of output during unit time. For example, if we have an assembly line
where the designed cycle time is 1 min, then we may say that the design capacity of
the assembly line is 480 units of goods per shift when the shift is 8 h long.

However, production problems always occur, independently from its configu-
ration. So it is even in case of a JIT production system. JIT system was configured
firstly by Toyota, and the system has achieved tremendous success. Toyota Pro-
duction System (TPS) has evolved as Toyota’s response to the task of ‘better cars
for more people’. The concept of better cars means flawless quality, and for more
people means affordable price with perfect timing. The former CEO of Toyota, Mr.
Watanabe, says the Toyota Way rests on two pillars: continuous improvement and
respecting people (employees, suppliers and customers) (Watanabe 2007). Behind
these pillars there are two important elements of TPS: the principles of jidoka and
heijunka (Mishina and Takeda 1992). The task of heijunka is multiple: to connect
the total value chain from customers to suppliers, make what customers want and
when they want, and smooth the system pulse. The production volume is stream-
lined as smooth as possible, but product mix is similarly spread out as evenly as
possible. The result of this policy is that in each moment the sequence structure of
different model types in the assembly line reflects the volume and the structure of
the monthly and smoothed daily demand. For example, if the volume ratio of the
monthly demand for models A, B, and C is 3:2:1, respectively, then the sequence of
cars in the assembly line appears to be as AAABBCAAABBC, and so on. This
way, the implementation of the heijunka principle considers the rules of lot sizing as
well, which is 3, 2 and 1 for models A, B and C, respectively in this case. To make
these lot sizes optimal or less expensive, concerted efforts are required to decrease
setup cost to the desired level. Schniederjans and Cao (2000), and later
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Cao and Schniederjans (2004) published comparative models for inventory related
costs under economic order quantity and JIT policy showing the efficacy of the
more cost inclusive models.

From the heijunka principle of TPS it follows that in a JIT environment demand
(daily production requirement) may not vary during a short time horizon and this
way, demand can be considered constant and stable, even for a month. The demand
for the output of a production line is determined by the production volume
scheduled by the production plan. This is because there are important
pre-assumptions to use lean production system, and level loading plays primary role
among the prerequisites (Stevenson 2012). Once established, production schedules
are relatively fixed over time and this fact provides certainty to the system.
According to Mishina and Takeda (1992) a monthly demand (particularly, of May)
is frozen a couple of months before (in February), and the monthly production plan
is smoothed as much as possible and it is desirable to produce in small lots and to
spread the production of the different products throughout the day to achieve
smooth production (Stevenson 2012). But even in the most advanced lean pro-
duction system production problems and stoppages exist, as to avoid the production
of defective items, employees are empowered to signal quality problems. Under the
principle of jidoka, an employee must pull the andon cord in case of witnessing
quality problems, signaling the need for the help of the team leader. If they are not
able to fix the problem, the assembly line stops. By Mishina and Takeda (1992), an
employee pulls the andon cord a dozen times during a shift, out of which one results
in a stoppage on the average. They mention also, that the run ratio (we believe as it
is the actual output over designed output) is around 95%, but sometimes the run
ratio was down to a meager 85%. In other words, we would say, the average
capacity utilization, which is the ratio of the actual output and the design capacity,
is around 95%, but sometimes is down to 85%.

Based upon these observations we consider an actual output of the assembly line
operating under JIT principle random variable, whose expected value is close to the
design capacity, or saying different way, we consider capacity utilization level
random variable, whose expected value is close to one, and taking values around
0.8 is rather rare. But we have to note also that TPS is rather pragmatic. When a
stoppage would be very long, the product (car), that causes the stoppage, goes
through the assembly line, tagged with a red card, and the car goes to the clinic area.
Later it will be fixed here. The number of cars arriving at the clinic area is con-
sidered random variable also, thus the output able to satisfy demand is the origin of
two random variables.

Vörös and Rappai (2016) has built a model comprehending the circumstances
described above and they characterized the optimal lot size and the resulting
expected total cost as function of demand for arbitrary distribution functions of the
random variables. They found that the expected value of the total set up and
inventory cost is increasing function of demand when demand (production sched-
ule) equals design capacity, the expected total cost function may have minimum
point (and may have maximum point as well) and an algorithm is given to find the
optimal level of contract volume (optimal demand level). Their paper provides an
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excessive literature overview also, thus the interested readers may turn to this paper
to observe the development of the literature and therefore we may omit this liter-
ature survey.

Although this paper uses the same base model, the targets are different. First of
all, we are interested in the impacts of process improvements, namely, how process
improvement impacts on lot sizes and the total setup and inventory costs. We
consider a process quality increasing if the expected value of process yield increases
while the variance is unchanged, or the variance of process yield decreases while
the expected value does not change, or the expected value of the process yield
increases and its variance decreases at the same time.

The next significant difference is that we specify the distribution functions.
Based upon the observations mentioned above, we believe that the Beta distribution
is a good approximation of the real distribution of the utilization level of an
assembly line operating in JIT environment. Using Beta distribution, we are able to
derive explicit formulas to lot sizing and related cost functions.

The usage of Beta distribution to utilization level gives nice explicit form for the
expected values of lot sizes and total costs, but we have rather complicated
expressions for the variance of total costs. To get insights into the behavior of the
variance of the total cost, we conduct excessive simulation processes, generating
thousands of random events to estimate the impact of process improvement on the
variance of total costs.

The next section identifies the model to be analyzed, Sect. 3 determines explicit
forms for lot sizes and the expected value of total cost, and characterizes the nature
of lot sizes and total cost as function of an improving process. Sect. 4 conducts two
simulation approaches to get insights into the nature of the variance of the minimum
annual total costs, and the last section gives the conclusions.

Among the most important findings it can be mentioned, that in JIT environment
improving process quality will result in larger lots under large capacity utilization
levels only, which can be considered as rather new contribution. Using explicit
formulas we can describe the total cost, and using computer based numerical
methods we find that the expected value of the annual total costs will decrease also
when process quality improves. The simulation analyses give additional new
insights according to which, when the expected value of process output increases,
not only the expected value of the minimum total annual cost will decrease, but so
does its variance as well, simultaneously.

2 The Model with Beta Distribution

Lot sizing task appears almost everywhere in a production process even in case of a
JIT system. The role of Kanban cards clearly indicates the presence of lots in a JIT
system: Kanban cards determine the quantity of parts that may be pulled into the
system in one lot. The question offers itself: how many parts, products should be
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produced in one lot? The question is especially interesting taking into the fact, that
stoppages may occur, which influences the production rate and lot sizes.

The seminal papers of Harris (1913) and Taft (1918) on how much to order or
produce at once have attracted many researchers and many new concepts have been
created since. Probably Shih (1980) is among the firsts who mentioned that there
may be shortages in the delivery process as not every unit of the product in the
accepted lot is of perfect quality. As the pioneer works of Porteus (1985, 1986)
point it out, lot sizing and process quality are interrelated. He considers investment
into setup cost reduction and process quality improvement possibilities in the EOQ
model, and he found that the optimal lot size is strictly increasing with improvement
in process quality. Also among the pioneers there is Chand (1989), who discusses
the results of worker learning that reduces setup costs and improves process quality,
and finally we have small lot sizes, the base of the stockless production philosophy.
Our analysis is directly based on the model constructed by Vörös and Rappai
(2016), where the authors took into account that stoppages may occur due to quality
problems in the assembly line, moreover, jidoka principle may be violated when
solving production problems instantaneously would require long time. In this case,
cars move to the clinic area, waiting to be fixed. Both two events are considered to
be random and in their paper the inventory costs and cycle times are determined,
which are also random variables.

We use the following notations (Table 1).

Table 1 Notations used

ξ The number of units leaving the assembly line in a day (including those entering the clinic
area), random variable with probability density function f(x). ξ is the daily production rate

ƞ The number of units arriving at the clinic/overflow area during a day with a particular
known quality problem, random variable with probability density function g(y)

D Daily demand in units, input parameter
m Maximum number of cars fixed in the clinic/overflow area during a day, input parameter
Q The lot size in units, decision variable
s The current setup cost, input parameter
h Holding cost per unit per day, input parameter
b Backlogging cost per unit per day, input parameter
z =(y/x – m/D)/(D – m), assuming D > m

K Design capacity of the assembly line per day, in units (the ratio of the duration of a day
over the planned cycle time), input parameter

M The lowest value of ξ with positive probability (P(K ≥ ξ ≥MÞ > 0, and P(ξ < M) = 0),
input parameter

N Number of working days in a year
k At most x/k units enter into the clinic area per day, input parameter
u The observed utilization level of the assembly line, u = x/K
v The planned capacity utilization level of the assembly line, v = D/K
r The ratio of b and h, i.e. r = b/h
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To increase the convenience of the reader, we repeat here the base model of
Vörös and Rappai (2016) from which we originate our results. Similarly to that
paper, let ξ denote the number of cars leaving the assembly line during a day,
including tagged cars with known defective problems. We consider ξ a random
variable with the probability density function f(x), and we suppose there is zero
probability that the assembly line is completely in shutdown state during a day
(shift). Let ƞ denote the number of tagged cars arriving at the clinic/overflow area
with a particular quality problem during a day. We consider ƞ a random variable
with probability density function g(y). We suppose that m cars with the particular
quality problem can be fixed during a day. m is a known input parameter.

For simplicity, we assume there is one shift per working day, thus shift or day
may be used alternatively, and demand can be expressed as D units per model type
per day, which is a known constant input parameter, as a result of applying the
heijunka principle. The design capacity of the assembly line can be calculated as the
ratio of the duration of a shift over the planned cycle time. Because of stoppages,
the real output of the assembly line is lower than the design capacity.

We denote the daily holding and backlogging cost with h and b per unit,
respectively, and the set up cost is denoted by s. We seek the optimum lot size, and
the lot size is denoted by Q.

Let x denote a realization of ξ, while y a realization of ƞ, i.e. x denotes the
observed number of cars leaving the assembly line in a particular day, out of which
y are observed as defective with known quality problem. In the followings we
summarize all the possible outcomes of these observations in order to calculate the
expected cost and cycle length. Case 1 considers events when in a day the number
of cars arriving at the clinic area is not larger than the repair capacity of this cell, i.e.
we may assume that y ≤ m. Consequently, clinic area capacity will not contribute
to the development of backlogs. So, if there are no serious quality problems with
the assembly line, backlogs will not appear at all if the assembly line has the
sufficient capacity on the observed day, i.e. x ≥ D. We identify this situation as
Case 1a, and the inventory build-up diagram is represented by Fig. 1.

me

Q/x 
Q/D 

Inventory level

Fig. 1 The inventory build-up diagram for Case 1a
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Figure 1 is a well-known diagram (see for example Hax and Candea 1984) and
denoting the inventory related costs for Case 1a by H1a, it can be written as

H1aðQ, x, yÞ ̸h= Q2 ̸2
� �ð1 ̸D− 1 ̸xÞ ð1aÞ

The explanation behind Fig. 1 is that producing Q units in one lot that leaves the
assembly line requires Q/x time units and serves demand over Q/D time units.
During run time inventory increases at the rate of (x − D) cars per time unit, and
when a lot is finished, inventory decreases at the rate of D cars per time unit.

On the other hand, even if y ≤ m (the clinic area is not lagging behind), and the
assembly line suffers from serious quality problems, backlog may develop, i.e.
x < D. We identify this situation as Case 1b, and its inventory build-up diagram is
represented by Fig. 2.

Figure 2 indicates that there are no cars waiting for customers as in each time
unit, the system produces less than the demand. The volume of unsatisfied demand
is (D − x) per day, thus until the end of the production run Q(D − x)/x units
backlog develops as the length of the production run is Q/x time units. The volume
of the accumulated backlog is produced under overtime or weekend shifts and the
unit cost of the backlog is denoted by b. The time required to produce the accu-
mulated backlog is considered negligible, for simplicity. In fact, the backlog level is
kept till the start of overtime, however the cost of this maybe inserted into b, thus
the approach indicated by the figure may be accepted. Denoting the accumulated
backlogging cost by H1b, the following can be written:

H1b Q, x, yð Þ ̸b= Q2 ̸2
� �

D− xð Þ ̸x2 ð1bÞ

Now we turn to Case 2, where we assume that the clinic/overflow area does not
have the sufficient capacity to fix each car arriving at the clinic area at the same day,
i.e. y > m. We identify Case 2aa as when although y > m, the assembly line does
not suffer from serious quality problems and has enough capacity to meet demand,
i.e. x – y + m ≥ D. This form indicates as well that the outcome (the fixed units) of
the clinic area is utilized at once to satisfy demand, and defective cars are hold at the
same warehouse wearing the same holding cost like non-defective cars, as they are
fully assembled. Additionally, we assume that the length of the cycle (the time
elapsing between two consecutive points when inventory level is zero—these points

Inventory level

me0
Q/x

Fig. 2 The inventory
build-up diagram for Case 1b
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are called regeneration points in the dynamic lot sizing literature) is long enough to
fix all cars parking at the clinic area. During the production run (=Q/x) the number
of cars entering the clinic area is yQ/x, and it requires yQ/mx time units to fix them.
As we have time to fix all the cars during the cycle, it must be valid that yQ/
mx ≤ Q/D. But in this case no backlog will develop throughout the cycle, thus we
have the same inventory build-up diagram like in Case 1a. Denoting the inventory
related cost in Case 2aa by H2aa(Q, x, y), i.e. when y ≥ m, x – y + m ≥ D and
y/x ≤ m/D, the following can be written:

H2aa =H1a. ð2aaÞ

On the other hand, when although backlog does not accumulate during pro-
duction time, but the length of the cycle is not enough to fix all the cars parking at
the clinic/overflow area, backlogs may accumulate after the end of the production
runtime.

Let us identify this situation as Case 2ab, i.e. the assumptions are: y ≥ m, x –

y + m ≥ D but y/x > m/D. Figure 3 represents the inventory build-up diagram
where after that production is terminated (at Q/x), backlog starts accumulating at a
certain point. Again, the stock level realization diagram indicated by Fig. 3 includes
both the flawless and defective items and the fixed units at the clinic area are used to
satisfy daily demand.

It is a natural consequence that y ≤ x, i.e. the number of cars entering the clinic
area may not be larger than the number of cars leaving the assembly line. Then from
the assumption y/x > m/D follows that m/D < 1 as well, so m < D is valid, and
Fig. 3 reflects this property. After production terminates non defective cars are sold

inventory level

me

Q/x Q/D

Fig. 3 Inventory build-up diagram for Case 2ab
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at the rate of the demand, however from a certain point, when flawless inventory
runs out, inventory may deplete at the rate of m instead of D because only the fixed
cars can be sold, and non-fixed ones are still waiting at the clinic area.

The number of cars getting into the clinic area during the production run is yQ/
x while during the cycle—which is Q/D time units long—only mQ/D units may be
fixed. The volume of the accumulated backlog is Q(y/x – m/D), and this volume
accumulates during the time length of Q(y/x – m/D)/(D – m) as the rate of backlog
accumulation is (D − m). Let us note that this backlog volume is staying at the
clinic area in the form of defective cars as well, so positive and negative inventory
exist simultaneously. We can say that backlog starts accumulating at time [Q/
D − Q(y/x – m/D)/(D – m)]. The on hand inventory at this point is: [Q(y/x – m/
D) + mQ(y/x – m/D)/(D − m)]. The inventory cost during the accumulation of the
backlog this way is: h[[Q(y/x – m/D)/(D – m)][2Q(y/x – m/D) + mQ(y/x – m/D)/
(D − m)]]/2 = h[Q(y/x – m/D)]2[D – m/2]/(D − m)2. The occurring backlogging
cost during the same interval is: b[Q(y/x – m/D)]2.

By Fig. 3, at point Q/x the inventory level is (Q/x)(x − D), consequently the
occurring holding cost from the beginning of the cycle till the point Q/x is:
hQ2(x − D)/2x2 and from the point Q/x till the point when backlog starts devel-
oping the occurring holding cost is: h[Q/D − Q/x − Q((y/x − m/D)/(D − m)][Q(y/
x – m/D)(1 + m/(D – m)) + Q (x – D)/x]/2 = hQ2(Dz + (x – D)/x)(1/D − 1/x – z)/2,
where we used the simplifying notation z = (y/x – m/D)/(D – m). Denoting the total
holding and backlogging costs in Case 2ab by H2ab, adding the four types of costs it
can be written that

H2ab Q, x, yð Þ= Q2 ̸2
� �

h x − Dð Þ ̸x2 + Dz+ x−Dð Þ ̸xð Þ 1 ̸D− 1 ̸x− zð Þ+ z2 2D−mð Þ� �
+ b D−mð Þz2� �

= Q2 ̸2
� �

h 1 ̸D− 1 ̸xð Þ+ h+ bð Þ D−mð Þz2� �
ð2abÞ

There is only one subcase waiting for identification inside Case 2: this is when
demand cannot be satisfied from the very beginning of the cycle because of the
frequent stoppages. Additionally the number of fixed cars is lower than the number
of defective cars entering the clinic area, i.e. in Case 2b: y > m, and x − y +
m < D. Figure 4 gives the inventory build-up diagram, where we have the defec-
tive items in the system not fixed yet in the clinic area as positive inventory, and
simultaneously with the backlogs due to the not sufficient capacity, as negative
inventory.

Denoting the occurring holding and backlogging costs in Case 2b by H2b, we
can determine this cost like as:

H2b Q, x, yð Þ= Q2 ̸2
� �

h y − mð Þ + b D − x + y − mð Þ½ � ̸x2 ð2bÞ

Let us note that the length of the cycles (elapsed time between two regenerations
points) in Case 1a, Case 2aa, Case 2ab depends on a decision variable (Q), and in
Case 1b, Case 2b depends on a decision and a random variable (Q and ξ).
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Theoretically there are two cases considering the relationship between D and m,
but we visit only one case, namely when D > m, i.e. the daily demand is larger than
the repairing capacity of the clinic area (the interested reader is directed to the paper
of Vörös and Rappai 2016, to see the other outcome). In Fig. 5 the vertical axis
represents the observed number of cars leaving the assembly line during a day
(denoted by x) and the horizontal one does the observed number of defective cars
moved to the clinic area during a day (denoted by y). It is natural that x ≥ y, as cars
entering the clinic area constitute a subset of cars leaving the assembly line. We
have to note that there exists a theoretical limit on y (8 by the study of Mishina and
Takeda 1992), however the limit is rarely kept. Anyway, the analysis is richer when
we consider wider sets of possible outcomes, and we analyze the full upper half of
the first quarter.

me

Inventory level

Q/x

Fig. 4 The inventory
build-up diagram for Case 2b
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Fig. 5 Probability fields of inventory build-up diagrams with D > m (C refers for Case)
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The vertical axis is divided into two segments by the horizontal line expressing
the daily demand level, D. The horizontal axis is also divided into two sections,
namely by the repairing capacity m represented by a vertical dashed line. The
symbols among lines indicate the valid inventory models elaborated above.

Denoting the expected value of inventory related costs per cycle by EHC,
assuming that the two random variables are independent, this expected value is
determined by the following expression (Vörös and Rappai 2016):

EHC Qð Þ=
Z m

0

Z x

0
H1b Q, x, yð Þg yð Þdyf ðxÞdx+

Z D

m

Z m

0
H1b Q, x, yð Þg yð Þdyf ðxÞdx

+
Z D

m

Z x

m
H2b Q, x, yð Þg yð Þdyf ðxÞdx

+
Z K

D

Z m

0
H1a Q, x, yð Þg yð Þdyf ðxÞdx+

Z K

D

Z xm ̸D

m
H2aa Q, x, yð Þg yð Þdyf ðxÞdx

+
Z K

D

Z x−D+m

xm ̸D
H2ab Q, x, yð Þg yð Þdyf ðxÞdx+

Z K

D

Z x

x−D+m
H1b Q, x, yð Þg yð Þdyf ðxÞdx

ð3Þ

In (3) K denotes the design capacity of the assembly line per day. Using the
detailed formulas for the inventory costs, it can be rewritten that

EHC Qð Þ= Q2 ̸2
� �

HC, ð4aÞ

where

HC = b
Z m

0

Z x

0
ððD− xÞ ̸x2ÞgðyÞdyf ðxÞdx+ b

Z D

m

Z m

0
ððD− xÞ ̸x2Þg yð Þdyf ðxÞdx

+
Z D

m

Z x

m
½½hðy−mÞ+ bðD− x+ y−mÞ� ̸x2�g yð Þdyf ðxÞdx

+ h
Z K

D

Z xm ̸D

0

1
D

−
1
x

� �
g yð Þdyf xð Þdx

+
Z K

D

Z x−D+m

xm ̸D
½hð1 ̸D− 1 ̸xÞ+ ðh+ bÞðD−mÞz2�g yð Þdyf ðxÞdx

+
Z K

D

Z x

x−D+m
½½hðy−mÞ+ bðD− x+ y−mÞ� ̸x2�g yð Þdyf ðxÞdx,

ð4bÞ

Now, we describe the expected value of the length of the inventory cycles. As
we noted, in Case 1a, Case 2aa and Case 2ab it depends on a decision variable (on
Q/D), and in Case 1b, Case 2b depends on a decision and a random variable (on Q/
x). Using the probability fields and the corresponding inventory build-up diagrams,
denoting the expected value of the length of the inventory cycles by ELc, it can be
written that
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ELc Qð Þ=QLC, ð5aÞ

where

LC =
Z m

0

Z x

0
ð1 ̸xÞg yð Þdyf ðxÞdx+

Z D

m

Z m

0
ð1 ̸xÞg yð Þdyf ðxÞdx

+
Z D

m

Z x

m
ð1 ̸xÞg yð Þdyf ðxÞdx

+
Z K

D

Z m

0
ð1 ̸DÞg yð Þdyf ðxÞdx+

Z K

D

Z xm ̸D

m
ð1 ̸DÞg yð Þdyf ðxÞdx

+
Z K

D

Z x−D+m

xm ̸D
ð1 ̸DÞg yð Þdyf ðxÞdx+

Z K

D

Z x

x−D+m
ð1 ̸xÞg yð Þdyf ðxÞdx,

ð5bÞ

and LC is positive constant as we suppose that there is zero probability that the
assembly line is completely in a shutdown state throughout a shift.

Denoting the expected cycle costs by ECc, it can be written that

ECc Qð Þ= s+EHc Qð Þ= s+ Q2 ̸2
� �

HC,

and we expect that N/ELc(Q) = N/(QLc) cycles will appear in a year where N de-
notes the number of working days in a year. Similarly to the implemented idea in
Vörös (2013) how to calculate the total cost, we can calculate the expected annual
total cost (denoting it by ETC) as

ETC Qð Þ ̸N = 1 ̸ QLcð Þ½ � s+ Q2 ̸2
� �

HC
� �

= s ̸Lcð Þ ̸Q+ Q ̸2ð Þ Hc ̸Lcð Þ ð6Þ

Vörös and Rappai (2016) pointed out that the optimal lot size can be determined
as:

Qopt =
ffiffiffiffiffi
2s

p ffiffiffiffiffiffiffiffiffiffi
1 ̸Hc

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sD ̸h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ̸DHc

p
, ð7Þ

and the minimum expected total annual cost can be described as:

ETC Qopt
� �

=
N
Lc

ffiffiffiffiffiffiffiffiffiffi
2sHc

p
=

ffiffiffiffiffiffi
Hc

p
Lc

ðconstantÞ. ð8Þ

In order to gain deeper insights into these two crucial expressions, we specify the
distribution functions of the random variables in this paper. First of all we assume
that y may not have larger values than the kth fraction of x, i.e. we assume that y ≤
x/k, k > 1. Moreover, we assume that ƞ has uniform distribution in the 0 ≤ y ≤
x/k interval. Thus its density can be written as:
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g yð Þ=
k
x if 0 ≤ y ≤ x

k
0 otherwise

	 

ð9Þ

On the hand, we assume that the utilization level of the assembly line follows
Beta distribution, and we define the probability density function as

f xð Þ= 1
Bðα, βÞ

x
K

� �α− 1
ð1− x

KÞβ− 1 if 0 ≤ x ≤ K
0 otherwise

( )
ð10Þ

We recall that K is the design capacity, while k is used to limit the number of
cars moving into the clinic area. Depending on the relationship between k and
D/m we have to distinct cases again. One of the outcomes of the relationship is
when k < D ̸m. As we restrict the number of cars getting into the clinic area into
the interval 0 ≤ y ≤ x

k, the probability fields represented by Fig. 5 are modified, as
from this assumption it follows that yk ≤ x. Inserting the x = ky line into Fig. 5, we
gain Fig. 6, which represents the new probability fields.

The other outcome is when k ≥ D ̸m, and inserting the line x = ky again into
Fig. 5, we will have Fig. 7, indicating the possible outcomes of inventory cases. In
the followings we stick up for this case as the previous one requires significantly
more efforts and the estimated results would be developed in another new article.

The particular reason we use Beta distribution for random variable ξ is the
flexibility of the probability density function. JIT systems, especially the
well-functioning ones like TPS, exhibit very high utilization levels with low vari-
ations. If we start from the observation that the average utilization level of the

m

D 

y
m

x=D+y-m

C1a C2aa

C2ab

C2b
C2b

C1bkm

x

Fig. 6 Probability fields of inventory build-up diagrams with k<D ̸m;D>m (C refers for Case)
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assembly line is around 95, and 100% actually never exists, this fact indicates the
usage of low β ≥ 1 values. On the other hand, if we wish to have a given expected
value, let it be denoted by u ̄, if we fix β and x ̄, the other parameter of the Beta
distribution, α, is determined also, as

u ̄= α ̸ðα+ βÞ ð11aÞ

Figure 8 depicts the form of two density functions of Beta distribution, in both
cases the expected utilization level is set on u ̄ = 0.95 (u = x/K), while β takes the
values of 2 and 3. The figure indicates that for β = 3 the variance is lower than in
case β = 2, and for β = 2 capacity utilization levels around 80% occur with larger
probability. Although the mathematical technique we are going to use can be applied
to betas with larger integer values as well, it seems satisfactory to analyze the
problem for betas taking values 2 or 3, additionally we can derive closed formulas
providing good insights into the nature of the problem. An intensive use of the Beta
distribution in economics can be seen also in Müller-Bungart (2007) as well.

Property 1 In a JIT system if the utilization level follows Beta distribution, process
quality improvement means larger utilization levels with lower variance.

JIT systems are developed for standard products, produced in large volume, in
an efficient way, and operated under high average capacity utilization level in order
the dedicated, highly expensive capacities be paid back. Considering the structure
of the expected level of capacity utilization given in (11a), when utilization level is
high, the α/β ratio must be also high. Writing (11a) in different way, we have: α/

m

x 
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y 
m

x=ky

C1a

C2aa

C1b

Fig. 7 Probability fields of inventory build-up diagrams with k≥D ̸m;D>m (C refers for Case)
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β = −1 + 1/(1 − u ̄) and as u ̄ → 1, α/β → ∞. Thus we may assume, that α >
β ≥ 1. Fixing β, larger utilization levels mean larger α values. Now we show, that
under the assumption that α > β ≥ 1, larger α involves lower variance.

The variance of the Beta distribution (denoted by σ2):

σ2 =
∝β

α+ βð Þ2ðα+ β+1Þ ð11bÞ

Taking the derivative of (11b) with respect to α, we can write the followings:

dσ2

dα
=

β α+ βð Þ3 + α+ βð Þ2
h i

− αβ½3 α+ βð Þ2 + 2 α+ βð Þ�

α+ βð Þ3 + α+ βð Þ2
h i2 . ð12Þ

Focusing on the numerator, we show that it is negative for α > β ≥ 1. Let us
suppose in contrary that

β α+ βð Þ3 + α+ βð Þ2
h i

− αβ½3 α+ βð Þ2 + 2 α+ βð Þ�≥ 0,

then

α+ βð Þ3 + α+ βð Þ2
h i

− α½3 α+ βð Þ2 + 2 α+ βð Þ�≥ 0
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Fig. 8 The probability density function of Beta distribution for beta values 2 and 3 for 95%
expected value (alphas are 38 and 75, respectively)
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as well. From this

− 2α3 − α2ð3β+1Þ+ β3 + β2 ≥ 0

follows. As α > β ≥ 1, we can write that

− 2α3 − α2ð3β+1Þ+ β3 + β2 < − 2 β3 − β2ð3β+1Þ+ β3 + β2 = − 4 β3,

which is contradiction. Consequently, the variance is decreasing in α.

3 The Impact of Process Improvement on Lot Sizes
and Total Costs When x ≥ ky

Based on Fig. 7, we can identify that when x/k ≥ y, i.e. when the number of cars
entering the clinic area never exceeds the limit x/k, then inventory case C1b, C1a,
and C2aa occur. The relevant inventory cost expressions in these cases do not
contain the variable y, thus we may omit the expressions connected with y. This
way, based on (4b), the expected inventory related costs can be determined as

Hk≥D ̸m
c = ∫ D

0 b
D− x
x2

1
Bðα, βÞ

x
K

� �α− 1
1−

x
K

� �β− 1
dx

+ ∫ K
D h

1
D

−
1
x

� �
1

Bðα, βÞ
x
K

� �α− 1
1−

x
K

� �β− 1
dx

=
b

Bðα, βÞ ∫
D
0

D− x
x2

x
K

� �α− 1
1−

x
K

� �β− 1
dx

+
h

Bðα, βÞ ∫
K
D

1
D

−
1
x

� �
x
K

� �α− 1
1−

x
K

� �β− 1
dx.

ð13aÞ

Similarly, the expected cycle time can be determined as:

Lk≥D ̸m
c = ∫ D

0

1
x
f xð Þdx+ ∫ K

D

1
D
f xð Þdx= 1

Bðα, βÞ ∫
D
0

1
x

x
K

� �α− 1
1−

x
K

� �β− 1
dx

+
1

Bðα, βÞ
1
D
∫ K
D

x
K

� �α− 1
1−

x
K

� �β− 1
dx

ð13bÞ
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For example, for β = 2, we gain the following explicit expressions:

Hk≥D ̸m
c, β=2 =

b
Bðα, 2Þ ∫

D
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D− x
x2

½ x
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−
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�dx+ h
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� �
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�dx
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α− 2
−

b
α− 1

+
h

α− 1
−

h
α
Þ

+
h
α
−

h
α− 1

� �
+

K
D
ðh
α
−

h
α+1

Þ�

ð14aÞ

and

B α, 2ð Þ= ∫ 1
0½

x
K

� �α− 1
−

x
K

� �α
�dx= K α+1ð Þ− α

α α+1ð ÞKα
ð14bÞ

In these expressions D/K can be considered as planned utilization level as
demand D is fixed well before the production time and K is the designed capacity.
D/K should be at the D/K ≤ 1 range as it has no sense to promise more than what
can be satisfied. It is also reasonable to set K = 1, i.e. taking design capacity as one
unit and D would mean the planned capacity utilization level. Let v denote the
planned capacity utilization level, i.e. v = D/K, and let K be set at one. Then
B α, 2ð Þ= 1/α α+1ð Þ, and substituting this value in (14a), we have the explicit form
of the expected value of the inventory related costs:

Hk≥D ̸m
c, β=2 = α α+1ð Þ½vαðb

α
−

b
α− 1

+
h

α+1
−

h
α
Þ

+ vα− 1ð b
α− 2

−
b

α− 1
+

h
α− 1

−
h
α
Þ+ h

α
−

h
α− 1

� �
+

1
v
ðh
α
−

h
α+1

Þ�

= vαð− b
α+1
α− 1

− hÞ+ vα− 1ðb αðα+1Þ
ðα− 1Þðα− 2Þ + h

α+1
α− 1

Þ− h
α+1
α− 1

+ h
1
v

ð15aÞ

This expression will not change its shape when we divide both sides with a
positive constant, practically let this constant be h. Let the ratio of b and h be
denoted by r, i.e. r = b/h. Let us note it is generally accepted in economics that
r > 1. Then (15a) takes the form:

1
h
Hk≥D ̸m

c, β=2 = vαð− r
α+1
α− 1

− 1Þ+ vα− 1ðr αðα+1Þ
ðα− 1Þðα− 2Þ +

α+1
α− 1

Þ− α+1
α− 1

+
1
v

ð15bÞ
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Property 2 When we plan full capacity utilization, for β=2, the expected value of
inventory related costs decreases as process quality improves.

When we plan full capacity utilization, then v = 1, and (15b) can be written as

1
h
Hk≥D ̸m

c, β=2 = ð− r
α+1
α− 1

− 1Þ+ ðr αðα+1Þ
ðα− 1Þðα− 2Þ +

α+1
α− 1

Þ− α+1
α− 1

+ 1= r
α+1
α− 1

2
α− 2

ð16Þ

Then

d 1
hr H

k≥D ̸m
c, β=2

dα
=

− 4

ðα− 1Þ2ðα− 2Þ −
2ðα+1Þ

ðα− 2Þ2ðα− 1Þ ,

which is negative expression as α> β=2. Consequently, the expected inventory
related costs decrease when process quality increases.

Property 3 Under high capacity utilization, for β=2, the expected value of
inventory related costs decreases as process quality improves.

Let us note that the statement in Property 3 is more general, than in Property 2.
In Property 2 the planned capacity utilization is set to one, now we allow it to vary
in a range economically reasonable. In part, Property 3 is valid by continuity, from
Property 2, but we expanded our research for a wide variety of r and v values as
well. As we have very complicated formulas, we used a machine supported
numerical approximation method (Mathematica software). In this method we
focused on around a 95% expected value of the random variable x/K, and then for
β=2 it follows that it has sense when we let α at the interval 36 ≤ α≤ 42 (at
α=38 the expected value is 0.95). We let v to change at the interval 0.8 ≤ v≤ 1.
Figure 9 shows the form of the expected values of the total costs when r = 2.

As it can be seen on Fig. 9, for example when v = 0.8, function H increases in α,
i.e. it seems that the expected inventory related cost function increases in case of
low planned capacity utilization while process improves. To check this, we made
cuttings at v = 0.9 and at v = 0.95, and Figs. 10 and 11 indicate that function
H increases when v = 0.9 and decreases when v = 0.95, respectively. Let us note
that the first cutting is before while the second one is after the minimum point of the
function H as function of v.

Corollary 1 Under large planned capacity utilization, when process quality
improves, the optimal lot size increases.

The explanation behind this statement is the expected value H can be found at
the denominator of the optimal lot sizing formula (7), thus when H decreases, the
optimal lot size will increase. This findings support the idea of Porteus (1985,
1986). Let us note that it has no sense to deal with the low planned capacity
utilization segment, i.e. when v < minimum point of H, as at this segment costs are
at the same level, while output is lower.
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Fig. 10 Function H, when
v = 0.9, Beta = 2, and r = 2
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Fig. 11 Function H, when
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Fig. 9 The expected value of inventory related costs as function of process quality (α) and the
planned capacity utilization (v) when Beta = 2, and r = 2
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Property 4 When we plan full capacity utilization, for β=2, the expected annual
total cost function decreases when process quality improves.

The expected value of the annual total cost is determined in (8) and the shape of

this function is formed by the expression
ffiffiffiffi
Hc

p
Lc

. We have not determined the form of
L, the expected cycle length yet. Based on (13b), we have

Lk≥D ̸m
c, β=2 =

1
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D
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1
x

x
K

� �α− 1
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� �
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Þα− 1 1
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+
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−
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+

1
α

� �
�.

ð17aÞ

As B α, 2ð Þ= K α+1ð Þ− α
α α+1ð ÞKα , v = D/K, letting K = 1, this expression can be written

as:

Lk≥D ̸m
c, β=2 = − vα + vα− 1 α+1

α− 1
+

1
v

ð17bÞ

Considering full planned capacity utilization, i.e. v = 1, (17a) and (17b) results
in α+1

α− 1, and utilizing (16), we can write that

ffiffiffiffiffiffi
Hc

p
Lc

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b α+1
α− 1

2
α− 2

q
α+1
α− 1

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
α− 1
α+1

2
α− 2

r
ð18Þ

Taking the derivative of α− 1
α+1

2
α− 2 (b is constant) with respect to α, we have:

α− 1
α+1

2
α− 2

� �′

=
2

ðα+1Þ2
2

α− 2
+

− 2

ðα− 2Þ2
α− 1
α+1

=2
− α2 + 2α− 3

ðα+1Þ2ðα− 2Þ2 .

The expression − α2 + 2α− 3 at the numerator is a concave parabola, with
negative discriminant, thus always taking negative values. Consequently, as the
derivative is negative, the minimum expected annual total cost in case of full
planned capacity utilization is decreasing when process quality improves.

Property 5 In case of high capacity utilization, for β=2 the annual expected total
cost function decreases when process quality increases.

Similarly to the case in Property 3, we used machine supported numerical
approximation method (Mathematica software). Figure 12 gives a typical result for
b = 2, h = 1 (r = 2) when the planned capacity utilization varies between 80–
100% and we investigate the nature of the minimum expected annual total cost
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function around 95% process quality level (as β=2, for α = 38, the expected value
is 0.95).

Now, we turn to the case, when the value of Beta is three. In order to keep the
length of this paper reasonable, we give the main results only. For β=3, the
expected inventory related costs can be calculated as

Hk≥D ̸m
c, β=3 =

b
Bðα, 3Þ ∫
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0
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x
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where v = D/K, and

B α, 3ð Þ= ∫ 1
0

x
K

� �α− 1
1−

x
K

� �2
dx=

1
αKα− 1 −

2
ðα+1ÞKα

+
1

ðα+2ÞKα+1 , ð19bÞ

or writing this in different way:

1
B α, 3ð Þ =

αðα+1Þðα+2Þ
2

,

and applying this expression in (19a), and assuming unit design capacity, i.e.
K = 1, we have the closed form for H:
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Fig. 12 The expected annual total cost function for b = 2, h = 1, β=2
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In order to have the minimum expected annual total cost function, we need the
expected value of the cycle length. Similarly to (17a),
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Then substituting (19b) in (21a), we have with v = D/K, and assuming K = 1,

2Lk≥D ̸m
c, β=3 = vα+1α− 2vα α+2ð Þ+ vα− 1 α+1ð Þ α+2ð Þ

α− 1
+

2
v

ð21bÞ

Now, we are able to give the functional form of
ffiffiffiffi
Hc

p
Lc

as each of the expressions
required is known by (20) and (21b), respectively. As we have gained rather similar
results like in case of β=2, we modified the ranges of both v and α. We extended
the searching area for v from very low planned utilization levels like 0.7 (sometimes
0.5), obviously till 1, while we let α to take lower values. This is because of the
interest of mathematical nature, economically has no large relevance to investigate
business situations when the process quality is around 50%, i.e. the assembly line is
down during the half shift on average because of quality problems. Figure 13
represents the expected value of the minimum total annual cost, when we took
h = 1, b = 5, i.e. r = 5, which means that backlogging costs are rather high
compared to previous cases where r was only 2. On Fig. 13 the planned utilization
level (v) may change at the interval 0.7 ≤ v ≤ 1, while we allow α to be at the
interval 30 ≤ α ≤ 70, which means that process quality (defined by the expected
value of the output of the process) improves from 91 to 96%. Interestingly, under
low planned capacity utilization the minimum total annual cost grows as process
quality increases. In case of high capacity utilization the function decreases.

This nature can be spotted in Fig. 14 as well where the function is the same, but
the ratio of the backlogging and holding cost is lower, we reduce it to 2 (r = 2). We
restricted the planned utilization level into the interval 0.9 ≤ v ≤ 1 to enlarge this
property.
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Based on these analyses we state the following property.

Property 6 In case of high planned capacity utilization, for β=3, the minimum
annual expected total cost function decreases when process quality increases (as
function of α).
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Fig. 13 The expected annual total cost function for β=3, h = 1, b = 2
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Fig. 14 The expected annual total cost function for β=3, h = 1, b = 5

Analyzing the Impact of Process Improvement on Lot Sizes … 53



4 Estimating the Impact of Process Quality Improvement
on the Variance of the Minimum Total Annual Cost

Up to this point we know that when a well operating assembly line follows Beta
distribution, an improving process quality exhibits larger expected value of the
output of the assembly line, which involves lower variance of the output at the same
time. As function of parameter alfa, for fixed beta, we derived explicit expressions
for two components of lot sizing rules: the expected value of the inventory related
costs (H) and the expected length of the lot size cycles (L). Then we were able to
characterize the expected value of the annual total cost, whose key component isffiffiffiffi
Hc

p
Lc

, and suggested a lot size, which is affected by H. So, the decision making
process goes like this:

Step 1 Determine contract volume, so we have the value of D
Step 2 Estimate probability density functions f(x) and g(x)
Step 3 Determine expected values H and L
Step 4 Determine optimal lot size
Step 5 Determine the expected value of annual total cost as function of alpha for a

given beta
Step 6 Improve process if it is economical
Step 7 Modify contract if it is economical, and go to Step 1, otherwise Stop.

As it can be seen in the previous steps, the procedure is based on expected
values. When in Step 4 the optimal lot size is determined and this suggestion is
implemented, the random events follow this decision, so actually the minimum
annual total cost is random variable, too. Now, we provide two approaches to
estimate the variance of the minimum annual total cost, as variance is an important
information about the risk.

Because we are not able to derive explicit form of the variance of the minimum
annual total cost, in this section we carry out two analyses to estimate the devel-
opment of the variance of the minimum annual total cost through a simulation
process. Doing so, the procedure is that we generate 1000-1000 random events
under Beta distribution first for β=2 and a series of alphas. Once a random event is
generated under a given β and α pair, we calculate the inventory cost and cycle
length. Let Hc(ξ) denote the inventory cost, and L(ξ) the corresponding cycle length
and we have a 1000-1000 Hc(ξ) and L(ξ) values for each alpha-beta pair. The first
simple procedure to estimate the variance of the minimum annual total cost is that

we calculate the variance of the thousand
ffiffiffiffiffiffiffiffi
HcðξÞ

p
LcðξÞ values, based on the structure of

expression (8), which determine the expected minimum value of the annual total

costs. So, we will have 1000 values for
ffiffiffiffiffiffiffiffi
HcðξÞ

p
LcðξÞ , and we take the average and the

variance of these values. We carry out this simulation for a series of alphas and then
we observe how the variance takes shape.
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Below we see Table 2, giving the results of this simulation process. The inputs
of the simulation process are: the planned capacity utilization level v = 0.95,
inventory cost ratio r = 2(b = 2, h = 1), β = 2, and α varies at the range of [30,
50].

Figure 15 summarizes the main results. Based on these we can state the fol-
lowing property.

Property 7 The variance of the minimum annual total cost is decreasing when
process quality improves.

We conducted similar simulation process for β = 3, v = 0.95, and r = 2, but we
let α at the range of [40, 80]. The results are summarized by Fig. 16, and the trends
of the lines support the statement of Property 7.

Table 2 The simulated average and variance of
ffiffiffiffiffiffiffiffi
HcðξÞ

p
LcðξÞ when β = 2, v = 0.95, and r = 2

α
values

Average
process
quality

Average
annual
total cost

Standard
deviation of
annual total
cost

α
values

Average
process
quality

Average
annual
total cost

Standard
deviation of
annual total
cost

30 0.9375 0.217502 0.123061 41 0.9535 0.17814 0.089211
31 0.9394 0.209786 0.119538 42 0.9545 0.175805 0.081522
32 0.9412 0.205334 0.115072 43 0.9556 0.177543 0.08611
33 0.9429 0.206677 0.11678 44 0.9565 0.178147 0.087045
34 0.9444 0.198891 0.108373 45 0.9574 0.172653 0.078223
35 0.9459 0.195322 0.102818 46 0.9583 0.17267 0.080557
36 0.9474 0.190353 0.10097 47 0.9592 0.170681 0.076624
37 0.9487 0.187617 0.097878 48 0.9600 0.172856 0.075077
38 0.9500 0.189389 0.099052 49 0.9608 0.169486 0.069354
39 0.9512 0.18479 0.089917 50 0.9615 0.167133 0.067432
40 0.9524 0.184283 0.08773
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Fig. 15 The simulated mean and standard deviation of
ffiffiffiffiffiffiffiffi
HcðξÞ

p
LcðξÞ for β = 2, v = 0.95, and r = 2
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In the course of the next variance estimation process we start from the obser-
vation that based on (4a) and (5a), the annual total cost can be obtained in the
following way: in a cycle the inventory related costs are determined by the
expression Q2H(ξ)/2, so the total set up and inventory cost in a cycle is: s + Q2H
(ξ)/2. The cycle length can be expressed as QL(ξ), where ξ is the output of the
assembly line, a random variable. Thus in a year we have 1/QL(ξ) cycles, and the
annual cost is

TC Q, ξð Þ= ð1 ̸QL ξð ÞÞ s+Q2H ξð Þ ̸2
� � ð22Þ

To have the suggested lot size, in the literature usually the expected value of H
(ξ) and the expected value of L(ξ) is taken, and then the optimal lot size is given,
which is (by (8) as well)

Q0 =
ffiffiffiffiffi
2s

p ffiffiffiffiffiffiffiffiffiffi
1 ̸Hc

p
, ð23Þ

where Hc is given by (4b), the expected value of inventory related costs.
Substituting (23) in (22), we have

TC ξð Þ=
ffiffiffiffiffiffiffi
s ̸2

p
LðξÞ ð ffiffiffiffiffiffi

Hc
p

+
HðξÞffiffiffiffiffiffi
Hc

p Þ ð24Þ
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Fig. 16 The simulated mean and standard deviation of
ffiffiffiffiffiffiffiffi
HcðξÞ

p
LcðξÞ for β = 3, v = 0.95, and r = 2
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Then we generated thousand random events for ξ with Beta = 2, and then
Beta = 3 for a range of alphas, and the variance was calculated. Table 3 gives the
numerical result for Beta = 2, and Fig. 17 gives the graphical representation.

Similarly to the previous case, we conducted simulation process for β = 3,
v = 0.95, and r = 2, but we let α at the range of [40, 80]. The results are illustrated
by Fig. 18.

All these findings support Property 7.

Table 3 The simulated average and variance of 1
LðξÞ ffiffi

2
p (

ffiffiffiffiffiffi
Hc

p
+ HðξÞffiffiffiffi

Hc
p Þ when β = 2, v = 0.95, and

r = 2

α
values

Average
process
quality

Average
annual
total cost

Standard
deviation of
annual total
cost

α
values

Average
process
quality

Average
annual
total cost

Standard
deviation of
annual total
cost

30 0.938 0.247 0.127 41 0.953 0.208 0.111
31 0.939 0.241 0.135 42 0.955 0.207 0.117
32 0.941 0.243 0.134 43 0.956 0.198 0.098
33 0.943 0.237 0.130 44 0.957 0.196 0.103
34 0.944 0.231 0.129 45 0.957 0.192 0.087
35 0.946 0.226 0.125 46 0.958 0.191 0.092
36 0.947 0.224 0.126 47 0.959 0.192 0.089
37 0.949 0.217 0.117 48 0.960 0.186 0.083
38 0.950 0.211 0.113 49 0.961 0.185 0.087
39 0.951 0.215 0.118 50 0.962 0.185 0.076
40 0.952 0.207 0.112

0.000
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Fig. 17 The simulated mean and standard deviation of 1
LðξÞ ffiffi

2
p ð ffiffiffiffiffiffi

Hc
p

+ HðξÞffiffiffiffi
Hc

p Þ for β = 2, v = 0.95,

and r = 2
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5 Conclusions

This paper analyzes one of the oldest topics of management science literature, the
lot sizing problem. Lots exist in any operations process, and we analyze lot sizing
problem in JIT environment. Two key components of JIT production system are
emphasized: the heijunka principle spread workloads as evenly as possible, and
daily demands are fixed well in advance when production is planned. This fact
suggests to take demand (orders) constant, but on the other hand, production
problems may occur in each production system. Implementing the jidoka principle
of JIT is about to solve these production problems. Employees are empowered to
signal quality problems occurring in the production process and these signals fre-
quently result in stoppages of the production process. This way we considered the
output of the assembly line random variable following Beta distribution. The fact
that well operating assembly lines in JIT system exhibit large capacity utilization
levels suggests the usage of low Beta values and for β = 2 and β = 3 we derived
explicit forms for the inventory related costs and the minimum expected annual
costs as function of α. Let us note that the procedure we implemented can be used
to any integer β with larger values as well.

For fixed β, when we increase α values, this expresses the improvement of the
quality of the production process as well, as the expected value of the random
output increases, additionally we found that the variance of the output decreases
simultaneously. Using the explicit functions we are able to measure the impact and
cost saving as a result of process improvement. We could point out that the
expected value of the annual total cost would decrease when we can increase the
process quality. We could point out also, that inventory related (holding and
backlogging) costs and annual costs will decrease through process quality
improvement, but under high capacity utilization. We produced counter example,
when the planned capacity utilization level is low, but higher utilization level means
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Fig. 18 The simulated mean and standard deviation of 1
LðξÞ ffiffi

2
p ð ffiffiffiffiffiffi

Hc
p

+ HðξÞffiffiffiffi
Hc

p Þ for β = 3, v = 0.95,

and r = 2
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higher output at the same cost, thus in case of economically reasonable planned
capacity utilization levels we can state that process quality improvements results in
lower expected minimum annual total costs and larger runs.

Because we think that closed forms may not be revealed for the variance of the
annual total cost, we conducted two simulation analyses, generating thousand
random events for a particular alpha-beta value. Betas were fixed at two and three,
and we allow alpha to move in a wide range to see the behavior of the variance of
the annual total cost. The results indicate that with process quality improvement the
variance decreases.

Altogether, the results indicate that process improvement decreases costs, how-
ever process improvement is not free, and cost and benefits must be compared. At the
same time, the analysis open windows for new research tracks as our work has been
restricted for the case when the fraction of defective products, that go through the
assembly line, but having obvious quality problems (getting to the clinic area this
way), is relatively low (more definitely, when k ≥ D/m). Extending the research for
the complementary case probably requires the intensive usage of numerical and
simulation techniques considering the complicated and hard to tackle formulas.
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Exploring Efficient Reward Strategies
to Encourage Large-Scale Cooperation
Among Boundedly Rational Players
with the Risk and Impact of the Public
Good
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Abstract In a public goods game, while cooperators need to make contributions,
defectors can take a free ride after the realization of the public good. The Nash
equilibrium in this game is simply zero contribution from all the players. A con-
ventional approach to encourage cooperation and achieve the public good is using
rewards to compensate the difference between the cooperators’ and the defectors’
payoffs. However, the public good may not be realized due to the uncertainty in the
game, and the conventional way could underestimate the required rewards to
achieve the public good. On the other hand, public good did realize in human
history when people cannot survive from a natural disaster, such as a big flood,
without cooperating to build a solid embankment, and most of them are willing to
choose cooperation without rewards. The realization of the public good leads to the
reduction of the defection cost and the contribution, which has a potential to
encourage the players’ cooperation. Then the conventional method may overesti-
mate the necessary rewards to realize the public good. In this paper, a public goods
game is employed to model the interaction among boundedly rational players with
the rewards for large-scale cooperation, and a behavioral game-theoretic approach
is developed to describe their decision making processes with the consideration of
the risk and impact of public good in the game. It turns out that the conventional
rewards to achieve the large-scale cooperation can be reduced for a favorable group
of the players.
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1 Introduction

Public goods are special class of goods holding the criterions of non-excludability
and non-rivalrous consumption, and they had been intensively studied in recent
years due to the rising of large-scale cooperation issues in social, environmental
fields. In the large-scale cooperation, the interaction among the cooperators and the
defectors with a potential public good can be modeled as a public goods game, and
a contribution or a defection cost occurs when players choose cooperation or
defection in the game. As the number of the cooperators reaches certain level, a
public good can be realized, where the cooperators’ contribution can be reduced
and the defectors are able to take free rides. If the public good doesn’t realize, the
contribution of the cooperators will be in vain. When the public good is not
important to the players or its importance has not been realized by them, the payoff
of choosing cooperation is generally less than that of selecting defection with and
without the public good in the game, since it takes more risks to choose cooper-
ation. Then zero contribution is the Nash equilibrium of the public goods game,
rewards are necessary to compensate the risk of realizing the public good and the
difference between the contribution and the defection cost.

When the realization of the public good is critical to the players, for example,
survival from natural or manmade disasters, the spread of new breakthrough
technology in a region, etc., or the number of the cooperators is close to the
realization of the public good, the payoff of choosing cooperation could be greater
than that of selecting defection, some players would like to choose cooperation
without rewards or with few rewards. Thus, potential public good has an impact to
encourage the players’ cooperation in these cases. Overall, in order to develop
efficient reward strategies to encourage individual players’ cooperation, the risk and
impact of the public good should be evaluated in their decision making processes.
However, classic game theory and equilibrium approach have limited capability to
capture them.

The uncertainty in the public goods game is two-fold, although the number of
cooperators can be observed, each defector has limited knowledge of other
defectors’ decisions, and the realization of the public good is also unknown. Due to
the uncertainty, a player incurs the risk of obtaining his/her expected gain regardless
of choosing cooperation or defection. It is assumed that the players are boundedly
rational, they consider both the expected payoff of choosing cooperation or
defection and its associated risk and balance them based on their own risk taking
attitudes; the individual players’ risk taking attitudes are different, which depend on
their personal characteristics such as age, experience, background, education, etc.,
and they choose cooperation if the payoffs of being cooperators are greater than
those of being defectors. Therefore, a behavioral game-theoretic approach is
developed to model the interaction among the boundedly rational players with the
risk and impact of the public good and their decision making processes with the
consideration of their risk taking attitudes.
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At the initial stage of cooperation, it is risky to choose cooperation. The minimal
reward for the cooperation is to make sure that the payoff of being a cooperator is
greater than that of being a defector after the realization of the public good. As the
number of the cooperators increases, the impact of the public good shows up and it
can encourage more players’ participation in cooperation. It turns out that the
conventional reward to encourage cooperation can be reduced by taking advantage
of the impact of the public good, the sequence of the players’ choosing cooperation
depends on their risk taking attitudes, and the process of realizing the public good
with the rewards can be simulated as discrete events. Based on the behavioral
game-theoretic approach, efficient reward strategies to achieve large-scale cooper-
ation can be obtained from individual players’ decision making processes along the
process of realizing the public good.

The organization of the rest of the paper can be described as follows. Section 2
introduces the players’ payoffs of choosing cooperation or defection before and
after the realization of the public good in a public goods game; Sect. 3 proposes a
behavioral game-theoretic decision model to describe individual players’ decision
making processes in the game; Sect. 4 evaluates efficient reward strategies for
large-scale cooperation based on the behavioral game-theoretic decision model;
conclusions are given in Sect. 5.

2 The Payoffs of Being a Cooperator and a Defector
with Rewards in a Public Goods Game

Let T be the total number of the players needs to cooperate for the realization of a
public good. Suppose all of T players’ risk taking attitudes have been evaluated, and
then these players can be ranked by a sequence of numbers 1, 2, 3, …, T based on
the values of their risk taking attitudes starting from the most risk tolerant player to
the most risk averter. Let I be the set of T players, i be the index of the players’
choosing cooperation in the public goods game, i∈ I. Let C or D be the coopera-
tor’s economic contribution or the defector’s cost before the realization of the
public good C>0,D>0ð Þ, and the former and the latter are reduced to C′ and D′

respectively when the public good is realized ðC′ >0, D′ >0Þ. In general, the
defection cost is less than the contribution in the public goods game irrespective of
whether the public good is realized C>D, C′ >D′

� �
. Let Ri be the minimal reward

to encourage a player to be the ith cooperator in the public goods game Ri >0ð Þ, R̄
be the average reward to achieve the public good, which can be obtained from

R̄=
∑T

i=1 Ri

T
. ð1Þ

If the public good cannot be realized, the reward may not lead to its intended
result, and it can be considered as another kind of contribution. The direct payoffs
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of the cooperator or the defector with and without the public good can be described
as R̄−C′ or −D′ and R ̄−C or −D respectively. However, it is not trifle to obtain
the values of C′ and D′ in reality. Let θ or γ be the reduction of the contribution or
the defection cost before and after the realization of the public good in terms of a
unit of initial investments, we have

θ=
C−C′

C+R ̄
ð2Þ

and

γ =
D−D′

C+ R̄
, ð3Þ

where their values can be obtained from similar situations in other industries
through data analysis. Then the direct payoffs of being a cooperator or a defector
after realizing the public good can be updated as Ri −C+ θðC+ R̄Þ or
−D+ γðC+ R̄Þ based on Eqs. (2) and (3).

When the players’ cooperation reaches certain level, a public good can be
realized, and it benefits all the players irrespective of whether they choose coop-
eration or defection. Let E be economic impact factor to describe its comprehensive
effect in terms of one percent increment of the cooperators and one unit of initial
contribution, economic literature shows that it has been used to analyze the benefits
of the public goods in biomass production (Perez-Verdin et al. 2008), food chain
(Sonntag 2008), public markets (Econsult Corporation 2007) and a variety of other
sectors on the local economy. Since the benefit from the realization of the public
good depends on the threshold of the public good, the value of E, and the initial
contributions including C and R ̄, a player’s additional payoff after realizing the
public good can be estimated as TðC+ R̄ÞE irrespective of he/she chooses to be ith
cooperator or not. Then the payoffs of choosing cooperation or defection with and
without the public good can be summarized in Table 1.

If the useful patterns related to parameters D, E, θ, and γ in the players’ payoffs
exist in similar industries, their values can be obtained from advanced statistical and
machine learning such as logistic regression, Bayesian network analysis; otherwise,
their values can be approximated using a scientific consensus methodology such as
expert elicitation. Expert elicitation is the synthesis of authorities of a subject where
there is uncertainty due to insufficient data or when such data is unattainable
because of physical constraints or lack of resources (Apostolakis 1990).

Table 1 The payoffs of a player being ith cooperator or not with and without the public good

Has the public good been
realized?

Payoff of being a cooperator Payoff of being a defector

No Ri −C −D

Yes Ri −C+ θðC+ R̄Þ+ TðC+R ̄ÞE −D+ γðC+ R̄Þ+ TðC+R ̄ÞE
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As stated previously, the Nash equilibrium of the public goods game without
reward is zero cooperation. Conventional reward C−D to encourage individual
players’ cooperation and push the Nash equilibrium to realize the public good can
be obtained from the player’s payoffs without the realization of the public good as
shown in Table 1. However, in addition to considering the payoff of being a
cooperator, each boundedly rational player also concerns about his/her contribution
could be in vain once the public good cannot be realized. As the number of
cooperators increases, the chance of realizing the public good becomes large, which
can encourage more players’ participation in cooperation. It turns out that the
conventional reward cannot efficiently encourage cooperation to realize the public
good due to the uncertainty in the public goods game. Therefore, a behavioral
game-theoretic decision model is proposed in the next section to consider the risk
and impact of the public good in individual players’ decision making processes.

3 Large-Scale Cooperation with the Risk and Impact
of the Public Good

3.1 Behavioral Game-Theoretic Decision Model

Let X ̃ be a player’s potential payoff from being a cooperator or a defector in a public
goods game, and it is a random variable due to the uncertainty in the game. In the
behavioral game-theoretic decision model, the random variable is approximated by
the player’s expected payoff and the risk of obtaining it based on his/her risk taking
attitude. Let X ̄ be the estimation of X ̃, and its value is described by the following
equation

X ̄=EðX ̃Þ− λδðX ̃Þ, ð4Þ

where EðX ̃Þ represents the player’s expected payoff of choosing cooperation or
defection, standard deviation δðX ̃Þ indicates the risk of obtaining it, and coefficient λ
denotes his/her risk taking attitude to the risk. If the player has risk tolerant attitude,
the value of his/her risk taking attitude is not greater than zero ðλ≤ 0Þ; if he/she is a
risk averter, the value of his/her risk taking attitude is greater than zero ðλ>0Þ.

Individuals’ risk attitudes have been studied by many game theory scholars in
recent years (Egbue and Long 2012; Eckel and Grossman 2008; Fullenkamp et al.
2003; Pennings 2002; Wang et al. 2009). In this paper, it is assumed that there are
both risk tolerant players and risk averters in the game, and the change of exoge-
nous factors, such as the rewards and the number of the cooperators in the game,
can only affect the players’ expected payoff and its associated risk rather than
his/her risk taking attitude. The values of this parameter can be evaluated from large
representative surveys combined with complementary field experiments (Dohmen
et al. 2011). Finally, the players’ risk taking attitudes λ can be estimated by
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normalizing the evaluated values into an interval between lower bound −W and
upper bound V ðW , V >0Þ.

In the public goods game, each player’s payoff depends on other players’
decisions and the realization of the public good. The progress of realizing the public
good indicates the outcome of their interaction with the rewards, which can be
described by the number of the cooperators in the public goods game. Let Pi be the
probability of realizing a public good with i cooperators 0≤Pi ≤ 1, i∈ Ið Þ, and it
can be evaluated from similar industries using data analysis. In general, the more
cooperators lead to the larger probability of reaching the public good. In the
meantime, the probability of un-realizing the public good can be denoted as 1−Pi.
If no defector chooses to be the ith cooperator, the probability of realizing a public
good becomes Pi− 1 because of i − 1 cooperators. Due to the relationship between
the players’ payoffs and the realization of the public good, probabilities 1−Pi or
1−Pi− 1 and Pi or Pi− 1 also indicate the chances that a player obtains his/her
payoffs from choosing cooperation or defection before and after the realization of
the public good as shown in Table 1 respectively. Thus, the individual players’
payoff in the public goods game can be estimated from the progress of cooperation
and their risk taking attitudes based on Eq. (4).

Let Gĩ be the ith cooperator’s payoff with reward Ri. If the probability of real-
izing the public good is Pi, the player’s expected payoff EðG ̃iÞ of choosing coop-
eration can be calculated from the following equation based on Table 1

EðG̃iÞ= ðRi −CÞð1−PiÞ+ Ri −C+ ðθ+TEÞðC+R ̄Þ½ �Pi

=Ri −C+ ðθ+TEÞðC+R ̄ÞPi, i∈ I
ð5Þ

and its value keeps rising as the number of cooperators or/and the amount of
rewards increases. In the meantime, the risk δðG ̃iÞ of choosing cooperation and
obtaining the expected payoff can be estimated from its standard deviation

δðGĩÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðG̃i −EðG̃iÞÞ2�

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðG̃2

i Þ− ðEðG̃iÞÞ2
q

= ðθ+TEÞðC+ R̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p
. i∈ I.

ð6Þ

The value of δðGĩÞ increases at the initial stage of cooperation, and then
decreases after the value of Pi is greater than 0.5 due to the properties of itemffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pið1−PiÞ
p

, which captures the risk of realizing the public good during the process
of cooperation. Let λi be the ith cooperator’s risk taking attitude to balance the
expected payoff and its associated risk, and the approximation Ḡi of cooperator’s
payoff Gĩ can be obtained as follows from Eq. (1)

Gī =EðG ̃iÞ− λiδðG ̃iÞ=Ri −C+ ðθ+ TEÞðC+ R̄Þ½Pi − λi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p
�. i∈ I. ð7Þ
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If the player is not willing to be the ith cooperator, his/her payoff of being a
defector is denoted as H ̃i. The probability of realizing the public good becomes
Pi− 1, and the estimation H ̄i of value of H ̃i can be described as

Hī =EðH ̃iÞ− λiδðH ̃iÞ
= −D+ ðγ + TEÞðC+ R̄Þ½Pi− 1 − λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi− 1ð1−Pi− 1Þ

p
�, i ∈ I

ð8Þ

where its derivative is similar to that of Eq. (7). It is assumed that the impact of an
individual farmer’s choice on probability Pi is small and can be ignored for a
large-scale cooperation. Then probability Pi− 1 in Eq. (8) can be replaced by Pi for
the sake of mathematical simplicity. Since a player’s gain of being a cooperator is
the difference of his/her payoffs between choosing cooperation and defection, its
value can be computed from

Gī −H ̄i =EðG̃iÞ−EðH ̃iÞ− λi½δðG ̃iÞ− δðH ̃iÞ�
=Ri −C+D+ ðθ− γÞðC+ R̄Þ½Pi − λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p
�, i∈ I

ð9Þ

where the player chooses to cooperate if its right-hand-side value is greater than
zero. Equation (9) indicates individual players’ decision making process in the
public goods game based on the behavioral game-theoretic decision approach. The
minimal value (−W) or the maximal value (V) of the players’ risk taking attitudes as
mentioned earlier in this section can be evaluated from Eq. (9). For example, the
player with the most risk aversion attitude may choose to defection even if his/her
reward is C−D and the public good is closed to be realized.

3.2 The Realization of the Public Good with the Rewards

Using the progress of cooperation to represent the outcome of the public goods
game, the behavioral game-theoretic decision model explores the players’ interac-
tion with the rewards, and describes their individual decision making processes
based on their risk taking attitudes. In a public goods game with T players, suppose
a player chooses cooperation and becomes the ith cooperator, and the probability of
realizing the public good increases to Pi. All the players can observe that, the rest
T − i defectors will decide who will be the next cooperator. Each of them can
update his/her gain of choosing cooperation, but has no idea of the others’ decisions
and the realization of the public good due to limited information in the game. If a
defector’s gain of choosing cooperation with the current cooperation level is greater
than zero, he/she will be the i + 1th cooperator; otherwise, the reward needs to be
increased until one of them is willing to choose cooperation based on his/her gain.
Therefore, the conventional reward can be reduced along the process of realizing
the public good due to the impact of the public good.
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At certain point of the cooperating process, the gains of choosing cooperation for
different players depend on their risk taking attitudes. If θ≥ γ, the risk of choosing
cooperation is greater than that of selecting defection based on Eqs. (6) and (8). It is
necessary to use rewards to promote cooperation and realize the public good. With
certain reward, the most risk tolerant player is more likely to choose cooperation
based on Eq. (9), and the index to indicate the sequence of the cooperator’s
appearance can be described as i = 1, 2 … T. If θ< γ, the risk of choosing
defection is greater than that of selecting cooperation, and the impact of the public
good can greatly promote the player’s cooperation and some players are willing to
avoid the risk by choosing cooperation even without the reward. Since the most risk
aversion player is more likely to choose cooperation in this case from Eq. (9), the
index to represent the order of the players’ choosing cooperation can be denoted as
i = T, T − 1, T – 2 … 1. So, the sequence of the players to choose cooperation is
determined by their risk taking attitudes. Due to the players’ different risk taking
attitudes as mentioned before, the large-scale cooperation in the public goods game
with the reward can be simulated as discrete events.

4 Individual Reward Strategies Based on Behavioral
Game-Theoretic Decision Model

For certain level of the reward to compensate the difference between the contri-
bution and defection cost, whether a player chooses to be the ith cooperator or not
depends on how he/she treats the potential public good based on his/her risk taking
attitude λi. If the value of ðθ− γÞðC+ R̄Þ½Pi − λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p � in Eq. (9) is less than
zero, it represents the risk of the public good, and it is necessary to use a reward
more than C − D to compensate the risk and make this player choose cooperation;
otherwise, it denotes the impact of the public good, and he/she would like to be a
cooperator with a reward less than C − D. The risk or impact of the public good
depends on the number of the cooperators in the game, and then efficient individual
reward strategies can be obtained along the process of large-scale cooperation.

From Eq. (9), the value of reward Ri to encourage a player to be the ith coop-
erator can be obtained from the following equation

Ri =
C−D− ðθ− γÞðC+R ̄Þ½Pi − λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p Þ�, if θ≥ γ i=1, 2, 3 . . . T
C−D− ðγ − θÞðC+R ̄Þ½λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p
−Pi�, if γ > θ i=T , T − 1, T − 2 . . . 1

�

ð10Þ

where the value of average individual-based reward R ̄ can be derived as follows
based on Eqs. (1) and (10)

68 Y. Luo



R̄=
ð2C−DÞT

T + ∑T
i=1 fðθ− γÞ½Pi − λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p �g −C. ð11Þ

If the players have risk tolerant attitudes with θ≥ γ and risk aversion attitudes
with γ > θ, conventional reward C−D to encourage their cooperation can be
reduced based on Eq. (10) due to the impact of the public good; otherwise, besides
the conventional reward, additional reward is required to promote the players’
cooperation by compensating the risk of the public good. Whether the total amount
of the conventional rewards can be saved depends on average reward R̄ in Eq. (11).
Let ∑T

i=1fðθ− γÞ½Pi − λi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1−PiÞ

p �g be the accumulate risk/impact of the public
good for all T players in terms of one unit of initial investment, and the value of R̄
can be less than C−D when the accumulated risk/impact is greater than zero.

5 Conclusions

A public goods game is employed to describe the interaction among players for
large-scale cooperation, and a novel behavioral game-theoretic approach is devel-
oped to model individual players’ choosing cooperation or defection in the public
goods game. The players are assumed to make the best decisions by balancing the
expected gain and its associated risk with their own risk taking attitudes. It turns out
the behavioral game-theoretic model is able to capture the individual players’
decision making processes in the game and explore the necessary conditions to
develop efficient reward strategies for the realization of the public good.

While the public good’s achievement depends on a large variety factors in the
public goods game, the approach to describe the individual players’ decision
making processes reveals their basic relationships, which can be considered as an
important component to simulate large-scale cooperation. In this paper, the impact
of the public good on the public goods game is analyzed from the viewpoint of
individual players’ decision-makings. However, as the number of players increases,
the increased interaction between them makes their decisions more rational. Then
future research will explore the impact of the public good from the viewpoint of
group-based decision-making and model the whole process of large-scale cooper-
ation by integrating both of them.
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1 Introduction

After the duopoly model with linear demand and cost functions proposed by Cournot

(1838), where a Cournot-Nash equilibrium is achieved in the long run as the game

is repeated by two players endowed with naïve expectations, oligopoly models have

been extended by many authors in several directions. A stream of literature stud-

ies the stability of oligopolistic markets as the number of competing firms increases

(see e.g. Teocharis 1960; Hahn 1962; Okuguchi 1964; Okuguchi and Szidarovszky

1999) or different kinds of expectations are considered (see e.g. Szidarovszky and

Okuguchi 1997; Szidarovszky 1999; Bischi and Kopel 2001) or different levels of

market knowledge (see e.g. Bischi et al. 2010 and references therein). Another stream

considers duopoly models with nonlinear demand and/or cost functions, from which

several kinds of reaction functions can be obtained, even non monotonic ones, which

may lead to periodic or quasi-periodic or chaotic behaviors (Rand 1978; Dana and

Montrucchio 1986; Puu 1991; Kopel 1996; Bischi et al. 2000, 2010). In particu-

lar, David Rand, in a seminal paper published in 1978, proposed unimodal reaction

functions represented by symmetric piecewise linear tent maps, and by using a for-

mal approach based on symbolic dynamics showed that with such reaction functions

a Cournot tâtonnement can be chaotic, i.e. erratic bounded oscillations arise with

sensitive dependence on initial conditions. Moreover, such behaviour persists if the

shape of the reaction functions is slightly changed, i.e. the chaotic behaviour is struc-

turally stable (also denoted as “robust chaos”).

Economic motivations for unimodal reaction functions have been given in Huyck

et al. (1984) and Witteloostuijn and Lier (1990) in terms of goods that are strategic

substitutes and complements in the sense of Bulow et al. (1985), whereas (Dana and

Montrucchio 1986) proved that any kind of reaction function can be obtained from

a sound economically microfounded problem with suitable demand and cost func-

tions. In Puu (1991), Puu shows how an hill-shaped reaction function can be obtained

by using linear costs and a hyperbolic demand function, i.e. an isoelastic demand,

and that complex behavior emerges provided that agents are sufficiently heteroge-

neous; in Kopel (1996) and Bischi and Lamantia (2002) unimodal reaction curves

are obtained starting from a linear demand function and a nonlinear cost function

with positive cost externalities. In all these papers complex (periodic or chaotic)

dynamics arise through the well-known period doubling route to chaos, typical of

nonlinear smooth discrete dynamical systems. Moreover, global dynamical proper-

ties have been studied in Bischi et al. (2000); Bischi and Kopel (2001); Bischi and

Lamantia (2002); Agliari et al. (2002) where the method of critical curves for con-

tinuously differentiable maps is used to bound chaotic attractors and to characterize

global bifurcations that cause qualitative modifications of the basins of attraction.

All these oligopoly models are based on the implicit assumption that firms can

adjust outputs to their desired levels, without constraints on minimum and maxi-

mum production. Only a few works on the subject relax this assumption (see for

instance Puu and Norin 2003; Tramontana et al. 2011; Bischi et al. 2010; Bis-

chi and Lamantia 2012). Of course, the presence of an upper limit of production
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capacity constitutes a quite realistic assumption, that may be related to exogenous

factors (e.g. maximum production rules imposed by authorities of scarcity of lim-

iting input factors) or endogenous limitations that have not been considered in the

optimization problems leading to the best reply decision expressed by the reaction

curve. As a matter of fact, a maximum production constraint introduces an upper

cut in the shape of the reaction functions, which consequently become piecewise
smooth maps characterized by a horizontal portion (flat-top reaction functions). The

state space of the corresponding discrete dynamical system, obtained by introduc-

ing the usual Cournot tâtonnement with naïve expectations, can be partitioned into

regions where the functional form of the map changes (see Mosekilde and Zhusub-

aliyev 2003 and Bernardo et al. 2008). This implies that interesting dynamic sce-

narios, typical of piecewise differentiable maps, can be observed and explained as

consequences of the presence of borders in the phase space (or switching manifolds)

where the functional form defining the map changes, and consequently the Jacobian

matrix of the dynamical system is discontinuous along such borders. The collision

of an invariant set of the piecewise smooth map with such a border may lead to a

bifurcation often followed by drastic changes in the dynamic scenarios. Such con-

tacts are called Border Collision Bifurcations, a term introduced in Nusse and Yorke

(1992) (see also Nusse and Yorke 1995), and then adopted by many authors. The

simplest case occurs when a fixed point (or a periodic point) crosses a border of non

differentiability in a piecewise smooth map. In Banerjee et al. (2000a, b), it is shown

that such a contact may produce any kind of effect (transition to another cycle of

any period or to chaos), depending on the eigenvalues of the two Jacobian matrices

involved on the two opposite sides of the border.

The effects of these bifurcations in oligopoly models with constraints have already

been considered in Bischi et al. (2010); Bischi and Lamantia (2012). In particular, the

latter examines a classical linear Cournot model and shows that the introduction of

capacity constraints leads to complex time patters, i.e. the creation of both periodic

and chaotic attractors in a model whose dynamics without constraints only exhibits

convergence to the unique Cournot-Nash equilibrium. Similar results are shown in

Bischi et al. (2010), where smooth nonlinear models with constraints are considered

as well, and standard bifurcations typical of smooth dynamical systems are combined

with border collision bifurcations when constraints are imposed.

In this paper we consider a different dynamic experiment: Starting from the

chaotic piecewise linear model of Rand we introduce the constraints that trans-

form the tent maps into flat-top reaction functions, and we show that this transforms

chaotic motion into periodic behaviour, so that predictability is enhanced due to the

presence of maximum production constraints. Moreover, the convergence to these

cycles is very fast, as they are superstable due to the periodic points inside the flat

branches of the modified reaction function. In particular, we investigate the existence

of stable cycles and prove that they are created through border collision bifurcations.

Cases of coexistence of stable cycles, each with its own basin of attraction, are also

discussed.

The duopoly model with constraints proposed in this paper can also be seen as

a simple exemplary case for the exploration of the properties of piecewise smooth
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dynamical systems. Indeed, we believe that it is nowadays interesting to relate such

phenomena to the rich literature on piecewise smooth dynamical systems arising in

relevant applications in electrical engineering (see Bernardo et al. 1999; Banerjee

and Grebogi 1999; Banerjee et al. 2000a, b; Avrutin and Schanz 2006; Avrutin et al.

2006; Tramontana and Gardini 2011) or physics (see e.g. Zhusubaliyev et al. 2006,

2007), and even to the works of some mathematical precursors of Nusse and Yorke

that already studied the particular bifurcations associated with piecewise smooth

maps, such as Leonov (1959, 1962); Mira (1978, 1987); Maistrenko et al. (1993,

1995, 1998).

The paper is organized as follows. In Sect. 2 the setup of the classical Cournot

duopoly model and some basic properties are recalled, in particular the possibility

to understand the dynamic behaviour of the duopoly model through the study of a

proper one-dimensional map defined as the composition of the two reaction func-

tions. In Sect. 3 the properties of the one-dimensional map are studied in detail, and

in Sect. 4 the corresponding dynamics of the two-dimensional Cournot model are

considered, together with the effects of the presence of an adaptive adjustment with

inertia, or anchoring, where any firm computes the next period production as a con-

vex combination between the current output and the one computed according to the

reaction function. Section 5 concludes and gives suggestions on further researches

about the proposed model.

2 The Constrained Cournot-Rand Model with Piecewise
Linear Reaction Functions

The classical Cournot duopoly game is obtained by considering a market composed

of two firms producing homogeneous goods. At each discrete time period t = 0, 1, ...,
the two firms decide their outputs, let’s say xt and yt respectively, by solving a profit

maximization problem

xt+1 = argmaxΠx(x, y
(e)
t+1); yt+1 = argmaxΠy(x

(e)
t+1, y)

where x(e)t+1 and y(e)t+1 represent the expectations of each producer about the production

decision of the other one. Under the assumptions that each maximization problem

has a unique solution and each firm has naïve expectations, i.e. x(e)t+1 = xt and y(e)t+1 = yt
as in the original Cournot paper (Cournot 1838), the classical Cournot tâtonnement

is obtained, given by (xt+1, yt+1) = T(xt, yt) = (Rx(yt),Ry(xt)) where Rx(yt) and Ry(xt)
are called reaction functions.

We recall (see e.g. Bischi et al. 2000; Agliari et al. 2002) that the second iterate

of the map T is a decoupled map:

T2(x, y) = T(Rx(y),Ry(x)) = (Rx(Ry(x)),Ry(Rx(y))) = (F(x),G(y)).
The two one-dimensional maps F and G are defined as the compositions of reaction

functions:



Periodicity Induced by Production Constraints . . . 77

F(x) = Rx◦Ry (x) , x ∈ X, and G(y) = Ry◦Rx (y) , y ∈ Y (1)

where the strategy sets X and Y are assumed to be such that the maps F and G are

well defined. Hence, all the properties of the classical Cournot map can be deduced

from the study of these two (conjugate) one-dimensional maps, see again (Bischi

et al. 2000) where it is shown, among other properties, that a point (xi, yi) is a peri-

odic point of period n for T if and only if x = xi, and y = yi are periodic points of F
and G of period n (if n is odd) or a divisor of n (if n is even). Moreover, any cycle

C of the two-dimensional map T is associated with one or two cycles of F, say C1
and C2 (C2 = C1 or C2 ≠ C1), with the periodic points of C belonging to the carte-

sian product (C1∪C2 ) × (Ry(C1 ∪ C2)), where C is attracting for T if and only C1
and C2 are attracting for F. A similar result holds for cyclic chaotic intervals of the

map F, giving rise to cyclic chaotic rectangles of T according to the corresponding

cartesian products. In case of coexistence of attractors, also the basins of attraction

have the form of a rectangular shaped grid, according the cartesian products of the

corresponding basins of the maps F and G.

In the original work of Cournot, as well as in many textbooks, the reaction func-

tions are decreasing and intersect in a unique point of the positive quadrant, which is

also the unique equilibrium point, now denoted as Cournot-Nash equilibrium. In this

case the trajectories of the discrete dynamical system can either converge to the fixed

point, or to a cycle of period 2 or diverge. Instead, if more general reaction functions

are considered, then the Cournot tâtonnement may display more complex behaviors.

In the pioneering paper (Rand 1978) it is shown that quite complex dynamics can

emerge when unimodal reaction functions are considered, in particular the occur-

rence of robust chaos is proved by considering a tent map, defined by the following

piecewise linear function:

R(z) =

{
az if 0 ≤ z ≤ 1

2
a(1 − z) if 1

2
≤ z ≤ 1

(2)

In this paper, following (Bischi et al. 2010), we introduce an upper capacity limit

Lz, with z = x, y, so that each firm can produce an output z bounded inside the inter-

val [0,Lz]. Moreover, we introduce the possibility of inertia (or anchoring attitude)

given by a convex combination between the current production and the one computed

according to the reaction function, namely

T ∶
{

xt+1 = (1 − 𝛼x)xt + 𝛼xRx(yt)
yt+1 = (1 − 𝛼y)yt + 𝛼yRy(xt)

(3)

where 𝛼z ∈ [0, 1], z = x, y, expresses the attitude to stick at the current production

as the parameter 𝛼z decreases. Of course, for 𝛼x = 𝛼y = 1, the usual Cournot tâton-

nement without inertia is obtained, whose dynamics is reduced to the study of the

one-dimensional map F.



78 G.-I. Bischi et al.

2.1 The Piecewise Linear One-Dimensional Map
for the Case Without Inertia

Let us consider the following reaction function, given by a piecewise linear contin-

uous maps depending on two parameters, the slope ax > 1 and the upper production

constraint (the “roof”) Lx >
1
2
:

(I) if Lx ≥
ax

2
, then the reaction function is the standard tent map (2), i.e.:

Rx(I)(y) =

{
axy if 0 ≤ y ≤

1
2

ax(1 − y) if 1
2
≤ y ≤ 1

(4)

(II) If
1
2
< Lx <

ax

2
then the reaction function is a tent map with a flat top branch:

Rx(II)(y) =
⎧⎪⎨⎪⎩

axy if 0 ≤ y ≤
Lx

ax

Lx if Lx

ax
≤ y ≤ 1 − Lx

ax

ax(1 − y) if 1 − Lx

ax
≤ y ≤ 1

(5)

whose shape in the two different cases is qualitatively shown in Fig. 1. An analogous

definition holds for Ry(x) with slope ay and upper production Ly.

Let us first consider the Cournot duopoly model (3) without inertia, i.e. 𝛼x = 1 and

𝛼y = 1, so that map T becomes a two-dimensional map having the second iterate with

separate variables:

T2 ∶
{

x′′ = F(x) ∶= Rx◦Ry(x)
y′′ = G(y) ∶= Ry◦Rx(y)

(6)

whose properties can be studied by use of the composite function F(x) = Rx◦Ry(x)
(or the conjugate one G(y)) as described in Bischi et al. (2000). Thus, let us focus on

the possible shapes of the map related to F(x). Depending on the values of the four

constants of the map, ax, Lx, ay and Ly, we can distinguish four cases:

Fig. 1 Qualitative picture

of the reaction function Rx(y)
in the two possible

configurations: Rx(I)(y) in

(a), and Rx(II)(y) in (b)
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Fig. 2 Qualitative shape of

F(x) in the case N1

Fig. 3 Qualitative shape of

F(x) in the case N2

N1 (I-I) when Ly ≥
ay

2
and Lx ≥

ax

2
, then the function F(x) is defined as follows

(the qualitative shape of the map is shown in Fig. 2):

F(x) =

⎧⎪⎪⎨⎪⎪⎩

axayx if 0 ≤ x ≤
1
2ay

−axayx + ax if 1
2ay

≤ x ≤
1
2

−ax(−ayx + ay) + ax if 1
2
≤ x ≤ 1 − 1

2ay

ax(−ayx + ay) if 1 − 1
2ay

≤ x ≤ 1

(7)

N2 (I-II) when Ly ≥
ay

2
and Lx <

ax

2
. Then depending on the parameters’ values

we can have the following two cases (see Fig. 3):

if
ay

2
≤ (1 − Lx

ax
) then

F(x) =

⎧⎪⎪⎨⎪⎪⎩

axayx if 0 ≤ x ≤
Lx

axay

Lx if Lx

axay
≤ x ≤ 1 − Lx

axay

−ax(−ayx + ay) + ax if 1 − Lx

axay
≤ x ≤ 1

(8)
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Fig. 4 Qualitative shape of

F(x) in the case N3

if
ay

2
> (1 − Lx

ax
) then

F(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

axayx if 0 ≤ x ≤
Lx

axay

Lx if Lx

axay
≤ x ≤

1
ay
− Lx

axay

−axayx + ax if 1
ay
− Lx

axay
≤ x ≤

1
2

−ax(−ayx + ay) + ax if 1
2
≤ x ≤ 1 − 1

ay
+ Lx

axay

Lx if 1 − 1
ay
+ Lx

axay
≤ x ≤ 1 − Lx

axay

ax(−ayx + ay) if 1 − Lx

axay
≤ x ≤ 1

(9)

N3 (II-I) when Ly <
ay

2
and Lx ≥

ax

2
then the function F(x) is defined as follows

(the qualitative shape of the map is shown in Fig. 4):

F(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

axayx if 0 ≤ x ≤
1
2ay

−axayx + ax if 1
2ay

≤ x ≤
Ly

ay

−axLy + ax if Ly

ay
≤ x ≤ 1 − Ly

ay

−ax(−ayx + ay) + ax if 1 − Ly

ay
≤ x ≤ 1 − 1

2ay

ax(−ayx + ay) if 1 − 1
2ay

≤ x ≤ 1

(10)

N4 (II-II)when Ly <
ay

2
and Lx <

ax

2
. Then depending on values of the parameters

we can have the following two cases:
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Fig. 5 Qualitative shape of

F(x) in the case N4

if
ay

2
≤ (1 − Lx

ax
) then

F(x) =

⎧⎪⎪⎨⎪⎪⎩

axayx if 0 ≤ x ≤
Lx

axay

Lx if Lx

axay
≤ x ≤ 1 − Lx

axay

ax(−ayx + ay) if 1 − Lx

axay
≤ x ≤ 1

(11)

if
ay

2
> (1 − Lx

ax
) then

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

axayx if 0 ≤ x ≤
Lx

axay

Lx if Lx

axay
≤ x ≤

1
ay
− Lx

axay

−axayx + ax if 1
ay
− Lx

axay
≤ x ≤

Ly

ay

−axLy + ax if Ly

ay
≤ x ≤ 1 − Ly

ay

−ax(−ayx + ay) + ax if 1 − Ly

ay
≤ x ≤ 1 − 1

ay
+ Lx

axay

Lx if 1 − 1
ay
+ Lx

axay
≤ x ≤ 1 − Lx

axay

ax(−ayx + ay) if 1 − Lx

axay
≤ x ≤ 1

(12)

(the qualitative shape of the map is shown in Fig. 5).

Before investigating the properties of the one-dimensional map F(x) in the differ-

ent cases, let us recall those related to the tent map given in (4) and to the tent map

with a flat top defined in (5). Due to the constraints assumed for the slopes in our

system (always larger than 1), we have that the tent map cannot have any attracting

cycle, thus only one chaotic interval or cyclic chaotic intervals can exist as attracting

sets (we refer to the survey Sushko et al. 2015 for further details). Differently, the

occurrence of a flat top introduces the existence of attracting cycles (which are also

superstable, having the eigenvalue equal to zero), which occurs whenever a cycle has

a periodic point in the flat branch, and it attracts almost all the points of the interval
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(except the repelling cycles and related preimages of any order, which may belong to

a Cantor set, also called a chaotic repellor), or of an unstable cycle which is a Milnor

attractor (see Milnor 1985), attracting almost all the points of the interval. The cycles

existing in the flat top case are not different from those existing in unimodal maps,

as already described in Metropolis et al. (1973), but their appearance/disappearance

is related to the crossing of a point of the cycle through one border of the interval in

which the map has a flat branch, leading to a so-called border collision bifurcations

(BCB for short) in the terminology commonly used since its introduction by Nusse

and Yorke (1992, 1995) (see also Sushko et al. 2016).

3 Dynamics of the Equivalent One-Dimensional Map

The dynamics of the tent map is clearly strictly related to that of the one-dimensional

map F(x) in the case N1 described above, F(x) is a bimodal map with slopes every-

where larger than 1, from which it follows that also now an attracting cycle cannot

exist. However, the existence of two critical values (a local minimum and a maxi-

mum) may lead to coexistence of two chaotic attracting sets. An example is shown

in Fig. 6: the local minimum and its image, as well as the maximum and its image,

bound two intervals in which the dynamics are chaotic. The two basins of attraction

are separated by the repelling fixed point x∗ shown in Fig. 6a, and all its preimages

of any rank.

More frequently, when the Cournot game is described by map F(x) in the case N1,

the attracting set is unique, and given by a chaotic interval or cyclical chaotic inter-

vals. Differently, the cases considered below, involving a flat top, lead to attracting

cycles.

Fig. 6 Map F(x) at ay = 1.2, Ly = 0.7, ax = 1.2. In a Two coexisting chaotic intervals as attracting

sets in case N1 at Lx = 0.61. In b at Lx = 0.595 case N2 with two attracting sets: a chaotic interval

and a superstable 2-cycle. In c at Lx = 0.59 case N2 with two attracting sets: a chaotic interval and

a superstable fixed point
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3.1 Case N2

Let us consider the dynamics of map F(x) when the parameters satisfy the conditions

of case N2. Although the generic case consists of a unique superstable cycle, attract-

ing almost all the points of the interval, except those of repelling cycles and related

preimages, which may belong to a chaotic repellor, we can have situations leading to

coexistence. In fact, considering the example of case N1 shown above, in Fig. 6a, by

decreasing the slope ax we enter in case N2. In Fig. 6b, c we show the coexistence

of the attracting chaotic interval, related to the local minimum and its image, with

a superstable cycle related to the maximum. In Fig. 6b the maximum is a periodic

point of a superstable 2-cycle, while in Fig. 6c it is a superstable fixed point. In both

cases the two basins of attraction are separated as before by the repelling fixed point

x∗ shown in Fig. 6b, c and all its preimages of any rank.

In order to show the bifurcations related to the superstable cycles let us consider

a two-dimensional bifurcation diagram in the parameter plane (ax,Lx), as shown in

Fig. 7a, at fixed ay = 1.6 and Ly = 0.81. It can be seen that the diagonal (the straight

line Lx = ax∕2) is the bifurcation curve which separates two different regimes: above

it case N1 occurs (white points denote chaotic dynamics) while below it we have case

N2, and the colored regions indicate periodicity regions associated with superstable

cycles for which the maximum value is a periodic point (different colors correspond

to different periods of the cycles).

Whenever the periodic point belonging to a flat branch collides with one border

of the interval on which the map is flat, the cycle undergoes a border collision. For

example, considering a parameter point belonging to the yellow region shown in

Fig. 7a, map F has a unique attractor, a superstable fixed point x∗s on the rightmost

flat branch (and in value it is x∗s = Lx), as shown in Fig. 7b. Decreasing the parameter

Lx the fixed point x∗s undergoes border collision when it collides with the lower border

of the flat interval, i.e. when it is Lx = 1 − 1
ay
+ Lx

axay
leading to the BCB curve Bl of

equation (which also corresponds to Lx = x∗, or x∗s = x∗)

Fig. 7 In a two-dimensional bifurcation diagram in the parameter plane (ax,Lx); In b map F(x)
in case N2 at ax = 1.9 and Lx = 0.7 with a superstable fixed point; In c map F(x) in case N2 at

ax = 1.9 and Lx = 0.8 with a superstable 3-cycle. Here ay = 1.6 and Ly = 0.81
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Bl ∶ Lx =
axay − ax

axay − 1
(13)

while increasing the parameter Lx the fixed point x∗s undergoes border collision when

it collides with the upper border of the flat interval, i.e. when it is Lx = 1 − Lx

axay

leading to the BCB curve Bu of equation

Bu ∶ Lx =
axay

axay + 1
(14)

The two BCB curves Bl and Bu are intersecting in the point (ax,Lx) = (2 − 1
ay
, 1 −

1
2ay

) and thus it belongs to the diagonal, the line of equation Lx = ax∕2, as it is clearly

visible in Fig. 7a. The BCB occurring when the upper boundary Bu is crossed is a flip

BCB: the superstable fixed point becomes unstable (moving to the steep decreasing

rightmost branch) and leading to the appearance of a superstable 2-cycle. Notice

that increasing Ly further the dynamics can be studied by use of the tent map with

a flat top given in (5), up to the homoclinic bifurcation of the repelling fixed point

x∗ = axay−ax

axay−1
occurring when the image of the maximum is mapped into it, that is,

when F(Ly) = x∗ leading to the (homoclinic) bifurcation curve 𝜙 of equation

𝜙 ∶ Lx = 1 −
ay − 1

ay(axay − 1)
(15)

which is also shown in Fig. 7a.

In fact, in this interval of values of Lx, the absorbing interval is given by [F(Lx),Lx]
and map F in this interval has the same shape of map given in (5), thus the whole

sequence of cycles occurring in the U-sequence occurs also here, leading to infi-

nitely many periodicity regions related to attracting cycles. The borders of the peri-

odicity regions are related to flip BCB curves accumulating on homoclinic bifur-

cation curves which, on their turn, are related to parameter values in which the

image of some finite rank Fk(Lx) of the maximum Lx merges with a periodic point

of some repelling cycle. When a parameter point belongs to such particular homo-

clinic curves, as for the bifurcation curve 𝜙 given above, the repelling cycle which

includes the periodic point Fk(Lx) attracts the intervals in which the map is flat, as

well as all the related preimages, thus the repelling cycle becomes a Milnor attractor

(see Sushko et al. 2014 for further examples and discussion).

The values of the parameters used in the case shown in Fig. 7c belong to the red

region inside the portion where the U-sequence commented above occurs, and is

associated with an attracting 3-cycle with periodic points inside the absorbing inter-

val [F(Lx),Lx]. Notice that in Fig. 7a we can observe other regions associated with

superstable 3-cycles, they differ in the position of the periodic points with respect to

the branches of map F. For example in Fig. 8a we can see an enlarged portion of the

two-dimensional bifurcation diagram and on the line ax = 1.3 two more red regions
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Fig. 8 In a enlargement of a portion of Fig. 7a; In b map F(x) in case N2 at ax = 1.3 and Lx = 0.6;

In c map F(x) in case N2 at ax = 1.3 and Lx = 0.626. Superstable 3-cycles with periodic points

belonging to different branches of F(x) and different from the 3-cycle of Fig. 7c. Here ay = 1.6 and

Ly = 0.81

Fig. 9 One-dimensional bifurcation diagrams as a function of Lx at fixed ay = 1.6 and Ly = 0.81.

In a ax = 1.3; In b ax = 1.9

are crossed, and the related 3-cycles are shown in Fig. 8b, c. This also explains the

particular swallow tail shape of the regions below the BCB curve Bl.
The two arrows in the one-dimensional bifurcation diagram shown in Fig. 9a at

fixed ax = 1.3 and increasing Lx are evidencing the intervals related to the super-

stable 3-cycles shown in Fig. 8. While in Fig. 9b we show the one-dimensional bifur-

cation diagram at fixed ax = 1.9 and increasing Lx and the two arrows are evidencing

the interval related to the superstable fixed point bounded by the BCBs Bl and Bu
discussed above and shown in Fig. 7a. In both cases of Fig. 9a, b, as the parame-

ters cross the diagonal entering the region related to case N1 the dynamics become

chaotic in a unique interval.
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Fig. 10 In a two-dimensional bifurcation diagram in the parameter plane (ay,Ly); In b map F(x)
in case N3 at ay = 1.9 and Ly = 0.75 with a superstable 2-cycle having a periodic point in the local

minimum. Here ax = 1.5 and Lx = 0.8

3.2 Case N3

The dynamics of map F(x) when the parameters satisfy the conditions of case N3 are

similar to those of case N2 considered above, and can be studied via the conjugation

property. In fact, let us assume that the parameters are those of case N3, then instead

of map F(x) we can consider map G(y), for which the conditions are those of “case

N2” considered above. Then via conjugation as described in Bischi et al. (2000) we

can obtain the properties of map F(x).
As an example, consider the two-dimensional bifurcation diagram in the parame-

ter plane (ay,Ly) in Fig. 10a at fixed ax = 1.5 and Lx = 0.8 It can be seen that the

diagonal (the straight line Ly = ay∕2) is the bifurcation curve which separates two

different regimes: above it case N1 occurs (white points denote chaotic dynamics)

while below the diagonal we have case N3, and the colored regions indicate period-

icity regions associated with superstable cycles for which the local minimum value

ax(1 − Ly) is a periodic point.

It can be seen that the bifurcation structure is similar to the one shown in the

previous case N2, the BCB curves bounding the region related to the superstable

fixed point can be easily obtained from those already detected in the previous case

exchanging ax ⇔ ay and Lx ⇔ Ly leading to

Bu ∶ Ly =
axay

axay + 1
(16)

Bl ∶ Ly =
axay − ay

axay − 1
(17)

which are also shown in Fig. 10a. At fixed value of ay, increasing Ly the flip BCB

occurring crossing Bl leads to a repelling fixed point and to a superstable 2-cycle (see
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an example in Fig. 10b), and as long as the local minimum is mapped by F below

the repelling fixed point x∗ shown in Fig. 10b, (i.e. F(ax(1 − Ly)) < x∗), we have that

the existing cycles are those related to the U-sequence.

3.3 Transition N2–N4 (N3–N4)

From the comments given so far it is enough to consider only one transition, for

example we are interested in describing what happens when map F(x) changes from

case N2 to case N4, as similar behavior occurs also in the transition from case N3 to

case N4. The map in case N4 is characterized by both extrema, maximum and local

minimum, which occur in a flat branch. Thus the main difference with respect to the

cases commented above, in which the superstable cycle is necessarily unique, is that

the bistability of two superstable cycles may now occur, one with a periodic point in

the maximum Lx and one with a periodic point in the local minimum ax(1 − Ly).
We can have a global view of the many superstable cycles that occur in this

regime, considering the two-dimensional bifurcation diagram in the parameter plane

(ay,Ly) in Fig. 11a at fixed ax = 1.5 and Lx = 0.7. It can be seen that the diagonal

(the straight line Ly = ay∕2) is the bifurcation curve which separates two different

regimes: above it case N2 occurs, and the vertical strips are related to the exist-

ing superstable cycles having a periodic point in the local maximum Lx. The vertical

strips may continue also in the region below the diagonal, as in fact the related cycles

(superstable cycles with Lx as periodic point) may continue to exist, but now there

are also different regions having a horizontal shape, issuing from the diagonal, which

are periodicity regions associated with superstable cycles having a periodic point in

the local minimum ax(1 − Ly). For example, the vertical lines issuing from the points

ay(Bu) and ay(Bl), where

Fig. 11 In a two-dimensional bifurcation diagram in the parameter plane (ay,Ly); In b map F(x)
in case N4 at ay = 1.65 and Ly = 0.65 with two coexisting superstable fixed points. Here ax = 1.5
and Lx = 0.7
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Fig. 12 Two examples in case N4 at fixed ax = 1.5 and Lx = 0.7. In a ay = 1.65 and Ly = 0.75, a

superstable fixed point coexists with a superstable 5-cycle. In b ay = 1.86 and Ly = 0.875, a super-

stable 4-cycle coexists with a superstable 2-cycle

ay(Bu) =
Lx

ax(1 − Lx)
, ay(Bl) =

ax − Lx

ax(1 − Lx)
(18)

have been obtained from the expressions given in (14) and (13), respectively, denote

a vertical strip in which the superstable fixed point x∗s = Lx exists. The periodicity

region bounded by the BCB curve Bl and Bu given in (17) and (16), respectively,

denote that also the fixed point x∗ = ax(1 − Ly) related to the local minimum exists

and is superstable. Thus in the intersection of the two regions we have that the two

superstable fixed points coexist. An example of this situation is shown in Fig. 11b,

and the two basins of attraction are separated by the unstable fixed point x∗ and its

preimages of any rank, leading to alternating intervals which are accumulating to

x = 0 and x = 1.

From the parameters used in Fig. 11b, increasing Ly the bifurcation curve Bl is

crossed and leading to an unstable fixed point and a superstable 2-cycle. Further

increasing of Ly leads to cycles of different period coexisting with x∗s = Lx, an exam-

ple is shown in Fig. 12a, with a 5-cycle.

Clearly when vertical strips related to cycles of different periods intersect peri-

odicity regions issuing from the diagonal, then coexistence of cycles of different

periods occur. An example is shown in Fig. 12b where a superstable 4-cycle (with

a periodic point in Lx) coexists with a superstable 2-cycle for which the local min-

imum value ax(1 − Ly) is a periodic point. In both examples shown in Fig. 12 there

are also fixed points and repelling cycles which are homoclinic, thus the two basins

have a fractal boundary, as it includes a chaotic repeller.
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4 Rand Duopoly with Inertia

The dynamics of the two-dimensional Cournot map T given in (3) in the case 𝛼x = 1
and 𝛼y = 1 are related to those of the composite function F(x) defined in (1). As

already mentioned, these are studied in Bischi et al. (2000) where it is shown that the

relevant property of map T is multistability (whenever map F has attracting cycles

of period larger than 2). In the case considered above, except for case N1, we have

abundance of regions related to superstable cycles of F and thus we have multista-

bility of superstable cycles of map T , with basins that are separated by vertical and

horizontal straight lines.

As an example, let us consider the parameter values leading to the attracting 3-

cycle of F(x) shown in Fig. 7c. We can see in that figure that the fixed points x∗
and x∗u are both homoclinic, thus a chaotic repellor exists in this case. We know that

for the two-dimensional map T (Cournot-Rand modified map) there are 9 periodic

points of the attracting sets belonging to two coexisting cycles, one of period 3 and

one of period 6. Their basins are constituted by rectangles with a fractal structure,

as infinitely many repelling cycles belong to a Cantor set which is included in the

frontier between the two basins of attraction, as shown in Fig. 13a.

Similarly, considering the example of case N4 shown in Fig. 12a, in which map

F(x) has two attractors, a fixed point and a 5-cycle, and the fixed point close to the

5-cycle is homoclinic, thus a chaotic repellor exists. We know that for T the peri-

odic points of the attracting sets are 36 and belong to five coexisting cycles, one

fixed point, a 5-cycle, and three different 10-cycles, whose basins are constituted by

rectangles with a fractal structure, as shown in Fig. 13b.

The introduction of the adaptive mechanism (with 𝛼x < 1 and 𝛼y < 1) leads to

the disappearance of many cycles, and the map (no longer with separate variables in

Fig. 13 Two examples of the two-dimensional map T in the case 𝛼x = 1 and 𝛼y = 1. In a cor-

responding to the example shown in Fig. 7c (ay = 1.6, Ly = 0.81, ax = 1.9 and Lx = 0.8) map T
has two attractors, a 3-cycle and a 6-cycle. In b corresponding to the example shown in Fig. 12a

(ay = 1.65, Ly = 0.75, ax = 1.5 and Lx = 0.7), map T has 5 coexisting attracting cycles, as com-

mented in the text
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Fig. 14 Three examples of the two-dimensional map T in the case with inertia, corresponding

to changes in the example shown in Fig. 13a (ay = 1.6, Ly = 0.81, ax = 1.9 and Lx = 0.8). In a
𝛼x = 0.995 and 𝛼y = 0.99, the map T has two coexisting attracting cycles. In b 𝛼x = 0.989 and

𝛼y = 0.99, the map T has a unique attractor, a 6-cycle. In c 𝛼x = 0.9 and 𝛼y = 0.95, the map T has

a unique chaotic attractor

the second iterate) also has basins which are no longer bounded by straight lines. In

Fig. 14 we slightly decrease the values of 𝛼x and 𝛼y. In Fig. 14a we can see that the

attractors are still two, but now a 6-cycle coexists with a 13-cycle, and the basins also

are slightly modified in shape (they are no longer bounded by vertical and horizontal

straight lines). With a further decrease of 𝛼x we see the disappearance of the 13-

cycle and the 6-cycle is left as unique attractor (see Fig. 14b), which attracts almost

all the points (as repelling cycles and a chaotic repellor most likely still exist), and

in Fig. 14c a chaotic attractor is observed as unique attracting set.

Similarly, considering the case shown in Fig. 13b and slightly decreasing the val-

ues of 𝛼x and 𝛼y, we observe the disappearance of some attractors. The coexistence

of three attractors is evidenced in Fig. 15a (a fixed point, a 4-cycle, and a 20-cycle),

Fig. 15 Three examples of the two-dimensional map T in the case with inertia, corresponding to

changes in the example shown in Fig. 13b (ay = 1.65, Ly = 0.75, ax = 1.5 and Lx = 0.7). In a at

𝛼x = 0.99 and 𝛼y = 0.95 map T has three coexisting attracting cycles. In b 𝛼y = 0.9 and 𝛼x = 0.95,

the map T has two coexisting attracting cycles. In c 𝛼x = 0.8 and 𝛼y = 0.95, the map T has a chaotic

attractor coexisting with an attracting 4-cycle
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while decreasing further 𝛼x two attractors are left (a fixed point and an 8-cycle are

visible in Fig. 15b). Here also a transition to chaos is observed, in Fig. 15c a chaotic

set coexists with an attracting 4-cycle. The shape of the basin shows that a chaotic

repellor still exists.

The two-dimensional map T results now in a continuous piecewise smooth map,

thus contact bifurcations and other global bifurcations can be studied by using the

usual tools of noninvertible maps (see Mira et al. 1996), coupled with the prop-

erties and BCBs related to piecewise smooth maps. This field of research in two-

dimensional maps still has many open problems, and we leave this as further work

for the future.

5 Conclusions and Outline of Further Investigations

In this paper we considered the Cournot duopoly model proposed by Rand (1978)

characterized by unimodal piecewise linear reaction functions in the form of tent

maps, and we added maximum production constraints, thus giving flat-top shaped

reaction functions. We have shown that the robust chaotic motion proved by Rand

is replaced by superstable periodic dynamics whenever production constraints are

imposed. By taking the limiting values of upper production constraints as bifurca-

tion parameters, we have analyzed the appearance of bifurcation structures which

are specific to border collision bifurcations, global (or contact) bifurcation that have

recently become a focus topic in the literature on applied non smooth dynamical

systems. The analysis is performed by studying the equivalent one-dimensional map

obtained from the composition of the two piecewise linear top-flat reaction functions,

a general property specific to two-dimensional mappings with decoupled second iter-

ate.

Then inertia is added to the model, expressed by assuming a convex combina-

tion between the current production and the one computed according to the reaction

functions. After this modification the property of decoupled second iterate no longer

holds, and a true two-dimensional dynamical system must be considered. However,

the results obtained without inertia can provide an useful benchmark case that helps

one to approach the more complete study of the adaptive dynamics with inertia. Just

a few numerical examples are given in this paper about the model with inertia, and

much more can be done in the future to understand the effects of inertia and of het-

erogeneity between firms related to different degrees of inertia as well as different

reaction functions.

Acknowledgements This work is developed in the framework of the research project on “Dynamic

Models for behavioural economics” financed by DESP-University of Urbino.



92 G.-I. Bischi et al.

References

Agliari, A., Bischi, G.I., & Gardini L. (2002). Some methods for the global analysis of dynamic

games represented by noninvertible maps. In T. Puu & I. Sushko (Eds.), Oligopoly dynamics:
models and tools. Springer Verlag.

Avrutin, V., & Schanz, M. (2006). Multi-parametric bifurcations in a scalar piecewise-linear map.

Nonlinearity, 19, 531–552.

Avrutin, V., Schanz, M., & Banerjee, S. (2006). Multi-parametric bifurcations in a piecewise-linear

discontinuous map. Nonlinearity, 19, 1875–1906.

Banerjee, S., & Grebogi, C. (1999). Border-collision bifurcations in two-dimensional piecewise

smooth maps. Physical Review E, 59(4), 4052–4061.

Banerjee, S., Karthik, M. S., Yuan, G., & Yorke, J. A. (2000a). Bifurcations in one-dimensional

piecewise smooth maps—theory and applications in switching circuits. IEEE Transactions on
Circuits and System I: Fundamental Theory and Applications, 47(3), 389–394.

Banerjee, S., Ranjan, P., & Grebogi, C. (2000b). Bifurcations in two-dimensional piecewise smooth

maps—theory and applications in switching circuits. IEEE Transactions on Circuits and System
I: Fundamental Theory and Applications, 47(5), 633–643.

Bischi, G. I., & Lamantia, F. (2002). Nonlinear duopoly games with positive cost externalities due

to spillover effects. Chaos, Solitons & Fractals, 13, 805–822.

Bischi, G. I., Chiarella, C., Kopel, M., & Szidarovszky, F. (2010). Nonlinear oligopolies: Stability
and bifurcations. Springer-Verlag.

Bischi, G. I., & Kopel, M. (2001). Equilibrium selection in a nonlinear duopoly game with adaptive

expectations. Journal of Economic Behavior and Organization, 46(1), 73–100.

Bischi, G. I., & Lamantia, F. (2012). Routes to complexity induced by constraints in Cournot

oligopoly games with linear reaction functions. Studies in Nonlinear Dynamics & Economet-
rics, 16(2), 1–30.

Bischi, G. I., Mammana, C., & Gardini, L. (2000). Multistability and cyclic attractors in duopoly

games. Chaos, Solitons & Fractals, 11, 543–564.

Bulow, J., Geanokoplos, J., & Klemperer, P. (1985). Multimarket oligopoly: Strategic substitutes

and complements. Journal of Political Economy, 93, 488–511.

Cournot, A. (1838). Recherches sur les principes matematiques de la theorie de la richesse. Paris:

Hachette.

Dana, R. A., & Montrucchio, L. (1986). Dynamic complexity in duopoly games. Journal of Eco-
nomic Theory, 40, 40–56.

Di Bernardo, M., Budd, C. J., Champneys, A. R., & Kowalczyk, P. (2008). Piecewise-smooth
dynamical systems. London: Springer Verlag.

Di Bernardo, M., Feigen, M. I., Hogan, S. J., & Homer, M. E. (1999). Local analysis of C-

bifurcations in n-dimensional piecewise smooth dynamical systems. Chaos, Solitons & Fractals,

10(11), 1881–1908.

Hahn, F. (1962). The stability of the Cournot solution. Journal of Economic Studies, 29, 329–331.

Kopel, M. (1996). Simple and complex adjustment dynamics in Cournot duopoly models. Chaos,
Solitons & Fractals, 7(12), 2031–2048.

Leonov, N. N. (1959). Map of the line onto itself. Radiofisica, 3(3), 942–956.

Leonov, N. N. (1962). Discontinuous map of the straight line. Dokl. Acad. Nauk. SSSR., 143(5),

1038–1041.

Metropolis, N., Stein, M. L., & Stein, P. R. (1973). On finite limit sets for transformations on the

unit interval. Journal of Combinatorial Theory, 15, 25–44.

Maistrenko, Y. L., Maistrenko, V. L., & Chua, L. O. (1993). Cycles of chaotic intervals in a time-

delayed Chua’s circuit. International Journal Bifurcation and Chaos, 3(6), 1557–1572.

Maistrenko, Y. L., Maistrenko, V. L., Vikul, S. I., & Chua, L. O. (1995). Bifurcations of attracting

cycles from time-delayed Chua’s circuit. International Journal Bifurcation and Chaos, 5(3),

653–671.



Periodicity Induced by Production Constraints . . . 93

Maistrenko, Y. L., Maistrenko, V. L., & Vikul, S. I. (1998). On period-adding sequences of attracting

cycles in piecewise linear maps. Chaos, Solitons & Fractals, 9(1), 67–75.

Milnor, J. (1985). On the concept of attractor. Communications in Mathematical Physics, 99, 177–

195.

Mira, C. (1978). Sur les structure des bifurcations des diffeomorphisme du cercle. C.R.Acad. Sc.
Paris 287 Series A, 883–886.

Mira, C. (1987). Chaotic dynamics. Singapore: World Scientific.

Mira, C., Gardini, L., Barugola, A., & Cathala, J. C. (1996). Chaotic Dynamics in two-dimensional
noninvertible maps. Singapore: World Scientific.

Mosekilde, E., Zhusubaliyev, Z. T. (2003). Bifurcations and chaos in piecewise-smooth dynamical
systems. World Scientific.

Nusse, H. E., & Yorke, J. A. (1992). Border-collision bifurcations including period two to period

three for piecewise smooth systems. Physica D, 57, 39–57.

Nusse, H. E., & Yorke, J. A. (1995). Border-collision bifurcation for piecewise smooth one-di-

mensional maps. International Journal of Bifurcation Chaos, 5, 189–207.

Okuguchi, K. (1964). The stability of the Cournot oligopoly solution: A further generalization. 287.

Journal of Economic Studies, 31, 143–146.

Okuguchi, K., & Szidarovszky, F. (1999). The theory of oligopoly with multi-product firms (2nd

ed.). Berlin: Springer.

Puu, T. (1991). Chaos in duopoly pricing. Chaos, Solitons & Fractals, 1(6), 573–581.

Puu, T., & Norin, A. (2003). Cournot duopoly when the competitors operate under capacity con-

straints. Chaos, Solitons & Fractals, 18, 577–592.

Rand, D. (1978). Exotic phenomena in games and duopoly models. Journal of Mathematical Eco-
nomics, 5, 173–184.

Sushko, I., Avrutin, V., & Gardini, L. (2015). Bifurcation structure in the skew tent map and its

application as a border collision normal form. Journal of Difference Equations and Applications.

doi:10.1080/10236198.2015.1113273.

Sushko, I., Gardini, L., & Avrutin, V. (2016). Nonsmooth One-dimensional maps: Some basic con-

cepts and definitions. Journal of Difference Equations and Applications, 1–56. doi:10.1080/

10236198.2016.1248426.

Sushko, I., Gardini, L., & Matsuyama, K. (2014). Superstable credit cycles and u-sequence. Chaos,
Solitons & Fractals, 59, 13–27.

Szidarovszky, F., & Okuguchi, K. (1997). On the existence and uniqueness of pure Nash equilibrium

in rent-seeking games. Games and Economic Behavior, 18, 135–140.

Szidarovszky, F. (1999). Adaptive expectations in discrete dynamic oligopolies with production

adjustment costs. Pure Mathmatics and Application, 10(2), 133–139.

Teocharis, R. D. (1960). On the stability of the Cournot solution on the oligopoly problem. The
Review of Economic Studies, 27, 133–134.

Tramontana, F., & Gardini, L. (2011). Border collision bifurcations in discontinuous one-

dimensional linear-hyperbolic maps. Communications in Nonlinear Science and Numerical Sim-
ulation, 16, 1414–1423.

Tramontana, F., Gardini, L., & Puu, T. (2011). Mathematical properties of a discontinuous Cournot-

Stackelberg model. Chaos, Solitons & Fractals, 44, 58–70.

Van Huyck, J., Cook, J., & Battalio, R. (1984). Selection dynamics, asymptotic stability, and adap-

tive behavior. Journal of Political Economy, 102, 975–1005.

Van Witteloostuijn, A., & Van Lier, A. (1990). Chaotic patterns in Cournot competition. Metroe-
conomica, 2, 161–185.

Zhusubaliyev, Z. T., Mosekilde, E., Maity, S., Mohanan, S., & Banerjee, S. (2006). Border collision

route to quasiperiodicity: Numerical investigation and experimental confirmation. Chaos, 16, 1–

11.

Zhusubaliyev, Z. T., Soukhoterin, E., & Mosekilde, E. (2007). Quasiperiodicity and torus break-

down in a power electronic dc/dc converter. Mathematics and Computers in Simulation, 73,

364–377.

http://dx.doi.org/10.1080/10236198.2015.1113273
http://dx.doi.org/10.1080/10236198.2016.1248426
http://dx.doi.org/10.1080/10236198.2016.1248426


An Adaptive Learning Model for Competing
Firms in an Industry

Haiyan Qiao

Abstract In an industry of competing firms the market price function is not com-

pletely known, however based on repeated price information the firms are able to

continuously adjust their beliefs. Under simplifying conditions, it is shown that these

beliefs converge to the true price function as time goes to infinity, that is, successful

learning can be achieved. The same result holds if there is continuously distributed

delay in the price information, if the weighting function is exponential, however in

the case of fixed delays stability may be lost if the delay is sufficiently large.

1 Introduction

Learning models play an important role in knowledge engineering. In most cases the

model is dynamic, when the values of the unknown quantities are updated repeat-

edly leading to special dynamic systems. If the time scales are discrete, then dif-

ference equations describe the dynamic development in the learning process. If the

time scales are continuous, then ordinary differential equations model the process.

A necessary condition of successful learning is the existence of a steady state which

has to be equal to the true values of the quantities being the subjects of learning. As

time progresses, the updated values also should converge to the steady state meaning

the asymptotic stability of the learning dynamism.

In this paper a special learning process is analyzed in which competing firms learn

about the price function in an industry. In the economic literature, this economic sit-

uation is called oligopoly, and it is assumed that the firms sell their products in a

homogeneous market, so their competition is through the price function which is a

decreasing function of the total industry output. A comprehensive summary of the

early developments in oligopoly is given in Okuguchi (1976) and their multi-product

generalizations are discussed in Okuguchi and Szidarovszky (1999). The most recent

results focusing on nonlinear models are reported in Bischi et al. (2010). The liter-
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ature of learning in games is also very rich. For example, Fudenberg and Levine

(1998) introduces the main concepts and methods. The asymptotical properties of

discrete and continuous dynamic systems are discussed in many textbooks, the reader

can find the most important facts for example, in Szidarovszky and Bahill (1998).

If time delay is introduced into dynamic models due to information lag, then the

dynamic behavior of the processes becomes more complicated. If fixed delay is con-

sidered, then difference-differential equations are introduced (Bellman and Cooke

1956). In the cases of continuously distributed delays the processes are described by

Volterra-type integro-differential equations (Cushing 1977).

This paper is organized as follows. First a special adaptive learning process is

introduced, and then its asymptotical behavior is examined. Fixed delays are then

introduced into the model and their effects on stability are investigated. This section

is followed by the discussion on continuously distributed delays. The last section

draws conclusions and future research directions.

2 The Learning Model

Consider an industry with N firms producing the same product and selling it to a

homogeneous market. If xk denotes the production (output) level of firm k, then

the total production level of the industry is s =
∑N

k=1 xk. Assume that the cost func-

tion of firm k is Ck(xk) = ckxk, the linearity of which is assumed for mathemati-

cal convenience. The unit price function is decreasing in s, so we assume that it is

p(s) = B − As with both A and B being positive. The maximum price is B and the

marginal price is −A. The profit of firm k is the difference of its revenue and cost:

𝜑k = xk(B − Axk − Ask − ck), (1)

where sk =
∑

l≠k xl is the output of the rest of the industry. In this way, an N-person

non-cooperative game is defined, where the firms are the players, xk is the strategy

and 𝜑k is the payoff of firm k. It is also assumed that the firms know the technologies

of the competitors and the marginal price is a common knowledge. Therefore the

values of parameters A, ck (k = 1, 2,… ,N) are known by all firms, however they are

uncertain in the value of the maximum price B, which is the subject of the learning

process. Let Bk(t) denote firm k’s current estimate of the maximum price. Then firm

k believes that the payoff of any firm l is given as

𝜑
(k)
l = xl(Bk(t) − Axl − Asl − cl), (2)

so the believed best response of firm l is obtained from the first order condition,

Bk(t) − Axl − A(s − xl) − cl − Axl = 0
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implying that

xl =
Bk(t) − As − cl

A
. (3)

The firm then can assess its belief of the industry output by adding Eq. (3) for all

values of l,

s(k) = 1
A

(

NBk(t) − NAs(k) −
N∑

l=1
cl

)

from which

s(k) =
NBk(t) −

∑N
l=1 cl

(N + 1)A
, (4)

and therefore firm k believes that the equilibrium price will be

p(k) = Bk(t) − As(k) =
Bk(t) +

∑N
l=1 cl

N + 1
. (5)

However every firm thinks in the same way independently of the others, so in

reality the industry output is as follows:

s =
N∑

k=1
xk =

1
(N + 1)A

( N∑

l=1
Bl(t) −

N∑

l=1
cl

)

, (6)

since each firm k produces its equilibrium output level

xk =
Bk(t) − As(k) − ck

A
=

Bk(t) +
∑N

l=1 cl − (N + 1)ck

(N + 1)A
.

Consequently the actual market price becomes

p = B − As = B − 1
N + 1

( N∑

l=1
Bl(t) −

N∑

l=1
cl

)

. (7)

Based on the discrepancy between the believed and actual prices, firm k adjusts its

belief as

Ḃk(t) = Kk(p − p(k)), (Kk > 0) (8)

since if the actual price is higher than the believed price, then the firm wants to

increase its believed price by increasing the value of Bk(t). If the actual price is the

lower, then the firm wants to decrease its belief of the price function. If the two

prices are equal, then the firm does not want to make changes in its belief. Based on

Eqs. (5), (7) and (8) we obtain the following system of ordinary difference equations:
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Ḃk(t) =
Kk

N + 1

(

(N + 1)B −
N∑

l=1
Bl(t) − Bk(t)

)

. (9)

Clearly, the only steady state is Bk = B for all k. The asymptotical stability of the

system is examined by investigating the location of the eigenvalues of the coefficient

matrix

1
N + 1

⎛
⎜
⎜
⎜
⎝

−2K1 −K1 ⋯ −K1
−K2 −2K2 ⋯ −K2
⋮ ⋮ ⋮

−KN −KN ⋯ −2KN

⎞
⎟
⎟
⎟
⎠

= D − a 𝟏T
, (10)

where with the notation Kk = Kk∕(N + 1), D = diag(−K1,−K2,… ,−KN), a =
(K1,K2,… ,KN)T and 𝟏T = (1, 1,… , 1).

The characteristic polynomial of this matrix can be written as

det(D − a 𝟏T − 𝜆I) = det(D − 𝜆I)det(I − (D − 𝜆I)−1a 𝟏T )

=
N∏

k=1

(
−Kk − 𝜆

)
[

1 −
N∑

k=1

Kk

−Kk − 𝜆

]

, (11)

where we used the simple fact that if a and b are N-element real column vectors and

I is the N × N identity matrix, then

det(I + a bT ) = 1 + bTa.

For a simple proof the reader is referred to Bischi et al. (2010, Appendix E). The

eigenvalues are 𝜆 = −Kk and the roots of equation

N∑

k=1

Kk

Kk + 𝜆

= −1. (12)

In order to show asymptotic stability it is sufficient to prove that the roots of Eq. (12)

are real and negative. If g(t) denotes the left hand side, then lim
𝜆→±∞ g(𝜆) = 0,

lim
𝜆→−Kk+0

g(𝜆) = ∞ and lim
𝜆→−Kk−0

g(𝜆) = −∞, furthermore

g′ (𝜆) =
N∑

k=1

−Kk
(

Kk + 𝜆

)2 < 0.

That is, g(𝜆) is strictly decreasing and its poles are the −Kk values. If we assume

that they are different and K1 > K2 > ⋯ > KN , then there is a root before −K1 and

one root inside each interval (−Kk,−Kk+1), so we found N real negative roots. Since

Eq. (12) is equivalent with an Nth-degree polynomial equation, there are no addi-
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tional roots. Hence system (9) is globally asympototically stable implying that as

t → ∞, all estimates Bk(t) converge to the true value B. A similar argument can be

used if some of the Kk values are equal. That is, the firms are successful in learning.

3 Learning with Fixed Delays

Assume that at time period t the firms cannot obtain simultaneous prince information

from the market, since the actual information has a fixed delay 𝜏. Then the received

price is

B − 1
N + 1

( N∑

l=1
Bl(t − 𝜏) −

N∑

l=1
cl

)

,

so the dynamic system (9) becomes a system of difference-differential equations

Ḃk(t) = Kk

(

(N + 1)B −
N∑

l=1
Bl(t − 𝜏) − Bk(t)

)

(k = 1, 2,… ,N). (13)

For mathematical simplicity assume that the firms have identical speed of adjust-

ments, Kk ≡ K, and their initial estimates of the maximum price are also identical.

Then system (13) reduces to a single-dimensional equation

Ḃ(t) = K ((N + 1)B − NB(t − 𝜏) − B(t)) . (14)

The characteristic equation is obtained by substituting the exponential solution

B(t) = e𝜆tu into the homogeneous equation,

𝜆e𝜆tu = K
(
−Ne𝜆(t−𝜏)u − e𝜆tu

)

which can be rewritten as an exponential-polynomial equation

𝜆 + K + KNe−𝜆𝜏 = 0. (15)

At 𝜏 = 0, the only eigenvalue is negative, so the system is asymptotically stable. At

any stability switch 𝜆 = iv, v > 0, so

iv + K + KN (cos(v𝜏) − i sin(v𝜏)) = 0

implying that

1 + N cos(v𝜏) = 0 (16)
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and

v − KN sin(v𝜏) = 0. (17)

Since

cos(v𝜏) = − 1
N

and sin(v𝜏) is positive,

v𝜏 = arccos
(
− 1

N

)
+ 2n𝜋 (n = 0, 1, 2,…) (18)

Furthermore we have

1 = sin2(v𝜏) + cos2(v𝜏) = 1
N2 + v2

K
2
N2

implying that

v = K
√

N2 − 1, (19)

so stability switches might occur at delays

𝜏 = 1
K
√

N2 − 1

(
arccos

(
− 1

N

)
+ 2n𝜋

)
. (20)

In order to check if stability switches actually occur or not, we select 𝜏 as the bifur-

cation parameter and assume 𝜆 = 𝜆(𝜏). Implicitly differentiating the characteristic

Eq. (15) with respect to 𝜏 we have

𝜆̇ + KNe−𝜆𝜏
(
−𝜆̇𝜏 − 𝜆

)
= 0

implying that

𝜆̇ = 𝜆KNe−𝜆𝜏

1 − 𝜏KNe−𝜆𝜏
= −𝜆(𝜆 + K)

1 + (𝜆 + K)𝜏
.

If 𝜆 = iv, then

Re𝜆̇ = Re v2 − ivK
1 + K𝜏 + iv𝜏

= v2(1 + K𝜏) − vK(v𝜏)
(1 + K𝜏)2 + v2𝜏2

> 0

implying that the real part of an eigenvalue becomes positive, so stability is lost. It

is lost first at
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𝜏
∗ = 1

K
√

N2 − 1
arccos

(
− 1

N

)
, (21)

and stability cannot be regained later. At this critical value Hopf bifurcation occurs

giving the possiblity of the birth of limit cycles. In summary, the learning process

converges to true knowledge if 𝜏 < 𝜏
∗
, at 𝜏 = 𝜏

∗
it shows cyclic behavior and at

𝜏 > 𝜏
∗

there is no convergence to the true value, so learning is not possible.

4 Learning with Continuously Distributed Delays

If the delay is uncertain, then it is assumed to be a random variable. If the largest

probability is assigned to the most current data and the probability decreases after-

wards, then an exponential density function describes the probabilistic nature of the

situation. In this case Eq. (14) is modified as

Ḃ(t) = K
(

(N + 1)B − N
∫

t

0
w(t − s)B(s)ds − B(t)

)

(22)

where

w(t − s) = 1
T

e−
t−s
T (t > s)

is the weighting function. Looking again for the solution in the exponential form

B(t) = e𝜆tu and substituting it into the homogeneous version of Eq. (22) we have

𝜆e𝜆t = −KN
∫

t

0

1
T

e−
t−s
T e𝜆sds − Ke𝜆t

. (23)

Introduce the new integration variable z = t − s. The integral becomes

∫

t

0

1
T

e−
z
T
+𝜆(t−z)dz,

and then simplify Eq. (23) by e𝜆t
to get

𝜆 + KN
∫

t

0

1
T

e−z(𝜆+ 1
T
)dz + K = 0.

Introduce again a new integration variable v = z(𝜆 + 1∕T), then we have

𝜆 + KN
∫

t(𝜆+ 1
T
)

0

1
T

e−v T
1 + 𝜆T

dv + K = 0
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and finally as t → ∞, the characteristic equation of (22) is obtained:

𝜆 + K + KN 1
1 + 𝜆T

= 0.

Here we assumed that 𝜆 > − 1
T

, since negative eigenvalues cannot destroy stability.

Notice that this is a quadratic equation,

𝜆
2T + 𝜆(1 + TK) + K(1 + N) = 0.

Since all coefficients are positive, both eigenvalues have negative real parts, and

therefore the system is asymptotically stable, so successful learning is possible.

5 Conclusions

An adaptive learning process was investigated, when firms adjust their beliefs on the

maximum price based on the discrepancies between the believed and actual market

prices. For the sake of simplicity linear price and cost functions were assumed. The

nonlinear case can be treated by linearization in a similar manner, however in the

case of nonlinear systems only local stability can be guaranteed.

Without information delay the dynamic model is globally asymptotically stable

which guarantees that the firms can successfully learn about the maximum price. In

the case of continuously distributed delays with exponential weighting function the

asymptotical stability of the system is preserved, however the presence of fixed delay

might destroy stability, if the delay is sufficiently large.

Further study is needed to examine the cases of bellshaped weighting functions

and learning the values of other parameters, perhaps learning several parameter val-

ues simultaneously.

An addtional extention would be to introduce multiple delays by assuming that

the delays for different firms are different. For two and three delays Gu et al. (2005)

and Gu and Naghnaeian (2011) offered the methodology.
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The Coordination and Dynamic Analysis
of Industrial Clusters: A Multi-agent
Simulation Study

Jijun Zhao

Abstract An agent based simulation model is presented to investigate the long-

term behavior of firms in an industrial district. The firms are interconnected with

each other through input-output relations, product markets, labor, and innovation

spillover. The prices of the products depend on the supply-demand balance of the

market as well as on the innovation levels of the firms. Dynamic strategies of the

firms are examined and conditions for successful industrial cluster formation are

developed.

Keywords Industrial clusters ⋅ Agent based simulation ⋅ Oligopoly theory ⋅
Innovation

1 Introduction

Industrial clusters are important examples of coordinated multi-agent systems in

which the industrial firms are the agents that are interconnected to each other by

their inputs and outputs as well as to the markets through inverse demand functions.

The high complexity and the large sizes of industrial clusters make their analytical

investigation impossible. In this paper agent-based simulation is used to examine the

coordination and dynamic properties of industrial clusters. The interrelation of the

firms is modeled as an extended oligopoly, when in addition to the competition of

the firms on the product markets we are able to consider their competition for labor

as well.

Traditional literature on industrial clusters has mainly focused on their identifica-

tion, driving forces and policies. These studies try to answer the fundamental ques-

tions such as how the firms can benefit from belonging to a cluster. A very important

problem is the evolution of industrial clusters. Investigations of the evolution mainly

focused on the life cycle, entry, exit and growth of the clusters (Maskell 2001; Swann
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et al. 1998). Results are drawn mostly from case studies or from empirical studies.

Most of these studies analyzed the industrial clusters only after they became suc-

cessful, and not during the transformation period. In addition, case studies can lead

to special results from individual clusters, which cannot be generalized.

A new strand of study has recently emerged in which the evolution dynamics of

industrial clusters are analyzed by using agent-based simulation. With two versions,

spatial and non-spatial, these studies focus on the formation, development and coor-

dination of artificial industrial clusters. In our paper, we will follow this strand, with

the additional question: how the decisions and the behavior of industrial firms will

promote the formation of a cluster when these firms are already in a given system

structure of a district.

This question is very practical. It has been already discussed in literature that the

initiation and support of public policies may be successful in the formation of clus-

ters (Bresnahan et al. 2001). It is also known that clusters could grow through some

types of network structure. However, how to ensure the formation, effectiveness and

growth of clusters is a crucial question. Local government might help to build a struc-

ture or to introduce policies to promote the important local industries. For example,

in the developing areas of some regions in China, the government plays a crucial role

to initiate the development of certain industries. However, with similar policies and

perhaps with similar environments, some districts were promoted to clusters while

some others were not. There must be many other factors to explain this difference in

the result. In this paper and in our future works, we are interested in the firm level

influencing factors: what firms should do to help remove the barriers to the cluster

formation and in exploring their own opportunities.

In this study the district structure means the topologies defined by Markusen

(1996), who identified several types of system structures of industrial clusters. In

this paper, we assume the particular structure, which is called ‘Hub and Spoke’ by

Markusen. It consists of several large anchor companies and several small compa-

nies. (Hence we are not going to study industrial clusters with a large number of

small and medium sized firms). In reality, some emerging clusters have similar sys-

tem structure like this. Take again Chinese regional industrial clusters as an example,

several foreign invested global companies were attracted into the developing district,

and then many relatively small suppliers and accessorial firms moved in.

As mentioned earlier, we will propose an agent-based simulation model to show

how an industrial cluster could emerge in a location which already includes sev-

eral firms. Agent based simulation is a flexible tool to investigate emerged behav-

iors of complex systems from individuals. Researchers are already using this tool to

examine industrial clusters. The reputation dynamics (Giardini et al. 2008) and the

growth of clusters (Zhang 2003) are good examples. In the case of most studies, the

individual-level decision rules are relatively simple, and the topologies of the district

are never considered. In our study, by considering the environment of the designed

system structure, we will adopt the Hub and Spoke topology and express it as a two-

layer network. Firms will be modeled as bounded rational agents. Each agent has

its own production input factors, labor, and production. During each period of time,

each agent will make decisions based on its former behavior, the other firms former



The Coordination and Dynamic Analysis of Industrial Clusters . . . 107

behavior and its own decision rules. For the decision making process of the agents,

we will integrate oligopoly theory into the agent-based model. Hence our model will

be an agent-based and game theory integrated model.

In the spatial version of the agent-based models of industrial clusters, moving and

relocating agents are basic elements. However we will not consider these features,

since firms cannot move easily like residents. Our primary model is a non-spatial

one, and the distance of locations is not our concern. This is a reasonable assumption

since it is more important to decide if a given firm is in the cluster or not. When we

consider firms only in a specific location, spatial distance is not an important factor.

The methodology of this paper might have further applications. A potential study

area is the examination of the change of behavior and decision patterns of firms

that can transform declining clusters into new ones. In addition, with the relaxation

of some assumptions, we may study more general situations. This paper is only a

starting point of a long-term research project.

This paper develops as follows. Section 2 presents the related literature review.

In Sect. 3, we will outline the fundamentals of agent-based models and oligopoly

theory. Simulation methodology and numerical results will be reported in Sect. 4.

Final conclusions will be drawn in Sect. 5.

2 Related Literature Review

In this section, we will briefly review the history of the two main tools that will be

used in our study: oligopoly theory and agent-based social simulation.

2.1 Oligopoly Theory

The classical oligopoly theory dates back to the pioneering work of Cournot (1838).

It examines an industry in which several firms produce identical product or offer

identical service to a homogeneous market. Since then a significant number of

researchers focused on the different extensions and generalizations of Cournots clas-

sical model. Comprehensive summaries of the earlier works and multi-product mod-

els are given in Okuguchi (1976), Okuguchi and Szidarovszky (1999). In the early

stages, oligopolies were considered as noncooperative games in which the firms are

the players, their output levels are the strategies, and the profit functions are the pay-

offs. The existence and uniqueness of the equilibrium was first the main issue, under

certain monotonicity and convexity assumptions the existence and uniqueness of the

equilibrium was proved. This important result was later extended to more realistic

model variants including single product models with product differentiation, multi-

product oligopolies, labor-managed and rent-seeking games among others.

The main focus of the studies in oligopoly theory has later turned into dynamic

extensions. Models were developed with discrete and continuous time scales and the
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resulting difference and differential equation systems were investigated. The main

issue was the asymptotical stability of the equilibrium; conditions were derived to

guarantee that the output trajectories converge to the equilibrium in the long run.

Most models were linear, where local and global stability are equivalent and very

little attention was given to nonlinear dynamics until the late 80s. In developing

dynamic models there are usually two alternative ways. In the case of best response

dynamics it is assumed that each firm adjusts its output into the direction toward its

best response. This approach requires the knowledge of the best response functions of

the firms, which needs the solution of usually nonlinear optimization problems based

on global information on the payoff functions. In the case of gradient adjustments it

is assumed that the firms adjust their outputs in proportion to their marginal profits.

This idea has a lot of sense, since in the case of positive (negative) gradient value

the firms interest is to increase (decrease) its output level. This concept requires only

local information about the payoff functions, so it is much more realistic than the use

of best response dynamics. A comprehensive summary of the recent developments

in this area can be found in Bischi et al. (2009).

Most studies in oligopoly theory considered only the market as a link between

the firms; the unit price was always a function of the total output level of the indus-

try due to the demand-supply balance. However in realistic economies the firms are

linked together in much more complicated ways. First, they use common supply of

energy, raw material, labor, capital etc., and therefore they also compete on this sec-

ondary market in addition to the market of their products. This idea was elaborated

in the studies of oligopsonies (Szidarovszky and Okuguchi 2001). In multiproduct

oligopolies on the other hand the firms might buy and use the products of other

firms, so a network of firms develops. Network oligopolies were introduced and some

results were reported in Szidarovszky (1997).

It has been also demonstrated that partial or complete cooperation of the firms

in oligopolies will benefit the firms similarly to the well-known prisoners dilemma

game (Chiarella and Szidarovszky 2005). Even by any increase in the cooperation

level of the firms their benefit also increases.

In most models analytic results could be derived under only very special con-

ditions, which are not the case in realistic economies. Instead of investigating very

limited cases theoretically, it is much more important and practical to use computer

simulation under realistic conditions and examine the evolution of more advanced

production systems such as the industrial clusters.

2.2 The Agent-Based Industrial Cluster Model

In agent-based models, individuals are modeled as heterogeneous agents. Agents

have goals and decision rules, and they interact with each other and with the envi-

ronment. Agent-based model is a bottom up modeling method; it studies a system

as an interaction evolving system. It can explicitly explain the decision process of

the micro individuals, and the macro emergence from the individuals’ interaction.
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Agent-based models have been widely used in the analysis of complex economic

and social systems (Tesfatsion and Judd 2006). Some initial attempts use agent-based

simulation to study some special aspects of industrial clusters (Giardini et al. 2008;

Zhang 2003; Albino et al. 2003, 2006a, b; Brenner 2001; Dawid and Wersching

2006; Fioretti 2005).

Fioretti (2005) explained what agent-based models are, the advantages of using

agent-based model to study industrial clusters, and introduced some possible simu-

lation tools. Fioretti also reviewed some connectionist models of industrial clusters

that are related to agent-based modeling.

Brenner (2001) studied the spatial dynamics of entry, exit and growth of firms.

Functions for productivity of firms, innovations, exit and entry of firms, public opin-

ions etc. are modeled and then parameters’ impact are analyzed by computer simu-

lations.

Zhang considered a 100 × 100-lattice environment, on the lattice, agents are born

and could choose whether to start a firm or not (Zhang 2003). Production functions

and profit functions are adopted for firms. The emergence of a firm in a landscape

could inspire its neighbors to choose to start firms; hence industrial clusters might

emerge. Computer simulation was adopted to analyze dynamics of market price, firm

size distribution, location of clusters, etc.

Giardini et al. (2008) modeled social evaluations as social links, and examined

the effects of the reputation of the firms and the quality of the products in a cluster.

Their simulation results show that higher reputation of the suppliers and information

sharing will result in higher profit for the producers.

Albino et al. (2003) proposed a model to study the multiple forms of the coop-

erative and competitive relationships among agents and to prove the benefits of the

selected type of interaction. In their model, firms and coordination mechanisms are

agents; computer simulations were used to evaluate the benefit of cooperation. In the

simulations, 3 buyers and 3 sellers were simulated and simple interaction rules were

adopted. Albino et al. (2006a, b) introduced the concept of complex adaptive sys-

tems into agent-based model and the study mainly focused on innovation dynamics.

Their simulation elements and efforts were very similar to their previous works.

3 The Agent-Based and Oligopoly Integrated Model

3.1 The Structure of the System

An industry of a region usually consists of several types of firms. In our model, we

consider the situation in which there are several large firms and many smaller suppli-

ers. The large firms produce final products that are sold directly to the market; their

products could be substitutes or not. Small firms produce materials, parts, compo-

nents that large firms buy and build in their final products; their products could be

also substitutes or not. Therefore there is a complicated input-output relation between
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the large and small firms. For example, household appliances are manufactured in a

certain location. Relatively large firms produce one or more of the following prod-

ucts: refrigerator, washing machine, television and air conditioner; and smaller firms

provide resources to these larger firms.

Firms’ interactions are in the form of networks. We establish the inter-firm net-

work as a 2-layer network: one layer of all producers and one layer of all suppli-

ers. The connections between firms in the producer layer and firms in the supplier

layer are defined by input-output relations. Firms in the same layer compete for the

resources and prices. Firms in the producer layer also compete with each other for

new knowledge: the R and D investment of any firm spills over to others who can also

benefit from the innovation. We assume that formal systematic R and D is performed

only in large firms; this is based on the study of Santarelli and Sterlacchini (1990).

All firms also compete in the secondary market. In the secondary market we con-

sider only labor pool. The interactions of the firms in the system can be described

therefore as the interaction among producers, the interaction among suppliers, the

interaction between producers and suppliers (through supplies), and the interaction

through the secondary market (the labor).

For the sake of simplicity, we assume that if a producer needs more supplies than

the suppliers can produce, then it will buy them from outside the system with the

same price; and when a supplier produces more than the producers need, it will sell

the surplus outside the system for the same price. These assumptions will be relaxed

in our next study.

3.2 Agents, Interactions and Environment

Individual firms in the system are modeled as agents. There are two types of agents:

‘suppliers’ who produce and offer their products to producers, ‘producers’ who pro-

duce final products to an open market. There are m supplier agents and n producer

agents in the system. Producer agents have innovation ability, with relatively high

technical advances, and they are linked together through the open market, the sec-

ondary market and by innovation spillovers. In this first model, only the size growth

of the existing firms will be considered, the entry of new firms for the growth of the

cluster will be studied in our future research. Hence the number of suppliers, m, and

the number of producers, n, are considered fixed in the simulation model.

Agents have states and decisions. For any supplier i and any producer j, the main

state variables are listed in Table 1, and notations related to the innovation of pro-

ducer agents are given in Table 2. All variables of these tables vary with time accord-

ing to state updating rules that will be introduced in the next subsection. In this simple

model, we consider only the firms’ productions and their innovation investments as

factors influencing the formation of cluster. The decision variable of a supplier agent

is its production level. The decision variables of a producer agent are its purchases

from the suppliers, its output and innovation investment. The 4 types of interactions

among agents and with environment are as follows: (1) interaction between suppliers

and producers: supply demand balance; (2) interaction among suppliers: competition
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Table 1 State variables of suppliers and producers

Supplier i Producer j
Number of firms m n
Productivity si zj
Product price psi ppj
Labor usage Lsi Lpj
Profit 𝜑

s
i 𝜑

p
j

Table 2 Notations related to the innovation of producers

Innovation development step Ij
Total cumulative innovation level Ĩj
Impact of innovation level on sale price F(Ĩj)
Cost function of innovation Dj(Ij)

without product interaction; (3) interaction among producers: competition, informa-

tion transmission, possible relation in products; (4) interaction among all agents:

competition for labor among all firms.

The environment supplies energy, raw material and labor, and it has its rule to

change the labor price. The final products of the large firms are sold to the consumers

in the environment. From the environment, all agent gathers information: the outputs

of their competitors, market prices, spillover of innovation from its cooperators, and

the price of the labor pool. Depending on the information from the environment and

the agents own state, each agent will make its decision. The details of the decision

rules are discussed in the next subsection.

3.3 Agents State Updating Rules Based on Oligopoly Theory

The agents decisions are based on their decision rules.

Let xij be the amount of the product that producer j purchased from supplier i,
then the total physical product of a producer is represented by a production function

which is assumed to be linear

zj =
m∑

i=1
aijxij + a0j, (1)

where aij ≥ 0, a0j ≥ 0. The marginal productivity of xij is denoted by aij. If aij > 1,

then an increase in xij will result in a more than proportionate increase in the output
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of producer j; for aij < 1, the proportionate increase in the output of producer j is

less than that of input xij; for aij = 1, the proportionate increases are equal.

The price of any supply is a decreasing function of the supplier’s own output and

the outputs of all other suppliers:

psi (s1,… , sm) = Ai − Bisi −
∑

l≠i
bilsl, (2)

where Ai > 0, 1 ≥ Bi > 0 and 1 > bil ≥ 0. Larger value of bil represents higher level

of similarity between the supplies, or higher level of competition among them. Sim-

ilarly, the prices of the final products are also linear. It is also assumed that the final

products are substitutes:

ppj (z1,… , zn) = Aj − Bjzj −
∑

l≠j
bjlzl, (3)

where Aj > 0, 1 ≥ Bj > 0 and 1 > bjl ≥ 0.

The revenue of a supplier is the product of its output and supply’s price sipsi .
For the revenue of a producer, we also have to consider the innovation effect. The

innovation development and spillover of producer j are modeled as

Ĩj(t + 1) = Ĩj(t) + Ij +
∑

l≠j
kjlIl, (4)

that is, each producer invests in innovation development by increasing its technol-

ogy level by a step Ij and can utilize the knowledge spillover from other producers.

The spillover kjlIl from agent l is proportional to agent l’s innovation investment,

where 1 > kjl ≥ 0. The price of any final product is affected by the technology level

dependent factor

Fj (̃Ij) = 1 + (Fmax
j − 1)(1 − e−𝜔j Ĩj ). (5)

In this function form we model the fact that with higher technological level, better

and more expensive final products are produced. If Ĩj = 0, then this factor equals 1,

then it increases in Ĩj and converges to a maximum value Fmax
j as Ĩj tends to infinity.

The graph of functionFj (̃Ij) is shown in Fig. 1. With this innovation dependent factor,

the revenue of producer j is given as zjp
p
j (z1,… , zn)Fj (̃Ij).

We assume that larger production level requires more labor, so the labor usage of

supplier i is
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Fig. 1 The graph of

function of Fj (̃Ij)
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I)

Lsi (si) = 𝛾i + 𝛿isi. (6)

The need of labor of producer j depends on its production and technical levels:

Lpj (zj, Ĩj) = (𝛾 j + 𝛿jzj)e−𝜔j Ĩj , (7)

that is, innovation decreases the labor need of the producers.

The price function of labor in the whole cluster is denoted by pL, which depends

on the total demand of labor. The price of labor is a linear function of the total labor

usage:

pL = c − d(
∑

i
Lsi +

∑

j
Lpj ), (8)

where c > 0 and d > 0. In this decreasing function form we model the fact that

higher labor force usage decreases the ratio of skilled workers, so the average wage

decreases.

The profit of a supplier is modeled as the difference of its revenue and labor cost:

𝜑
s
i = sipsi (s1,… , sm) − Lsi (si)p

L(
m∑

i=1
Lsi (si) +

n∑

j=1
Lpj (zj, Ĩj)), (9)

For simplicity, we set all other costs to zero. The profit function of the producers is

the following:
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𝜑
p
j = zjp

p
j (z1,… , zn)Fj (̃Ij) − Lpj (zj, Ĩj)p

L(
m∑

i=1
Lsi (si)

+
n∑

j=1
Lpj (zj, Ĩj)) −

m∑

i=1
xijpsi (s1,… , sm) − Dj(Ij), (10)

where the innovation development cost is also assumed to be linear:

Dj(Ij) = uj + vjIj. (11)

In this model the basic decision variables of the suppliers are their output levels

si, those of the producers are the xij flows from the suppliers to the firms and the

innovation investment Ij. We assume in our model that extra supplies can be sold

outside the cluster for the same price, and in the case of supply shortages they can

be purchased from sources outside the cluster.

3.4 The Decision Rules of Productions and the Innovation
Step

In dynamic oligopoly models, there are two alternative ways to study the evolution

of the system. In the case of best response dynamics it is assumed that each firm

adjusts its output into the direction toward its best response. In the case of gradient

adjustments it is assumed that the firms adjust their outputs in proportion to their

marginal profits, which requires only local information about the payoff functions.

So it is much more realistic than the use of best response dynamics.

In our earlier papers (Szidarovszky and Zhao 2009; Zhao and Szidarovszky 2008),

we assumed gradient adjustment with constant speed of adjustment as updating rules.

For producers, they adjust their inputs as

xij(t + 1) = xij(t) +
𝜑
p
j (xij(t) + Δx) − 𝜑

p
j (xij(t))

Δx 𝜀
x

(12)

and then the output of producer j at time period t + 1 becomes zj(t + 1) =
∑m

i=1 aijxij
(t + 1) + a0j.

The output of the suppliers is updated according to

si(t + 1) = si(t) +
𝜑
s
i (si(t) + Δs) − 𝜑

s
i (si(t))

Δs 𝜀
s
. (13)
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In our earlier models (Szidarovszky and Zhao 2009; Zhao and Szidarovszky

2008), we selected Δx = 10, Δs = 10, 𝜀
x = 1 and 𝜀

s = 0.1. In this paper, we will

also investigate the effects of these parameters on the behaviors of the agents and

compare this linear decision updating rules to a special nonlinear rule, which is intro-

duced next:

xij(t + 1) = xij(t) + Kp
j ⋅

2
𝜋
arctan(

𝜑
p
j (xij(t) + Δx) − 𝜑

p
j (xij(t)

Δx ) (14)

si(t + 1) = xi(t) + Ks
i ⋅

2
𝜋
arctan(

𝜑
s
i (si(t) + Δs) − 𝜑

s
i (si(t))

Δs ), (15)

where Kp
j = rpxij(t), rp < 1, Ks

i = rssi(t) and rs < 1.

In the case of large marginal profits the adjustment schemes (12) and (13) might

lead to large fluctuations of the output levels of the firms, which make the system

unstable. By introducing the inverse tangent function into the adjustment rules we

make all output changes bounded, so large fluctuations become impossible.

In our former papers (Szidarovszky and Zhao 2009; Zhao and Szidarovszky

2008), we assumed a constant step in innovation increase Ij(t) = 0.001. In this paper

however, we will study the effect of innovation step on the behavior of the firms, so

we selected a similar updating rule of innovation:

Ij(t + 1) = KI
j ⋅

2
𝜋
arctan(

𝜑
p
j (Ij(t) + ΔI) − 𝜑

p
j (Ij(t))

ΔI ) (16)

with KI
j = rI ⋅ Ĩj(t), rI < 1.

4 The Simulation Process

4.1 Parameters of the Model

We have a total population of 25 agents, including 20 suppliers and 5 producer

(m = 20 and n = 5). For any supplier i, we have the maximum price of Ai = 300
and marginal price Bi = 1 in Eq. (2). To represent the relatively low level of interac-

tion between the suppliers in their prices, bil is selected as 0.1 for l ≠ i. That is, the

suppliers specialize in different supplies, so their prices do not interfere with each

other much. The parameters of the labor function (6) of the suppliers are chosen as

𝛾i = 10 and 𝛿i = 0.4. For any producer j, the parameters of its production function

are chosen as a0j = 20, aij = 0.1 in Eq. (1). We also assumed much higher prices for
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final products than those of the supplies, so we select the common maximum price

of the producers as Aj = 1300 and similarly to the situation of the supplier agents,

we have Bj = 1 and bjl = 0.1. As the knowledge spillover is concerned, we consider

10% of the innovation as spillover, hence kjl = 0.1 for l ≠ j. Besides, Fmax
j = 2 and

𝜔j = 0.1 for the innovation dependent factor of Eq. (5). The parameters of the inno-

vation development cost in Eq. (11) are selected as uj = 50 and vj = 0.1. The sizes

of the producers are assumed to be larger than those of the suppliers, hence 𝛾 j = 50,

𝛿j = 0.3 and 𝜔j = 0.05. For the labor market, we have the maximum labor price

c = 300 and d is selected as 0.2 in Eq. (8).

In this paper, we will analyze only the effect of the decision rules. At the begin-

ning of the simulation process, the initial values xij(0) were generated randomly

by using uniform distribution from the interval [0, 20]. The initial value of si is

si(0) =
∑

j xij(0); the corresponding values of zj are calculated according to Eq. (1).

The same set of the initial xij(0) values was used in the same simulation group for

comparison purposes. The initial value of technology level of all producers was cho-

sen as 1.

There might be situations when prices, labors might become negative in the

process, therefore these variables will be bounded from below. It is reasonable to

assume that final products are sold for higher prices than supplies. The prices of

final products are bounded from below by 5, those of the suppliers are bounded from

below by 0. Usually, government has minimum wage policy; hence, for the whole

system the price of labor is bounded by 10 from below.

4.2 Simulation Results

4.2.1 The Effect of Parameters of Gradient Adjustment

First we fixed the values of Δx
and Δs

as 10, changed 𝜀
s

from 0.1 to 1.1 with the step

size of 0.2, and with each value of 𝜀
s
, 𝜀

x
varies from 0.1 to 2 with varying step sizes

depending on the pattern changes in the behavior of the agents.

1. 𝜖
s = 0.1

When 𝜀
x

varies gradually from 0.1 to 1.79, the patterns of the behavior of the

agents remain the same: fast increase or decrease at the beginning (this can be inter-

preted as the primitive formation of clusters) then the patterns converge or increase

(decrease) slowly (Fig. 2). If we consider a time cross section with increasing value of

𝜀
x
, the output, labor usage and profit of both the suppliers and the producers increase

and the average price of all firms and the labor price decrease. In the long run, the

output and profit of the producers always increase, but when 𝜀
x

is small (< 1 in the

figure) the labor usage is actually decreasing slowly in time. In this situation, the pro-

ducers will not increase their firm sizes. As 𝜀
x
< 1, the profits of the suppliers also

decrease slowly and when t is large enough, the profit might drop down to a negative

value. Hence the supplier firms might shut down or sell their products outside the
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Fig. 2 Firms’ behaviors when 𝜀
s = 0.1, 𝜀

x = 0.1 (solid line), 1 (dashed line), and 1.8 (dotted line)
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cluster. In such situations, the cluster will never survive. Until 𝜀
x

is increased above

1, the labor of the producers and the profit of the suppliers keep a steady value after

an increasing period. In this situation, it is hard to say that the exiting firms will

expand.

From 𝜀
x = 1.795, an oscillating behavior can be observed between two states

(Fig. 2). That is, a two-period cycle emerges. The amplitudes of the oscillations

become larger with time until they become stable. The oscillation starts after a linear

pattern and its amplitude increases. Since we will have later other kinds of oscillation

patterns, in order to distinguish between them, we call the oscillations just described

as tail oscillations. Larger value of 𝜀
x

makes the oscillations start earlier in time and

when 𝜀
x

becomes large enough, oscillations start almost at the beginning of the time

scale, and the cycles will have more points. Hence for a stable system, when suppli-

ers update their outputs as slowly as 𝜀
s = 0.1, the producers should not choose large

value of 𝜀
x(𝜀x ≥ 1.795). For a stable cluster that could stay, the range of 𝜀

x
should

be 1 ≤ 𝜀
x
< 1.795.

2. 𝜀
s = 0.3

Unlike higher values of 𝜀
x

which produce tail oscillations, higher values of 𝜀
s

induce behavior oscillation from the beginning of the time scale (we call this type

oscillation as head oscillation) (Fig. 3). For 𝜀
x = 0.1, there is a small oscillation at the

beginning of time but the trajectories converge later. When 𝜀
x

increases, the ampli-

tude and the length of the oscillating period become larger. If 𝜀
x

is larger than 1.4,

then the trajectories do not converge anymore, and the shape of the time series looks

like a dog bone as the result of the combination of the head oscillation and the tail

oscillation. When 𝜀
s = 0.3 and 𝜀

x
< 1, the long term behavior patterns are the same

as those with 𝜀
s = 0.1 and 𝜀

x
< 1.795.

Another impact of the higher value 𝜀
s = 0.3 is that the tail oscillation patterns,

which were induced by increasing values of 𝜀
x
, appear earlier than in the case of

𝜀
x = 0.1. The two types of oscillations (head and tail) are combined again to the dog

bone shape when 𝜀
x

is slightly larger than 1.4, and if 𝜀
x

becomes even larger, then

the behavior oscillates between two stable states, forming a two-period cycle.

For 𝜀
s = 0.3, smaller value of 𝜀

x
should be used to avoid the large amplitude

oscillations. However, like in the case of 𝜀
s = 0.1, with small value of 𝜀

x
, the small

decreasing labor usage and decreasing profits imply that the cluster will not survive.

Hence, for a surviving stable cluster, the range of 𝜀
x

should be 1 ≤ 𝜀
x ≤ 1.3.

3. 𝜀
s = 0.5

The situation of 𝜀
s = 0.5 is very similar to the case of 𝜀

s = 0.3, however with

larger amplitude of oscillation. The possible range of 𝜀
x

for a stable system is very

narrow.

4. 𝜀
s ≥ 0.7

When 𝜀
s = 0.7, the behaviors of both the suppliers and the producers oscillate

irregularly, profits might drop down to negative values (Fig. 4). When 𝜀
x

increases,

the producers production levels and profits also increase. When 𝜀
x

is increased to 1,

the behaviors of the two types of agents converge, however the corresponding profits

of suppliers become negative.
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When 𝜀
s = 0.9, the patterns are similar to the previous case with the difference

that when 𝜀
x

increased to 0.5, the behaviors of both types of agents converge, however

the profits of the suppliers become negative.

When 𝜀
s = 1.1, there are oscillations and sparks in the behaviors, they are never

stable regardless of the value of 𝜀
x

(Fig. 5).

Overall, changes in the values of 𝜀
x

and 𝜀
s

have significant influence on the behav-

iors of the suppliers and the producers. The combination of the different values of 𝜀
s

and 𝜀
x

will generate many different patterns. Larger value of 𝜀
s

and larger value of

𝜀
x

induce unstable systems.

It is interesting to analyze the reason why oscillation is observed. When 𝜀
s

is very

small, as 0.1, any increase of 𝜀
x

in a certain range will benefit the suppliers and the

producers in the short-term, all make more profit even with decreased average prices.

When 𝜀
x

is increased, then the behavior oscillates between two values. The amplitude

of the oscillation increases in time through many iterations and then becomes stable.

Our time scale is 0 ≤ t ≤ 500. When 𝜀
x = 1.795, oscillations emerge at the end of

the time scale, and when 𝜀
x = 1.85, oscillations emerge before time period 200. The

reason is the following. When 𝜀
x

is increased, the outputs of the producers should

also increase; this brings more labor to the cluster and decreases the labor price.

This benefits the suppliers, increases their profits. Since the outputs and profits of the

producers increase in time, until a certain time period, more and more outputs are

produced, and when it accumulates to a certain value (when 𝜀
x

is large enough), the

producers will over adjust their outputs, their profits decrease, then they adjust to the

opposite direction. This drives the oscillations; the oscillation amplitude increases

gradually until stable cycles occur.

If the updating step is too large, it will generate unstable behaviors, however if

it is too small, then the firms development is also too slow. To form a stable cluster

and also to keep the cluster for a longer time period, the values of 𝜀
x

and 𝜀
s

should

be selected properly.

We also repeated the simulations for Δx = 1. The pattern changes in the behavior

of the firms were similar to those observed for Δx = 10, only the critical values for

pattern changes were slightly different.

4.2.2 Simulation Results with New Updating Rules

The combination of 𝜀
s = 0.1 and 𝜀

x = 1 is chosen as a benchmark for the comparison

of the two different updating rules, the old rule (12)–(13), and the new rule (14)–(15).

Figure 6 shows the results of the four different updating strategies: both types of

agents use old updating rules and the innovation step is constant (dashed line); both

types of agents use new updating rules and the innovation step is constant (dotted

line); both types of agents use old updating rules but innovation increase uses new

rule (dash-dot line); both types of agents use new updating rules and innovation

increase uses new rule (solid line). In the new updating rules, Δx = 1, rp = rs = rI =
0.1. Even though the selected value of Δx

is large, say 10, the behaviors of the firms

become much smoother than before, only small oscillations within a small range can
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be observed. It is surprising to see that the new updating rule of the innovation step

will harm the suppliers no matter the agents adopt new output strategy or not (since

the suppliers’ profits are decreased and the average prices are increased). Hence a

stable innovation step is a relatively good choice. From the simulation results we

have the main conclusion that to bring existing firms into a stable cluster, both types

of agents should adopt new output strategies.

5 Conclusion

This paper presents an integrated model of agent-based simulation and network

oligopoly to study the evolution of a group of local firms for the possibility of form-

ing a long lasting industrial cluster. Agent-based simulation model is used to study

the effect of firms’ decisions on the formation of the cluster, and network oligopoly

theory is used to model the decisions and interaction rules of the agents. We stud-

ied the very simple situation when the firms only concern is their marginal profits

and their decisions are their productivity and innovation investments. Firms interact

through the product market and the secondary market of labor. The structure of the

system is similar to Markusen’s ‘Hub and Spoke’ type of cluster. From the simulation

results we demonstrated that under some production decision rules the group could

have the potential to involve into a surviving cluster. This paper offers a starting point

to study the cluster formation from exiting firms. More complicated situations will

be considered in our future research. We considered only fixed network with existing

firms. For investigating the growth of the cluster, innovations disperse and relation-

ship establishment, dynamic spatial networks have to be used. This task will be the

topic of our future work.
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Approximation of LPV-Systems
with Constant-Parametric Switching
Systems

Sandor Molnar and Mark Molnar

Abstract A common problem in systems and control theory is to provide an
approximation to non-linear systems. We provide a novel approach as a general
solution to this problem originally conceived by Gamkrelidze. We consider and
solve a general approximation problem which provides the fundamentals for var-
ious switching-type systems thus encompassing a wide range of systems theory
problems.

1 Introduction

Vertical integration is one of the key elements of modern industrial production
(Molnár and Szigeti 1994; Molnár 1989). We witness the widespread penetration of
industrial sensors and monitoring devices embedded in the production chain
resulting in a vast amount of digital data on plant level activity. This, together with
the control and system theory provides a unique chance to implement a decen-
tralised automated production system resulting in improved efficiency and higher
output as production optimisation requires optimal systems. In the following we
provide an important element in optimal system control applicable to a wide range
of state-of-the-art systems.

Optimising linear control systems shows similarities with linear programming as
it was noticed by Pontryagin and others. Starting with the qualitative analysis of
optimal control, Gamkrelidze (1978) considered the
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x ̇ðtÞ=AðtÞxðtÞ+BðtÞuðtÞ, xð0Þ= ξ,

linear, time varying (LTV) system for controls over the uðtÞ ∈ × k
1 ½0, 1� cube. He

proved that if u: ½0, T � → × k
1 ½0, 1� = U is piecewise continuous, then for every

ε > 0 there exists a v: ½0, T � → U piecewise continuous control, which directs the
system to the vertices of the cube and the solution

y ̇ðtÞ=AðtÞyðtÞ+BðtÞvðtÞ, yð0Þ= ξ

satisfies the condition

x tð Þk − y tð Þk< ε.

Thus, even though the u(t) and v(t) controls might show significant pointwise
differences, the respective trajectories will still remain uniformly close.

We will use a simple application in the following sections to demonstrate the
novel approach presented in the approximation theorems. This application is a
simple Buck-Boost converter and is widely applied (Sira-Ramírez 2015;
Sira-Ramírez and Agrawal 2004).

2 Applications

We will demonstrate the proposed approximation problem through a well-known
engineering application. Let’s consider the so called Buck-Boost converter circuit:

The function v(t) describes the state of the switch and can take discrete values
0, 1f g, as it is visible on Fig. 1. The ideal behaviour can be characterised by a

piecewise continuous function u: 0, T½ �→ 0, 1½ � which is described by the following
system of differential equations

Lx1̇ = ð1− uÞx2 + uE
Cx2̇ = − ð1− uÞx1 − x2

R
. ð1Þ

Fig. 1 A Buck-Boost converter circuit
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where x1 denotes current flowing through the coil and x2 the voltage drop on the
capacitor.

Function u which describes the ideal behaviour cannot be generated by turning
the switch on and off, only a good approximation can be achieved. For example, for
a given precision ε>0 a function v(t) can be assigned describing a set of
switchings,

Ly1̇ = 1− vð Þy2 + vE

Cy2̇ = − 1 1− vð Þy1 − y2
R

ð2Þ

where the resulting y1 and y2 fulfill the conditions

x1 tð Þ− y1 tð Þj j< ε, x2 tð Þ− y2 tð Þj j< ε.

It is visible that our simple example is nonlinear, does not have any connection
with the optimal control, and is a typical problem in systems theory. Mathemati-
cally, however it is of a very similar nature as the approximation problem con-
sidered by Gamkrelidze.

3 Problem Formulation

Herewith we consider and solve a general approximation problem which provides
the fundamentals for further switching-type systems encompassing a wide range of
systems theory problems. The Buck-Boost converter is considered as the paradigm
of switching systems.

3.1 Introducing LPV Systems from a Buck-Boost Converter

The system is non-linear, thus it can not be fitted in the framework of the
Gamkrelidze approximation theorem. Instead of linearising we introduce a

parameter to replace the
x1
x2

� �
state making the system formally linear. After

dividing by the physical constant constants L and C, (1) can be rewritten as

x ̇1 =
1
L
x2 +

E
L
− p2

1
L

� �
u,

x2̇ = −
1
C
x1 −

1
RC

x2 +
1
C
p1u,

ð3Þ

Approximation of LPV-Systems with Constant-Parametric … 129



or in matrix form,

x ̇1
x2̇

� �
=

0 1
L

− 1
C

1
RC

� �
x1
x2

� �
+

1
L p2
1
C p1

� �
u. ð4Þ

Considering the
p1
p2

� �
parameter vector as the

x1
x2

� �
state variable, we arrive

to the non-linear system in (2). We can immediately raise the problem of adopting a
Gamkrelidze-type approximation theorem to LPV or LPTV systems, while in the
same time giving a generalisation.

It is well visible that the outlined problem is purely of system theory and not of
optimisation theory. We will call the approximating systems which will be piece-
wise continuous constant parametric linear systems, similarly to the Buck-Boost
switches switching systems.

Let U⊂Rk1 convex polyhedron and P⊂Rk1 a compact set. We assume that

A:P× 0, T½ �→ℝn× n

B:P× 0, T½ �→ℝn× k1

are satisfying the uniform Lipschitz-condition in t with L1 and L2 parameters,
respectively.

We substitute the p parameter of the

x ̇=A p, tð Þx+B p, tð Þu ð5Þ

LPTV system with a state-time-dependent variable. For this consider an open set
D⊂ℝn × 0, T½ �, and the p:D→P parameter-function. We assume that function p is
uniformly Lipschitz-continuous with an L3 Lipschitz-constant. To have an easy
picture of the structure of such a set D, consider the following Fig. 2.

The basis and top shape of the cylinder-like object belongs to the D-domain, but
the constituents of the cylinder do not, due to the openness in ℝ2 × 0, T½ �

Fig. 2 Structure of set D
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4 Approximation Theorems

In the followings we outline two approximation theorems. In the case of the first
theorem the approximation of control u can contain large discrete-point errors, since
the approximating v control considers the vertices of the U convex polyhedron, but
the respective trajectories are uniformly close. The second theorem states signifi-
cantly more. Not just that the above mentioned statement holds, but also parameter
function q (which is used for approximating parameter function p) considers values
of the vertices of the P convex polyhedron and despite this, the approximation of
the trajectories is uniform.

Approximation Theorem 1 Assume that for a piecewise continuous u: 0, T½ �→U
control, and for a p:D→P uniformly global Lipschitz-continuous
state-time-dependent parameter function in t, and for a ξ∈ℝn initial condition
there is a solution for the

x ̇ðtÞ= A pðxðtÞ, tÞ, tð ÞxðtÞ + B pðxðtÞ, tÞ, tð ÞuðtÞ,
xð0Þ= ξ

ð6Þ

initial value problem. Then, there is a ε0 > 0 for which for every 0 < ε < ε0 the
following exist:

(1) δ > 0,
(2) a piecewise constant v: ½0, T �→U which takes the values of the vertices of the

U convex polyhedron,
(3) q:D→P piecewise constant state-time-dependent parameter function, that for

all η∈ℝn initial conditions satisfying ∥ξ− η∥< δ the solution of the initial
value problem of

y ̇ðtÞ=A qðyðtÞ, tÞ, tð ÞyðtÞ+B qðyðtÞ, tÞ, tð ÞvðtÞ,
yð0Þ= η

ð7Þ

has the whole [0, T] interval as a domain, and there x tð Þ− y tð Þk k< ε holds.

For the next interpolation theorem let’s assume that P⊂ℝk2 is also a convex
polyhedron. We assume that functions A:P→ℝn× n és a B:P→ℝn× k1 are linear in
p, that is, functions p→A p, tð Þ and p→B p, tð Þ are linear for all t. From this, for a
fixed t the Lipschitz-condition holds, thus we need only assume continuity and
uniformity in t. With these additional assumptions we can improve our previous
theorem.

Approximation Theorem 2 Assume that for a piecewise continuous control
u: ½0, T �→U and for a time-state-dependent function p:D→P satisfying the uni-
form global Lipschitz-condition in t, and for an initial state ξ∈ℝn there is a
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solution x: 0, T½ � → ℝn for the initial value problem on the whole 0, T½ � domain.
Then there exists ε0 > 0 so that for all 0< ε< ε0 the followings exist:

(1) δ>0,
(2) a piecewise constant v: ½0, T�→U, which takes its values from the vertices of

the U convex polyhedron,
(3) a q:D→P piecewise constant state-time parameter function which takes its

values from the P convex polyhedron, so that for all η∈ℝn, for which
∥ξ− η∥< δ, if the initial value condition yð0Þ= η is satisfied the solution of the
initial value problem is available on the whole domain ½0, T �, and there

x tð Þ− y tð Þk k< ε

holds.

While the Gamkrelidze-type of optimisation cannot be applied to the
Buck-Boost switch, our approximation theorems are applicable. As we discuss a
system which is linear in parameters we can endeavour to apply the second theo-
rem. For this we have to ensure that at least on the finite [0, T] interval we can keep

the p=
P1

P2

� �
parameters in a convex polyhedron if p= x. Let’s consider Eq. (1)

and integrate on the interval ½0, tÞ⊂½0, T�. Consider the following system of
equations

x1ðtÞ= ξ1 +
E
L
∫
t

0
uðτÞdτ+ 1

L
∫
t

0
1− uðτÞð Þ x2ðτÞdτ

x2ðtÞ= ξ2 +
1
C
∫
t

0
uðτÞ− 1ð Þ x1ðτÞdτ− 1

RC
∫
t

0
x2ðτÞdτ

ð8Þ

and substitute x1ðtÞ from the first equation into the second and from this equation
substitute x2ðtÞ to get:

x2ðtÞ= ξ2 +
1
C
∫
t

0
uðτ1Þ− 1ð Þ ξ1 +

E
L
∫
τ1

0
uðτ2Þdτ2 + 1

L
∫
τ1

0
1− uðτ2Þð Þx2ðτ2Þdτ2

" #
dτ1 −

−
1
RC

∫
t

0
x2ðτÞdτ= 1

C
∫
t

0
uðτ1Þ− 1ð Þdτ1ξ1 + ξ2 +

E
LC

∫
t

0
u1ðτ1Þ− 1ð Þ ∫

τ1

0
uðτ2Þdτ2dτ1 +

+
1
LC

∫
t

0
uðτ1Þ− 1ð Þ ∫

τ1

0
1− uðτ2Þð Þx2ðτ2Þdτ2

 !
dτ1 −

1
RC

∫
t

0
x2ðτÞdτ =

=
1
C
∫
t

0
uðτ1Þ− 1ð Þdτ1ξ1 + ξ2 +

E
LC

∫
t

0
u1ðτ1Þ− 1ð Þ ∫

τ1

0
uðτ2Þdτ2dτ1 +

+ ∫
t

0

1
LC

1− uðτ1Þð Þ ∫
t

τ1

uðτ2Þ− 1ð Þ dτ2 − 1
RC

" #
x2ðτ1Þdτ1.
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Let’s introduce the following notations

ϕ1ðtÞ=
1
C
∫
t

0
uðτ1Þ− 1ð Þdτ1,

ϕ2ðtÞ=
E
LC

∫
t

0
u1τ− 1ð Þ ∫

τ2

0
uðτ2Þdτ2dτ1, eś

ϕ3ðτ1Þ=
1
LC

1− uðτ1Þð Þ ∫
t

τ1

uðτ2Þ− 1ð Þdτ2 − 1
RC

.

Then

x2ðtÞ=ϕðtÞξ1 + ξ2 +ϕ2ðtÞ+ ∫
t

0
ϕ3ðτÞx2ðτÞdτ.

From this follows

x2ðtÞ=φ1ðtÞξ1 + ξ2 +φ2ðtÞ+ ∫
t

0
φ3ðτ1Þ φ1ðτ1Þξ1 + ξ2 +φ2ðτ1Þ+ ∫

τ1

0
φ3ðτ2Þx2ðτ2Þdτ2

" #
dτ1 =

= φ1ðtÞ+ ∫
t

0
φ3ðτÞφ1ðτÞdτ

 !
ξ1 + 1+ ∫

t

0
φ3ðτ1Þdτ1

 !
ξ2 +φ2ðtÞ+ ∫

t

0
φ3ðτÞφ2ðτÞdτ+

+ ∫
t

0
φ3ðτ1Þ ∫

τ1

0
φ3ðτ2Þx2ðτ2Þdτ2dτ1 = φ1ðtÞ+ ∫

t

0
φ3ðτÞφ1ðτÞdτ

 !
ξ1 +

+ 1+ ∫
t

0
φ3ðτÞdτ

 !
ξ2 + φ2ðtÞ+ ∫

t

0
φ3ðtÞφ2ðτÞdτ+

 !
+

+ ∫
t

0
φ3ðτ1Þ ∫

τ1

0
φ3ðτ2Þ φ1ðτ2Þξ1 + ξ2 +φ2ðτ2Þ+ ∫

τ2

0
φ3ðτ3Þx2ðτ3Þdτ3

" #
dτ2dτ1 =

= φ1ðtÞ+ ∫
t

0
φ3ðτ1Þφ1ðτ1Þdτ1 + ∫

t

0
φ3ðτ1Þ ∫

τ1

0
φ3ðτ2Þφ1ðτ2Þdτ2dτ1

" #
ξ1 +

+ 1+ ∫
t

0
φ3ðτ1Þdτ1 + ∫

t

0
φ3ðτ1Þ ∫

τ1

0
φ3ðτ2Þdτ2dτ1

" #
ξ2 +

+ φ2ðtÞ+ ∫
t

0
φ3ðτ1Þφ2ðτ1Þdτ1 + ∫

t

0
φ3ðτ1Þ ∫

τ1

0
φ3ðτ2Þφ2ðτ2Þdτ2dτ1

" #
+

+ ∫
t

0
φ3ðτ1Þ ∫

τ1

0
φ3ðτ2Þ ∫

τ2

0
φ3ðτ3Þx2ðτ3Þdτ3dτ2dτ1.
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Continuing with this procedure we get

x2 tð Þ= φ1 tð Þ+ ∑
k

i=1

Z t

0

φ3 τ1ð Þ
Zτ1
0

φ3 τ2ð Þ . . .
Zτk − 2

0

φ3 τk− 1ð Þ
Zτk − 1

0

φ3 τkð Þφ1 τkð Þdτk . . . dτ1
2
4

3
5ξ1 +

+ 1+
Z t

0

φ3 τ1ð Þ+ . . . +
Z t

0

φ3 τ2ð Þ . . .
Zτk− 2

0

φ3 τk − 1ð Þ
Zτk− 1

0

φ3 τkð Þφ1 τkð Þdτk . . . dτ1
2
4

3
5ξ2 +

+ φ2 tð Þ+ ∑
k

i=1

Z t

0

φ3 τ1ð Þ
Zτ1
0

φ3 τ2ð Þ . . .
Zτk− 2

0

φ3 τk − 1ð Þ
Zτk− 1

0

φ3 τkð Þφ2 τkð Þdτk . . . dτ1
2
4

3
5 +

+
Z t

0

φ3 τ1ð Þ
Zτ1
0

φ3 τ2ð Þ
Zτ2
0

φ3 τ3ð Þ . . .
Zτk− 1

0

φ3 τkð Þ
Zτk
0

φ3 τk+1ð Þx2 τk+1ð Þdτk +1dτk . . . dτ1.

Repeating partial integration allows for the following transformation of integrals:

Z t

0

φ τ1ð Þ
Zτ1
0

φ τ2ð Þ . . .
Zτk− 2

0

φ τk − 1ð Þ
Zτk− 1

0

φ τkð Þψ τkð Þdτkdτk− 1 . . . dτ1 =

=
1
k!

Z t

0

Z t

τ1

φ τ2ð Þdτ2
0
@

1
Ak

ψ ′ τ1ð Þdτ1

andZ t

0

φ τ1ð Þ
Zτ1
0

φ τ2ð Þ . . .
Zτk− 2

0

φ τk − 1ð Þ
Zτk
0

φ τkð Þdτkdτk− 1 . . . dτ1 =

=
1
k!

Z t

0

Z t

τ1

φ τ2ð Þdτ2
0
@

1
Ak

dτ1 andψ tð Þ=
Z t

0

ψ ′ tð Þdτ.

This yields

x2ðtÞ= ∑k
i=0

1
i !

Z t

0

Z t

τ1

ϕ3ðτ2Þdτ2
0
@

1
Ai

ϕ′

1ðτ1Þdτ1
0
@

1
Aξ1 + ∑k

i=0
1
i !

Z t

0

Z t

0

ϕ3ðτ2Þdτ2
0
@

1
Ai

dτ1

0
@

1
Aξ2

+ ∑k
i=0

1
i !

Z t

τ1

Z t

τ1

ϕ3ðτ2Þdτ2
0
@

1
Ai

ϕ′

2ðτ1Þdτ1
0
@

1
A+

1
k+1

Z t

0

Z t

τ1

ϕ3ðτ2Þdτ2
0
@

1
Ak+1

x′2ðτ1Þdτ1,
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Taking the right limit when k→∞, we get

x2ðtÞ= ∫
t

0
exp ∫

t

τ1

ϕ3ðτ2Þdτ2
 !

ϕ′

1ðτ1Þdτ1ξ1 + ∫
t

0
exp ∫

t

τ1

ϕ3ðτ2Þdτ2
 !

dτ1ξ2 +

+ ∫
t

0
exp ∫

t

τ1

ϕ3ðτ2Þdτ2
 !

ϕ′

2ðτ1Þdτ1.

From this, substituting x2ðtÞ from (12) in the first equation of (8) yields:

x1ðtÞ= ξ1 +
E
L
∫
t

0
uðτÞdτ+ 1

L
∫
t

0
ð1− uðτ1ÞÞ ∫

τ1

0
exp ∫

τ1

τ2

ϕ3ðτ3Þdτ3
 !

ϕ′

1ðτ2Þdτ2dτ1ξ1 +

+
1
L
∫
t

0
1− uðτ1Þð Þ ∫

τ1

0
exp ∫

τ1

τ2

ϕ3ðτ3Þdτ3
 !

dτ2dτ1ξ2 +

+
1
L
∫
t

0
1− uðτ1Þð Þ ∫

τ1

0
exp ∫

τ1

τ2

ϕ3ðτ3Þdτ3
 !

ϕ′

2ðτ2Þdτ2dτ1, azaz

x1ðtÞ= 1+
1
L
∫
t

0
1− uðτ1Þð Þ ∫

τ1

0
exp ∫

τ1

τ2

ϕ3ðτ3Þdτ3
 !

ϕ′

1ðτ2Þdτ2dτ1
" #

ξ1 +

+
1
L
∫
t

0
1− uðτ1Þð Þ ∫

τ1

0
exp ∫

τ1

τ2

ϕ3ðτ3Þdτ3
 !

dτ2dτ1ξ2 +

+
E
L
∫
t

0
uðτÞdτ+ 1

L
∫
t

0
1− uðτ1Þð Þ ∫

τ1

0
exp ∫

τ1

τ2

ϕ3ðτ3Þdτ3
 !

ϕ′

2ðτ2Þdτ2dτ1.

We can estimate a P⊂ℝ2 polyhedron (in our case a square
P= ½−M, M�× ½−M, M�Þ using the physical constants, the definitions of
ϕ1, ϕ2, ϕ3, and the condition 0 ≤ uðtÞ ≤ 1, which will contain the p = x parameter
function all along the interval ½0, T�. Our second theorem guarantees an interesting
but physically not implemented circuit approximation model for the Buck-Boost
converter.

Instead of the model in (1) we can use models defined over discrete sections
where in the bilinear element we put ±M instead of x1 as the current in the coil, and
±M instead of x2 for the potential in the capacitor.

Lx ̇1 = x2 + ðE±MÞu,
Cx2̇ = − x1 −

1
R
x2 ±Mu.

ð9Þ
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This means that the sectionwise switching of the four linear system models
corresponding to the four vertices of the square will be the “linearisation” of the
bilinear system, nonetheless having not too many common features with conven-
tional linearisation.

Before providing the proofs for these two theorems, we prove an approximation
lemma which will replace matrix-norm estimations during the proofs of the
theorems.

Approximation Lemma Let U⊂ℝk1 be a convex finite polyhedron, u: ½0, T �→U a
piecewise continuous function, and B: 0, T½ �→ℝn× k1 a piecewise continuous
matrix function. Then for any ε ̄>0 there exists a v: ½0, T�→U piecewise continuous
approximation function, which takes values in the vertices of U, and

∫
t

0
BðτÞ uðτÞ− vðτÞð Þ dτ

�����
�����< ε ̄ ð10Þ

Proof Let dU be the diameter of the U polyhedron, that is d=max∥ul1 − ul2∥,
where ul1 , ul2 run along the vertices of the U polyhedron, furthermore

Bj j= sup
t∈ 0, T½ �

B tð Þk k

Since u and B are piecewise continuous, thus for all ε ̄>0 there exist such
0= t0 < t1 < . . . < tk− 1 < tk =T points in ½0, T � that on the ½ti− 1, tiÞ⊂½0, T � intervals
both u and B are continuous, and

u tð Þ− u ti− 1ð Þk k< ε ̄
3T Bj j , if t∈ ti− 1, ti½ Þ

B tð Þ−B ti− 1ð Þk k< ε ̄
3TdU

if t∈ ti− 1, ti½ Þ

ti − ti− 1ð Þ Bj jdu < ε ̄
3T

Denote the vertices of the U polyhedron with u1, u2, . . . , uL. Since U is convex,
therefore there exists at least one convex combination u1, u2, . . . , uL of the vertices
for which

uðti− 1Þ= ∑
L

l=1
λilul ∑

L

l=1
λil =1, λil ≥ 0

� �
.
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Let’s partition the ½ti− 1, tiÞ interval in λi1, λ
i
2 . . . λ

i
L proportions to sub-intervals,

allowing for 0 length: ti1 = ti0 ≤ ti1 ≤⋯≤ tiL = t where

til = ti− 1 + ti − ti− 1ð Þ ∑
l

l1 = 1
λil1

 !
.

Let’s define the approximating function v: ½0, T�→U on the sub-interval
t∈ ½til− 1, tilÞ⊂½ti− 1, tiÞ with the value vðtÞ= ul from the vertex. Let t∈ ½0, TÞ be
arbitrary, then t∈ ½ti− 1, tiÞ for an ith sub-interval.

Then, for t<T ,

∫
t

0
BðτÞðuðτÞ− vðτÞÞdτ

�����
�����≤ ∫

t

ti− 1

BðτÞ uðτÞ− vðτÞð Þdτ
�����

�����+ ∑
i− 1

j=1

Ztj
tj− 1

BðτÞ uðτÞ− vðτÞð Þdτ

�������
�������.

We estimate seperately the first element and the sum of the right side:

∫
t

0
BðτÞðuðτÞ− vðτÞÞdτ

�����
�����≤ ∫

t

ti− 1

BðτÞk k uðτÞ− vðτÞð Þk kdτ ≤

≤ t− ti− 1ð Þ Bj jdU ≤ ti − ti− 1ð Þ Bj jdU ≤
ε ̄
3
.

Simple calculations yield the estimation

∫
t

0
BðτÞðuðτÞ− vðτÞÞdτ

�����
�����≤ ε ̄

proving our approximation lemma.

Approximation Theorem Proof
Assume that

ξ∈ℝn and ξ− ςk k< ε

6
exp −LTð Þ

where the L constant can be defined using

Aj j= sup A p, tð Þk k, Bj j= sup B p, tð Þk k, uj j= sup u tð Þk k, xj j= sup x tð Þk k
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as follows:

L= L1L3jxj+L2L3juj ⋅ jAj,

where L1,L2,L3 are the Lipschitz-constans introduced to the A, B, P as global
functions of t, respectively.

According to our conditions the initial value problem has a solution on the
complete ½0, T�. Since D⊂ℝn × 0, T½ � is an open set, therefore there exists a ε0 > 0,
for which the closed ε0 radius neighbourhood of x: 0, T½ �→ℝn is a subset of
D. Then an ε>0 can be selected arbitrarily under the condition ε< ε0. Let v be an
arbitrary control for now, on the following problem:

z ̇ðtÞ=AðpðzðtÞ, tÞ, tÞzðtÞ+BðpðzðtÞ, tÞ, tÞvðtÞ,
zð0Þ= ζ.

ð11Þ

We can compare the z solution of this problem on the semi-open domain ½0, T0Þ
of the interval ½0, T � with the solution of x: 0, T½ � → ℝn. For this reason we inte-
grate Eqs. (6) and (11) and estimate the deviations of the solutions,

x tð Þ− z tð Þk k≤ ξ− ςk k +
Z t

0

A p x τð Þ, τð Þ, τð Þx τð Þ−A p z τð Þ, τð Þ, τð Þz τð Þð Þdτ
������

������ +

+
Z t

0

B p x τð Þ, τð Þ, τð Þu τð Þ−B p z τð Þ, τð Þ, τð Þv τð Þð Þdτ
������

������ ≤

≤ ξ− ςk k+
Z t

0

A p x τð Þ, τð Þ, τð Þx τð Þ−A p z τð Þ, τð Þ, τð Þx τð Þð Þdτ
������

������ +

+
Z t

0

A p z τð Þ, τð Þ, τð Þ x tð Þ− z τð Þð Þð Þdτ
������

������ +

+
Z t

0

B p x τð Þ, τð Þ, τð Þu τð Þ−B p z τð Þ, τð Þ, τð Þu τð Þð Þdτ
������

������ +

+
Z t

0

B p z τð Þ, τð Þð Þ u τð Þ− v τð Þð Þð Þdτ
������

������.
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Let us estimate each of the last four elements seperately.

Z t

0

A p x τð Þ, τð Þ, τð Þ−A p z τð Þ, τð Þ, τð Þð Þx τð Þdτ
������

������ ≤

≤
Z t

0

A p x τð Þ, τð Þ, τð Þ−A p z τð Þ, τð Þ, τð Þð Þk k x τð Þk kdτ≤ L1L3 xj j
Z t

0

x τð Þ− z τð Þk kdτ.

Z t

0

A p z τð Þ, τð Þ, τð Þð Þ x τð Þ− z τð Þð Þdτ
������

������≤ Aj j
Z t

0

x τð Þ− z τð Þk kdτ +

Z t

0

B p x τð Þ, τð Þ, τð Þ−B p z τð Þ, τð Þ, τð Þð Þu τð Þdτ
������

������ ≤

≤
Z t

0

B p x τð Þ, τð Þ, τð Þ−B p z τð Þ, τð Þ, τð Þk k u τð Þk kdτ≤L2L3 uj j
Z t

0

x τð Þz τð Þk kdτ.

The last element can not be easily estimated to justify our approximation the-
orem. Therefore, we introduce the following notation:

L= L1L3 xj j+ L2L3 uj j+ Aj j,

ψ tð Þ=
Z t

0

B p z τð Þ, τð Þ, τð Þ u τð Þ− v τð Þð Þdτ
������

������,
φ tð Þ= x tð Þ− z tð Þk k.

Then, we get

ϕðtÞ≤ϕð0Þ+L ∫
t

0
ϕðτÞdτ+ψðtÞ ð12Þ
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We substitute (12) for ϕðτÞ:

ϕðtÞ≤ϕð0Þ+L ∫
t

0
ϕð0Þ+L ∫

t

0
ϕðτ2Þdτ2 +ψðτ1Þ

 !
dτ1 +ψðtÞ.

We repeat this with the resulting inequality, to get that

x tð Þ− z tð Þk k ≤ exp LTð Þ ξ− ζk k+
Z t

0

B p z tð Þ, τð Þ, τð Þ u τð Þ− v τð Þð Þdτ
������

������ +

+ L
Z t

0

exp L t− τ1ð Þð Þ
Zτ1
0

B p z τ2ð Þ, τ2ð Þð Þ u τ2ð Þ− v τ2ð Þð Þdτ2

������
������dτ1.

ð13Þ

Assuming that

∥ξ− ζ∥<
δ

2
<

ε

6
expð−LTÞ, that is δ ̄<

ε

3
expð−LTÞ

ψðtÞ= ∫
t

0
B pðzðτÞ, τÞ, τð Þ uðτÞ− vðτÞð Þdτ

�����
�����< ε

6
,

and, for having the third element to be smaller than ε
6, it is necessary, that

ψðtÞ= ∫
t

0
B pðzðτÞ, τÞτð Þ uðτÞ− vðτÞð Þdτ

�����
�����≤ ε

6ðexp LT − 1Þ

also holds. Applying our approximation lemma using the function

BðtÞ=B pðzðtÞ, tÞ, tð Þ

there exists a control v: ½0, T�→U which can have values only from the vertices of
the U convex polyhedron, is piecewise constant and ψðtÞ< ε

6 .
Thus

ψðtÞ< min
ε

6ðexp LT − 1Þ ,
ε

6

� �
,
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from which follows, that

x tð Þ− z tð Þk k< ε

2

From this follows from the bound-to-bound continuity of the solutions that for
the piecewise constant control v: [0, T] → U taking its range in the vertices of the U
convex polyhedron, the respective z: 0, T½ �→ℝn has the complete ½0, T� as its
domain. Therefore we need to examine if such a v: ½0, T�→U exists, as stated in the
approximation theorem, for which

ψðtÞ= ∫
t

0
B pðzðτÞ, τÞ, τð Þ uðτÞ− vðτÞð Þ dτ

�����
����� ≤

≤ min
ε

6ðexp LT − 1Þ ,
ε

6

� �

holds. For this, apply the approximation lemma on the function

t→B p z tð Þ, tð Þ, tð Þ=B tð Þ

and on the number

ε ̄= min
ε

6ðexp LT − 1Þ ,
ε

6

� �

which asserts that with the constructed v control the solutions x and z of the initial
value problems (6) and (11) satisfy x tð Þ− z tð Þk k< ε

2, thus z also has its domain on
the whole ½0, T �.

Let us compare now the solutions y and z of initial value problems (7) and (11).
We would like to choose the piecewise constant parameter-function q:D→P in
Eq. (7) that x tð Þ− z tð Þk k< ε

2 would hold assuming ∥η− ξ∥< δ ̄̄ for some δ ̄̄>0
which would be smaller than δ̄. Then, δ>0 in the first approximation theorem could
be chosen as δ=min δ ̄, δ ̄̄f g. Stating the estimation the usual way and assuming that
∥ζ− η∥< δ̄̄, and p x, tð Þ− q x, tð Þk k< ε ̄, ∀ x, tð Þ∈D we find that for the function
ϕ tð Þ= z tð Þ− y tð Þk k and the constants

L= L1L3 jxj+ ε

2

� �
+L2L3jvj+ jAj,

M = L1ðjxj+ ε

2
Þ+ L2jvj

� �
T

Approximation of LPV-Systems with Constant-Parametric … 141



the inequality

ϕðtÞ≤ϕð0Þ+L ∫
t

0
ϕðτÞdτ+M

holds. The iterative process applied previously multiple times yields

ϕðtÞ≤ ðϕð0Þ+MξÞ expð− LTÞ.

This is almost the original form of the Gronwall-Bellman-lemma. If we want this
deviation to be smaller than ε

2, then we have to choose the δ ̄̄< ε
4 expð− LTÞ, and

ε ̄<
ε

4M
expð− LTÞ

constraints. This, together with the inequality

x tð Þ− y tð Þk k≤ x tð Þ− z tð Þk k+ z tð Þ− y tð Þk k< ε

2
+

ε

2
= ε

proves our first approximation theorem.

Proof Approximation Theorem 2
We structure this similarly to Theorem 1. From the proof of Theorem 1 it can be
easily seen that in estimating the deviation x tð Þ− z tð Þk k the function q:D→P does
not play any role, therefore it is sufficient to refer to this part of the proof of
Theorem 1.

For the estimation of z tð Þ− y tð Þk k in Theorem 2 we need to construct q:D→P
taking into account our additional conditions. Thus P⊂ℝk2 is a convex polyhedron,
and p→A p, tð Þ and p→B p, tð Þ are linear functions for all fixed t. The
Lipschitz-condition has to hold uniformly in t in this case, too. We will also use the
notations introduced in Theorem 1.

We start with a geometrical construction. The basic idea behind this is that we
will create a “toothed” domain inside D with the union of smaller cubicles which
also has its closure also D.

We defined the desired piecewise constant q state-time-variable function which
has its values in the P convex polyhedron. Now let FrD denote the boundary of set
D. Let FrD 0, Tð Þ =FrD∩ ℝn × 0, Tð Þð Þ. For an arbitrary δ0 > 0 let
Nδ0 FrD 0, Tð Þ
	 


⊂ℝn × 0, T½ � denote the δ0 radius neighbourhood of the boundary in
the ℝn × 0, T½ � band. Let now be δ>0 a value satisfying only one condition,
ðn+1Þδ< δ0. Consider a t= ðt0, t1, . . . , tI − 1, tIÞ partition of the ½0, T� interval,
0 = t0 < t1 <⋯tI − 1 < tI =T , which satisfies the condition ti − ti− 1 < δ for all i.
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Consider the dot-grid ℤn = m:m= m1, m2, . . . ,mnð Þ, mj ∈ ℤ
� �

. Let Qδm denote
the above-open cube with edge length 2δ, and centre δm∈ℝn:

Qδm = x∈ℝn, x∈ mj − 1
	 


δ, mj +1
	 


δ

 �

, j=1, 2, ..n
� �

.

The definition of the forementioned Dδ0, δ, t⊂D “toothed” set is as follows:

Dδ0, δ, t =ℝn × 0, T½ �∩ ∪ Qδm × ti− 1, ti½ �∩Nδ0 FrD 0, Tð Þð Þ≠∅Qδm × ti− 1, ti½ �
� �

Consider the state-time variable p parameter function’s values in the ðδm, ti− 1Þ
locations: pðδm, ti− 1Þ∈P. Since P is a convex polyhedron with P1, P2, . . . , PM

vertices, therefore there is at least one convex combination, for which

pðδm, ti− 1Þ= ∑
M

m=1
λm, i
m Pm.

Now let’s consider the λm, i
m proportioned partitioning of the ti− 1, ti interval:

ti− 1 = ti0 ≤ ti1 ≤ ti2 ≤⋯.≤ tiðM − 1Þ ≤ tiM = ti;

ti1 − ti0: ti2 − ti1:⋯: tiM − tiM − 1 = λm, i
1 : λm, i

2 :⋯: λm, i
M

or

tim = ti− 1 + ðti − ti− 1Þ ∑
m

η=1
λm, i
η

 !
.

Now we can define the q:Dδ0, δ, t →P function as follows:
If ðx, tÞ∈Dδ0, δ, t, then there is Qδm × ½ti− 1, tiÞ for which ðx, tÞ∈Qδm × ½ti− 1, tiÞ

for all t<T , and for ðx, TÞ exists such Qδm, which satisfies ðx, TÞ∈Qδm × ½tI − 1, tI �.
Taking pðδm, ti− 1Þ∈P and assigning a convex combination

pðδm, ti− 1Þ= ∑
M

m=1
λm, i
m Pm

for all t∈ ½tim− 1, timÞ intervals where tim − tim− 1 > 0, and tim ≠T so that

qðx, tÞ=Pm, if x, tð Þ∈Qδm × ½tim− 1, timÞ,

and

qðx,TÞ=Pm, if ðx,TÞ∈Qδm

hold.

Approximation of LPV-Systems with Constant-Parametric … 143



Our conditions assure that the initial value problem has a solution on the whole
½0, T � interval. We put another constraining condition on the solution x, connecting
the δ0, δ, t in the construction of q:Dδ0 , δ, t→P and the ε0 -radius neighbourhood of
x in the “toothed” domain of Dδ0, δ, t. This is a common condition for the x solution
and the δ0, δ, t, ε0. So we prove the first part of Theorem 2 under this condition. For
all 0 < ε< ε0 there is a δ>0, which, for all ξ∈ℝn ξ− ςk k< δ and for any v: [0,
T] → U piecewise constant control taking its range on the vertices of the U sat-
isfies that the deviation of the solutions of (6) and (11) on the complete ½0, T� is
x tð Þ− z tð Þk k< ε

2.
Let us compare now the solutions of the initial value problems in (7) and (11)

perhaps putting more stringent constraints on the choice of t, δ0, δ than in the first
proof. We start the comparison the usual way:

z tð Þ− y tð Þk k≤ ξ− ηk k+
Z t

0

A p z τð Þ, τð Þ, τð Þz τð Þ−A q y τð Þ, τð Þ, τð Þy τð Þdτ
������

������ +

+
Z t

0

B p z τð Þ, τð Þ, τð Þ−B q y τð Þ, τð Þ, τð Þv τð Þdτ
������

������≤ ξ− ηk k +

+
Zti− 1

0

A p z τð Þ, τð Þ, τð Þz τð Þ−A q y τð Þ, τð Þ, τð Þy τð Þdτ
������

������ +

+
Zti
ti− 1

A p z τð Þ, τð Þ, τð Þz τð Þ−A q y τð Þ, τð Þ, τð Þy τð Þdτ
������

������
+

Zti− 1

0

B p z τð Þ, τð Þ, τð Þ−B q y τð Þ, τð Þ, τð Þv τð Þdτ
������

������ +

+
Zti
ti− 1

B p z τð Þ, τð Þ, τð Þ−B q y τð Þ, τð Þ, τð Þv τð Þdτ
������

������
for all t∈ ½ti− 1, tiÞ. For the remaining ½ti− 1, tÞ interval both elements are estimated
separately. Elements containing A and B are estimated individually, breaking up the
½0, ti− 1Þ interval to the union of the ½tj− 1, tjÞ, j=1, . . . , i− 1 intervals:

½0, ti− 1Þ= ∪ i− 1

j=1
½tj− 1, tjÞ.
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∫
tj

tj− 1

ðA pðzðτÞ, τð Þ, τÞzðτÞ−A qðyðτÞ, τÞ, τð ÞyðτÞÞdτ
�����

����� ≤

≤ ∫
tj

tj− 1

ðA pðzðτÞ, τð Þ, τÞzðτÞ−A pðyðτÞ, τÞ, τð ÞzðτÞÞdτ
�����

����� +

+ ∫
tj

tj− 1

ðA pðyðτÞ, τð Þ, τÞzðτÞ−A pðyðτÞ, τÞ, τð Þzðtj− 1ÞÞdτ
�����

����� +

+ ∫
tj

tj− 1

ðA pðyðτÞ, τð Þ, τÞzðtj− 1Þ−A pðyðτÞ, τÞ, tj− 1
	 


zðtj− 1ÞÞdτ
�����

����� +

+ ∫
tj

tj− 1

ðA pðyðτÞ, τð Þ, tj− 1Þzðtj− 1Þ−A qðyðτÞ, τÞ, tj− 1
	 
Þzðtj− 1Þdτ

�����
����� +

+ ∫
tj

tj− 1

ðA qðyðτÞ, τð Þ, tj− 1Þzðtj− 1Þ−A qðyðτÞ, τÞ, τð ÞÞzðtj− 1Þdτ
�����

����� +

+ ∫
tj

tj− 1

ðA qðyðτÞ, τð Þ, τÞzðtj− 1Þ−A qðyðτÞ, τÞ, τð Þ zðτÞÞdτ
�����

����� +

+ ∫
tj

tj− 1

ðA qðyðτÞ, τð Þ, τÞzðτÞ−A qðyðτÞ, τÞ, τð Þ yðτÞÞdτ
�����

�����.
We break up elements containing B similarly:

∫
tj

tj− 1

B pðzðτÞ, τð Þ, τÞ−B qðyðτÞ, τÞ, τð Þð ÞvðτÞdτ
�����

����� ≤

≤ ∫
tj

tj− 1

B pðzðτÞ, τð Þ, τÞ−B pðyðτÞ, τÞ, τð Þð ÞvðτÞdτ
�����

����� +

+ ∫
tj

tj− 1

B pðyðτÞ, τð Þ, τÞ−B pðyðτÞ, τÞ, tj− 1
	 
	 


vðτÞdτ
�����

����� +

+ ∫
tj

tj− 1

B pðyðτÞ, τð Þ, tj− 1Þ−B qðyðτÞ, τÞ, tj− 1
	 
	 


vðτÞdτ
�����

����� +

+ ∫
tj

tj− 1

B qðyðτÞ, τð Þ, tj− 1Þ−B qðyðτÞ, τÞ, τð Þ	 

vðτÞdτ

�����
�����.
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The estimation of the remaining integrals yields (after a few simple steps):

Zti
ti− 1

A p z τð Þ, τð Þ, τð Þz τð Þ−A q y τð Þ, τð Þ, τð Þy τð Þdτ
������

������ ≤

≤ L1L3 ti − ti− 1ð Þ xj j+ ε

2

� � Ztj
tj− 1

z τð Þ− y τð Þk kdτ+ Aj j
Zti
ti− 1

z τð Þ− y τð Þk kdτ =

= L1L3 ti − ti− 1ð Þ xj j+ ε

2

� �
+ Aj j

� � Zti
ti− 1

z τð Þ− y τð Þk kdτ.

On the other hand

∫
tj

tj− 1

B pðzðτÞ, τð Þ, τÞv tð Þ−B qðyðτÞ, τÞ, τð Þð ÞvðτÞdτ
�����

����� ≤

≤ ∫
tj

tj− 1

B pðzðτÞ, τð Þ, τÞv tð Þ−B qðyðτÞ, τÞ, τð Þð Þk k vðτÞk kdτ ≤

≤ L2L3 vj j
Zti
ti− 1

z τð Þ− y τð Þk kdτ.

The estimation for z τð Þ− z tj− 1
	 
�� �� can be simply derived from the

integro-differential equation:

z τð Þ− z tj− 1
	 
�� ��≤ Ztj

tj− 1

A p z τð Þ, τð Þ, τð Þk k z τð Þk k+ B p z τð Þ, τð Þ, τð Þk k v τð Þk kdτ ≤

≤ Aj j+ x+
ε

2

� �
+ Bj j vj j

� �
tj − tj− 1
	 


Since A and B are uniformly continuous therefore for all ε ̄̄>0 exists a δ̄̄>0, for
which

A p, tð Þ−A p, tj− 1
	 
�� ��< ε ̄̄, if t− tj− 1 < δ ̄̄

B p, tð Þ−B p, tj− 1
	 
�� ��< ε ̄̄, if t− tj− 1 < δ ̄̄

When estimating elements containing A and B we can use simple norm esti-
mation with the exceptions of the third and fourth elements, respectively. This
yields the following inequalities (omitting some simplifications):
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ðaÞ

∫
tj

tj− 1

A pðzðτÞ, τð Þ, τÞz τð Þ−A pðyðτÞ, τÞ, τð Þð ÞzðτÞdτ
�����

����� ≤

≤ ∫
tj

tj− 1

A pðzðτÞ, τð Þ, τÞ−A pðyðτÞ, τÞ, τð Þð Þk k zðτÞk kdτ ≤

≤ L1L3 xj j+ ε

2

� � Ztj
tj− 1

z τð Þ− y τð Þk kdτ.

ðbÞ

Ztj
tj− 1

A p y τð Þ, τð Þ, τð Þz τð Þ−A p y τð Þ, τð Þ, τð Þz tj− 1
	 


dτ

�������
������� ≤

≤ Aj j Aj j xj j+ ε

2

� �
+ Bj j vj j

� �
tj − tj− 1
	 


δ̄̄.

ðcÞ

Ztj
tj− 1

A p y τð Þ, τð Þ, τð Þ−A p y τð Þ, τð Þ, tj− 1
	 


z tj− 1
	 


dτ

�������
������� ≤

≤ xj j+ ε

2

� �
tj − tj− 1
	 


ε ̄̄ if tj − tj− 1 < δ ̄̄.

ðdÞ

Ztj
tj− 1

A q y τð Þ, τð Þ, tj− 1
	 


z tj− 1
	 


−A q y τð Þ, τð Þ, tj− 1
	 


z τð Þdτ

�������
������� ≤

≤ xj j+ ε

2

� � Ztj
tj− 1

A q y τð Þ, τð Þ, tj− 1
	 


−A q y τð Þ, τð Þ, τð Þ�� ��dτ ≤

≤ xj j+ ε

2

� �
tj − tj− 1
	 


ε ̄̄ if tj − tj− 1 < δ̄̄.

ðeÞ

Ztj
tj− 1

A q y τð Þ, τð Þ, τð Þz tj− 1
	 


−A q y τð Þ, τð Þ, τð Þz τð Þdτ

�������
������� ≤

≤ Aj j Aj j xj j+ ε

2

� �
+ Bj j vj j

� �
tj − tj− 1
	 


δ ̄̄.
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ðfÞ

Ztj
tj− 1

A q y τð Þ, τð Þ, τð Þz τð Þ−A q y τð Þ, τð Þ, τð Þy τð Þdτ

�������
������� ≤

≤
Ztj
tj− 1

A q y τð Þ, τð Þ, τð Þk k z τð Þ− y τð Þk kdτ ≤

≤ Aj j
Ztj
tj− 1

z τð Þ− y τð Þk kdτ.

ðgÞ

∫
tj

tj− 1

B pðzðτÞ, τð Þ, τÞ−B pðyðτÞ, τÞ, τð Þð ÞvðτÞdτ
�����

����� ≤

≤ vj j ∫
tj

tj− 1

B pðzðτÞ, τð Þ, τÞ−B pðyðτÞ, τÞ, τð Þk kdτ ≤

≤ vj jL2L3
Ztj
tj− 1

z τð Þ− y τð Þk kdτ.

ðhÞ

∫
tj

tj− 1

B pðyðτÞ, τð Þ, τÞ−B pðyðτÞ, τÞ, tj− 1
	 
	 


vðτÞdτ
�����

����� ≤

≤ jvj ∫
tj

tj− 1

∥B pðzðτÞ, τð Þ, τÞ−B pðyðτÞ, τÞ, tj− 1
	 


∥dτ ≤

≤ jvjðtj − tj− 1Þε ̄̄, ha tj − tj− 1 < δ ̄̄.
Similarly,

ðiÞ ∫
tj

tj− 1

B qðyðτÞ, τð Þ, tj− 1Þ−B qðyðτÞ, τÞ, τð Þ	 

vðτÞdτ

�����
�����≤

≤ jvjðtj − tj− 1Þε ̄̄, ha tj − tj− 1 < δ ̄̄.
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Estimation of the fourth member of A elements and the third member of
B elements is undertaken similarly, using the definitions of v and q further
partitioning the ½tj− 1, tjÞ interval. We assume that in defining the two piecewise
constant functions we use the same t= ðt0, t1, . . . , tI − 1, tIÞ partitioning. Omit-
ting the usual calculations we get

ðjÞ

Ztj
tj− 1

A p y τð Þ, τð Þ, tj− 1
	 


z tj− 1
	 


−A q y τð Þ, τð Þ, τð Þz tj− 1
	 


dτ

�������
������� ≤

≤
Ztjm

tjm− 1

A p y τð Þ, τð Þ, tj− 1
	 


z tj− 1
	 


−A p y tj− 1
	 


, tj− 1
	 


, tj− 1
	 


dτ
�� �� z tj− 1

	 
�� ��
≤ xj j+ ε

2

� �
tj − tj− 1
	 


ε̄̄, if tj − tj− 1 < δ ̄̄.

due to the uniform continuity of A.
We proceed in the same manner in estimating the third element containing B.
But in the approximation of this element we use two piecewise constant
functions; notably

v: ½0, T �→U and
q:Dδ0, δ, t →P

are the approximating functions.
Let the initial partitioning be t= ðt0, t1, . . . , tIÞ, which we can choose to any
given ε>0 due to the uniform continuity of A, B and the piecewise uniform
continuity of u. Let us define the range of the piecewise constant v function
with the values taken in the vertices of the U convex polyhedron. For this
reason we further partition the ½ti− 1, tiÞ sub-interval according to the

uðti− 1Þ= ∑
L

l=1
λlul, ∑

L

l=1
λl =1, λl ≥ 0

convex combination with

til = ti− 1 + ðti − ti− 1Þ ∑
l

k=1
λk

� �
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division points. Then

vðtÞ= ul, if t∈ ½til− 1, tilÞ, and vðTÞ= u2.

Now let’s further divide the ½til− 1, tilÞ interval.
If ðx, tÞ∈Qδn × ½til− 1, tilÞ, then according to the convex combination

pðδmn, ti− 1Þ= ∑
M

m=1
μδnm Pm, ∑

M

m=1
μδnm =1, μδnm ≥ 0

this division points will be

tilm = til− 1 + ðtil − til− 1Þ ∑
m− 1

k=1
μδnk

� �

used for ½til− 1, tilÞ. According to this partition

qðx, tÞ=Pm, if ðx, tÞ∈Qδn × ½ti− 1, tiÞ and t∈ ½tilm− 1, tilmÞ,
qðx,TÞ=Pm, if x∈Qδn.

Following this, a few simplifications yield.

ðkÞ

∫
ti

ti− 1

B pðyðτÞ, τÞ, ti− 1ð Þ−B qðyðτÞ, τÞ, ti− 1ð Þð ÞvðτÞdτ
�����

�����
≤ ∫

ti

ti− 1

B pðyðτÞ, τÞ, ti− 1ð Þ−B pðyðti− 1Þ, ti− 1Þ, ti− 1ð Þð Þdτk k v τð Þk k

≤ L2 vj j
Zti
ti− 1

p y τð Þ, τð Þ− p y ti− 1ð Þ, ti− 1ð Þk kdτ≤ L2 vj jε ̄̄ ti − ti− 1ð Þ,

where for ε ̄̄>0 there is δ ̄̄>0, so that due to the uniform continuity of p and
y when ti − ti− 1 < δ ̄̄ holds

p yðτÞ, τð Þ− p yðti− 1Þ, ti− 1ð Þ< ε ̄̄, if τ∈ ½ti− 1, tiÞ.

We can conclude the above estimations using the alphabetical notations as
follows.
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z tð Þ− y tð Þk k≤ ς− ηk k+
∑
i− 1

j=1
∫
tj

tj− 1

A pðzðτÞ, τð Þ, τÞzðτÞ−A qðyðτÞ, τÞ, τð ÞyðτÞdτ
�����

�����
+ ∑

i− 1

j=1
∫
tj

tj− 1

B pðzðτÞ, τð Þ, τÞ−B qðyðτÞ, τÞ, τð ÞvðτÞdτ
�����

�����
+ ∫

tj

ti− 1

A pðzðτÞ, τð Þ, τÞzðτÞ−A qðyðτÞ, τÞ, τð ÞyðτÞdτ
�����

�����
+ ∫

tj

ti− 1

B pðzðτÞ, τð Þ, τÞ−B qðyðτÞ, τÞ, τð ÞvðτÞdτ
�����

�����

≤ L1L3 xj j+ ε

2

� �
∑
i− 1

j=1

Ztj
tj− 1

z τð Þ− y τð Þk kdτ+

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a

+ Aj j Aj j xj j+ ε

2

� �
+ Bj j vj j

� �
δ ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{b

+ xj j+ ε

2

� �
ε ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{c

+ xj j+ ε

2

� �
ε ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{d

+ Aj j Aj j xj j+ ε

2

� �
+ Bj j vj j

� �
δ ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{e

+ Aj j ∑
j− 1

i=1

Ztj
tj− 1

z τð Þ− y τð Þk kdτ+

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{f

L2L3 vj j ∑
j− 1

i=1

Ztj
tj− 1

z τð Þ− y τð Þk kdτ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{g

+ jvjε ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{h

+ jvjε ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{i

+ xj j+ ε

2

� �
ε ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{j

+L2 vj jε ̄̄ ∑
i− 1

j=1
tj − tj− 1
	 


= ξ− ηk k

+ L1L3 xj j+ ε
2

	 

+L2L3 vj j+ Aj j	 
 Rt

ti− 1

z τð Þ− y τð Þk kdτ+

+2 Aj j Aj j xj j+ ε
2

	 

+ Bj j vj jti− 1

	 

δ ̄̄

+ 3 xj j+ ε
2

	 

+2 vj j+L2 vj j

	 

ti− 1ε ̄̄+ L2 vj jti− 1ε ̄̄

= ς− ηk k+ L1L3 xj j+ ε
2

	 

+ L2L3 vj j+ Aj j	 
 Rt

0
z τð Þ− y τð Þk k

+2 Aj j Aj j xj j+ ε
2

	 

+ Bj j vj jti− 1

	 

δ̄̄+L2 vj jti− 1ε ̄̄+ 3 xj j+ ε

2

	 

+2 vj j+L2 vj j

	 

ti− 1ε ̄̄.
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Let jUj denote the maximum of the norms of the vertices of the U convex
polyhedron. Let’s introduce the notations

L=L1L3 jxj+ ε
2

	 

+ L2L3jUj+ jAj,

K1 = 2jAj Aj jxj+ ε
2

	 

+ jBj jUjT	 


K2 3 jxj+ ε
2

	 

+2jUj+ L2jUj	 


T
K3 =L2jUjT ,

and

ϕ tð Þ= z tð Þ− y tð Þk k.

Then the inequalities can be rewritten to the following inequality:

ϕðtÞ≤ϕð0Þ+L ∫
t

0
ϕðτÞdτ+K1δ ̄̄+K2ε ̄̄+K3ε ̄̄

Proceeding in a similar manner as before this yields a Gronwall-Bellman-type
inequality:

z tð Þ− y tð Þk k≤ ς− ηk k exp LT +K1δ ̄̄ exp LT +K2ε ̄̄ exp LT +K3ε ̄̄ exp LT

We would like all members of the right side to be smaller than ε
8, so that the sum

would be smaller than ε
2.

1. Due to the uniform continuity of A, p and y the function t→A p y t, tð Þð Þ, ti− 1ð Þ is
also uniformly continuous, therefore δ has to be small enough, for the following
condition to hold.
If ti − ti− 1 < δ, then

A p y tð Þ, tð Þ, ti− 1ð Þ−A p y ti− 1ð Þ, ti− 1ð Þ, ti− 1ð Þk k< ε

8K2
exp − 2Tð Þ

for all t∈ ½ti− 1, tiÞ.
2. Since p and y are uniformly continuous therefore t↦pðyðtÞ, tÞ is also uniformly

continuous, so if ti − ti− 1 < δ then

∥pðyðtÞ, tÞ− pðyðti− 1Þ, ti− 1Þ∥< ε

8K3
expð− LTÞ,

has to hold for all t∈ ½ti− 1, tiÞ.
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Further elements will be smaller than ε
8, if for δ

δ<
ε

8
expð−LTÞ and δ<

ε

8K1
expð− LTÞ.

will hold. If all these hold then

z tð Þ− y tð Þk k< ε

2

so

x tð Þ− y tð Þk k≤ x tð Þ− z tð Þk k+ z tð Þ− y tð Þk k< ε

2
+

ε

2
= ε.

This concludes the proof of the second approximation theorem. ⎕

5 Conclusions

Let us now notice that although we required that the A and B matrix functions to be
linearly dependent from the parameter, we can, for all
x, tð Þ → A x tð Þ, tð Þ, x, tð Þ → B x tð Þ, tð Þ, satisfying the smoothness condition
transform the

x ̇ = Aðx, tÞx + Bðx, tÞn

system to an LPV system. For this consider the following

Aðx, tÞ= aijðx, tÞ
	 
n

i, j=1, Bðx, tÞ = ðbijðx, tÞÞn, k1i=1, j=1

matrices. Replace aijðx, tÞ with the pij parameters, and bijðx, tÞ with the qij param-
eters. Thus, we defined the AðpÞ and BðqÞ parameter-variable matrices, which are
obviously linear in p, q parameters, which is nothing else but the linearity of matrix
addition. With this we get the

x ̇ = AðpÞx + BðqÞu

LPV system. Using the substitutions pij = aijðx, tÞ and qij = bijðx, tÞ trivially the
original system is recovered. Obviously, not too much is gained with this
LPV-ification, under such general circumstances the system will not show any
interesting qualities.

Our example with the converter well illustrates the range of applicability of our
approximation theorems specific to real life applications (Hermes and Lasalle 1969;
Berkovitz 1974).
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In systems theory analysis these theorems are also quite promising, e.g. in
stability, controllability and observability (Pontryagin et al. 1962; Warga 1972),
especially Theorem 2, where we can approximate arbitrary system qualities by
switching constant parametric linear systems assigned to the vertices of the P
convex polyhedron.
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Love Affairs Dynamics with One Delay
in Losing Memory or Gaining Affection

Akio Matsumoto

Abstract A dynamic model of a love affair between two people is examined under

different conditions. First the two-dimensional model is analyzed without time delays

in the interaction of the lovers. Conditions are derived for the existence of a unique

as well as for multiple steady states. The nonzero steady states are always stable and

the stability of the zero steady state depends on model parameters. Then a delay is

assumed in the mutual-reaction process called the Gaining-affection process. Sim-

ilarly to the no-delay case, the nonzero steady states are always stable. The zero

steady state is either always stable or always unstable or it is stable for small delays

and at a certain threshold stability is lost in which case the steady state bifurcates to a

limit cycle. When delay is introduced to the self-reaction process called the Losing-

memory process, then the asymptotic behavior of the steady state becomes more

complex. The stability of the nonzero steady state is lost at a certain value of the delay

and bifurcates to a limit cycle, while the stability of the zero steady state depends

on model parameters and there is the possibility of multiple stability switches with

stability losses and regains. All stability conditions and stability switches are derived

analytically, which are also verified and illustrated by using computer simulation.

1 Introduction

The dynamics of love affairs has been modeled in various ways since Strogatz (1988)

has proposed a 2D system of linear differential equations to describe the time evo-

lution of a love affair between two individuals called Romeo and Juliet. Strogatz’s
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purpose was to teach harmonic oscillations by applying a topic that is already on

the minds of many college students: the time evolution of a love affair between two

people. The study on the love affair dynamics after Strogatz aims to explain dynamic

processes of love stories in our life in a formal theoretical framework. On the one

hand, real-life observations tell us that love-stories frequently develop very regu-

larly and stay at a plateau of love affair for a long time. Reconstructing the Stro-

gatz model with linear or nonlinear behavioral functions and secure individuals,

Rinaldi and Gragnani (1998) and Rinaldi (1998a) shows that one of the model’s

properties concerning the dynamics of the love affair is a smoothly increasing feel-

ing tending toward a positive stationary point. On the other hand, another real-life

observations indicate that love stories often arrive at a fluctuating regime including

chaotic motions. Rinaldi (1998b) models the dynamics of the real love affair between

Petrarch, a poet of the 14th century, and Laura, a beautiful married lady, with three

differential equations and shows the appearance of cyclical pattern ranging from

ecstasy to despair. Sprott (2004) applies a 4D system of nonlinear differential equa-

tions involving Romeo, Juliet and Romeo’s mistress, Guinevere and derive chaotic

love regime. Introducing information delays into the Strogatz model, Liao and Ran

(2007) find that the stable steady state is destabilized for a delay larger than a thresh-

old value and then bifurcates to a limit cycle via a Hopf bifurcation when Romeo is

secure and Juliet is non-secure. Son and Park (2011) investigate the effect of delay

on the love dynamics and confirm a cascade of period-doubling bifurcations to chaos

analytically as well as numerically. Usually a delay is believed to possess a destabi-

lizing effect in a sense that a longer delay destabilizes a system which is otherwise

stable. Bielczyk et al. (2012) reveal the stabilizing effect of the delay by showing

that a unstable steady state without time delay can gain stability for certain range of

delays.

In this study we follow the Liao-Ran version of the Romeo-Juliet model to inves-

tigate how the delay and nonlinearities affect love dynamics. One important issue

that Liao and Ran (2007) do not examine is to investigate time evolution in the case

of multiple steady state. As is seen shortly, nonlinear behavioral functions can be a

source of multiple steady state. However only the unique steady state case has been

considered. Our first goal is to investigate dynamics in the multiple case. The second

issue we take up concerns the romantic style of Rome and Juliet. There are four speci-

fications of the romantic style for each individual, “eager beaver”, “narcissistic nerd”,

“cautious (or secure) lover” and “hermit”.
1

The majority of the population is repre-

sented by a cautious or secure lover who loves to be loved (alternatively, hates to be

1
See Strogatz (1994) for more precise specification.
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hated) and gradually loses the emotion to the partner when the partner leaves or dies.

In spite of this, most studies confine attention to the case where Romeo and Juliet are

heterogeneous, one is secure and the other is non-secure. Furthermore, it is demon-

strated that the Romeo-Juliet model without delays does not exhibit cyclic dynamics

when both are secure lovers. Our second goal is to investigate how the delay affects

love dynamics between secure Romeo and Juliet. We have one more goal. The exist-

ing studies mainly focus on the delay that exists in love stimuli sent between Romeo

and Juliet. We give a detailed analysis when there is a delay in Romeo’s reaction to

his own emotional state, referring to the basic study conducted by Bielczyk et al.

(2013).

This paper is organized as follows. Section 2 presents the basic love dynamic

model that has no delays. Section 3 introduces one delay as in the Liao-Ran model

and studies the dynamics of multiple steady states. Section 4 considers the case

where Romeo loses the feeling for Juliet with a delay and Juliet without any delay.

Section 5 concludes the paper.

2 Basic Model

Strogatz (1988) proposes a linear model of love affairs dynamics and Rinaldi (1998a)

extends it to a more general model in which three aspects of love dynamics, oblivion,

return and instinct, are taken into account. If x(t) denotes Romeo’s emotions for Juliet

at time t while y(t) denotes Juliet’s feeling to Romeo at time t, then the rates of change

of Romeo’s love and Juliet’s love are assumed to be composed of three terms,

ẋ(t) = Ox(x(t)) + Rx(y(t)) + Ix

ẏ(t) = Oy(y(t)) + Ry(x(t)) + Iy

where Oz, Rz and Iz for z = x, y are specified as follows. First, Oz gives rise to a loss

of interest in the partner and describes the losing-memory process that characterizes

decay of love at disappearance of the partner. Second, Rz is a source of interest and

describes the reaction of individual z to the partner’s love in the gaining-affection

process. Lastly, Iz is also a source of interest and describes the reaction of individ-

ual z to the partner’s appeal reflecting physical, financial, educational, intellectual

properties. We adopt the following forms of these reaction functions:

Assumption 1 Ox(x) = −𝛼xx, 𝛼x > 0 and Oy(y) = −𝛼yy, 𝛼y > 0.

Assumption 2 Rx(y) = 𝛽x tanh(y) and Ry(x) = 𝛽y tanh(x).

Assumption 3 Ix = 𝛾xAy, Ay > 0 and Iy = 𝛾yAx, Ax > 0.

Assumption 1 confines attention to the case where the memory vanishes expo-

nentially. In Assumption 2, the hyperbolic function is positive, increasing, concave
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Fig. 1 Orbits of system (1)

and bounded from above for positive values and is negative, increasing, convex and

bounded from below for negative values. If 𝛽z > 0. Then the feeling of individual z is

encouraged by the partner and such an individual is called secure. On the other hand,

if 𝛽z < 0, it is discouraged and the individual is thought to be non-secure. Assump-

tion 3 implies that individuals have time-invariant positive appeal. 𝛼z is called the

forgetting parameter while 𝛽z and 𝛾z are the reaction coefficients of the love and

appeal.

Under these assumptions, our basic model is

ẋ(t) = −𝛼xx(t) + 𝛽x tanh[y(t)] + 𝛾xAy,

ẏ(t) = 𝛽y tanh[x(t)] − 𝛼yy(t) + 𝛾yAx.

(1)

Two numerical examples are given and the directions of the trajectories are indicated

by arrows. In Fig. 1a with 𝛼x = 𝛼y = 1, 𝛽x = 𝛽y = 3∕2, 𝛾x = 𝛾y = 1 and Ax = Ay =
1∕7, the isoclines, ẋ(t) = 0 and ẏ(t) = 0, intersect at three points denoted by red dots.

The middle one is unstable (a saddle) while the one with positive coordinates and

the other with negative coordinates are stable nodes. In Fig. 1b with 𝛼x = 𝛼y = 1,

𝛽x = 𝛽y = 1∕2, 𝛾x = 𝛾y = 1 and Ax = Ay = 2, the steady state is unique and stable.

As will be seen below, stability of system (1) is rather robust.

Assumption 3 affects the location of a steady state but does not affect dynamic

properties. Since we confine our attention to dynamics of the state variables in this

study, we, only for a sake of analytical simplicity, replace Assumption 3 with the

following:

Assumptiom 3’: Ax = Ay = 0.

The steady state of (1) satisfies ẋ(t) = 0 and ẏ(t) = 0. Solving ẋ(t) = 0 and ẏ(t) = 0
for y yields two functions,
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y = tanh−1
(
𝛼x

𝛽x
x
)

and y =
𝛽y

𝛼y
tanh(x). (2)

Let us denote the right hand side of two equations as u(x) and v(x), respectively. The

steady state value of x, denoted as x∗, solves

u(x) = v(x) (3)

and the steady state value of y, denoted as y∗, is determined as

y∗ = u(x∗) or y∗ = v(x∗). (4)

We then have the following result where the proofs of this and further results are

given in the Appendix:

Theorem 1 A zero solution (x∗0, y
∗
0) of system (1) is a unique steady state if 𝛼x𝛼y ≥

𝛽x𝛽y and there are three steady states (x∗i , y
∗
i ) for i = 0, 1, 2 if 𝛽x𝛽y > 𝛼x𝛼y.

Our next problem is to find out whether a solution of system (1) converges to the

steady state or not. First the linearized version of system (1) is obtained by differen-

tiating it in the neighborhood of the steady state,

ẋ(t) = −𝛼xx(t) + 𝛽xdk
yy(t),

ẏ(t) = 𝛽ydk
xx(t) − 𝛼yy(t)

where

dk
x = d tanh(x)

dx
||||x=x∗k

and dk
y =

d tanh(y)
dy

||||y=y∗k

.

Notice that d0
x = d0

y = 1 at the zero steady state (x∗0, y
∗
0) and dk

x = dk
y < 1 at the

nonzero steady states (x∗k , y
∗
k ) for k = 1, 2.

2
The steady state is locally asymptotically

2
By definition,

tanh(x) = ex − e−x

ex + e−x

and its derivative is

d
dx

tanh(x) =
( 2

ex + e−x

)2
≤ 1.

It is clear that equality holds if x = 0. If ex = a for x ≠ 0, then

ex + e−x = a + 1
a
> 2

implying

2
ex + e−x < 1

Hence the strict inequality holds if x ≠ 0.
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stable if the roots of the characteristic equation

det
⎛⎜⎜⎝
𝜆 + 𝛼x −𝛽xdk

y

−𝛽ydk
x 𝜆 + 𝛼y

⎞⎟⎟⎠
= 0

or

𝜆

2 + (𝛼x + 𝛼y)𝜆 + (𝛼x𝛼y − 𝛽x𝛽ydk
xdk

y) = 0

have negative real parts. It is now well-known, as a special case of the Routh-Hurwitz

stability criterion, that the roots have negative real parts if the following inequality

conditions hold,

𝛼x + 𝛼y > 0 and 𝛼x𝛼y − 𝛽x𝛽ydk
xdk

y > 0. (5)

The first inequality always holds by assumption. Thus for the stability of the steady

state, we need to check only the second inequality. The local stability results are

summarized as follows:

Theorem 2 The zero steady state (x∗0, y
∗
0) is

(1) a saddle point if 𝛽x𝛽y > 𝛼x𝛼y,

(2) a stable node if 𝛼x𝛼y > 𝛽x𝛽y > 0

and in the case of 𝛼x𝛼y > 0 > 𝛽x𝛽y, it is

(3) a stable node if (𝛼x − 𝛼y)2 + 4𝛽x𝛽y ≥ 0,

(4) a stable focus if (𝛼x − 𝛼y)2 + 4𝛽x𝛽y < 0

whereas the non-zero steady state (x∗k , y
∗
k ) for k = 1, 2, is always a stable node.

3 Delay in the Gaining-Affection Process

Son and Park (2011) rise an important question on how an individual know the part-

ner’s romantic feeling. Observing a real situation in which the romantic interaction

is communicated through various ways such as a talk, a phone call, an email, a let-

ter and a rumor that “she loves you”, they find that time is required for the romantic

feelings of an individual to transfer to his/her partner. One delay 𝜏x > 0 is introduced

into the gaining-affection process of Juliet in system (1),
3

3
Liao and Ran (2007) further assume that Romeo also reacts to the delayed Juliet feeling y(t − 𝜏y)

with 𝜏x ≠ 𝜏y. Son and Park (2011) consider the special case where both individuals have the same
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ẋ(t) = −𝛼xx(t) + 𝛽x tanh[y(t)],

ẏ(t) = 𝛽y tanh[x(t − 𝜏x)] − 𝛼yy(t).
(6)

Notice that the steady states (x∗k , y
∗
k ) for k = 0, 1, 2 of the non-delay model are also

the steady states of the delay model. The characteristic equation is obtained from the

linearized version of system (6)

𝜆

2 +
(
𝛼x + 𝛼y

)
𝜆 + 𝛼x𝛼y − 𝛽x𝛽ydk

xdk
ye−𝜆𝜏x = 0. (7)

First the following result is shown:

Theorem 3 All pure complex eigenvalues of Eq. (7) are simple.

Suppose 𝜆 = i𝜔, 𝜔 > 0 is a root of (7) for some 𝜏x. Substituting it separates the

characteristic equation into the real and imaginary parts,

− 𝜔

2 + 𝛼x𝛼y − 𝛽x𝛽ydk
xdk

y cos𝜔𝜏x = 0 (8)

and (
𝛼x + 𝛼y

)
𝜔 + 𝛽x𝛽ydk

xdk
y sin𝜔𝜏x = 0. (9)

Moving the constant terms to the right hand side and then adding the squares of the

resultant equations yield a quartic equation

𝜔

4 +
(
𝛼

2
x + 𝛼

2
y

)
𝜔

2 + (𝛼x𝛼y)2 − (𝛽x𝛽ydk
xdk

y)
2 = 0. (10)

We first consider the stability of the nonzero steady states at which 𝛽x and 𝛽y
have identical sign. In the proof of Theorem 1, it is shown that the second inequality

condition in (5) holds. Thus all coefficients of Eq. (10) are positive, so there is no

positive solution for 𝜔

2
. Therefore there is no stability switch and since they are

stable at 𝜏x = 0, they remain stable for all 𝜏x > 0. We summarize the result:

Theorem 4 The nonzero steady states of system (6) are stable for any 𝜏x ≥ 0.

In Fig. 2, we illustrate the basin of attraction of the nonzero steady states, (x∗1, y
∗
1)

and (x∗2, y
∗
2), taking 𝛼x = 𝛼y = 1, 𝛽x = 3∕2, 𝛽y = 3∕2 and 𝜏x = 2.Any trajectory start-

ing at an initial point in the light red region coverages to the positive steady state

(x∗1, y
∗
1) denoted by the yellow dot and the one starting in the light blue region con-

verges to the negative steady state denoted by the red dot. The downward-slopoing

dotted line is the boundary between the two basins when there is no delay, 𝜏x = 0.

(Footnote 3 continued)

delay 𝜏x = 𝜏y in the gaining-affection processes. The dynamic results obtained in those studies are

essentially the same as the one to be obtained in the following one delay model.
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Fig. 2 Basin of attraction

for system (6)

Increasing the value of the delay clockwisely rotates the boundary line. Thus the sta-

bility region of (x∗1, y
∗
1) in the fourth quadrant is enlarged and the one in the second

quadrant is contracted and the same changes, but in opposite direction, occur for the

stability region of the steady state (x∗2, y
∗
2). Even if the delay exists in the gaining-

affection process, any trajectory converges to the positive equilibrium as far as an

initial point is in the first quadrant.

Consider next the stability of the zero steady state. Solving (10) for 𝜔
2

gives two

solutions

(𝜔±)2 =
−
(
𝛼

2
x + 𝛼

2
y

)
±
√

D

2

with

D =
(
𝛼

2
x − 𝛼

2
y

)2
+ 4(𝛽x𝛽y)2 > 0.

It is clear that (𝜔−)2 < 0 and that
(
𝜔+

)2
is positive if D >

(
𝛼

2
x + 𝛼

2
y

)2
or

(𝛼x𝛼y)2 < (𝛽x𝛽y)2. (11)

If there is no nonzero steady state with 𝛼x𝛼y > 𝛽x𝛽y > 0 or 0 > 𝛽x𝛽y > −𝛼x𝛼y, then

inequality (11) is violated, so there is no positive solution for 𝜔

2
, and there is

no stability switch in the case of
|||𝛼x𝛼y

||| > |||𝛽x𝛽y
|||. Notice therefore that Eq. (11)

might hold if, in addition to zero steady state, there are nonzero steady states or

0 > −𝛼x𝛼y > 𝛽x𝛽y. Substituting 𝜔+ into Eqs. (8) and (9) and then looking for 𝜏x that

satisfies both equation, we have from (8)
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𝜏

m
x = 1

𝜔+

[
cos−1

(
𝛼x𝛼y − 𝜔

2
+

𝛽x𝛽y

)
+ 2m𝜋

]
for m = 0, 1, 2, ... (12)

and from and (9),

𝜏

n
x = 1

𝜔+

[
sin−1

(
−
(𝛼x + 𝛼y)𝜔+

𝛽x𝛽y

)
+ 2n𝜋

]
for n = 0, 1, 2, ... (13)

Needless to say, these two solutions are different expressions for the same value when

m = n.

To confirm direction of stability switch, we let 𝜆 = 𝜆(𝜏x) and then determine the

sign of the derivative of Re
[
𝜆(𝜏x)

]
at the point where 𝜆(𝜏x) is purely imaginary.

Simple calculation shows that

sign
[

Re

(
d𝜆(𝜏x)

d𝜏x

||||
𝜆=i𝜔

)]
= sign

[
𝜔

2
+

(
2𝜔2

+ + 𝛼

2
x + 𝛼

2
y

)]
.

The sign of the right hand side is apparently positive, which implies that crossing

of the imaginary axis is from left to right as 𝜏x increases. Thus, at smallest stability

switch (i.e., 𝜏
m
x with m = 0), stability is lost and cannot be regained later if steady

state is stable without delay. If it is unstable without delay, then it remains unstable

for all 𝜏x > 0. Concerning the stability of the zero steady state, we summarize the

following results:

Theorem 5 (1) If |||𝛼x𝛼y
||| ≥ |||𝛽x𝛽y

|||, then the zero steady state is stable regardless of

the values of the delay; (2) If |||𝛼x𝛼y
||| < |||𝛽x𝛽y

||| and it is unstable for 𝜏x = 0, then the

zero steady state is unstable for any 𝜏x > 0; (3) If |||𝛼x𝛼y
||| < |||𝛽x𝛽y

||| and it is stable for
𝜏x = 0, then the zero steady state is stable for 𝜏x < 𝜏

0
x , loses stability for 𝜏x = 𝜏

0
x and

bifurcates to a limit cycle for 𝜏x > 𝜏

0
x where the threshold value 𝜏

0
x is obtained from

(12) with m = 0.

In Fig. 3, parameter values are specified as 𝛼x = 𝛼y = 1, 𝛽x = 3∕2 and 𝛽y = −3∕2.

Result (3) of Theorem 5 is numerically confirmed in Fig. 3a in which the bifurcation

diagram with respect to 𝜏x is illustrated. Bifurcation parameter 𝜏x increases from

1∕2 to 3 with an increment 1∕200. Against each value of 𝜏x, the local maximum and

local maximum values of y(t) for t ∈ [750, 800] are plotted. The red line starting at

y∗0 = 0 bifurcates to two branches at 𝜏x = 𝜏

0
x (≃ 1.305). If the bifurcation diagram has

only one point against the value of 𝜏x, then the system is stable and converges to the

steady state. If it has two points, then one maximum and one minimum of a trajectory

is plotted, that is, a limit cycle emerges. The shape of the diagram indicates that the

limit cycle become larger as 𝜏x increases. In Fig. 3a the dotted vertical line at 𝜏x = 2.5
intersects the diagram twice. In Fig. 3b a trajectory starting in the neighborhood of

the steady state is oscillatory and converges to a limit cycle that has the maximum

and minimum points corresponding to the crossing points in Fig. 3a.
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Fig. 3 Stability switch and the birth of limit cycles

4 Delay in the Losing-Memory Process

There are millions of people who can’t stop loving their partners and live their life in

dream of yesterday since they have been left alone. The love motions of those people

may be described by a simple one delay differential equation,

ẋ(t) = −𝛼xx(t − 𝜏x), 𝛼x > 0. (14)

Taking an exponential solution x(t) = e𝜆t
and substituting it into the above equation

yield a characteristic equation

𝜆 = −𝛼xe−𝜆𝜏 .

Substituting an pure imaginary solution 𝜆 = i𝜔 and then separating the resultant

equation into the real and imaginary parts, we have

𝛼x cos𝜔𝜏 = 0 and sin𝜔𝜏 = 𝜔

𝛼x
.

Solving these equations simultaneously determines the threshold value of the delay

as

𝜏

0
x = 𝜋

2𝛼x
.

If Eq. (14) is thought to be a linear approximation of the nonlinear equation prevent-

ing the possibilities of unbounded passion

ẋ(t) = −𝛼x tanh[x(t − 𝜏x)] + Ax
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where a positive appeal (i.e., Ax > 0) leads to a positive steady state. Then the steady

state is stable for 𝜏 < 𝜏

0
x and bifurcates to a cyclic orbit for 𝜏 > 𝜏

0
x . The memory

does not vanish but keeps to oscillate around the steady state that approximates those

happy hours. In this section we consider love dynamics of a Romeo who can live in

memory and a Juliet who responds instantaneously. We replace Assumption 1 with

the following Assumption 1’,

Assumptiom 1’: Ox(x(t − 𝜏x)) = −𝛼xx(t − 𝜏x), 𝛼x > 0 and Oy(y(t)) = −𝛼yy(t),
𝛼y > 0.

Dynamic system (6) is transformed to the following system with one delay in the

losing-memory process,

ẋ(t) = −𝛼xx(t − 𝜏x) + 𝛽x tanh[y(t)],

ẏ(t) = 𝛽y tanh[x(t)] − 𝛼yy(t).
(15)

The characteristic equation is obtained from the linearized version of system (15)

𝜆

2 + 𝛼y𝜆 − 𝛽x𝛽ydk
xdk

y + 𝛼x(𝜆 + 𝛼y)e−𝜆𝜏x = 0. (16)

Suppose again that the equation has a pure imaginary solution, 𝜆 = i𝜔, 𝜔 > 0. The

characteristic equation can be broken down to the real and imaginary parts,

𝛼x𝛼y cos𝜔𝜏 + 𝛼x𝜔 sin𝜔𝜏 = 𝜔

2 + 𝛽x𝛽ydk
xdk

y (17)

and

− 𝛼x𝛼y sin𝜔𝜏 + 𝛼x𝜔 cos𝜔𝜏 = −𝛼y𝜔. (18)

Squaring both sides of each equation and adding them together yield a fourth-order

equation with respect to 𝜔,

𝜔

4 +
[
(𝛼2

y − 𝛼

2
x ) + 2𝛽x𝛽ydk

xdk
y

]
𝜔

2 +
[
(𝛽x𝛽ydk

xdk
y)

2 − (𝛼x𝛼y)2
]
= 0.

Solving the equation with respect to 𝜔

2
yields two solutions

(𝜔±)2 =
−
[
(𝛼2

y − 𝛼

2
x ) + 2𝛽x𝛽ydk

xdk
y

]
±
√

D

2

with

D =
[
(𝛼2

y − 𝛼

2
x ) + 2𝛽x𝛽ydk

xdk
y

]2
− 4

[
(𝛽x𝛽ydk

xdk
y)

2 − (𝛼x𝛼y)2
]
.

To simplify the analysis, we assume the following henceforth:
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Assumption 4 𝛼x = 𝛼y = 𝛼

Then the solutions are simplified as

𝜔

2
+ = 𝛼

2 − 𝛽x𝛽ydk
xdk

y (19)

and

𝜔

2
− = −

(
𝛼

2 + 𝛽x𝛽ydk
xdk

y

)
. (20)

Solving Eqs. (17) and (18) simultaneously presents two solutions,

cos𝜔𝜏 =
𝛽x𝛽ydk

xdk
y

𝛼

2 + 𝜔

2 (21)

and

sin𝜔𝜏 =
𝜔

(
𝜔

2 + 𝛽x𝛽ydk
xdk

y + 𝛼

2
)

𝛼(𝛼2 + 𝜔

2)
(22)

Before proceeding, we show the following:

Theorem 6 If 𝜆 = i𝜔 is a solution of Eq. (16), then it is simple.

Concerning the direction of motion of the state variable x(t) and y(t) as 𝜏 is varied,

we have the following result:

Theorem 7 The stability of the steady state is lost and gained according to whether
the following sign is positive or negative,

sign
[

Re
(

d𝜆(𝜏x)
d𝜏x

||||
𝜆=i𝜔

)]
=
⎧⎪⎨⎪⎩

sign
[
2𝛼2 − 𝛽x𝛽ydk

xdk
y

]
if 𝜔 = 𝜔+,

sign
[
𝛽x𝛽ydk

xdk
y

]
if 𝜔 = 𝜔−.

4.1 Stability of Nonzero Steady State

At any nonzero steady state it is already shown that 𝛼
2
> 𝛽x𝛽ydk

xdk
y . So 𝜔

2
+ > 0 while

𝜔

2
− < 0 since 𝛽x𝛽y > 0. Then both cos𝜔𝜏 and sin𝜔𝜏 are positive so two threshold

values of 𝜏x are obtained, one from Eq. (21)

𝜏

m
x = 1

𝜔1

[
cos−1

(
𝛽x𝛽ydk

xdk
y

𝛼

2 + 𝜔

2
+

)
+ 2m𝜋

]
for m = 0, 1, 2, ...
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and the other from (22)

𝜏

n
x = 1

𝜔1

[
sin−1

(
2𝛼𝜔1

𝛼

2 + 𝜔

2
+

)
+ 2n𝜋

]
for n = 0, 1, 2, ...

where, as pointed out above, 𝜏
m
x = 𝜏

n
x for m = n since these describe the same relation

between the delay and the parameters. Due to Theorem 7, we have

Re

(
d𝜆(𝜏x)

d𝜏x

||||
𝜆=i𝜔+

)
> 0.

Then we have the following results concerning the stability switch on the nonzero

steady state.

Theorem 8 The nonzero steady state of system (15) is stable for 𝜏x < 𝜏

0
x , loses sta-

bility for 𝜏x = 𝜏

0
x and bifurcates to a limit cycle for 𝜏x > 𝜏

0
x .

Figure 4a, b illustrate bifurcation diagrams with respect to 𝜏x. The only difference

between these diagrams is the selection of the initial functions for system (15) while

any other values of the parameters are the same. Simulations for the red curve is

performed in the following way. The value of 𝜏x is increased from 1.5 to 1.825.

For each value of 𝜏x, the delay dynamics system (15) with initial functions x0(t) =
0.1 cos(t) and y0(t) = 0.2 cos(t) runs for 0 ≤ t ≤ 5000 and data obtained for t ≤ 4950
are discarded to get rid of transients. The local maximum and minimum from the

remaining data of y(t) are plotted against selected values of 𝜏x. The value of 𝜏x is

increased with 1∕500 and then the same procedure is repeated until the value of 𝜏x
arrives at 1.825. The blue curve has initial functions x0(t) = −0.1 cos(t) and y0(t) =
−0.2 cos(t). Simulation has been done in the same way.

Fig. 4 Bifurcation diagrams with different initial functions
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Fig. 5 Dynamics with 𝜏x = 𝜏

A
x

Observing the bifurcation diagrams, we find that each diagram has four phases

according to which different dynamics arises. To see what dynamics is born in each

phase, we select three values of 𝜏x,

𝜏

A
x = 1.68, 𝜏B

x = 1.75 and 𝜏

C
x = 1.81.

and then perform simulations to find dynamics in the (x, y) plane and in the (t, y(t))
plane. In the first phase where 𝜏x < 𝜏

0
x (≃ 1.617), any trajectory converges to either

y∗1 > 0 or y∗2 < 0 depending on the selection of the initial functions as each steady

state is asymptotically stable. In the second phase where the diagrams have two

brances and the vertical dotted line at 𝜏x = 𝜏

A
x intersects the blue diagram and the

red diagram twice each. The steady state is destabilized as 𝜏

A
x > 𝜏

0
x . A trajectory

starting in the neighborhood of the positive steady state converges to a small limit

cycle surrounding the steady state. The same holds for a trajectory starting in the

neighborhood of the negative steady state. The simulation results are plotted in

Fig. 5a, b.

In the third phase, the diagram has six branches and the vertical dotted line at

𝜏x = 𝜏

B
x intersects the diagram six times. This implies two issues. One is that the two

independent cycles are connected to form a large one cycle. Two cycles are included

in the big one and each cycle has two extreme values leading to six extreme values.

The other is that any trajectory converges to the same cyclic attractor regardless

of the selection of the initial functions. Figure 6b indicates that a trajectory makes

two small ups and downs around the positive steady state and moves down in the

neighbourhood of the negative steady state within a large cycle. The real curve and

dotted curve in Fig. 6b behave exactly in the same way with some phase shift.
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Fig. 6 Dynamics with 𝜏x = 𝜏

B
x

Fig. 7 Dynamics with 𝜏x = 𝜏

C
x

In the fourth phase, the diagram has two branches and thus the number of inter-

section of the dotted vertical line at 𝜏x = 𝜏

C
x with the bifurcation diagram decreases

to two. As seen in Fig. 7a, the two small cycles are completely merged with the big

cycle having one maximum and one minimum. The big limit cycle surrounds the

two nonzero steady states, y∗1 and y∗2.

4.2 Stability of Zero Steady State

To examine the stability switch of the zero steady state, we consider the three cases

depending on the relative magnitude between 𝛼

2 = 𝛼x𝛼y and 𝛽x𝛽y.
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(I) 𝛽x𝛽y ≥ 𝛼

2

Under this inequality condition, Eqs. (19) and (20) indicate 𝜔
2
+ ≤ 0 and 𝜔

2
− < 0. The

characteristic equation does not have a solution such as 𝜆 = i𝜔, 𝜔 > 0 and thus the

real parts of the eigenvalues do not change their signs if 𝜏x increases. Hence no sta-

bility switch occurs and the stability of the zero steady state is the same as without

delay. Due to (1) of Theorem 2, the zero steady state is unstable (i.e., a saddle point)

for 𝜏x = 0, it remains unstable for any 𝜏x > 0.

(II) 𝛼

2
> 𝛽x𝛽y > −𝛼2

Due to (3) and (4) of Theorem 2, the zero steady state is stable for 𝜏x = 0. Equa-

tions (19) and (20) with the inequality conditions lead to 𝜔

2
+ > 0 and 𝜔

2
− < 0, mean-

ing that 𝜆 = i𝜔+, 𝜔+ > 0 can be a solution of the characteristic equation under

Assumption 4. Due to Theorem 7, we have

Re

(
d𝜆(𝜏x)

d𝜏x

||||
𝜆=i𝜔+

)
> 0

This implies that the solution crosses the imaginary axis from left to right as 𝜏x
increases. We now determine the threshold value of 𝜏x at which the real parts of the

solutions change their signs. Returning to two equations in (21), we check that the

right hand side of both equations are positive. There is a unique 𝜔+𝜏x, 0 < 𝜔+𝜏x <

𝜋∕2 for which both equations hold,

𝜏

m
x = 1

𝜔+

[
cos−1

(
𝛽x𝛽y

𝛼

2 + 𝜔

2
+

)
+ 2m𝜋

]
for m = 0, 1, 2, ...

and

𝜏

n
x = 1

𝜔+

[
sin−1

(
𝜔+(𝜔2

+ + 𝛽x𝛽y + 𝛼

2

𝛼(𝛼2 + 𝜔

2
+)

)
+ 2n𝜋

]
for n = 0, 1, 2, ...

It is apparent that 𝜏
m
x = 𝜏

n
x for m = n. It can be noticed that the zero steady state is

asymptotically stable for 𝜏x < 𝜏

0
x and unstable for 𝜏x > 𝜏

0
x . Thus 𝜏

0
x is the threshold

value at which the stability switch occurs.

Numerical examples are given to confirm the analytical results. In Fig. 8a 𝛼x =
𝛼y = 1 and 𝛽x = 𝛽y = 1∕2 are assumed and both Romeo and Juliet are secure. Sta-

bility is lost at 𝜏x = 𝜏

0
x ≃ 1.648 and a limit cycle emerges for 𝜏x > 𝜏

0
x . In Fig. 8b,

Romeo is still secure but Juliet is non-secure as 𝛽x = 1∕2 and 𝛽y = −1∕2. Stability is

lost at 𝜏x = 𝜏

0
x ≃ 1.505 and a limit cycle emerges for 𝜏x > 𝜏

0
x . It is to be noticed that

the romantic syle in these examples are different, however, evolution of the emotion

exhibit essentially the same.
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Fig. 8 Bifurcation diagrams with respect to 𝜏x

(III) −𝛽x𝛽y > 𝛼

2
> 𝛽x𝛽y

Multiple stability switches occur in this case. Equations (19) and (20) indicate 𝜔
2
+ ≥

0 and 𝜔

2
− > 0. It is to be noticed that (21) with (19) can be written as

cos𝜔+𝜏 =
𝛽x𝛽y

𝛼

2 + 𝜔

2
+

and sin𝜔+𝜏 =
2𝛼𝜔+

𝛼

2 + 𝜔

2
+

and (21) with (20) as

cos𝜔−𝜏 = −1 and sin𝜔−𝜏 = 0.

So we have two different threshold values,

𝜏

m
x = 1

𝜔+

[
cos−1

(
𝛽x𝛽y

𝛼

2 + 𝜔

2
+

)
+ 2m𝜋

]
for m = 0, 1, 2, ...

and

𝜏

n
x = 1

𝜔−
(𝜋 + 2n𝜋) for n = 0, 1, 2, ...

Taking 𝛼x = 𝛼y = 1 and 𝛽y = −2,we illustrate three 𝜏
m
x curves for m = 0, 1, 2 in black

and two 𝜏

n
x curves for n = 0, 1 in red against values of 𝛽x ∈ [0, 3]. All curves are

downward-sloping and increasing the value of m (resp. n) shifts the black (resp. red)

curve upward. The red curve is asymptotic to the dotted vertical line at 𝛽x = 1∕2 in

Fig. 9a since 𝜔− goes to infinity as 𝛽x approaches 1∕2 from above. The steady state

is asymptotically stable for (𝛽x, 𝜏x) in the yellow regions and unstable otherwise. If
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Fig. 9 Delay effect of 𝜏x

we fix the value of 𝛽x at 3∕2 and increases the value of 𝜏x, then the dotted vertical

line at 𝛽x = 3∕2 intersects the downward-sloping curves five times at

𝜏

a
x ≃ 1.107, 𝜏b

x ≃ 2.221, 𝜏c
x ≃ 4.249, 𝜏d

x ≃ 6.664 and 𝜏

e
x ≃ 7.390.

The corresponding bifurcation diagram with respect to 𝜏x is illustrated in Fig. 9b.

These figures illustrate multiple stability switching phenomenon from different points

of view. Figure 9b indicates three Hopf bifurcation values in 𝜏x, 𝜏
a
x < 𝜏

c
x < 𝜏

d
x . The

steady state is stable for 𝜏x = 0 and remains stable for 𝜏x < 𝜏

a
x . It loses stability at

𝜏x = 𝜏

a
x and bifurcates to a limit cycle for 𝜏x > 𝜏

a
x . As the value of 𝜏x increases further,

the steady state repeatedly passes through stability loss and gain and then eventually

stays to be unstable. So as far as Fig. 9 concerns, the stability loss occurs three time

and the stability gain twice for 𝜏x < 9. Theorem 6 shows that the pure imaginary

solutions are simple. Therefore at the crossing points with the stability switching

curve only a pair of eigenvalues change the sign of their real part. Without delay

the system is stable, all eigenvalues have negative real parts. So at the first crossing

when stability is lost one pair of eigenvalues will have positive real part. If at the next

crossing point stability might be regained, then the same pair of eigenvalues should

change back the sign of their real part to negative, since there is no other pair with

positive real parts. So all eigenvalues will have negative real parts again. In case if

more than one pairs have positive real parts and the next crossing is when stability

might regain, then only one pair changes back the sign of their real part to negative,

the others will be still positive, so no stability regain occurs.
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5 Concluding Remarks

In this paper the dynamic love affair model of Strogatz (1988) was reconsidered.

First its nonlinear extension was introduced, the number of steady states was deter-

mined and the asymptotic behavior of its steady state was examined under different

conditions. Conditions were derived for the existence of a unique and also for mul-

tiple steady states. First no time delay was assumed in the interaction of the lovers.

In this no-delay case the nonzero steady states were always stable and conditions

were derived for the stability of the zero steady state. Next a delay was assumed in

the Gaining-affection process. The delay did not alter the stability of the nonzero

steady states, the stability of the zero steady state was more complex. Depending

on model parameter values it was either stable for all values of the delay, or always

unstable, or stable for small values of the delay with stability loss at a certain thresh-

old value of the delay. At this point the steady state bifurcated to a limit cycle. Then a

delay was introduced into the Losing-memory process. The nonzero steady state was

stable for small values of the delay, then stability was lost and the steady state bifur-

cated to a limit cycle. So this kind of delay had a destabilizing effect on the nonzero

steady states. In examining the stability of the zero steady state we considered three

cases depending on the relative magnitude of model parameters. In the first case

the zero steady state was always unstable. In the second case stability was lost at a

threshold value of the delay, and in the third case multiple stability switches could

occur with repeated stability losses and regains. The stability of the steady states was

analytically studied and the results were illustrated and verified by using computer

simulation. In this paper we considered the cases of no or a single delay. It is a very

interesting problem to see how the results of this paper change in the presence of

multiple delays. This issue will be the subject of our next research project.

Appendix

Proof of Theorem 1

Proof The zero steady state, x∗0 = 0 and y∗0 = 0, is clearly a solution of (3) and (4).

Thus the two isoclines intersect at least once at the origin. We investigate whether

such an intersection happens only once or not. To this end, we differentiate u(x) and

v(x),

u′(x) =

𝛼x

𝛽x

1 −
(
𝛼x

𝛽x
x
)2 , u′′(x) =

2x
(
𝛼x

𝛽x

)3

[
1 −

(
𝛼x

𝛽x
x
)2

]2
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and

v′(x) =
𝛽y

𝛼y

( 2
ex + e−x

)2
, v′′(x) = −

8𝛽y

𝛼y

ex − e−x

(ex + e−x)3
.

Although 𝛼x > 0 and 𝛼y > 0 by assumption, the signs of 𝛽x and 𝛽y are undetermined.

We consider three cases, depending on the signs of 𝛽x and 𝛽y.

(i) Assume first that 𝛽x and 𝛽y have different signs. Then u′(x) and v′(x) also have

different signs, so one is strictly increasing and the other is strictly decreasing.

So x∗0 = 0 and y∗0 = 0 are the only steady state if 𝛼x𝛼y > 0 > 𝛽x𝛽y.

(ii) Assume next that 𝛽x and 𝛽y are both positive. Then

u(0) = 0, u
(
𝛽x

𝛼x

)
= ∞, u

(
−
𝛽x

𝛼x

)
= −∞, u′(x) > 0, u′′(x)

⎧⎪⎨⎪⎩
> 0 if x > 0,

< 0 if x < 0

and

v(0) = 0, v (∞) =
𝛽y

𝛼y
, v (−∞) = −

𝛽y

𝛼y
, v′(x) > 0, v′′(x)

⎧⎪⎨⎪⎩
< 0 if x > 0,

> 0 if x < 0.

Furthermore

u′(0) =
𝛼x

𝛽x
and v′(0) =

𝛽y

𝛼y
.

Only zero solution is possible if u′(0) ≥ v′(0), that is, if

𝛼x

𝛽x
≥

𝛽y

𝛼y
or 𝛼x𝛼y ≥ 𝛽x𝛽y.

If 𝛼x𝛼y < 𝛽x𝛽y, then there are two nonzero solutions in addition to the zero

steady state: one in the positive region (x∗1, y
∗
1) > 0 due to the convexity of u(x)

and the concavity of v(x) for positive x and the other in the negative region

(x∗2, y
∗
2) < 0 due to the concavity of u(x) and the convexity of v(x) for negative

x.

(iii) Assume finally that 𝛽x < 0 and 𝛽y < 0. Equation (3) remains same if 𝛽x and

𝛽y are replaced by −𝛽x and −𝛽y, so previous case may apply for existence of

nonzero solutions.

■
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Proof of Theorem 2

Proof We omit to prove the first four cases, (1), (2), (3) and (4). For the last case in

which 𝛽x𝛽y > 𝛼x𝛼y, we consider two cases depending of the signs of 𝛽x and 𝛽y.

(i) We first assume 𝛽x > 0 and 𝛽y > 0. At a non-zero solution v′(x∗k ) < u′(x∗k ), that

is,

𝛽y

𝛼y
dx <

𝛼x

𝛽x

1 −
(
𝛼x

𝛽x
x
)2 . (23)

Since from the first equation in (2),

𝛼x

𝛽x
x = tanh(y),

the right hand side of (23) is

𝛼x

𝛽x

1 −
(ey − e−y

ey + e−y

)2 =

𝛼x

𝛽x( 2
ey + e−y

)2 =

𝛼x

𝛽x

dy
.

So we have

𝛽y

𝛼y
dx <

𝛼x

𝛽x

dy
(24)

or

𝛼x𝛼y > 𝛽x𝛽ydxdy. (25)

(ii) If 𝛽x < 0 and 𝛽y < 0, then v′(x∗k ) > u′(x∗k ) for k = 1, 2 at any nonzero solution,

so inequality (23) has opposite direction, as well as inequality (24) has opposite

direction and by multiplying it by 𝛼y𝛽xdy < 0, Eq. (25) remains valid. ■

Proof of Theorem 3

Proof If any eigenvalue is multiple, then it also solves the following equation

obtained by differentiating the left hand side of Eq. (7),

2𝜆 +
(
𝛼x + 𝛼y

)
+ 𝛽x𝛽ydk

xdk
ye−𝜆𝜏x

𝜏x = 0. (26)

From Eq. (7),

𝛽x𝛽ydk
xdk

ye−𝜆𝜏x = 𝜆

2 +
(
𝛼x + 𝛼y

)
𝜆 + 𝛼x𝛼y
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that is substituted into Eq. (26),

2𝜆 +
(
𝛼x + 𝛼y

)
+ 𝜆

2
𝜏x +

(
𝛼x + 𝛼y

)
𝜆𝜏x + 𝛼x𝛼y𝜏x = 0

or

𝜆

2
𝜏x +

(
2 + 𝛼x𝜏x + 𝛼y𝜏x

)
𝜆 + (𝛼x + 𝛼y + 𝛼x𝛼y𝜏x) = 0.

This equation cannot have pure complex root since multiplier of 𝜆 is positive. ■

Proof of Theorem 6

Proof The characteristic equation for 𝛼x = 𝛼y = 𝛼 is simplified as

𝜆

2 + 𝛼𝜆 − 𝛽x𝛽ydk
xdk

y + 𝛼(𝜆 + 𝛼)e−𝜆𝜏x = 0.

If 𝜆 is a multiple root, then it also satisfies equation,

2𝜆 + 𝛼 + 𝛼e−𝜆𝜏x − 𝜏x𝛼(𝜆 + 𝛼)e−𝜆𝜏x = 0.

From the first equation

e−𝜆𝜏x = −𝜆 +
𝛽x𝛽ydk

xdk
y

𝜆 + 𝛼

and by substituting it into the second equation, we have

2𝜆 + 𝛼 +

(
−𝜆 +

𝛽x𝛽ydk
xdk

y

𝜆 + 𝛼

)
− 𝜏x

(
−𝜆(𝜆 + 𝛼) + 𝛽x𝛽ydk

xdk
y

)
= 0

which can be written as

𝜆

3
𝜏x + 𝜆

2 (1 + 2𝛼𝜏x
)
+ 𝜆

(
2𝛼 + 𝛼

2
𝜏x − 𝛽x𝛽ydk

xdk
y𝜏x

)
+
(
𝛼

2 + 𝛽x𝛽ydk
xdk

y(1 − 𝛼𝜏x)
)
= 0.

If 𝜆 = i𝜔, then

𝜔

2 =
2𝛼 + 𝛼

2
𝜏x − 𝛽x𝛽ydk

xdk
y𝜏x

𝜏x
=

𝛼

2 + 𝛽x𝛽ydk
xdk

y(1 − 𝛼𝜏x)
1 + 2𝛼𝜏x

This equation can be simplified as follows:

2𝛼 + 2𝜏x(2𝛼2 − 𝛽x𝛽ydk
xdk

y) + 𝛼𝜏

2
x

(
2𝛼2 − 𝛽x𝛽ydk

xdk
y

)
= 0.

If 𝛽x𝛽y ≤ 0, then the left hand side is positive, so no solution exists. If 𝛽x𝛽y > 0, then

𝜔

2
+ > 0 if and only if 𝛼

2
> 𝛽x𝛽ydk

xdk
y . In this case the left hand side is positive again

showing that no solution exists. ■
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Proof of Theorem 7

Proof Select 𝜏x as the bifurcation parameter and consider 𝜆 as the function of 𝜏x, 𝜆 =
𝜆(𝜏x). Implicitly differentiating the characteristic equation with respect to 𝜏x gives

[
2𝜆 + 𝛼 + 𝛼e−𝜆𝜏x − 𝛼𝜏x(𝜆 + 𝛼)e−𝜆𝜏x

] d𝜆
d𝜏x

− 𝛼𝜆(𝜆 + 𝛼)e−𝜆𝜏x = 0

implying that

d𝜆
d𝜏x

= 𝛼𝜆(𝜆 + 𝛼)e−𝜆𝜏x

2𝜆 + 𝛼 + 𝛼e−𝜆𝜏x − 𝛼𝜏x(𝜆 + 𝛼)e−𝜆𝜏x

=
−𝜆4 − 2𝜆3𝛼 − 𝜆

2
𝛼

2 + 𝛽x𝛽ydk
xdk

y𝜆(𝜆 + 𝛼)

2𝜆2 + 𝛼𝜆 + 2𝜆𝛼 + 𝛼

2 +
(
1 − 𝜏x𝜆 − 𝜏x𝛼

) (
−𝜆2 − 𝛼𝜆 + 𝛽x𝛽ydk

xdk
y

) .

Assume that 𝜆 = i𝜔, then the numerator becomes

(
−𝜔4 + 𝜔

2
(
𝛼

2 − 𝛽x𝛽ydk
xdk

y

))
+ i𝜔

(
2𝜔2

𝛼 + 𝛽x𝛽ydk
xdk

y𝛼
)

and the denominator is simplified as

−𝜔2(1 + 2𝛼𝜏x) +
(
𝛼

2 + 𝛽x𝛽ydk
xdk

y(1 − 𝛼𝜏x)
)
+ i

(
−𝜏x𝜔

3 + 𝜔

(
2𝛼 + 𝛼

2
𝜏x − 𝜏x𝛽x𝛽ydk

xdk
y

))
.

Multiplying the numerator and the denominator by the complex conjugate of the

denominator shows that Re
[
d𝜆∕d𝜏x

]
has the same sign as

𝜔

4 + 𝜔

2 (2𝛼2) +
[
𝛼

4 + 2𝛼2
𝛽x𝛽ydk

xdk
y −

(
𝛽x𝛽ydk

xdk
y

)2
]
.

At 𝜔
2 = 𝜔

2
+ = 𝛼

2 − 𝛽x𝛽ydk
xdk

y , this expression becomes

2𝛼2
(
2𝛼2 − 𝛽x𝛽ydk

xdk
y

)
> 0

showing that at the stability switch stability is lost or instability is retained. At 𝜔
2 =

𝜔

2
− = −

(
𝛼

2 + 𝛽x𝛽ydk
xdk

y

)
, Re

[
d𝜆∕d𝜏x

]
has the same sign as

2𝛼2
𝛽x𝛽ydk

xdk
y

which is positive if 𝛽x𝛽y > 0 and negative if 𝛽x𝛽y < 0. In the first case stability is lost

or instability is retained and in the second case stability is regained or stability is

retained. ■
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Optimizing Baseball and Softball Bats

A. Terry Bahill

Abstract Collisions between baseballs, softballs and bats are complex and there-
fore their models are complex. One purpose of this paper is to show how complex
these collisions can be, while still being modeled using only Newton’s principles
and the conservation laws of physics. This paper presents models for the speed and
spin of balls and bats. These models and equations for bat-ball collisions are
intended for use by high school and college physics students, engineering students
and most importantly students of the science of baseball. Unlike in previous papers,
these models use only simple Newtonian principles to explain simple collision
configurations.

1 Précis of This Endeavor

This paper has two primary purposes: first, to help a batter select or create an
optimal baseball or softball bat and second, to create models for bat-ball collisions
using only fundamental principles of Newtonian mechanics (Table 1). We note that
force, velocity, acceleration, impulse and momentum are all vector quantities,
although we do not specifically mark them as such.

Newton’s principles of motion are idealized as

I. Inertia. Every object either remains at rest or continues to move at a constant
velocity, unless acted upon by an external force.

∑F =0 ⇔ dv ̸dt =0
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Table 1 List of variables, inputs, parameters, constants and their abbreviations

Symbol:
This table is
arranged
alphabetically
by the symbol

Abbreviation
ball = 1
bat = 2
before = b
after = a

Description Typical values for a C243 pro
stock wooden bat and a
professional major-league
baseball player
SI units Baseball

units

βbat− knob β Angular velocity of the bat
about the knob

rad/s rpm

CoE Conservation of energy Joules
CoM Conservation of momentum kgm ̸s
CoAM Conservation of angular

momentum
kgm2 ̸s

CoR Coefficient of restitution of
a bat-ball collision

0.55 0.55

dbat Length of the bat 0.861 m 34 in.
dbat− cm− ss dcm− ss

d

Distance from the center of
mass to the sweet spot,
which we define as the
Center of Percussion

0.134 m 5.3 in.

dbat− knob− cm dkcm Distance from the center of
the knob to the center of
mass

0.569 m 22.4 in.

dbat− knob− ss dkss Distance from the center of
the knob to the sweet spot

0.705 m 27.8 in.

dbat− pivot− cm Distance from the pivot
point to the center of mass

0.416 m 16.4 in.

dspine− cm Distance from the batter’s
spine to the center of mass
of the bat, an
experimentally measured
value

1.05 m 41 in.

dbat− ss− end Distance from the sweet
spot to the barrel end of the
bat

0.149 m 5.9 in.

g Earth’s gravitational
constant (at the UofA)

9.718 m/s

Iball I1 Moment of inertia of the
ball with respect to its
center of mass

0.000079 kg m2

Ibat− cm I2 Moment of inertia of the bat
with respect to rotations
about its center of mass

0.048 kg m2

Ibat− knob Ik Moment of inertia of the bat
with respect to rotations
about the knob

0.341 kg m2

Ibat− pivot Moment of inertia of the bat
with respect to the pivot
point between the hands

0.208 kg m2

(continued)
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Table 1 (continued)

Symbol:
This table is
arranged
alphabetically
by the symbol

Abbreviation
ball = 1
bat = 2
before = b
after = a

Description Typical values for a C243 pro
stock wooden bat and a
professional major-league
baseball player
SI units Baseball

units

KEbefore Kinetic energy of the bat
and the ball before the
collision

375 J

KEafter Kinetic energy of the bat
and the ball after the
collision

216 J

KElost Kinetic energy lost or
transformed in the collision

158 J

mball m1 Mass of the baseball 0.145 kg 5.125 oz
mbat m2 Mass of the bat 0.905 kg 32 oz
m̄ m̄= mballmbat

mball +mbat
0.125 kg 4.4 oz

μf Dynamic coefficient of
friction for a ball sliding on
a wooden bat

0.5

rball r1 Radius of the baseball 0.037 m 1.45 in.
rbat r2 Maximum allowed radius

of the bat
0.035 m 1.37 in.

pitch speed Speed of the ball at the
pitcher’s release point

−46 −92a mph

vball− before v1b Velocity of the ball
immediately before the
collision, 90% of pitch
speed

−37 m/s −83a mph

vball− before−Norm v1bN Normal component of
curveball velocity before
collision, vball− before cos 6

◦

−36.8 m/s −82.3 mph

vball− before−Tan v1bT Tangential component of
curveball velocity before
collision, vball− before sin 6

◦

−3.9 m/s −8.7 mph

vball− after v1a Velocity of the ball after the
collision, often called the
launch speed or the batted-
ball speed.

41.6 m/s 93 mph

vbat v2 Velocity of the bat. If a
specific place or time is
intended then the subscript
may contain cm (center of
mass), ss (sweet spot),
before (b) or after (a).

(continued)
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II. Impulse and Momentum. The rate of change of momentum of a body is
directly proportional to the force applied and is in the direction of the applied
force.

F =
dðmvÞ
dt

⇔F =ma

Table 1 (continued)

Symbol:
This table is
arranged
alphabetically
by the symbol

Abbreviation
ball = 1
bat = 2
before = b
after = a

Description Typical values for a C243 pro
stock wooden bat and a
professional major-league
baseball player
SI units Baseball

units

vbat− cm− before v2cmb Velocity of the center of
mass of the bat before the
bat-ball collision.

23 m/s 51 mph

vbat− cm− after v2cma Velocity of the center of
mass of the bat after the
collision.

10.4 m/s 23 mph

vbat− ss− before v2ssb Velocity of the sweet spot
of the bat before the
collision.

26 m/s 58a mph

vbat− ss− after v2ssa Velocity of the sweet spot
of the bat after the collision.

12 m/s 27 mph

ωball− before ω1b Angular velocity of the ball
about its center of mass
before the collision. This
spin rate depends on the
particular type of pitch.

±209 rad/s ±2000 rpm

ωball− after ω1a Angular velocity of the ball
about its center of mass
after the collision

±209 rad/s ±2000 rpm

ωbat− before ω2b Angular velocity of the bat
about its center of mass
before the collision

Near zero

ωbat− after ω2a Angular velocity of the bat
about its center of mass
after the collision

−32 rad/s −303 rpm

ωspine− before Angular velocity of the
batter’s arms and the bat
about the spine

21 rad/s 201 rpm

aThe equations of this paper concern variables right before and right after the collision, not at other
times. For example, a pitcher could release a fastball with a speed of 92 mph, by the time it got to
the collision zone it would have slowed down by 10% to 83 mph. Therefore, in our simulations we
used 83 mph for vball− before
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Stated differently, the change of momentum of a body is proportional to the
impulse applied to the body, and has a direction along the straight line upon which
that impulse is applied. An impulse J occurs when a force F acts over an interval of
time Δt, and it is given by J =

R
Δt Fdt. Since force is the time derivative of

momentum, it follows that J =Δp=mΔv. Applying an impulse changes the
momentum.

III. Action/reaction. For every action there is an equal and opposite reaction.
IV. Restitution. The ratio of the relative speeds after and before the collision is

defined as the coefficient of restitution (CoR). The relative speed of two
objects after a collision is a fixed fraction of the relative speed before the
collision, regardless of whether one object or the other is initially at rest or
the objects are approaching each other. The CoR models the energy lost in a
collision.

In this paper, we will use these four principles of Newton. We will also use the
overarching conservation laws that state, energy, linear momentum and angular
momentum cannot be created or destroyed. These laws are more general than the
principles and apply in all circumstances.

2 Bat-Ball Collisions

In this paper, we are modeling a point in time right before the bat-ball collision and
its relationship with another point just after the collision. We are not modeling the
behavior (1) during the collision, (2) long before the collision (the pitched ball) or
(3) long after the collision (the batted-ball). The flight of the ball has been modeled
by Bahill et al. (2009).

My model is for a head-on collision at the sweet spot (ss) of the bat, which I
define to be the Center of Percussion (Bahill 2004). Figure 1 is a diagram of such a
collision. All figures are drawn for a right-handed batter. This type of analysis was
done by Watts and Bahill (1990, 2000). It would produce a “line drive” back to the
pitcher.

Fig. 1 Model for a collision at the sweet spot (ss) of the bat
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3 Equations for Bat-Ball Collisions

3.1 Collisions at the Center of Mass

The literature is abound with linear collisions at the center of mass of an object. In
these, kinetic energy is transformed into heat in the ball, vibrations in the bat,
acoustic energy in the “crack of the bat” and deformations of the bat or ball. The
Coefficient of Restitution (CoR) models the energy that is transformed in a fric-
tionless head-on collision between two objects. The equation for the kinetic energy
lost in a head-on bat-ball collision at the center of mass (Dadouriam 1913, Eq. (XI),
p. 248; Ferreira da Silva 2007, Eq. 23; Brach 2007, Eq. 3.7) is

KElost =
m̄
2

collision velocityð Þ2 1−CoR2
1b

� �
where m̄=

mballmbat

mball +mbat

KElost =
m̄
2

vbat− cm− before − vball− beforeð Þ2 1−CoR2
1b

� � ð1Þ

3.2 Collisions at the Sweet Spot

3.2.1 Coordinate System

We use a right-handed coordinate system with the x-axis pointing from home plate
to the pitching rubber, the y-axis points from first base to third base, and the z-axis
points straight up. A torque rotating from the x-axis to the y-axis would be positive
upward. Over the plate, the ball comes downward at a 10° angle and the bat usually
moves upward at about 10°, so later the z-axis will be rotated back 10°.

3.2.2 Assumptions

We made the following assumptions:

A1. We assumed a head-on collision at the sweet spot of the bat.
A2. We neglected permanent deformations of the bat and ball.
A3. We assumed that there were no tangential forces during the collision.
A4. In this paper, we did not model the moment of inertia of the batter’s arms.
A5. Collisions at the Center of Percussion produce a rotation about the center of

mass, but no translation of the bat.
A6. The collision duration is short, for example, one millisecond.
A7. Because the collision duration is short and the swing is level, we ignored the

effects of gravity during the collision.
A8. The Coefficient of Restitution (CoR) for a baseball wooden-bat collision at

major-league speeds is about 0.55.
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A9. The dynamic coefficient of friction has been measured by Bahill at μf =0.5.
This agrees with measurements by Sawicki et al. (2003) and Cross and
Nathan (2006).

A10. Air density affects the flight of the batted-ball. And air density is inversely
related to altitude, temperature and humidity, and is directly related to
barometric pressure. Of these four, altitude is the most important factor
(Bahill et al. 2009). We did not consider these four parameters in this paper,
because they are for the flight of the ball, not the collision.

3.2.3 Experimental Validation Data

The experimental data in Table 1 are based on the following assumptions. The
batter is using a Louisville Slugger C243 wooden bat and is hitting a regulation
major-league baseball. The ball speed at the plate is −83 mph. The velocity of the
sweet spot of the bat is 58 mph: this is the average value of the data collected from
28 San Francisco Giants measured by Bahill and Karnavas (1991). These velocities
produce a CoR of 0.55 and a batted-ball speed of 97 mph, as will be shown in
Table 7. Using an ideal launch angle of 31°, we find a batted-ball spin of
−2100 rpm (Baldwin and Bahill 2004). With these values, the ball would travel 350
feet, which could produce a home run in all major-league stadiums.

3.2.4 The Model

The model of this paper is for a collision at the sweet spot of the bat with spin on
the pitch. The model for the movement of the bat is a translation and a rotation
about the center of mass. It has five equations and five unknowns, which are shown
in Table 2.

Definition of Variables

To visualize these variables please refer to Fig. 2.

Inputs vball− before,ωball− before, vbat− cm− before,ωbat− before andCoR
vball− before is the linear velocity of the ball in the x-direction before the collision.
ωball− before is the angular velocity of the ball about its center of mass before the

collision.
vbat− cm− before is the linear velocity of the center of mass of the bat in the

x-direction before the collision.
ωbat− before is the angular velocity of the bat about its center of mass before the

collision.
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Fig. 2 This figure shows vball− before, vbat− cm− before, vball− after and dcm− ssωbat, which are used to
define the coefficient of restitution

CoR2b is the coefficient of restitution.
Outputs vball− after, ωball− after, vbat− ss− after, ωbat− after andKElost

vball− after is the linear velocity of the batted-ball in the x-direction after the
collision.

ωball− after is the angular velocity of the ball about its center of mass after the
collision.

vbat− ss − after is the linear velocity of the sweet spot of the bat in the x-direction
after the collision.

ωbat− after is the angular velocity of the bat about its center of mass after the
collision.

KElost is the kinetic energy lost or transformed in the collision.
We want to solve for vball− after,ωball− after, vbat− cm− after,ωbat− after andKElost.
We will use the following fundamental equations of physics: Conservation of

Energy, Conservation of Linear Momentum, the Definition of Kinematic CoR,
Newton’s Second Principle and the Conservation of Angular Momentum.

Condensing the Notation for the Equations

First, we want to simplify our notation. We will now make the following substi-
tutions. These abbreviations are contained in Table 1, but for convenience, we
repeat them here.

dcm− ss = d

Ibat = I2
mball =m1

mbat =m2

vball− before = v1b
vball− after = v1a

vbat− cm− before = v2b
vbat− cm− after = v2a

ωbat− before =ω2b

ωbat− after =ω2a

These substitutions produce the following equations.
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Conservation of Energy

The law of conservation of energy states that energy will not be create or destroyed.

1
2
mballv2ball− before +

1
2
Iballω2

ball− before +
1
2
mbatv2bat− cm− before +

1
2
Ibatω2

bat− before

=
1
2
mballv2ball− after +

1
2
Iballω2

ball− after +
1
2
mbatv2bat− cm− after +

1
2
Ibatω2

bat− after +KElost

ð2Þ

m1v21b +m2v22b + I2ω2
2b = +m1v21a +m2v22a + I2ω2

2a + 2KElost ð2sÞ

In the label (3s), “s” stands for short.

Conservation of Linear Momentum

The law of conservation of linear momentum states that linear momentum will be
conserved in a collision if there are no external forces. We will approximate the
bat’s motion before the collision with the tangent to the curve of its arc as shown in
Fig. 2. For a collision anywhere on the bat, every point on the bat has the same
angular velocity, but the linear velocities will be different, which means that
vbat− before is a combination of translations and rotations unique for each point on
the bat. Conservation of momentum in the direction of the x-axis states that the
momentum before plus the external impulse will equal the momentum after the
collision. There are no external impulses during the bat-ball collision: therefore, this
is the equation for Conservation of Linear Momentum

mballvball− before +mbatvbat− cm− before =mballvball− after +mbatvbat− cm− after ð3Þ

m1v1b +m2v2b =m1v1a +m2v2a ð3sÞ

Definition of the Coefficient of Restitution

The kinematic Coefficient of Restitution (CoR) was defined by Sir Isaac Newton as
the ratio of the relative velocity of the two objects after the collision to the relative
velocity before the collision.

In our models, for a collision at the sweet spot (ss) of the bat we have

CoR2b = −
vball− after − vbat− cm− after − dcm− ssωbat− after

vball− before − vbat− cm− before − dcm− ssωbat− before
ð4Þ

CoR2b = −
v1a − v2a − dω2a

v1b − v2b − dω2b
ð4sÞ

These variables are illustrated in Fig. 2. A note on notation: ωbat− after is the
angular velocity of the bat about its center of mass after the collision and
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vbat− cm− before is the linear velocity of the center of mass of the bat in the
x-direction before the collision: this is a combination of translation and rotation.

Newton’s Second Principle

Watts and Bahill (1990) derived the following equation from Newton’s second
principle that states that a force acting on an object produces acceleration in
accordance with the equation F =ma. If an object is accelerating, then its velocity
and momentum is increasing. This principle is often stated as; applying an
impulsive force to an object will change its momentum. According to Newton’s
third principle, when a ball hits a bat at the sweet spot there will be a force on the
bat in the direction of the negative x-axis, let us call this −F1, and an equal but
opposite force on the ball, called F1. This force will be applied during the duration
of the collision. When a force is applied for a short period of time, it is called an
impulse. According to Newton’s second principle, an impulse will change
momentum. The force on the bat will create a torque of − dcm− ssF1 around the
center of mass of the bat. An impulsive torque will produce a change in angular
momentum of the bat.

− dcm− ssF1tc = Ibatðωbat− after −ωbat− beforeÞ

Now this impulse will also change the linear momentum of the ball.

F1tc =mballðvball− after − vball− beforeÞ

Multiply both sides of this equation by dcm− ss and add these two equations to get

dcm− ssmballðvball− after − vball− beforeÞ= − Ibatðωbat− after −ωbat− beforeÞ ð5Þ

dm1ðv1a − v1bÞ= − I2ðω2a −ω2bÞ ð5sÞ

For now, we have ignored ωball. We will reconsider this later.

Conservation of Angular Momentum

The initial and final angular momenta comprise ball translation, ball rotation, bat
translation and bat rotation about its center of mass.

Linitial =Lfinal

m1v1bd+ I1 +m1d2
� �

ω1b + I2ω2b

= +m1v1ad+ I1 +m1d2
� �

ω1a + I2ω2a
ð6sÞ
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Summary of abbreviations that will be used in the following sections, with units:

C= v1b − v2b − dω2b m ̸s

D=
m1d2

I2
unit less

K = ðm1I2 +m2I2 +m1m2d2Þ kg2 m2

L= v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ kg2 m3 ̸s

m̄=
m1m2

m1 +m2
kg

Note that none of these abbreviations contains the outputs
vball− after,ωball− after, vbat− cm− after,ωbat− after andKElost. The most useful abbrevia-
tions are the ones that are constants independent of velocities after the collision.
These abbreviations are only used during the derivations. They are removed from
the output equations. We will now use the Newtonian principles in Eqs. (3)–(5) to
find vball− after, vbat− cm− after, andωbat− after.

Finding Ball Velocity After the Collision

First, we solve for vball− after.
Start with Eq. (5) and solve for ω2a

dm1ðv1a − v1bÞ= − I2ðω2a −ω2bÞ

ω2a =ω2b −
dm1

I2
ðv1a − v1bÞ

This equation was derived from Eq. (5). We will use this expression repeatedly.
We know that for baseball and softball ω2b is close to zero, but for generality, we
will leave it in for as long as we can.

Next, we use Eq. (4) and solve for v2a

CoR2b = −
v1a − v2a − dω2a

v1b − v2b − dω2b

CoR2b v1b − v2b − dω2bð Þ= − v1a + v2a + dω2a

v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− dω2a

This equation was derived from Eq. (4). We will use this expression repeatedly.
Next, substitute ω2a into this v2a equation. We put substitutions in squiggly braces
{} to make it obvious what has been inserted.

192 A.T. Bahill



v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− d ω2b −
dm1

I2
ðv1a − v1bÞ

� �

Let D= m1d2
I2

and C= v1b − v2b − dω2b

v2a = v1a + Df gðv1a − v1bÞ+CoR2b Cf g− dω2b

v2a = v1að1+DÞ− v1bD+CoR2bC − dω2b

Now substitute this m2v2a into Eq. (3)

m1v1b +m2v2b =m1v1a + m2v1að1+DÞ−m2Dv1b +m2CoR2b C−m2dω2bf g

Replace the dummy variables C and D and

v1a m1 +m2 +
m1m2d2

I2

� �
= v1b m1 +

m1m2d2

I2
−m2CoR2b

� �
+m2v2b

+m2CoR2bv2b +ω2bm2dð1+CoR2bÞ

Multiply by I2.

v1a m1I2 +m2I2 +m1m2d2
� 	

= v1b m1I2 +m1m2d2 −m2CoR2bI2
� 	

+m2v2bI2
+m2CoRv2b I2 +ω2bm2dI2ð1+CoR2bÞ

Rearrange

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1+CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

ð7Þ

This equation was derived from Eqs. (3)–(5).
Now we want to rearrange this normal form equation into its canonical form.

LetK = m1I2 +m2I2 +m1m2d2
� �

L= v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

v1a =
v1b m1I2 −m2I2CoR2b +m1m2d2ð Þ

K
+

L
K

add v1b −
v1bK
K


 �
to the right side
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v1a = v1b +
v1b m1I2 −m2I2CoR2b +m1m2d2ð Þ− v1b m1I2 +m2I2 +m1m2d2ð Þ

K
+

L
K

v1a = v1b +
− v1bm2I2ð1+CoR2bÞ+L

K

Finally, we get the canonical form:

v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2
ð8Þ

This equation was derived from Eqs. (3)–(5).

vball− after = vball− before −
vball− before − vbat− cm− beforeð ÞmbatIbat 1 +CoR2bð Þ−ωbat − beforembatdIbatð1+CoR2bÞ

mballIbat +mbatIbat +mballmbatd2cm− ss

Finding Bat Velocity After the Collision

We solve for vball− after. As before, we start with Eq. (5) and solve for ω2a

ω2a =ω2b −
dm1

I2
ðv1a − v1bÞ

Next use Eq. (4) and solve for v2a

CoR2b = −
v1a − v2a − dω2a

v1b − v2b − dω2b

v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− dω2a

We will use this expression repeatedly. Substitute ω2a into this v2a equation. I put
the substitution in squiggly braces {} to make it obvious what has been inserted.

v2a = v1a +CoR2b v1b − v2b − dω2bð Þ− d ω2b −
dm1

I2
ðv1a − v1bÞ

� �

Let C= v1b − v2b − dω2b

v2a = v1a +
m1d2

I2
ðv1a − v1bÞ+CoR2b Cf g−ω2bd

Equation (7) in the previous section is
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v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

K

� �

Put this into both places for v1a in the v2a equation above.

v2a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

K

� �

+
m1d2

I2
ð v1b −

v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ
K

� �
− v1bÞ

+CoR2bC−ω2bd

Now multiply by K

Let us break up the v1b − v2bð Þ terms and substitute C= v1b − v2b − dω2b.

v2aK = v1bK − v1bm2I2 1+CoR2bð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ
− v1bm1m2d2 1 +CoR2bð Þ+ v2bm1m2d2 1 +CoR2bð Þ+ω2bm1m2d3ð1+CoR2bÞ
+ v1bCoR2b K − 2bvCoR2b K −ω2bdKð1+CoRÞ

Rearrange

v2aK = v1bK − v1bm2I2 1 +CoR2bð Þ− v1bm1m2d2 1 +CoR2bð Þ+ v1bCoR2b K

+ v2bm2I2 1 +CoR2bð Þ+ v2bm1m2d2 1 +CoR2bð Þ− v2bCoR2b K

+ω2bm2dI2ð1+CoR2bÞ+ω2bm1m2d3ð1+CoR2bÞ−ω2bdKð1+CoRÞ

Now let us break up the 1+CoR2bð Þ terms.

v2aK = v1bK − v1bm2I2 − v1bm2I2CoR2b − v1bm1m2d2 − v1bm1m2d2CoR2b + v1bCoR2b K

+ v2bm2I2 + v2bm2ICoR2b + v2bm1m2d2 + v2bm1m2d2CoR2b − v2bCoR2bK

+ω2bm2dI2 +ω2bm2dI2CoR2b +ω2bm1m2d3 +ω2bm1m2d3CoR2b −ω2bdK −ω2bdKCoR2b

Are any of these terms the same? No. OK, now let’s substitute
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K = m1I2 +m2I2 +m1m2d2ð Þ and hope for cancellations.

The terms in color cancel, leaving

v2aK = v1bm1I2ð1+CoR2b Þ+ v2bð−m1I2CoR2b +m2I2 +m1m2d2Þ−ω2bm1dI2ð1+CoR2bÞ

Continuing

Finally divide by K

v2a = v2b +
ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ

This equation was derived from Eqs. (3)–(5) and (7). We can change this into
our normal form by first combining the two terms over one common denominator.

v2a = v2b
m1I2 +m2I2 +m1m2d2ð Þ
m1I2 +m2I2 +m1m2d2ð Þ +

ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ
m1I2 +m2I2 +m1m2d2ð Þ

=
v2b m1I2 +m2I2 +m1m2d2ð Þ+ ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ

and then simplifying

v2a =
v2b −m1I2CoR2b +m2I2 +m1m2d2ð Þ+ v1bm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
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or we can write this more compactly as

v2aK = v2b −m1I2CoR2b +m2I2 +m1m2d2
� �

+ v1bm1I2ð1+CoR2bÞ−ω2bm1dI2ð1+CoR2bÞ

Finding the Bat Angular Velocity After the Collision

Now we want to find ω2a (the angular velocity of the bat after the collision) in terms
of the input parameters. We know that ω2b is about zero, but for generality, we will
leave it in for now.

This is v1a from the canonical form of Eq. (7).

v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

� �

From Eq. (5) solve for ω2a

ω2a =ω2b −
m1d
I2

ðv1a − v1bÞ

Substitute v1a into this equation for ω2a

Finally

ω2a =ω2b +
v1b − v2bð Þm1m2d 1+CoRð Þ−ω2bm1m2d2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

This equation was derived from Eqs. (5) and (7). We can change this into our
normal form by first combining the two terms over one common denominator.

Cancel duplicate terms and we get the normal form
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ω2a =
ω2b m1I2 +m2I2 −m1m2d2CoR2bð Þ+ v1b − v2bð Þm1m2d 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

Three Output Equations in Three Formats

Wewill now summarize by giving equations for vball− after, vbat− cm− after and ωbat− after

in three formats. First normal form

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

v2a =
v2b −m1I2CoR2b +m2I2 +m1m2d2ð Þ+ v1bm1I2ð1+CoR2bÞ−ω2bdm1I2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
ω2a =

ω2b m1I2 +m2I2 −m1m2d2CoR2bð Þ+ v1b − v2bð Þm1m2d 1+CoR2bð Þ
m1I2 +m2I2 +m1m2d2

Second canonical form

v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

v2a = v2b +
ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bdm1I2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
ω2a =ω2b +

v1b − v2bð Þm1m2d 1+CoR2bð Þ−ω2bm1m2d2ð1+CoR2bÞ
m1I2 +m2I2 +m1m2d2

Now let

A=
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �

and we get our reduced canonical form:

v1a = v1b −Am2I2
v2a = v2b +Am1I2
ω2a =ω2b +Am1m2d

Please note that A is not a constant. It depends on the inputs v1b, v2b and ω2b.
Also, notice that ωball does not appear in these output equations. It will appear later.
We now want to add the equation for conservation of energy, Eq. (2).
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Adding Conservation of Energy and Finding KElost

This approach, of adding conservation of energy to the bat-ball collision equations,
is unique in the science of baseball literature. For a head-on collision at the center of
mass of the bat, we had that

KElost− config− cm =
m̄
2

vbat− cm− before − vball− beforeð Þ2 1−CoR2
1b

� � ð9Þ

However, for a collision at the sweet spot this equation for kinetic energy lost is
not valid, because we now also have angular kinetic energy in the rotation of the bat.
There are no springs in the system and the bat swing is level, therefore there is no
change in potential energy. Before the collision, there is kinetic energy in the bat
created by rotation of the batter’s body and arms plus the translational kinetic energy
of the ball. In Fig. 2, the sweet spot is the distance dcm− ss from the center of mass.

KEbefore =
1
2
mballv2ball− before +

1
2
mbatv2bat− cm− before +

1
2
Iballω2

ball− before +
1
2
Ibatω2

bat− before

As always, ω means rotation about the center of mass of the object. The collision
will make the bat spin about its center of mass. If the collision is at the Center of
Percussion for the pivot point, it will produce a rotation about the center of mass,
but no translation.

KEafter =
1
2
mballv2ball− after +

1
2
mbatv2bat− cm− after +

1
2
Iballω2

ball− after +
1
2
Ibatω2

bat− after

We now add kinetic energy of the rotating curveball. We will add two terms with
ball spin 1

2 Iballω
2
ball− before and

1
2 Iballω

2
ball− after

� �
to the Conservation of Energy

equation, to create

1
2
mballv2ball− before +

1
2
mbatv2bat− cm− before +

1
2
Iballω2

ball− before +
1
2
Ibatω2

bat− before

=
1
2
mballv2ball− after +

1
2
mbatv2bat− cm− after +

1
2
Iballω2

ball− after +
1
2
Ibatω2

bat− after +KElost

KEbefore =KEafter +KElost

The KEbefore and the KEafter > are easy to find. It is the KElost that is hard to find.

In the next section on “Adding Conservation of Angular Momentum,” we will
prove that for head-on collisions without friction ωball− before =ωball− after. Therefore,
the ball spin terms in these conservation of energy equations cancel resulting in

0=m1v21b +m2v22b + I2ω2
2b −m1v21a −m2v22a − I2ω2

2a − 2KElost
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From before, we have

A=
v1b − v2bð Þ 1+CoR2bð Þ− dω2b

m1I2 +m2I2 +m1m2d2

� �
v1a = v1b −Am2I2
v1a = v1b −Am2I2
v2a = v2b +Am1I2
ω2a =ω2b +Am1m2d

ω1a =ω1b

Substituting v1a, v2a and ω2a into the new conservation of energy equation yields

KElost =
1
2

m1v21b +m2v22b + I2ω2
2b −m1 v1b −Am2I2ð Þ2

−m2 v2b +Am1I2ð Þ2 − I2 ω2b +Am1m2dð Þ2
( )

Now we want to put this into the form that we had for Eq. (1). The following
derivation is original. First, expand the squared terms.

Rearrange

2KElost = 2v1bAm1m2I2 − 2v2bAm1m2I2 −A2m2
1m2I22 −A2m1m2

2I
2
2 − 2ω2bAm1m2d+A2m2

1m
2
2d

2� �
I2

factor

2KElost =Am1m2I2 2ðv1b − v2bÞ−Aðm1I2 +m2I2 +m1m2d2Þ− 2ω2bd
� 	

Substitute A

2KElost =Am1m2I2 2ðv1b − v2bÞ− v1b − v2bð Þ 1+CoR2bð Þ− dω2b

m1I2 +m2I2 +m1m2d2

� �
ðm1I2 +m2I2 +m1m2d2Þ− 2ω2bd

� �
2KElost =Am1m2I2 2ðv1b − v2bÞ− v1b − v2bð Þ 1+CoR2bð Þ+ dω2b − 2ω2bd½ �
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factor ðv1b − v2bÞ out of the first two terms

2KElost =Am1m2I2 v1b − v2bð Þ 1+CoR2bð Þ− dω2b½ �

substitute A

2KElost =
v1b − v2bð Þ 1+CoR2bð Þ− dω2b

m1I2 +m2I2 +m1m2d2

� �
m1m2I2 v1b − v2bð Þ 1+CoR2bð Þ− dω2b½ �

2KElost =
m1m2I2

m1I2 +m2I2 +m1m2d2
v1b − v2bð Þ 1+CoR2bð Þ− dω2bf g v1b − v2bð Þ 1+CoR2bð Þ− dω2b½ �

After a little bit of algebra we get

2KElost =
m1m2I2

m1I2 +m2I2 +m1m2d2
v1b − v2bð Þ2ð1−CoR2

2bÞ− 2 v1b − v2bð Þω2bd+ω2
2bd

2
h i

KElost =
1
2

m1m2I2
m1I2 +m2I2 +m1m2d2

v1b − v2bð Þ2ð1−CoR2
2bÞ− 2 v1b − v2bð Þω2bd+ω2

2bd
2

h i

This is a general result. It is original and unique. For a collision at the center of
mass, d = 0. Therefore,

KElost =
1
2

m1m2

m1 +m2
v1b − v2bð Þ2ð1−CoR2Þ

When we substitute, m̄= m1m2
m1 +m2

we get

KElost =
m̄
2

v1b − v2bð Þ2ð1−CoR2Þ ð10Þ

Which is the same as the following equation that has been derived in the
literature.

KElost =
m̄
2

vbat− cm− before − vball− beforeð Þ2 1−CoR2� �

Adding Conservation of Angular Momentum

In this section, we will prove that for a head-on collision without considering
friction for a pitch of any spin there will be no change in the spin of the ball. To do
this we will use the law of conservation of angular momentum about the center of
mass of the bat. When the ball contacts the bat, as shown in Fig. 3, the ball has
linear momentum of mballvball− before. However, the ball does not know if it is
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translating or if it is tied on a string and rotating about the center of mass of the bat.
Following conventional physics, we will model the ball as rotating about the bat’s
center of mass at a distance d= dcm− ss. Therefore, the ball has an initial angular
momentum of mballdcm− ssvball− before about the bat’s center of mass. In addition, it is
possible to throw a curveball so that it spins about the vertical, z-axis, as also shown
in Fig. 3. We call this a purely horizontal curveball (although it will still drop due to
gravity, more than it will curve horizontally). The curveball will have angular
momentum of Iballωball− before where Iball = 0.4mballr2ball about an axis parallel to the
z-axis. However, this is its momentum about its center of mass and we want the
momentum about the center of mass of the bat. Therefore, we use the parallel axis
theorem producing Iball +mballd2ð Þωball− before.

The bat has an initial angular momentum of Ibatωbat− before. It also has an angular
momentum about the bat’s center of mass of due to the bat translation momentum
mbatdvbat− before, however, in this case d=0 because the center of mass of the bat is
passing through its center of mass. L is the symbol used for angular momentum.
I guess all the cool letters (like F, m, a, v, I, ω, d, etc.) were already taken, so they
were stuck with the blah symbol L. Therefore, the initial angular momentum about
the center of mass of the bat is

Linitial =m1v1bd+ I1 +m1d2
� �

ω1b + I2ω2b

All of these momenta are positive, pointing out of the page.
For the final angular momentum, we will treat the ball, as before, as an object

rotating around the axis of the center of mass of the bat with angular momentum,
mballvball− afterdcm− ss. Now we could treat the bat as a long slender rod with a
moment of inertia of mbatd2bat ̸12, where dbat is the bat length. However, this is only
an approximation and we have actual experimental data for the bat moment of
inertia. Therefore, the bat angular momentum is Ibatωbat− after. Thus, our final
angular momentum about the center of mass of the bat is

Lfinal =m1v1ad+ I1 +m1d2
� �

ω1a + I2ω2a

Fig. 3 This figure shows vball− before, vball− before, ωball, dcm− ss and ωbat, which are used in the
conservation of angular momentum equation
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The law of conservation of angular momentum states that the initial angular
momentum about some axis equals the final angular momentum about that axis.

Linitial =Lfinal
m1v1bd+ I1 +m1d2ð Þω1b + I2ω2b =m1v1ad+ I1 +m1d2ð Þω1a + I2ω2a

Previously we used Eq. (5), Newton’s second principle and solved for ω2a.

dm1ðv1a − v1bÞ= − I2ðω2a −ω2bÞ ð11Þ

ω2a =ω2b −
dm1

I2
ðv1a − v1bÞ

So let us substitute this into our conservation of angular momentum equation
above.

m1v1bd+ I1ω1b +m1ω1bd2 + I2ω2b =m1v1ad+ I1ω1a +m1ω1ad2 + I2 ω2b +
dm1

I2
ðv1b − v1aÞ

� �

We want to solve this for ω1a

We have now proven that for a pitch with any spin about the z-axis, the spins
before and after are the same. What about a pitch that has spin about the z-axis and
also about the y-axis, like most pitches? The collision will not change ball rotation.
As shown above, it will not change the spin about the z-axis. We could write
another set of equations for angular momentum about the y-axis. However, the bat
has no angular momentum about the y-axis, so there is nothing to affect the ball spin
about the y-axis. In conclusion, a head-on collision between a bat and a ball will not
change the spin on the ball. Some papers have shown a relationship between ball
spin before and ball spin after, but they were using oblique collisions (Nathan et al.
2012; Kensrud et al. 2016) (Table 3).

The numbers in the Excel simulation satisfy the following checks: (1) Conser-
vation of linear momentum, (2) Conservation of angular momentum, (3) Coefficient
of restitution, (4) Newton’s second principle, an impulse changes momentum,
(5) Conservation of energy and (6) Kinetic energy lost. Table 4 shows the kinetic
energies for the same simulation.

The first purpose of this paper is to model bat-ball collisions using only New-
ton’s principles and the conservation equations. We did it. Our equations are
complete, consistent and correct.
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3.2.5 Analytic Sensitivity Analysis

The second purpose of this paper is to show how the batter can select and tailor an
optimal baseball or softball bat. From the viewpoint of the batter, the only model
output that is important is the speed of the batted-ball. Therefore, we will now find the
sensitivity of the batted-ball speed, vball− after, with respect to the system parameters.
The eight system parameters are vball− before, mball, Ibat, mbat, CoR2b, dcm− ss,
vbat− cm− before and ωbat− before. For baseball and softball, the batted− ball speed, v1a,
is the most important output. The larger it is the more likely the batter will get on base
safely (Baldwin and Bahill 2004). Therefore, let us start with v1a from Eq. (7).

Table 4 Kinetic energies

KE ball linear velocity before 99.3
KE bat linear velocity before 304.2
KE ball angular velocity before 1.7
KE bat angular velocity before 0.0
KE before total 405.2
KE ball linear velocity after 136.1
KE bat linear velocity after 77.2
KE ball angular velocity after 1.7
KE bat angular velocity after 25.2
KE after 240.2
KE loss 165.0
KE after + KE loss 405.2

Table 3 Simulation values for bat-ball collisions at the sweet spot

SI units (m/s, rad/s, or J) Baseball units

Inputs

vball− before −37 −83 mph
ωball− before 209 2000 rpm
vbat− cm− before 26 58 mph
ωbat− before 0.1 1 rpm
CoR2b 0.55
Outputs

vball− after 43 97 mph
ωball− after =ωball− before

vbat− cm− after 13 29 mph
ωbat− after −32 −310 rpm
KElost 165
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v1a = v1b −
v1b − v2bð Þm2I2 1 +CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

In order to perform an analytic sensitivity analysis we first need the partial
derivatives of v1a with respect to the eight parameters. These partial derivatives are
often called the absolute sensitivity functions. Move the minus sign and simplify
the numerator.

v1a = v1b +
1+CoR2bð Þ − v1b + v2bð Þm2I2 +ω2bm2dI2½ �

m1I2 +m2I2 +m1m2d2ð Þ

Let K = m1I2 +m2I2 +m1m2d2ð Þ
H = 1+CoR2bð Þ − v1b + v2bð Þm2I2 +ω2bm2dI2½ �
v1a = v1b +

H
K

∂v1a
∂v1b

= 1−
m2I2 1 +CoR2bð Þ

K
unitless

∂v1a
∂ω2b

=
m2dI2 1 +CoR2bð Þ

K
m

∂v1a
∂CoR2b

=
− v1b + v2bð Þm2I2 +ω2bm2dI2

K
m ̸s

∂v1a
∂v2b

=
m2I2 1 +CoR2bð Þ

K
unitless

Alternatively, we could start with

v1a = v1b −Am2I2

A=
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �

v1a = v1b −
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �
m2I2

∂v1a
∂v2b

=
m2I2 1 +CoR2bð Þ

K

This gives the same result. For the following partial derivatives, we need the
derivative of a quotient.

f ðxÞ
gðxÞ

� �′
=

gðxÞf ′f ′ðxÞ− f ðxÞg′ðxÞ
gðxÞ½ �2

∂v1a
∂d

=
1+CoR2bð ÞKm2ω2bI2 − 2Hm1m2d

K2 1 ̸s
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∂v1a
∂m2

=
K 1+CoR2bð Þ − v1b + v2bð ÞI2 +ω2bdI2f g−H I2 +m1d2ð Þ

K2 m ̸kg s

∂v1a
∂m1

= −
ðI2 +m2d2ÞH

K2 m ̸kg s

∂v1a
∂I2

=
K 1+CoR2bð Þ − v1b + v2bð Þm2 +ω2bm2d½ �−H m1 +m2ð Þ

K2 1 ̸kgm s

∂
2v1a

∂v2b∂m2
=

I2 1 +CoR2bð Þ K −m2ðI2 +m1d2Þ½ �
K2 1 ̸kg

In the above partial derivatives, units on the left and right sides of the equations
are the same. This is a simple, but important accuracy check. We perform such a
dimensional analysis on all of our equations.

We did not show the derivations of all of the second-order partial derivatives.
We choose the interaction of the bat mass and the bat speed, above, because it was
expected to be large based on principles of physiology. Additionally, the forth-
coming discussion on optimizing the bat suggests an interaction between the bat
mass and moment of inertia. Therefore, we will now derive one more interaction
term, the interaction between bat mass and moment of inertia, Ibat and mbat.

Given

∂v1a
∂m2

=
K 1+CoR2bð Þ − v1b + v2bð ÞI2 +ω2bdI2f g−H I2 +m1d2ð Þ

K2

Find ∂
2v1a

∂I2∂m2

We will be dealing with I2, so let us isolate it. First replace K and H, ∂v1a
∂m2

becomes
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The numerator ∂v1a
∂m2

of becomes

. .

Now we want to form the semirelative-sensitivity functions, which are defined as

S ̃Fα =
∂F
∂α

����
NOP

α0

where NOP and the subscript 0 mean that all functions, inputs and parameters
assume their nominal operating point values (Smith et al. 2008).

S
F̃
α =

∂F
∂α

����
NOP

α0

S
ṽ1a
v1b = 1−

m2I2 1 +CoR2bð Þ
K

����
NOP

v1b0

S
ṽ1a
v2b =

m2I2 1 +CoR2bð Þ
K

����
NOP

v2b0

S
ṽ1a
ω2b

=
m2dI2 1 +CoR2bð Þ

K

����
NOP

ω2b0

S
ṽ1a
CoR =

− v1b + v2bð Þm2I2 +ω2bm2dI2
K

����
NOP

CoR2b0
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Table 5 gives the nominal input and parameter values, along with a range of
physically realistic values for collegiate and professional batters and the semirela-
tive sensitivity values. The bigger the sensitivity is, the more important the variable
is for maximizing batted-ball speed.

The right column of Table 5 shows that the most important variable, in terms of
maximizing batted-ball speed, is the speed of the bat before the collision. This is
certainly no surprise. The second most important variable is the coefficient of resti-
tution,CoR2b. The least important variables are the angular velocities,
ωball− before and ωbat− before. The sensitivities to distance between the center of mass
and the sweet spot of the bat, dcm− ss, and themass of the ball,mball, are negative,which
merelymeans that as they increase the batted-ball speed decreases. Cross (2011)wrote
that in his model the most sensitive variables were also the bat speed followed by the
CoR. His sensitivity to the mass of the ball was also negative. The bottom two rows of
Table 5 show that the interaction terms are small, which means that the model is well
behaved. For example, the interaction of the mass of the bat with the bat speed is
smaller than either the influence of the mass of the bat by itself or the bat speed by
itself. The interaction of bat mass and moment of inertia is surprisingly small.

3.2.6 Optimizing with Commercial Software

We applied What’s Best!, a subset of the LINGO solvers, to our model. We con-
strained each variable to stay within physically realistic limits under natural con-
ditions. Such values are shown in Table 5. We have previously gotten good results
using this technique when doing empirical sensitivity analyses (Bahill et al. 2009).
Then we asked the optimizer to give us the set of values that would maximize
batted-ball speed. The optimizer applied a nonlinear optimization program. The
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results were the same as in Table 5! That is, for variables with positive sensitivities,
the optimizer choose the maximum values. For variables with negative sensitivities,
the optimizer choose the minimum values. Using all of the optimal values at the
same time increased the batted-ball speed from 43 to 56 m/s (96–125 mph). Using
this optimal set of values only changed the sensitivities slightly.

1. The numerical sensitivity values mostly increased. This is a direct result of the
definition of the semirelative sensitivity function where the partial derivative is
multiplied by the parameter value. If parameter values increase, then the sen-
sitivities increase.

2. However, and most importantly, the rank order stayed the same except that the
batted-ball speed became more sensitive to vball− before than to mbat. In the
optimal set, both of these sensitivities increased, but because the value of
vball− before changed from 37 to 40 m/s whereas the value of mbat only changed
from 0.90 to 0.96 kg, the change in the sensitivity to vball− before was bigger.

This all means that the sensitivity analysis is robust. Its results remain basically
the same after big changes in the variables.

We then tried a different optimization technique. Instead of constraining each
variable to stay within realistic physical limits, we allowed the optimizer to change
each variable by at most ±10% and then give us the set of values that maximizes
batted-ball speed. The numerical values changed but the rank order stayed the same,
except for vball− before and mbat just as it did with the realistic values technique.

Both empirical sensitivity analyses and optimization can constrain each variable
to stay within specified realistic physical limits or change each variable by a certain
percentage. Both techniques gave the same results. However, we prefer the former
technique (Bahill et al. 2009).

We found an interesting relationship between the sensitivity analyses and opti-
mization: they gave the same results! For variables with positive sensitivities, the
optimizer chooses the maximum values. For variables with negative sensitivities,
the optimizer chooses the minimum values. But of course, this finding is not
original. Sensitivity analyses are commonly used in optimization studies (Choi and
Kim 2005). These studies typically apply sensitivity analysis after optimization.
They try to find values or limits for the objective function or the right-hand sides of
the constraints that would change the decisions. However, in our study, we applied
optimization after the sensitivity analysis and we had only one variable in our
objective function. Therefore, our problem was much simpler than sensitivity
analyses in the optimization literature.

3.2.7 Optimizing the Bat

The second purpose of this paper is to help the batter acquire an optimal baseball or
softball bat. Therefore, we ask, How can the batter use these sensitivity and opti-
mization results to select or customize an optimal bat? First, it is no surprise that bat
speed, vbat− cm− before, is the most important variable in Table 5. Its effect is shown
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in Fig. 4, where the slope of the line is the absolute sensitivity. For decades, Little
League coaches have taught their boys to practice and gain strength so that they
could increase their bat speeds. They also said that it is very important to reduce the
variability in the bat swings: Every swing should be the same. “Don’t try to kill the
ball.” Given our new information, we now recommend that Little League coaches
continue to give the same advice: increase bat speed and reduce variability. Practice
is the key. Baldwin (2007), a major-league pitcher with a career 3.08 ERA, saga-
ciously wrote that if you lose a game, don’t blame the umpire or your teammates;
just go home and practice harder.

Our measurements of over 300 batters showed that variability in the speed of the
swing decreases with level of performance from Little League to Major League
Baseball. For major leaguers the bat speed standard deviations were typically
around ±5% (Bahill and Karnavas 1989), which is a very small value for physio-
logical data.

The variable with the second largest sensitivity is the coefficient of restitution
(CoR). The CoR of a bat-ball collision depends on where the ball hits the bat. It is
difficult, but absolutely essential, for the batter to control this. He or she must hit the
ball with the sweet spot of the bat. The CoR also depends on the manufacturing
process. The NCAA now measures the Bat-ball Coefficient of Restitution (BBCOR)
for sample lots coming off themanufacturing line. Therefore, amateurs are all going to
get similar BBCORs. However, a lot can still be done with theCoR for aluminum and
composite bats. For example, the performance of composite bats typically improves
with age because of the break-in process; repeatedly striking the bat eventually breaks
down the bat’s composite fibers and resinous glues. ‘Rolling’ the bat also increases its
flexibility. Rolling the bat stretches the composite fibers and accelerates the natural
break-in process simulating a break-in period of hitting, say, 500 balls.

For wooden bats, the batter could try to influence the CoR by choosing the type
of wood that the bat is made of. Throughout history, the most popular woods have
been white ash, sugar maple and hickory. However, hickory is heavy, so most

Fig. 4 The most important variable in our model is the bat speed at the sweet spot before the
collision. For this figure, first we computed the batted-ball speed with vball− after

= vball− before −AmbatIbat and then we plotted the batted-ball speed as a function of the bat sweet
spot speed before the collision. Remember that A is not a constant, it depends on the velocity of the
ball and bat before the collision and on the angular velocity of the bat before the collision
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professionals now use ash or maple. A new finding about bat manufacturing is that
the slope of the grain has an effect on the strength and elasticity of the bat. As a
result, the wood with the straightest gain is reserved for professionals and wood
with the grain up to 5° off from the long-axis of the bat is used for amateurs.
Furthermore, the manufacturer’s emblem is stamped on the flat grain side of ash
bats so that balls collide with edge grain as shown in Fig. 1, whereas the emblem is
stamped on the edge grain side of maple bats because they are stronger when the
collision is on the flat grain side.

The next largest sensitivities are for the mass of the ball and its speed before the
collision, mball and vball− before. However, the batter can do nothing to influence the
mass of the ball or the ball speed before the collision, so we will not concern
ourselves with them. Likewise, the batter has no control over the ball spin,
ωball− before, so we will ignore it when selecting bats. Now if this discussion were
being written from the perspective of the pitcher (Baldwin 2007), then these three
parameters would be very important.

The next most important variable in Table 5 is the mass of the bat. Therefore, we
will now consider the mass and other related properties of the bat. The sensitivity of
the batted-ball speed with respect to the mass of the bat is positive, meaning (if
everything else is held constant) as the mass goes up so does the batted-ball speed.
However, everything else cannot be held constant, because the heavier bat cannot
be swung as fast (Bahill and Karnavas 1989) due to the force-velocity relationship
of human muscle. This physiological relationship was not included in the equations
of this paper because in this paper we only modeled the physics of the collision,
notwithstanding physiology trumping physics in this case. The net result of physics
in conjunction with physiology is that lighter bats are better for almost all batters
(Bahill 2004).

Perhaps due to this general feeling, back in the 1960s and 70s, it was popular for
professionals to ‘cork’ the bat. This reduced the mass of the bat, but because it also
reduced the moment of inertia, it did not improve performance significantly (Nathan
et al. 2011). However, it is now legal to make a one to two-inch diameter hole 1.25
in. deep into the barrel end of the bat. Most batters do this because it makes the bat
lighter with few adverse effects. Other bat parameters that are being studied include
the type of wood (density, strength, elasticity and straightness of the grain) and the
type of materials (density, strength, break-in period and vibrational frequency).

For an aluminum bat, some batters reduce the thickness of the barrel wall by
shaving the inside of the barrel. This reduces the bat mass, which according to
physics and physiology, increases batted-ball speed.

The distance between the center of mass of the bat and the sweet spot, dcm− ss, is
the next most important parameter. We presumed that the sweet spot of the bat was
the center of percussion (CoP) of the bat. All batters try to hit the ball on the sweet
spot of the bat. To help the batter, manufacturers of aluminum bats have been
moving the CoP by moving the internal weight from the end of the bat toward the
knob http://www.acs.psu.edu/drussell/bats/cop.html. It is now an annual game of
cat and mouse. The manufacturers move the CoP, then the rule makers change their
rules, then the manufacturers move … etc.
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Finally, we come to the moment of inertia of the bat, Ibat, with respect to its center
of mass. The physics, revealed with the sensitivity analysis, states that although the
moment of inertia is one of the least important variables, it would help to increase its
value. More importantly, physiology showed that all batters would profit from using
end-loaded bats (Bahill 2004). There are many ways to change the moment of inertia
of a bat. Most aluminum bats start with a common shell and then the manufacturer
adds a weight inside to bring the bat up to its stated weight. The important question
then becomes, where should the weight be added? It has been suggested that they
add weight in the knob because this would comply with the regulations and would
not decrease bat speed. However, the results of Bahill (2004) show that they should
add the weight in the barrel end of the bat making it end loaded. This will increase
the batted-ball speed. For a wooden bat, the moment of inertia can be changed by
cupping out the barrel end, adding weight to the knob or tapering the barrel end.
Assume that the end of the barrel of a bat is only used to “protect” the outside edge of
the plate: no one hits home runs on the end of the bat. Therefore, a professional could
use a bat where the last 3 in. (7 cm) was tapered from 2½ inches (6.4 cm) down to
1¾ of an inch (4.4 cm). This would decrease the weight, decrease the moment of
inertia about the center of mass and would move the sweet spot 2% closer to the
knob: these changes would probably benefit some players. However, such modifi-
cations would have to be individually designed for each player.

Most people can feel the difference between bats with different moments of inertia.
In 1985, a coach with the San Francisco Giants showed us a legal custom-made bat
with a large moment of inertia created by leaving it with a huge knob. He presumed
that his players already understood the influence of bat weight on bat speed so he was
trying to expand their understanding to the influence of bat moment of inertia on the
speed of the swing. One of our University of Arizona softball players described our
biggest moment of inertia bat, “That’s the one that pulls your arms out.”

The bat moment of inertia is the only parameter under the control of the batter for
which a consensus does not exist in the science of baseball literature. The bat
moment of inertia is an enigma because for most, but not all, batters as the bat
moment of inertia goes up the bat speed goes down, and at the same time the batted-
ball speed goes up (Bahill 2004; Smith and Kensrud 2014). For Bahill’s (2004)
batters, 20% had positive slopes for bat speed versus moment of inertia, for moments
of inertia in the range of 0.03–0.09 kgm2. Therefore, he showed the actual data for
all players rather than averaging them, because averaging graphical data is usually
meaningless. Perhaps more physiological studies would help clear up this issue. Our
best generalization is that all batters would profit from using end-loaded bats. Smith
and Kensrud (2014) concluded their paper with “Batter swing speed decreased with
increasing bat inertia, while … the hit-ball speed increases with bat inertia.”

Summarizing, these are the most important factors for understanding bat per-
formance: bat weight, the coefficient of restitution, the moment of inertia and
characteristics of humans swinging the bats.

In the future, it will be possible to see how the coefficient of friction μf affects the
batted-ball speed. Then we will be able to decide if the varnish or paint on the bat
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should be made rough-textured or smooth, or if bats should be rubbed or oiled in
order to improve bat performance.

To improve bat performance manufacturers could reduce the variability of bat
and ball parameters. Major-league bats were custom made for us by Hillerich and
Bradsby Co. The manufacturing instructions were “Professional Baseball Bat,
R161, Clear Lacquer, 34 in., 32 oz, make as close to exact as possible, end brand—
genuine model R161 pro stock, watch weights” emphasis added. The result was six
bats with an average weight of 32.1 oz and a standard deviation of 0.5! This large
standard deviation surprised us. We assume there is the same variability in bats used
by major-league players.

There is also variability in the ball. We assume that the center of mass of the ball
is coincident with the geometric center of the ball. However, put a baseball or
softball in a bowl of water. Let the movement subside. Then put an X on the top the
ball. Now spin it and let the motion subside again. The X will be on top again. This
shows that for most baseballs and softballs the center of mass is not coincident with
the geometric center of the ball.

3.2.8 Summary of Bat Selection

These sensitivity and optimality analyses show that the most important variable, in
terms of increasing batted-ball speed, is bat speed before the collision. This is in
concert with ages of baseball folklore and principles of physiology. Therefore,
batters should develop strength, increase coordination and practice so that their
swings are fast and with low variability.

These analyses show that the next most important parameter is the coefficient of
restitution, the CoR. Engineers and bat regulators are free to play their annual cat
and mouse game of increasing CoR then writing rules and making tests that prohibit
these changes. Indeed, most recent bat research has gone into increasing the CoR of
bat-ball collisions.

Pitch speed, ball spin and the mass of the ball are important. However, the batter
cannot control them. Therefore, they cannot help the batter to choose or modify a
bat.

The next most important parameter is the bat mass, mbat. However, physics
recommends heavy bats, whereas the force-velocity relationship of muscle rec-
ommends light bats. In this case, physiology trumps physics. Each person’s pre-
ferred bat should be as light as possible while still fitting within baseball needs,
regulations and availability.

The last interesting parameter from the sensitivity analysis and the optimization
study is the bat moment of inertia, Ibat. These studies suggest that a larger bat
moment of inertia would be better. However, a lot of the physics literature rec-
ommends smaller moments of inertia. Conversely, an experimental physiology
study stated that all players would profit from using end-loaded bats (Bahill 2004).
Therefore, this is the only parameter under the control of the batter for which a
consensus does not exist in the science of baseball literature.
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The second purpose of this paper is to show what the batter can do to achieve
optimal bat performance. The most important thing is practice. Next, batters should
select lightweight bats. They should then select bats that increase the CoR by all
legal means. Finally, they should choose bats with a larger moment of inertia, bats
that are often called end-loaded.

3.2.9 The Ideal Bat WeightTM

So far, the equations in this paper were equations of physics. However, we
repeatedly mentioned physiology. Now is the time to step back and look at phys-
iology. This section is based on Bahill and Karnavas (1991).

Our instrument for measuring bat speed, the1 Bat ChooserTM, has two vertical
laser beams, each with associated light detectors. Our batters swung the bats
through the laser beams. A computer recorded the time between interruptions of the
light beams. Knowing the distance between the light beams and the time required
for the bat to travel that distance, the computer calculated the speed of the sweet
spot, which we defined as the center of percussion. We told the batters to swing
each bat as fast as they could while still maintaining control. We said, “Pretend you
are trying to hit a Nolan Ryan fastball.”

In our experiments, each batter swung six bats through the light beams. The bats
ran the gamut from super-light to super heavy; yet they had similar lengths and
weight distributions. In our developmental experiments, we tried about four dozen
bats. We used aluminum bats, wooden bats, plastic bats, heavy metal warm-up bats,
bats with holes in them, bats with lead in them, major-league bats, college bats,
softball bats, Little League bats, brand-new bats and bats made in the 1950s.

In one set of experiments, we used six bats of significantly different weights but
similar lengths of about 34 in. (89 cm), with centers of mass about 23 in. from the
end of the handle (see Table 6).

In a 20-min interval, each subject swung each bat through the instrument five
times. The order of presentation was randomized. The selected bat was announced
by a speech synthesizer, for example: “Please swing bat Hank Aaron, that is, bat
A.” (We named our bats after famous baseball players who had names starting with
the letter assigned to the bat.)

For each swing, we recorded the bat weight and the speed of the center of mass,
which we converted to the speed of the center of percussion. However, that was as
far as physics could take us; we then had to look to the principles of physiology.

Physiologists have long known that muscle speed decreases with increasing
load. This is why bicycles have gears; gears enable riders to maintain the muscle
speed that imparts maximum power through the pedals, while the load, as reflected
by the bicycle speed, varies greatly. To discover how the muscle properties of
individual baseball players affect their best bat weights, for each player, we plotted

1Bat Chooser and Ideal Bat Weight are trademarks of Bahill Intelligent Computer Systems.
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bat speeds as a function of bat weight to produce graphical numerical models
known as the muscle force-velocity relationships (see Fig. 5). The red Xs represent
the average of the five swings of each bat; the standard deviations were small for
physiological data.

Over the past 75 years, physiologists have used three equations to describe the
force-velocity relationship of muscles: straight lines, hyperbolas and exponentials.
Each of these equations has produced the best fit for some experimenters, under
certain conditions and with certain muscles. However, usually the hyperbola fits the
data best. In our experiments, we tried all three equations and chose the one that had
the best fit to the data of each subject’s 30 swings. For the data of the force-velocity
relationships illustrated in Fig. 5, we found that a hyperbola provided the best fit.

Fig. 5 Measured bat speed
(red Xs), a hyperbola fit to this
data (blue dots) and the
calculated batted-ball speed
(black triangles) for a 90 mph
pitch to one of the fastest San
Francisco Giants

Table 6 Test bats used by major-league players

Name Weight
(oz)

Weight
(kg)

Distance
from knob
to center of
mass (in.)

Distance
from knob
to center of
mass (m)

Average
sweet spot
speed
(mph) from
Fig. 5

Description

D 49.0 1.39 22.5 0.57 88 Aluminum bat filled
with water

C 42.8 1.21 24.7 0.63 74 Wooded bat, filled
with lead

A 33.0 0.94 23.6 0.60 65 Wooded bat
B 30.6 0.87 23.3 0.59 65 Wooden bat
E 23.6 0.67 23.6 0.60 61 Wooden bat
F 17.9 0.51 21.7 0.55 60 Wooden handle

mounted on a light
steel pipe with a 6 oz
weight at the end

216 A.T. Bahill



These curves indicate how bat speed varies with bat weight. We now want to
find the bat weight that will make the ball leave the bat with the highest speed and
thus have the greatest chance of eluding the fielders. We call this the
maximum-batted-ball-speed bat weight. To calculate this bat weight we must
couple the muscle force-velocity relationships to the equations of physics.

For the major-league player whose data are shown in Fig. 5, the best fit for his
force-velocity data was the hyperbola, ðmbat + 11Þ× ðvbat− before − 36Þ=
1350 units are ounces and mph, blue dots. This batter had some of the fastest
swing speeds on the team. When we substituted this equation into the batted-ball
speed equation, Eq. (7), we were able to plot the ball speed after the collision as a
function of bat weight, black triangles in Fig. 5.

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

ðmbat + 11Þ× ðv2b − 36Þ=1350

v2b =
36m2 + 1746

m2 + 11

� �

v1a = v1b
m1I2 −m2I2 CoR2b +m1m2d2ð Þ

K
+

36m2 + 1746
m2 + 11

� �
m2I2 1 +CoR2bð Þ

K
+ω2b

m2dI2ð1+CoR2bÞ
K

In this equation, I2 is also a function of m2. This curve shows that the
maximum-batted-ball-speed bat weight for this subject is about 45 oz, which is
much heavier than that used by any batters. However, this batted-ball speed curve is
almost flat between 30 and 49 oz. This player normally used a 32-oz bat. Evidently
the greater control permitted by the 32-oz bat outweighed the one per cent increase
in speed that could be achieved with the 45-oz bat.

However, the maximum-batted-ball-speed bat weight is not the best bat weight
for any player. Because a lighter bat will give a batter better control, more accuracy
and more time to compute the ball’s impact point. Obviously, a trade-off must be
made between batted-ball speed and control. Because the batted-ball speed curve is
so flat around the point of the maximum-batter-ball-speed, we believe there is little
advantage in using a bat as heavy as the maximum-batter-ball-speed bat weight.
Therefore, we have defined the 1ideal bat weightTM to be the weight where the ball
speed curve drops 1 per cent below the maximum-batter-ball speed. Using this
criterion, the ideal bat weight for this batter is 31.75 oz. We believe this gives a
good trade-off between distance and accuracy.

As can be seen from the batted-ball speed equation, both v1a and the ideal bat
weight increase with pitch speed. However, we do not recommend that a batter use
a heavier bat against a fire-baller, because heavier bats increase the swing time and
decrease the prediction time.

The ideal bat weight is specific to each individual; it is not correlated with
height, weight, age, circumference of the upper arm, or any combination of these
factors, nor is it correlated with any other obvious physical factors. Although, Bahill
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and Morna Freitas (1995) mined our database of 163 subjects and 36 factors and
determined some rules of thumb that could make suggestions.

3.2.10 Bat Speed

Throughout this paper we have used a before collision bat speed of 58 mph
(26 m/s). This is the average sweet spot speed that we measured for 28 members of
the San Francisco Giants baseball team. However, our subjects were not paid and
therefore they were not highly motivated: furthermore, they did not actually hit a
ball: both of these circumstances increase the variance of swing speeds. Some
studies in the literature filtered their data and only included selected batters, usually
the fastest. Internet sites that are trying to sell their equipment and services cite
sizzling bat speeds between 70 and 90 mph (31–40 m/s). We think that these
numbers are bogus. The big web sites such as mlb.com, espn.com/mlb/and hit-
trackeronline.com give the leaders in many categories, meaning that they a have
selected the 20 fastest players out of 750. This would be misleading if the reader
thought that these statistics were representative of major-league batters, which they
do.

Table 7 gives average sweet spot speeds for six studies of male college and
professional batters. When multiple bats were used, we chose the wooden bats
closest to that described in Table 1.

Figure 4 shows that the average major-league batter has a high enough bat speed
to occasionally hit a home run, when the batted-ball has the ideal spin and launch
angle. However, over half of major-league batters seldom hit homeruns. Indeed, of
the 2200 active players listed by MLB.com half of them have never hit a home run
in their major-league careers. Our equations show that a ball velocity before the
collision, v1b, of 83 mph (37 m/s) and a bat sweet spot speed, v2b, of 58 mph

Table 7 Bat sweet spot speed before the collision

Average speed of
the sweet spot (m/s)

Average speed of the
sweet spot (mph)

Subjects References

32 71 Unknown King et al. (2012)
31 69 7 selected male

professional baseball
players

Welch et al. (1995)

30 68 19 male baseball
players

Crisco et al. (2002)

26 58 28 San Francisco Giants Database of Bahill
and Karnavas (1989)

26 58 7 male college baseball
players

Koenig et al. (2004)

26 58 17 male college
baseball players

Fleisig et al. (2002)
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(26 m/s) would produce a batted-ball speed, v1a, of 97 mph (43 m/s), which would
be almost enough for a home run in any major-league stadium. Our rule of thumb is
that it takes a batted-ball speed of 100 mph (45 m/s) to produce a homerun. The
following is Eq. (7).

v1a =
v1b m1I2 −m2I2 CoR2b +m1m2d2ð Þ+ v2bm2I2 1 +CoR2bð Þ+ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

For a major league wooden bat, as described in Table 1,

v1a = − 0.28v1b + 1.28v2b + 0.17ω2b

where the units are either mph and rpm or m/s and rad/s. Remember that v1b is a
negative number. So far, we have made no approximations; everything has been
exactly according to Newton’s principles. But now we will create our rule of thumb
by rounding, substituting ω2b = 0 and using pitch speed instead the speed of the ball
at the beginning of the collision.

vbatted− ball = − 0.25vpitch− speed + 1.3vbat− before

For oblique collisions, the batted-ball speed would be less, but backspin on the
ball in flight would keep it up in the air longer, so those two effects partially cancel
out (Kensrud et al. 2016).

Most recent studies of bat speed have used video cameras and commercial
prepackaged software to measure and compute bat speed. There are no calibration
tests. Most of these systems report higher bat speeds than other methods of mea-
suring bat speed. On television, the batted-ball speed is often called the exit speed
or the exit velocity.

3.2.11 Seeing the Collision

When a baseball bat moving at 58 mph (26 m/s) hits a baseball traveling in the
opposite direction at 83 mph (37 m/s) there is a violent collision, which was shown
in figure 5.3. Table 5.3 shows that during the collision the kinetic energy in the
motion of the bat changes by 81 Joules (J): a loss of 106 J in linear translational
kinetic energy, a gain of 25 J in angular kinetic energy. Notably, 81 J is equivalent
to dropping a bowling ball from your waist onto your toe or having a dove fly into
your windshield while you are driving down a highway at 80 mph (130 km/hr).

Frame by frame analysis of high-speed video of a major-league batter showed
that at the beginning of the collision there was (1) a big abrupt change in the ball
velocity as it swung from negative to positive, (2) a sudden drop in the linear
velocity of the sweet spot of the bat and (3) a sharp change in the angle of the bat.
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Now, imagine a film of Ted Williams hitting a baseball. His swing is smooth and
graceful although the kinetic energy of his bat changes by 202 Joules during a
collision. The reason his swing seems so smooth is that we mainly visualize the
movement of his body, arms, hands and the bat. We model this movement with the
bat’s angular rotation about the knob, β. The change in this angular motion is not
visually obvious because it is just a short small jerk (a few degrees) in the middle of
a big swinging motion. Hence, what we see does not change much. On the other
hand, the bat’s linear translational motion, β, decreases from 26 to 13 m/s. How-
ever, we do not visualize this translational motion well, because his swing looks
like a big rotation: it does not look like a translation. As a result, the movement that
we visualize well, does not change much. Whereas, the movement that changes a
lot, β, is not visualized well. This explains why people do not perceive an abrupt
jerk when the bat and ball collide.

What about the batter? Would he be able to see the effects of this violent
collision? Probably not. Bahill and LaRitz (1984) showed that no batter can keep
his eye on the ball from the pitcher’s release point to the bat-ball collision. Their
graduate students fell behind when the ball was 9 ft (2.7 m) in front of the plate.
Comparatively, their major-league baseball player was able to keep his position
error below 2° until the ball was 5.5 ft (1.7 m) from the plate. Then he fell behind.
This finding runs contrary to baseball’s hoary urban legend that Ted Williams could
see the ball hit his bat. However, in reality, Ted Williams could not see the ball hit
his bat. In a letter that he sent to Bahill dated January 23, 1984 he wrote,

Received your letter and have also had a chance to read your research, and I fully agree
with your findings.

I always said I couldn’t see a ball hit the bat except on very, very rare occasions and that
was a slow pitch that I swung on at shoulder height. I cam[e] very close to seeing the ball
hit the bat on those occasions.

In summary, the bat-ball collision is violent. But nobody perceives it, because
(1) even in slow motion, the spectator only sees the smooth movement of the batters
body, arms, hands, and bat, which glide continuously, (2) movements that change
abruptly, such as the bat’s linear translational velocity, are difficult to visualize
because they are so quick, (3) batters are not able to see the bat-ball collision at all
and (4) the bat-ball collision only lasts one millisecond. This explains why nobody
sees an abrupt jerk when the bat hits the ball, not even Ted Williams.

4 Summary

One purpose of this paper was to show how complicated bat-ball collisions could be
while still being modeled using only Newton’s principles and the conservation
laws. The model of this paper is the most complex configuration for which our
model is valid. Our model was explained with Figs. 1 and 3. The five equations that
we used were listed in Table 2.
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The following canonical form equations comprise our model for bat-ball
collisions.

KElost =
1
2

m1m2I2
m1I2 +m2I2 +m1m2d2

v1b − v2bð Þ2ð1−CoR2
2bÞ− 2 v1b − v2bð Þω2bd+ d2ω2

2b

h i

v1a = v1b −
v1b − v2bð Þm2I2 1+CoR2bð Þ−ω2bm2dI2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2

where v2b = vbat− trans− before + dcm− ssωbat− before

v2a = v2b +
ðv1b − v2bÞm1I2ð1+CoR2bÞ−ω2bdm1I2ð1+CoR2bÞ

m1I2 +m2I2 +m1m2d2ð Þ
ω2a =ω2b +

v1b − v2bð Þm1m2d 1+CoR2bð Þ−ω2bm1m2d2ð1+CoR2bÞ
m1I2 +m2I2 +m1m2d2

ω1a =ω1b

If we let

A=
v1b − v2bð Þ−ω2bd½ � 1+CoR2bð Þ

m1I2 +m2I2 +m1m2d2

� �

then we get

v1a = v1b −Am2I2
v2a = v2b +Am1I2
ω2a =ω2b +Am1m2d

ω1a =ω1b

A second purpose of this paper was to show how the individual batter can find
and customize an optimal baseball or softball bat for him or herself. The sensitivity
analysis and optimization study of this paper showed that the most important
variable, in terms of increasing batted-ball speed, is bat speed before the collision.
However, in today’s world, the coefficient of restitution and the bat mass are
experiencing the most experimentation trying to improve bat performance.
Although, the bat moment of inertia provides more room for future improvement.
Above all, future studies must include physics in conjunction with physiology in
order to improve bat performance.
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Reverse Logistic Network Design
for End-of-Life Wind Turbines

Suna Cinar and Mehmet Bayram Yildirim

Abstract Energy generation from wind turbines shows an increasing trend for the last
two decades. As the amount of wind generation increases, wind turbine (WT) operators
face challenges with finding alternative disposal options for WTs over their useful life.
Wind farm operator (decisionmakers) can benefit from awell-designed reverse logistics
network to determine the best disposal alternative for WT end-of-life use (EOL). This
chapter is an example of the recovery of valuablematerial that can be recycled/recovered
or remanufactured at the endofWTsuseful life bydesigningan effective reverse logistics
network. Here, a mixed integer linear programming (MILP) model is proposed to
determine a long-term strategy forWT EOL. The objective in this model is to minimize
the transportationandoperatingcost aswell asfinding thebest locations for recycling and
remanufacturing centers.The results of this studyshow that due to the highoperatingcost
at remanufacturing centers, sending most WTs to them is costlier than sending them to
recycling centers. In addition, it was found that transportation cost depends on the
amount of flow that has been sent to the recycling or remanufacturing center.
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1 Introduction

Due to the increased awareness of environmental issues and more restrictive
environmental regulations, renewable energy sources such as wind, solar, hydro,
and geothermal are becoming more popular. In addition, due to the increase in total
energy consumption, attaining a sustainable energy supply will be a challenge in the
near future for the world. Using renewable energy sources effectively is one of the
options to help overcome this problem. The main driver for interest in wind turbines
is to produce electrical power with very low CO2 emissions, which is one of the
largest contributors of greenhouse gas emissions, the insidious cause of climate
change (Ghenai 2012).

Life expectancy for WTs is about 20 years (Post 2013; Haapala and Prempreeda
2014). Due to increasing demand of using wind energy as a renewable energy
source, at some point, many WTs will reach the end of their service life. Thus, a
sustainable process that can be used when WTs reach the end of their service life is
needed in order to maximize the environmental and economic benefits of wind
energy and to minimize the environmental impact.

In the literature, a significant number of studies focus on the reverse logistics
network for different EOL products, such as electric/electronic products and vehi-
cles. Reverse logistics strategies and different application methods for various
products are already being reviewed by others. However, no study providing an
optimization model and a detailed analysis of WTs EOL using reverse logistics has
been found. Therefore, this study has attempted to cover this lack of knowledge
through the development of an effective reverse logistic network (RLN) design with
a mathematical programming model for WTs EOL use. Unlike previous research,
the work here modeled generation points as collection points. Installing numerous
collection centers in near proximity to generation points (and inspection centers)
may make sense when collecting small assets, like plastic bottles for curbside
collection. However, this is not a rational approach for large assets like WTs, where
generation points are typically far apart, which would render a network of collection
centers complicated and economically infeasible. The improved model formulation
provides a much more realistic representation of real-world economics for large
assets, and therefore yields a more accurate optimization of long-term costs. In
summary, the reverse logistics network considered in this chapter is different than
networks in the reverse logistics literature. While RLN design for EOL has been
studied by many researchers under various settings, there is still need for further
research that examines the modeling of different recycling ratios in order to over-
come quality uncertainty of WT component.

This study presents an MILP formulation to solve the wind turbine reverse
logistics network (WTRLN) problem. This optimization model is applicable to all
kinds of WTs, and the model is applied to study the different recycling and
remanufacturing ratios over a finite horizon, in order to overcome the uncertainty
associated with RLN design. The investigation of different disposal options (such as
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recycling and remanufacturing) for EOL WTs in terms of cost components could be
part of a decision support framework.

Before providing details of the proposed model, it is best to understand the WT
supply chain, which along with the role of the reverse logistics network, is dis-
cussed in Sect. 2. The remainder of this chapter is organized as follows. The
mathematical model, the calculation of input parameters and application of the
model are presented in detail in Sect. 3. All computational results for the base-case
scenario and different scenarios are given in Sect. 4. Finally, some concluding
remarks with future directions are provided in Sect. 5.

2 Wind Turbine Supply Chain

Over the last decade, wind power has grown at around 7% a year, increasing by a
factor of 10. The U.S. Department of Energy aims for 20% of U.S. electricity to be
wind produced by 2030 (Centers of Excellence 2009).

To reach this goal, there must be enough raw materials to manufacture the WTs.
Every megawatt capacity of WT requires 200 kg of neodymium. In addition, the
heavy rare earth metal dysprosium, which is used to increase the longevity of
magnets in WT, is becoming more difficult to find. To overcome the difficulty of
supplying rare earth metals, mines could be developed, but the increased mining of
rare earth metals could create more environmental degradation and human health
hazards (Cho 2012). In addition, the refinement process for rare earth metals uses
toxic acids and results in polluted wastewater that must be properly disposed of.
Although recycling cannot satisfy the rapidly growing demand for rare earth metals,
it is one way to help decrease the shortage. Recycling and reusing materials also
saves energy that is used in mining and processing, conserves resources, and
reduces pollution and greenhouse gas emissions. As the use of these materials in
WTs increases, recycling would make more economic sense. Recycled content
could become valuable as a secondary source on the market, which can ease periods
of tight supply (Bauer et al. 2010; Hahn and Gilman 2014). Figure 1 represents a
generic WT supply chain. As can be seen, the last step of WT supply chain
management is end of life.

A framework for EOL options for WTs is provided in Fig. 2. An integrated WT
reverse logistics network should address the following significant factors: plans for
collection of WT components, estimation of recyclable and recovered quantities of
WT parts, and remanufacturing and remarketing of recovered WTs items. Reverse
logistics activities for WT EOL use can be grouped into three stages:
(1) product/part collection, (2) inspection, separation, and sorting, and (3) recovery
and disposition.

Because of increasing demand for renewable energy resources, the main man-
ufacturers of WTs are struggling to keep up with the increasing demand for new
units (Ghenai 2012). Due to the recent growth of demand for wind energy, there is a
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Fig. 1 Wind turbine supply chain (adapted from U.S. Department of Labor 2010)

Fig. 2 End-of-life options for wind turbines (adapted from U.S. Department of Labor 2010)
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global shortage affecting some of the components. Table 1 summarizes the com-
ponents of WTs and their shortage risk (Lehner and Roastogi 2012).

A longer waiting period for most parts of the major turbine makes remanufac-
turing very attractive, since traditional remanufacturing activities are capable of
returning most WT components to “as-new” condition (Walton and Parker 2008).
Therefore, remanufacturing the valuable components of WTs at the EOL may be an
effective way to meet their increasing demand.

In addition, because of the growing demand for energy in developing countries,
and the interest in renewable energy sources, i.e., wind energy, which provides a
sustainable and environmentally friendly power supply, remanufacturing of EOL
WTs could be helpful to satisfy this growing need for power.Most of these developing
countries may not be able to afford brand newWTs as a source of renewable energy.
Therefore, providing used refurbished WTs in these locations offers several benefits,
such as lower capital investment, shorter project duration, reduction of CO2 emis-
sions, and a contribution to sustainable development (Hulshorst 2008).

Several studies discussed the reduction in carbon dioxide by comparing different
alternatives for treatment and replacement of old WTs. The highest amount of CO2

emissions for energy generation from WTs was found to be in the material pro-
duction phase, which is 60–64% of total emissions, and the next was in wind turbine
production. Transportation, disassembly, and renovation/maintenance contributes
only 2–3% of CO2 emissions (Rydh et al. 2004). Sosa Skrainka (2012) analyzed the
environmental impact of remanufacturing WTs and concluded that remanufacturing
of the component inside the nacelle has a smaller impact on the environment than
manufacturing new components. Arvesen and Hertwich (2012) assessed the
life-cycle environmental impacts of wind power and estimated that the EOL phase of
WTs reduces emissions, decreasing greenhouse gas emissions by 19%.

Table 2 shows the benefits of recycling parts of the WTs at the end life of their
useful life, producing less CO2 than the landfilling process. It can be seen that the
dominant phase that is consuming more energy and producing more CO2 emissions
is the material phase and primary material production of the WT parts. More energy
is consumed and high amount of CO2 is released in the atmosphere during these
two phases. Results also show the benefits of recycling materials at the end life of

Table 1 Global shortage of
wind turbine components

Component Shortage risk

Blades High
Bearing High
Gearbox High
Controls Low
Generators Low
Castings Low
Tower Low
Adapted from Lehner and Roastogi (2012)
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the WT. If all materials are sent to the landfill at the WT end of life, then 2.18 E
+011 J of energy (1.1% of total energy) is needed to process these materials, and
13,095.71 kg of CO2 (0.9% increase of total CO2) are released to the atmosphere.
If WT material is recycled at the EOL, then a total energy of 6.85E+012 J (54.8%
of total energy) is recovered. A net reduction of CO2 emissions by 495,917.28 kg
(55.4% of total CO2) is obtained by recycling the WT material (Ghenai 2012).

Based on the environmental and economic factors, the supply chain would
greatly benefit if a reverse logistics network was integrated into the whole supply
chain process. By doing so, the WT supply chain would become environmentally
more responsible by recycling, reusing, or remanufacturing the WT. In addition,
there is a possibility of economic gain from recycling and remanufacturing.
Recovery of products and parts can be good alternatives to manufacturing new
products and parts and virgin resources (Krikke et al. 1999; Geyer and Jackson
2004). It is clear that an effective reverse logistics for WTs can generate direct gains
by reducing the use of raw materials, adding value with recovery, reducing disposal
costs, recycling to save landfill space and energy, and reducing CO2 emissions, in
turn providing a more sustainable supply chain. In Sect. 3, the proposed reverse
logistics supply chain for WTs is proposed, and the proposed model notations,
parameters, and formulations are introduced.

3 Wind Turbine Reverse Logistics Network Mathematical
Model

This section presents a mathematical model of the WTRLN problem. First, the
reverse logistics network considered in this work is described. Then the variables
and parameters of the model for the proposed RLN design model are given. Last, a
formulation of the model is proposed.

Table 2 Energy and CO2 footprint summary—wind turbine

Life cycle of wind turbine with landfilling Life cycle of wind turbine with recycling
Phase Energy (J) CO2 (kg) Phase Energy (J) CO2 (kg)

Material 1.759E+013 1.2546E+006 Material 1.759E+013 1.2546E+006
Manufacture 1.3593E+012 107669.7209 Manufacture 1.3593E+012 107669.7209
Transport 2.4336E+011 17278.6954 Transport 2.4336E+011 17278.6954
Use 1.6778E+011 11912.557 Use 1.6778E+011 11912.557
EOL
Landfilling

2.1826E+011 13095.7080 EOL
recycling

–6.8512E+011 –495917.2797

Total 1.9583E+013 1.4054E+006 Total 1.2513E+013 895503.8906
Adapted from Ghenai (2012)
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The main objective of this model is to minimize the cost associated with logistics
and operating cost of different disposal options (i.e., recycling or remanufacturing)
for EOL WTs. The proposed model considers the design of a multi-echelon reverse
logistics network that consists of wind farms, inspection centers, remanufacturing
centers, recycling centers, and secondary market. The general structure of an RLN
for WTs is shown in Fig. 3.

As can be seen, reverse flow starts at the wind farms. It is assumed that the major
components of WTs (i.e., nacelles, blades, and tower, etc.) are dismantled and
transported to inspection centers, which sort the materials and components by
identifying quality of the parts. At inspection centers, better conditioned WT parts
are transported to remanufacturing centers, while WT parts that are in bad condition
are sent to recycling centers. It is difficult to predict the physical condition of WTs
at the end of their useful life. Therefore, constraints are introduced to provide
flexibility to run the model with different recycling ratios. The following assump-
tions are made:

• Locations are known.

– Potential inspection, recycling, and remanufacturing centers
– Markets for recycling and remanufacturing
– Disposal centers

• There is no storage in the inspection/recycling and remanufacturing centers,
therefore no holding cost.

Fig. 3 Reverse logistics of wind turbines
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• Dismantling operations take place at wind farms, and WT parts are transported
to inspection centers for testing and cleaning.

• A fixed cost is associated with opening inspection, recycling, disposal, and
remanufacturing centers.

• Even though a WT has many components, only three main components are
considered in this study (blades, nacelle (gearbox and generator), and tower).

• Transportation cost is determined per mile, and total transportation costs in the
objective function are obtained by multiplying these costs by distances between
two nodes. These distances are calculated by haversine formula (Longitude
Store.com 2014).

• Wind farms as generator points or collection centers are used interchangeably.
• For the initial runs, landfilling (disposal) cost is not considered in this model. It

is assumed that only a small percent of WT components are going to be sent to
disposal centers from the inspection, recycling, and remanufacturing centers.
Therefore, the cost associated with disposal activities such as transportation cost
will be minimal, and this cost is already included in the operating cost of
inspection, recycling, and remanufacturing centers.

• Only one type of WT is considered in this model.

3.1 Model Notation

In order to propose our model for the problem, the sets, indexes, parameters, cost,
and decision variables used in the model are given as follows:

c wind turbine components, c ∈ C = {1, …, |C|}
j all possible locations j ∈ J = {1, …, |J|}
t time periods, t ∈ T = {1, …, |T|}
w location of wind farms, w ∈ W = {1, …, |J|}
i potential inspection centers, i ∈ I = {1, …, |I|} ⊆ J
m potential remanufacturing centers, m ∈ M = {1, …, |M|} ⊆ J
r potential recycling centers, r ∈ R = {1, …, |R|} ⊆ J
s potential markets, s ∈ S = {1, …, |S|} ⊆ J
ds potential disposal centers, ds ∈ DS = {1, …, |DS|} ⊆ J

Parameters

Qwct supply of WT component c at wind farm w in period t
DSMsct demand of WT component c at market s in period t
DRrct demand of WT component c at recycling center r in period t
DMmct demand of WT component c at remanufacturing center m in period t
DLdsct demand of WT component c at disposal center ds in period t
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CAPIit capacity of inspection center i in period t
CAPRrt capacity of recycling center r in period t
CAPMmt capacity of remanufacturing center m in period t
CAPDdst capacity of disposal center ds in period t
α % of WT component c sent from inspection center to recycling center
β % of WT component c sent from inspection center to remanufacturing

center
γ % of WT component c sent from inspection center to disposal center

Costs

FCIit fixed cost opening inspection center i in period t ($)
FCMmt fixed cost opening remanufacturing center m in

period t ($)
FCRrt fixed cost of opening recycling center r in period

t ($)
OPIcit cost of processing one unit of WT component c at

inspection center i in period t ($)
OPRcrt cost of processing one unit of WT component c at

recycling center r in period t ($)
OPMcmt cost of processing one unit of WT component c at

remanufacturing plant m in period t ($)
Twict, Tirct, Timct, Tmsct, Tidsct transportation distance of one unit of WT component

c at time period t from w to i, i to r, i to m, m to s, or
i to ds (mile)

θ unit transpiration cost factor ($/mile)
dr inflation rate

Decision Variables

X1wict number of WT components c shipped from wind farm w to inspection
center i in period t

X2imct number of WT components c shipped from inspection center i to
remanufacturing center m in period t

X3irct number of WT components c shipped from inspection center i to recycling
center r in period t

X4msct number of WT components c shipped from remanufacturing center m to
market s in period t

X5idsct number of WT components c shipped from inspection center i to disposal
center ds in period t
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Binary Variables

Yit =
1 if an inspection center i ∈ I is operating in period t ∈ T ,

0 otherwise

(

Zmt =
1 if a remanufacturing centerm ∈ M is operating in period t ∈ T ,

0 otherwise

(

Urt =
1 if a remanufacturing center r ∈ R is operating in period t ∈ T ,

0 otherwise

(

Adst =
1 if a disposal center ds ∈ DS is operating in period t ∈ T ,

0 otherwise

(

3.2 Mathematical Model

The proposed model decision variables are to determine the location and number of
inspection, recycling, remanufacturing, and disposal centers to open in each time
period and the flow (amount components send to each center) between these centers.
This model aims to minimize the costs of EOL WT recovery, including trans-
portation costs; operating costs of inspection, recycling, and remanufacturing cen-
ters; and capital cost of opening inspection, recycling, and remanufacturing centers.

Min∑
i
∑
t
FCIit * Yit −Yi, t− 1ð Þ * 1 + drð Þ− t + ∑

m
∑
t
FCMmt * Zmt − Zm, t− 1ð Þ * 1+ drð Þ− t

+ ∑
r
∑
t
FCRrt * Urt −Ur, t− 1ð Þ * 1+ drð Þ− t + ∑

t
∑
c
∑
w
∑
i
Twict * θ *X1wict * 1+ drð Þ− t

+ ∑
t
∑
c
∑
i
∑
r
Tirct * θ *X3irct * 1+ drð Þ− t + ∑

t
∑
c
∑
i
∑
m
Timct * θ *X2imct * 1+ drð Þ− t

+ ∑
t
∑
c
∑
m
∑
s
Tmsct * θ *X4msct * 1+ drð Þ− t + ∑

t
∑
c
∑
i
∑
m
OPMcmt *X2imct * 1+ drð Þ− t

+ ∑
t
∑
c
∑
i
∑
r
OPRcrt *X3irct * 1+ drð Þ− t + ∑

t
∑
c
∑
w
∑
i
OPIcit *X1wict * 1+ drð Þ− t

ð1Þ

Constraint (2) is a flow balance constraint which is the number of disassemble
WTs parts at wind farms (generation points) equal to the number of WT parts sent
to inspection centers.

Qwct = ∑i∈ I X1wict w ∈ W , c ∈ C, t ∈ T ð2Þ

Constraints (3–4) model the flow balance between inspection centers, and
recycling and remanufacturing centers, i.e., the total number of WT components at
the inspection centers is equal to number of WT components shipped to recycling
and remanufacturing center.
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∑
w∈W

α *X1wict = ∑
m∈M

X2imct i ∈ I, c ∈ C, t ∈ T ð3Þ

∑
w∈W

β *X1wict = ∑
r∈R

X3irct i ∈ I, c ∈ C, t ∈ T ð4Þ

Constraint (5) shows the total inflow component coming from remanufacturing
centers is equal to the outflow of WTs sold to secondary market.

∑
s∈ S

X4msct = ∑
i∈ I

X2imct m ∈ M, c ∈ C, t ∈ T ð5Þ

Constraint (6) formulates the number of WTs sold to the secondary market are
no more than the demand for the remanufactured WTs at each time period.

∑
s∈ S

X4msct ≤ ∑
s∈ S

DSMsct m ∈ M, c ∈ C, t ∈ T ð6Þ

Constraint (7) assures that the number of WT components sent to a recycling
center is no more than the demand of component at each time period.

∑
r∈R

X3irct ≤ ∑
r∈R

DRrct i ∈ I, c ∈ C, t ∈ T ð7Þ

Constraint (8) ensures that the amount of WT component sent to remanufac-
turing center is no more than the demand of component at each time period.

∑
m∈M

X2imct ≤ ∑
m∈M

DMmct i ∈ I, c ∈ C, t ∈ T ð8Þ

Constraint (9) is the capacity constraint for production in the inspection center.

∑
w∈W

∑
c∈C

X1wict ≤ CAPIit * Yit i ∈ I, t ∈ T ð9Þ

Constraint (10) is the capacity constraint for production in the recycling center.

∑
i∈ I

∑
c∈C

X3irct ≤ CAPRrt *Urt r ∈ r, t ∈ T ð10Þ

Constraint (11) is the capacity constraint for production in the remanufacturing
center.

∑
i∈ I

∑
c∈C

X2imct ≤ CAPMmt * Zmt m ∈ M, t ∈ T ð11Þ

Constraints (12–14) ensure that once a center is installed, it remains operating
until the end of the planning horizon.
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Yit ≤ Yi, t+1 i ∈ I, t ∈ T ð12Þ

Urt ≤ Ur, t+1 r ∈ R, t ∈ T ð13Þ

Zmt ≤ Zm, t+1 m ∈ M, t ∈ T ð14Þ

Constraint (15) is the non-negativity constraint, and constraint (16) is the inte-
grality constraint.

X1wict ,X2imct ,X3irct ,X4msct ,X5idsct ≥ 0 ð15Þ

Yit ∈ f0, 1g, Zmt ∈ f0, 1g, Urt ∈ f0, 1g, i ∈ I, r ∈ R, M ∈ M, t ∈ T ð16Þ

In the following sections, we present an application of the model considering
EOL WTs.

4 Case Study

The WTRLN model explained in Sect. 3 has been applied to the case of a RLN
design for EOL WTs. A five-echelon network consisting of ten wind farms (gen-
erating plants) was considered for the model implementation. A simple illustration
of the model—a single WT type with three components—is considered. The other
necessary input parameters used in the model with detailed explanations are pro-
vided next.

4.1 Input Parameters

Here, the data collected from various resources to formulate the case study is
presented. In this study, it is assumed that WTs are to be collected from wind farms.
For each wind farm location, the number of WTs is determined randomly, and the
distance matrix is created between ten wind farm locations. It is assumed that three
types of WT components are sent to each center. Based on expert opinion and
literature data, the following section provides the detailed cost data and the base of
each cost selected for this study.

The transportation cost between wind farms, potential recycling and remanu-
facturing centers, and potential markets are based on the transportation cost pro-
vided for transporting blades from the manufacturing facility to wind farms. Five
cost categories for transporting blades from the manufacturing facility to the wind
farms are summarized in Table 3. As a conservative, approach, it is assumed that
for each WT component, the transportation cost is more or less similar to the
transportation cost for the blades. A WT has several main components. This model
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considers the transportation of only three large components (blades, tower, and hub
or nacelle). These components will be transported to recycling or remanufacturing
centers, and transportation unit cost ($unit/mile) for each component will be the
same. (Sandia National Laboratories 2003).

The dismantling cost for WTs at wind farms can be considered a fixed cost that
can be added to the operating cost of the inspection center for each WT. Based on
the literature review, the total dismantling cost per WT is estimated to be $36,600.
A cost breakdown is given in Table 4. Labor cost and foundation disassembly or
site remediation activities costs are not taken into consideration in this study
(Repowering Solutions 2011). The typical price of replacement components (set of
rotor blades, gearbox, and generator) is 15–20% of the price of new components.
A new turbine costs approximately $1,400–$1,600 per kilowatt-hour of generating
capacity, and the remanufactured cost is in the range of $700–$800 per
kilowatt-hour (McDermott 2009).

The price for a refurbished/remanufactured WT is claimed to be up to 50% lower
than new turbines. Based on this cost data, it is assumed that 50% of the refurbished
WT cost is due to repairing or buying new parts and installing them during
remanufacturing (Walton and Parker 2008). Research by Tegen et al. (2012)
indicates that the gearbox price was 137 $/kW for a 1.5 MW baseline project in
2010. The price for a new gearbox for a 2 MW turbine can hover between $184,000
and $218,500. A gearbox with a standard refurbish, in which bearings are replaced,
the gear teeth are overhauled and reground, and the components measured costs
from $103,500 to more than $115,000 (Knight 2011).

A typical remanufacturing center for WTs includes a dirt room with a service
bay for receiving, staging, initial washing, and tearing down the gearbox/main shaft
assemblies; a temperature-controlled clean environment room; testing room; oil

Table 3 Transportation cost
of wind turbine blades

Transportation cost category Cost factor (per mile)

Freight $1.55
Overdimension charge $1.25
Escort charge (per escort) $1.40
Total unit cost $4.2
Adapted from Sandia National Laboratories (2003)

Table 4 Dismantling cost of
wind turbine

Procedure Cost factor ($)

Dismantling hubs 1,200
Dismantling blades 1,200
Dismantling nacelle 1,200
Dismantling tower 5,500
Hiring crane and Demobilizing 22,500
Other additional procedures 5,000
Dismantling total 36,600
Adapted from Repowering Solutions (2011)
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conditioning system; and condition monitoring equipment (vibration, oil, temper-
ature analysis). The typical size of the warehouse can be 33,500 square feet, with a
storage room for complete kW and MW gearbox parts and assemblies. Based on
this, it is clear that remanufacturing operation and installation costs would be higher
than operation and installation costs of recycling centers. A summary of the cost
data used in this study is provided in Table 5. To be able to determine the total
profit of remanufacturing and recycling operations, the total material composition of
a 1.65-MW WT and total recycling cost of each material are provided in Tables 6
and 7, respectively.

Table 7 shows the breakdown of salvage and disposal costs for a typical
1.65-MW WT. Based on the composition of a 1.65-MW WT, it is assumed that the
composition of a 1.5-MW WT would be close to that of a 1.65-MW WT compo-
sition, and the total disposal cost and salvage value of a 1.5-MW WT is calculated
based on that assumption. One should note that the cost of metal fluctuates daily.
Therefore, the cost data provided at the time of this study may not be accurate in the
future.

The generator replacement was selected over replacing other nacelle compo-
nents, because it contained a large amount of copper, e.g., the generator consisted of
around 35% copper and 65% steel, compared to around 1% copper, 1% aluminum,
and 98% steel in the gearbox (Ancona and McVeigh 2001). All cost values are
assumed to increase by the yearly inflation rate of 1.7%, as published by the U.S.
government (U.S. Inflation Calculator 2008–2015).

4.2 Wind Turbine Reverse Logistics Network Model Run

The WTRLN was coded in the General Algebraic Modeling System (GAMS). A set
of data was prepared to reflect the real case situation. Fifty (50) time periods, each
representing 1 year, were used during each model run. The impact of key param-
eters was evaluated based on the results. The effect of different disposal options of
EOL was investigated in order to determine the cost of each option.

For the initial base run, it was assumed that 40% of the total supply would be
remanufactured and the remaining 60% would be recycled. It was assumed that this
is not the case for all WTs, since several factors may affect their remaining life and
that some of the WTs may still be in good conditions, or vise versa. Therefore,
several other scenarios with different increases or decreases in recycling ratios were
run. Each of these scenarios was modelled using ratio (α) values between 0.1 and
0.9, in increments of 0.1, to evaluate the effects of recycling/remanufacturing costs
during the decision-making process. During model runs, the other parameters were
kept the same. For the first three scenarios, considering that only small percentages
of WT parts would be sent to the disposal center from the inspection center, the
disposal center-related cost was not added to these scenarios.

The sensitivity analysis involved the investigation of the impact of high and low
transportation costs and high and low operating costs of recycling and
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Table 5 Summary of cost data

Item Cost Reference

Transportation cost $4.2 per mile Sandia National Laboratories
(2003)

New wind turbine cost (GE 1.5 XLE
1.5 MW

$1,400,000 Cost analysis of material
composition of the wind turbine
blades for Wobben
Windpower/ENERCON GmbH
Model E-82, Wagner Sousa de
Oliveira and Antonio Jorge
Fernandes, Cyber Journals:
Multidisciplinary Journals in
Science and Technology,
Journal of Selected Areas in
Renewable Energy (JRSE),
January Edition (2012) and
Repowering Solutions (2011)

Remanufactured turbine cost (GE 1.5
SL)

$500,000 Cost analysis of material
composition of the wind turbine
blades for Wobben
Windpower/ENERCON GmbH
Model E-82, Wagner Sousa de
Oliveira and Antonio Jorge
Fernandes, Cyber Journals:
Multidisciplinary Journals in
Science and Technology,
Journal of Selected Areas in
Renewable Energy (JRSE),
January Edition (2012) and
Repowering Solutions (2011)

Operating cost Operating cost at
remanufacturing
center

[$10,000–
$50,000]

Estimated based on expert
opinion (gearbox, generator,
towers or blades) Renew Energy
Maintenance (2012)

Operating cost at
inspection center
plus added
dismantling cost

[$1,000–$5,000]
[$35,000 added
dismantling
cost]

Estimated based on expert
opinion (gearbox, generator,
towers or blades) Renew Energy
Maintenance (2012)

Operating cost at
recycling center

[1,000–5,000] Estimated based on expert
opinion (gearbox, generator,
towers or blades) Renew Energy
Maintenance (2012)

Installation cost
of centers

Inspection,
remanufacturing, and
recycling centers

[15,000–70,000] Estimated based on expert
opinion Renew Energy
Maintenance (2012)

(continued)
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remanufacturing centers. Opening either a low- or high-capacity remanufacturing
center is another parameter that is expected to affect the model results. Therefore,
different scenarios with different supply data were run to see how the model reacts
under different supply conditions.

4.3 Model Results

We carried out analyses on various scenarios to understand the possible changes in
the network with variation in recycling and remanufacturing quantities. Table 8
shows the solution to Scenario 1. For the first scenario, different recycling ratios
were used to observe the effect of flow on the total network cost. It was observed
that with increasing recycling ratio, the total network cost decreased from
$1,091,403,000 to $765,191,900, which represents a 30% decrease. This is because
the operating cost of remanufacturing centers is higher that of recycling centers.
Therefore, it can be concluded that in the assumed case study, in addition to
transportation and other logistics costs, operating cost is also an important factor in
the design of a reverse logistics network. Table 9 shows the number of inspection,
recycling, and remanufacturing centers opened for Scenario 1. For different recy-
cling ratios, the network requires four inspection centers, a maximum of two
remanufacturing centers, and two recycling centers. With a decreasing recycling
ratio, the number of recycling centers decreased, respectively. This is because fewer
WT components are sent to recycling centers.

Table 5 (continued)

Item Cost Reference

Remanufactured
turbine
component cost

Gearbox 10–15%
total cost of WT

$50,000–
$75,000

Cost analysis of material
composition of the wind turbine
blades for Wobben
Windpower/ENERCON GmbH
Model E-82, Wagner Sousa de
Oliveira and Antonio Jorge
Fernandes, Cyber Journals:
Multidisciplinary Journals in
Science and Technology,
Journal of Selected Areas in
Renewable Energy (JRSE),
January Edition (2012) and
Repowering Solutions (2011)

Generator 5–10%
total cost of WT

$25,000–
$50,000

Tower cost 10–25%
total cost of WT

$50,000–
$125,000

Blades 10–15% total
cost of WT

$50,000–
$75,000

Recycling cost
profit

Generator $12,500 Estimated based on typical
materials and quantities required
for Vestas V82 1.65-MW
turbine.

Gear box $7,000
Tower $75,600
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Table 6 Typical materials and quantities required for Vestas V82 1.65-MW wind turbine

Turbine
component

Materials Tonnes per
turbine*

Percent
recycled

Tower 135.2
Steel 126.1 90

Aluminium 2.6 90

Electronics 2.2

Plastic 2.0

Copper 1.3 90

Oil 1.0

Nacelle 50.6
Cast iron 18.0 90

Steel, engineering 13.0 90

Stainless steel 7.8 90

Steel 6.3 90

Fibreglass 1.8

Copper 1.6 90

Plastic 1.0

Aluminium 0.5 90

Electronics 0.3 90

Oil 0.3

Rotor 42.1
Cast iron 11.3 90

Steel 4.2 90

Steel, engineering 1.5 90

Blades Epoxy, fiber glass, birchwood, balsa
wood, etc.

25.2

Foundation 832
Concrete 805 90

Steel 27 90

Internal cables 0.82
Aluminum 0.35 90

Plastic 0.30

Copper 0.17 90

Transformer
station

0.95
Steel 0.50 90

Copper 0.13 90

Transformer oil 0.21

Other: insulation, paint, wood, porcelain
etc.

0.11

External cables 14.9
Plastic 8.35

Aluminum 5.24 90

Copper 1.31 90
*Source Life cycle assessment of electricity produced from onshore sited wind power plants based on
Vestas V82-1.65 MW turbines (2006) https://www.vestas.com/∼/media/vestas/about/sustainability/pdfs/
lca%20v82165%20mw%20onshore2007.pdf
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In addition, Fig. 4 shows the percent distribution of operating and transportation
cost of recycling and remanufacturing centers in comparison to overall network
cost. It is clear that when the recycling ratio decreases, the operation and mainte-
nance cost increases up to 14% due to the high cost of processing at the remanu-
facturing center. The percent contribution of the transportation cost for recycling
and remanufacturing centers stays between 3% and 4%. Figure 5a and b depict the
recycling and remanufacturing ratios versus total network cost.

In the initial run, it was assumed that all WTs reaching their EOL would be
dismantled and either recycled or remanufactured. But this may not always be the
case. It can be assumed that some of the WTs that reach their useful life may work
several more years with proper maintenance. If this would be the case, then con-
sideration may be given to maintaining these WTs on site and keeping them in
place and using them for several more years. Therefore, instead of installing only
one size of remanufacturing plant, two different sizes of remanufacturing centers are
considered—one with a low operating capacity and one with a high operating
capacity. In this case, if the supply of the WTs is less than predicted, then instead of
opening large remanufacturing centers, the model can have flexibility to decide to
open a remanufacturing center with a low capacity. This would decrease the fixed
cost of a remanufacturing center and, overall, reduce the reverse logistics network
cost. Therefore, for Scenario 2, the constraint number (11) was modified, a binary
variable defining the “if then constraint” for opening either capacity remanufac-
turing center based on supply was added.

∑
i∈ I

∑
c∈C

X2imct ≤ CAPMLmt *Vmt + CAPMHmt *Kmt m ∈ M, t ∈ T ð17Þ

where CAPMLmt is a lower capacity of remanufacturing center m, and CAPMHmt is
a higher capacity of remanufacturing center m. Decision variables include the
following:

Table 7 Salvage value and disposal cost of material and mass for 1.5-MW wind turbine

Salvage value Ton3 Cost ($/ton) ($)

Recycling Steel 186.4 5221 97,039
Copper 4.51 4,5501 3,000
Aluminum 8.69 1,4821 2,443

Total revenue 102,482
Disposal cost Ton Cost ($/ton) ($)
Disposal Epoxy, plastic, fiber 38.65 33.352 1,289

Concrete 805 85.592 68,905
Lubricant 3003

Disposal cost 70,208
1Atlantic County Utilities Authority (2016)
2Milanese (2009)
3Given away free to used oil collectors
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Table 9 Numbers of inspection, recycling, and remanufacturing centers opened for scenario 1

Recycling Inspection centers Recycling centers Remanufacutring centers

0 (base case) 4 2 1
1 4 2 1
2 4 2 1
3 4 1 2
4 4 1 2
5 4 1 2

0

2

4

6

8

10

12

14

0(base case) 1 2 3 4 5

%
 C

os
t 

Opera ng Cost of RM
and R Center

Transporta on Cost of
IN, RM and R Center

Fig. 4 Recycling and Remanufacturing operating and transportation cost percent distribution
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Fig. 5 a Recycling ratios versus total network cost. b Remanufacturing ratios versus total
network cost
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Vmt =
1 if a lower capacity remanufacturing centerm ∈ M is operating in period t ∈ T ,

0 otherwise

(

Kmt =
1 if a higher capacity remanufacturing centerm ∈ M is operating in period t ∈ T ,

0 otherwise

(

For Scenario 2, additional constraints for opening either low- or high-capacity
remanufacturing centers were introduced. Because each type of remanufacturing
center has different installation and operation costs, it is obvious that opening a
low-capacity remanufacturing center would also be less costly. For this strategy, the
model was modified and run for different recycling ratios. The results of Scenario 2
are given in Tables 10 and 11. Figure 6 shows the cost difference between Sce-
narios 1 and 2, which is less than 3%. Even though this percentage number looks
very minimal, in terms of dollar amount, it is roughly $900,000–$1,000,000, which
can be a substantial savings under a tight budget constraint.

Scenario 3 makes the assumption that due to catastrophic events, such as a
tornado or any other natural disaster, most of the WTs that did not reach their useful
life, suddenly become available as supply. Based on this assumption, the supply of
WTs along with demand were dramatically increased. Thus, it was possible to see
that increasing supply and demand will definitely increase the reverse logistics
network cost. As indicated previously, forecasting cost under catastrophic events
will provide flexibility to the decision maker to allocate the budget to either the
recycling or remanufacturing option for EOL WT use. Results of Scenario 3 are
given in Tables 12 and 13.

Scenario 4 considers that some of the WTs cannot be recycled or remanufactured
due to their present condition, and only 10% of WT parts are assumed to be sent to
the disposal center from the inspection center. This is a very conservative
assumption. In reality, compared to the total weight of a 1.65-MW WT, which is
roughly 1,631 tons, the components that need to be sent to the disposal center (such
as fiberglass, oil, plastic, and rubber) only comprise about 2% of the total weight
(Haapala and Prempreeda 2014). To account for the disposal center costs, in
addition to revising the objective function and budget constraints, the following
constraints were added to the original model:

Constraint (18), the total ratio of components that are sent to recycling,
remanufacturing, and disposal centers, is equal to one.

α+ β+ γ =1 ð18Þ

Constraint (19) models the flow balance between inspection centers and disposal
centers.
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∑
w∈M

γ *X1wict ∑
ds∈DS

X5idsct i ∈ I, c ∈ C, t ∈ T ð19Þ

Constraint (20) assures that the number of WT components sent to a disposal
center is no more than the demand of component at each time period.

∑
ds∈DS

X5idsct ≤ ∑
ds∈DS

DLdsct i∈ I, c∈C, t∈ T ð20Þ

Constraint (21) is the capacity constraint for production in the disposal center,
which assures that the amount of components sent to disposal centers are not more
than the total capacity of disposal center.

∑
i∈ I

∑
c∈C

X5idsct ≤ CAPDdst *Adst ds ∈ DS, t ∈ T ð21Þ

These results were compared with the model that has only one type of reman-
ufacturing center capacity (Scenario 1). Comparing results with the previous run, it
can be seen that the network cost decreased from 4 to 3% for Scenario 4, due to the
fact that fewer WTs were sent to the remanufacturing and recycling centers, which
have higher processing costs than disposal centers. Table 14 shows the results for

Table 11 Numbers of inspection, recycling, and remanufacturing centers opened for extended
model

Recycling Inspection centers Recycling centers Remanufacutring centers

0 (base case) 4 2 1-0
1 4 2 1-0
2 4 2 0-1
3 4 1 1-1
4 4 1 1-1
5 4 1 1-1

0
0.5
1
1.5
2
2.5
3
3.5
4

0

1,000,000,000

2,000,000,000

3,000,000,000

4,000,000,000

5,000,000,000

6,000,000,000

0(base
case)

1 2 3 4 5

%
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$ 
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Fig. 6 Percent cost difference between base and extended model
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Scenario 4. The cost difference between Scenarios 1 and 4 are shown in Fig. 7. In
addition, the cost of opening a disposal center is not taken into account for this
scenario. It is assumed that the waste will be shipped to existing municipal landfills.

4.4 Sensitivity Analysis

It is clear that there is a relationship between network cost, operation cost, and
transportation cost. Therefore, a sensitivity analysis was performed to see the effect
of operating cost and transportation cost on the total network cost. The trans-
portation and operating costs (i.e., 10, 20, and 30%) at remanufacturing and recy-
cling centers were increased. Sensitivity analysis showed (Tables 15, 16 and 17)
that even if the transportation cost increased by 10%, the optimal solution increases
by less than 1%. This analysis indicates that in the assumed case, it is not the
logistics but probably the operating costs that have more impact on the reverse
logistics network decision. Thus, by increasing the operating cost for remanufac-
turing and recycling centers by 10%, the optimal solution increased by more than
3%, which proves that operating cost has more impact on the WTs reverse logistics
network decision.

By analyzing each scenario, it is clear that in addition to transportation cost,
operating cost is also one of the main cost contributors to overall reverse logistics
cost for this case study. Increasing the recycling ratio increases the operating cost at
recycling centers, and decreasing the recycling ratio increases the operating cost at
remanufacturing centers. Therefore, wind farm decision makers should pay atten-
tion to the operating cost of each disposal alternative for their end-of-life wind
turbines.

By analyzing the results of four scenarios, it is clear that the model indicates that
the total overall costs for the third scenario with different recycling ratios are higher
than costs of the first and second scenarios. This is expected, since the demand and
supply data were modified, and there are more inspection centers and remanufac-
turing centers opened. As summarized throughout this chapter, by increasing the
recycling ratio, the transportation cost of sending the WT components to a recycling

Table 13 Numbers of inspection, recycling, and remanufacturing centers opened for scenario 3

Recycling Inspection centers Recycling centers Remanufacutring centers
(low-high)

0 (base case) 5 3 1-1
1 5 3 1-1
2 5 2 0-2
3 5 2 0-3
4 5 1 0-3
5 5 1 0-3
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Fig. 7 Percent cost difference between scenarios 1 and 4

Table 15 Sensitivity analysis results for transportation cost

Scenario Transportation
cost increase %

Network cost
($)

Transportation
cost to R ($)

Transportation
cost to RM ($)

0 (base
case)

3,498,145,000 38,556,000 311,760,000

1 10 3,522,461,798 38,784,000 311,850,000
2 20 3,546,252,761 39,056,000 312,070,000
3 30 3,570,204,407 39,225,000 312,260,000
RM Remanufacturing Center, R Recycling Center

Table 16 Sensitivity analysis results for operating costs at remanufacturing center

Scenario Operating cost increase
RM (%)

Network cost
($)

Operating cost
R ($)

Operating cost
RM ($)

0 (base
case)

3,498,145,000 38,556,000 311,760,000

1 10 3,600,032,718 38,556,000 340,101,818
2 20 3,704,888,040 38,556,000 368,443,636
3 30 3,812,797,401 38,556,000 396,785,455
RM Remanufacturing Center, R Recycling Center

Table 17 Sensitivity analysis results for operating costs at recycling center

Scenario Operating cost
increase R (%)

Network cost
($)

Operating cost
R ($)

Operating cost
RM ($)

0 (base
case)

3,498,145,000 38,556,000 311,760,000

1 10 3,583,465,610 38,784,000 311,850,000
2 20 3,670,867,212 39,056,000 312,070,000
3 30 3,760,400,555 39,225,000 312,260,000
RM Remanufacturing Center, R Recycling Center

Reverse Logistic Network Design for End-of-Life Wind Turbines 251



center is higher than the transportation cost of sending the WT components to a
remanufacturing center.

During the model run, for the first scenario, the supply increased throughout the
time horizon. For the third scenario, in order to see the effect of different supplies,
the supply was randomly increased and decreased to force the model to run under
extreme conditions. In addition, with sensitivity analysis, the processing and
transportation costs were increased to see the individual effect of each to total
network cost.

Comparing the results of these different scenarios show that this current reverse
logistics network fits all scenarios quite well, with the potential to be adjusted to fit
the strategic change of recycling and remanufacturing options. The key issue is the
availability of data related to physical conditions of WTs. If decision maker does
not have the data to decide which WTs need to be sent to recycling or remanu-
facturing center, results from the modeling provides guidance in decision making
by quantifying the difference, in terms of transportation and operating cost of
reverse logistics of WTs.

4.5 Wind Turbine Reverse Logistics Network Problem
with Total Profit Objective (WTRLN-TP)

To be able to better analyze the results and determine if recycling or remanufac-
turing of existing WTs are profitable, the objective function was modified by adding
the total profit from selling the remanufactured components and also by recycling
the three main components of WTs. For the sake of simplicity in our analysis, we
consider three main components of WTs, blades/tower, generator and gearbox. The
cost data for each component are gathered from several different works of literature
and are summarized in Table 7. The objective function includes total profit, which
comes from remanufacturing, recycling minus the transportation, and operation and
installation cost of each center. All other constraints remain the same as in the
original problem.

Maximize∑t ∑c ∑i ∑m PURMmct *X2imct * ð1+ drÞ− t + ∑t ∑c ∑i ∑r PURRrct *X3irct * ð1+ drÞ − t

∑i ∑t FCIit * Yit − Yi, t − 1ð Þ * ð1+ drÞ− t�
+ ∑m ∑t FCMmt * Zmt − Zm, t− 1ð Þ * ð1+ drÞ− t

+ ∑r ∑t FCRrt * Urt −Ur, t− 1ð Þ * ð1+ drÞ− t + ∑t ∑c ∑w ∑i Twict * θ *X1wict 1+ drð Þ− t

+ ∑t ∑c ∑i ∑r Tirct * θ *X3irct * 1+ drð Þ− t + ∑t ∑c ∑i ∑m Timct * θ *X2imct * 1+ drð Þ− t

+ ∑t ∑c ∑m ∑s Tmsct * θ *X4msct * 1+ drð Þ− t + ∑t ∑c ∑i ∑m OPMcmt *X2imct * 1+ drð Þ− t

+ ∑t ∑c ∑i ∑r OPRcrt *X3irct * 1+ drð Þ− t +∑t ∑c ∑w ∑i OPIcit *X1wict * 1+ drð Þ− t�
ð22Þ

subject to the following constraints: (2)–(16).
where PURMmct is the price of component c at remanufacturing center m at time

period t ($), and PURRrct is the price of component c at remanufacturing center r at
time period t ($).
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For the scenario analysis, the remanufacturing market demand is changed while
keeping recycling demand constant. It can be seen that by increasing the remanu-
facturing market demand, total profit increases. Despite the increase in operating
cost and transportation cost of remanufacturing activities, with increasing reman-
ufacturing demand, there is an approximately 1% to 2% net profit increase. The
results of these scenarios are presented in Table 18 and Fig. 8.

5 Conclusions

This chapter has presented a cost minimization model for minimizing the total
transportation cost and operating cost of multi-type components for a multi-period
reverse logistics network design for EOL WTs by using a scenario study approach.
In comparison to previous literature on addressing EOL WTs, none of those studies
addressed the RLN design for WTs. The proposed model will help the decision
maker to choose the most suitable disposal method with the remanufacturing and
recycling alternatives. Together with a baseline run of the current situation, various
scenarios are modeled. The results of this study show that due to the high operating
cost at remanufacturing center, sending most WTs to remanufacturing centers is
costlier than sending them to recycling centers. In addition, it was shown that

Table 18 Net profit

Scenario RM
demand
ratio

Total profit
($)

Operating
cost R ($)

Operating
cost RM ($)

Transportation
cost to R ($)

Transportation
cost to RM ($)

0
(base
case)

251,078,100 6,437,500 692,050,000 7,835,069 207,188,400

1 10 251,578,100 6,437,500 692,350,000 7,822,210 207,201,200

3 20 253,250,800 5,500,000 693,925,000 6,744,017 208,279,400

4 50 255,133,800 4,687,500 695,550,000 5,727,190 209,296,200

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

Base 0.1 0.2 0.5

Pr
of

it 
an

d 
To

ta
l C

os
t (

$)

Remanufactutring Demand Ratio 

Total Net Profit ($)

Total Operating and
Transporttion cost for
Remanufacturing and Recycling

Increase (%)

Fig. 8 Total network versus total operation and transportation cost
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transportation cost depends on the amount of flow that has been sent to the recy-
cling or remanufacturing center.

In addition, to help the decision maker, the ratio factor was added during the
initial inspection/sorting phase. Even though, this would help the decision maker
see what would be the reverse logistics network cost of different recycling and
remanufacturing ratios, it would be essential to use reliable data to determine which
WT components should be remanufactured or recycled. Reliability data can help
decision makers decide on which option to use for EOL WTs; for instance, if the
reliability of some of the EOL WT component is higher than the required threshold
(i.e., 96%), then remanufacturing would be the best option, because the component
has the ability to be brought back to “as good as new” condition. In addition,
assuming that the reliability of certain components is lower than the required
reliability, this may provide an idea of how much investment is required for the
remanufacturing operation. By comparing the cost for each option, the decision
maker could decide whether to remanufacture or recycle the WT components. In the
future, it would be interesting to use reliability data for expanding the reverse
logistics network for WTs.

The real-world reverse logistics network for WT EOL can be more complicated
than the one considered in this paper. As such, some additions to the model are
proposed, in order to extend the current MILP formulation to more realistic
real-world RLN structures for a WT EOL network, including the following:

• Consider multiple types of WTs to evaluate dynamic situations.
• Incorporate landfilling (waste disposal) and inventory holding costs within the

model.
• Include the randomly selected location of potential inspection, recycling,

remanufacturing, and secondary market to make the model more widely
applicable.

• Utilize complex stochastic programming techniques for developing a reverse
logistics network to better account for the stochastic nature of the problem.

The main objective of many models developed and analyzed in the area of RLN
optimization, logistics management, and transportation systems analysis is to
minimize costs. Most recently, there is interest to incorporate environmental and
social effects into the objective function. Opening remanufacturing or recycling
centers definitely creates more job opportunities for local communities as well as
reduces the negative effect of manufacturing new WTs. Adding an environmental
constraint to the model by estimating carbon dioxide emissions due to transporta-
tion of the EOL WT or determining the correlation between remanufacturing WTs
versus new WT manufacturing would be another contribution. Combining eco-
nomic and environmental constraints would help to determine how to control CO2

emissions by selecting the shortest distance between inspection and
recycling/remanufacturing centers. Considering the positive environmental effects
of remanufacturing, one should include the environmental constraints, modify the
model objective, and run the model as a multi-objective problem.
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Maintenance Outsourcing Contracts Based
on Bargaining Theory

Maryam Hamidi and Haitao Liao

Abstract We address a maintenance outsourcing problem where the owner of a

piece of critical equipment plans on outsourcing preventive and failure replacement

services to a service agent. The owner (i.e., customer) and the agent negotiate on

the maintenance policy and spare part ordering strategy in the service contract. We

first provide the classical Nash bargaining solution to the problem and analytically

determine the optimal threat values the decision makers can use in negotiation. We

then extend the model and show how the decision makers can increase their profits

through a price discount scheme, which requires the total profit to be achieved at

the maximum level. The total maximum profit is analytically determined, and the

effects of the price discount scheme and threats on the individual and total profits

are illustrated through a numerical study.

Keywords Maintenance outsourcing contract ⋅ Nash bargaining solution ⋅ Threat

point ⋅ Price discount scheme

1 Introduction

Maintenance costs can account for 15–70% of the expenditures of companies and can

even exceed companies’ annual net profits (Ding and Kamaruddin 2014). To ensure

the operational availability of critical equipment subject to failure and to facilitate

maintenance and replacement activities, optimal preventive maintenance and spare

parts ordering policies have been extensively studied (Nakagawa 2008; Jardine and
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Tsang 2013; Nakagawa 2014). However, most of these studies assume that mainte-

nance is performed in-house by the owner of the equipment.

Nowadays, maintenance outsourcing is a major trend in many business environ-

ments (Martin 1997). In particular, it is a common practice for hospital equipment,

aircraft engine and brakes, mining machinery, and manufacturing processes (Tarakci

et al. 2006). One of the main advantages of outsourcing is the cost reduction in oper-

ation, labor, and spare parts inventory. Besides, it let companies focus more on their

core businesses (Wang 2010). According to Campbell (1995), 35% of north Ameri-

can businesses have considered outsourcing as some of their maintenance needs. For

example, Federal Aviation Administration announced in 2007 that major air carriers

outsourced an average of 64% of their maintenance expenses as opposed to 37% in

1996 (McFadden and Worrells 2012).

A challenging problem in maintenance outsourcing is how to design a contract

agreeable to both parties (Martin 1997; Hartman and Laksana 2009). To deal with

such processes with multiple decision makers, one of the most popular approaches is

the use of game theory. In the literature, game theory has been used in many differ-

ent areas (Jackson and Pascual 2008; Hamidi et al. 2014). Ashgarizadeh and Murthy

(2000) employed the non-cooperative Stackelberg leader-follower concept to model

maintenance outsourcing contracts and determined the agent’s optimal pricing strat-

egy and number of customers to service as well as the customers’ optimal contract

option. Hamidi et al. (2016) studied non-cooperative and cooperative game theoretic

models for leasing contracts.

The related literature has overwhelmingly showed cases where decision mak-

ers negotiate over different contract terms (Nagarajan and Bassok 2008). Gurnani

and Shi (2006) and Nagarajan and Sošić (2008) provided reviews of such contracts.

Bajari et al. (2009) analyzed a comprehensive data set of building construction con-

tracts and observed that almost half of the contracts were developed through nego-

tiation. The study suggested that more complicated projects were more likely to be

negotiated. Nash bargaining solution (Nash 1950) is the most frequently used solu-

tion concept in conflict resolution. There are several reasons for its popularity. First,

if the conflict is considered as individual decision problem for the players who want

to maximize their expected profits, then under certain conditions the Nash bargaining

solution provides common optima (Matsumoto and Szidarovszky 2016). This solu-

tion is the only outcome of a bargaining problem satisfying certain fairness axioms

(Cross 1965), and if one considers the dynamic bargaining process with offer depen-

dent break-down probabilities (Szidarovszky 1999), then the process converges to

the non-symmetric Nash bargaining solution and in special cases to the classical

Nash solution (Szidarovszky 1999). So this solution models a fictitious bargaining

process between the players. It is not an agreement between the players, it is the

expected outcome if they follow a certain bargaining process. The above mentioned

facts are reasons that we choose the Nash bargaining model.

We use bargaining game-theoretic approach to design contracts for the case where

the owner of a piece of equipment (i.e., the customer of the service agent) plans

on outsourcing preventive and failure replacement services to a service agent (who

can be the original equipment manufacturer or a third party service provider). The



Maintenance Outsourcing Contracts Based on Bargaining Theory 259

customer decides on the preventive replacement age of the equipment and the agent

decides on the ordering time for the required spare part. We will first study the classi-

cal Nash bargaining solution. Like many other interactive settings, such as litigation,

international and political relations, each party can start bargaining by threatening

the other player in order to improve his own position and decrease the other player’s

position (Anbarci et al. 2002). This will make the other player more reluctant to risk

a conflict in negotiation (Harsanyi 1986; Myerson 1991). In our model, the customer

makes threat against the agent using the replacement policy, and the agent threats the

customer by spare part availability. We will analytically characterize the customer’s

and agent’s threat values by maximin (max-min) values (Roth 1982; Myerson 1991;

Thomas 2003).

However, this contract is not efficient since it does not maximize the total profit

of the players (Cachon 2003). A possible solution is for the decision makers to coop-

erate when determining the terms of contract (Leng and Parlar 2005; Karsten et al.

2012; Schaarsberg et al. 2013; Matsumoto and Szidarovszky 2016), so that an out-

come better than the classical Nash bargaining solution be achieved for them. We

will extend the original bargaining process by including the preventive and failure

replacement prices as decision variables and requiring that the total profit is on its

maximum level. The solution of this extended bargaining process divides the excess

profit equally among the players and also provides those values of the preventive

and failure replacement prices, which will automatically lead to these payoff values.

We will analytically determine the maximum total profit of the customer and agent,

and through a four-step procedure, we show how the total maximum profit can be

obtained if the agent adjusts the service charges. A numerical study shows how the

policies and profit allocation alter through the use of threats and price discount.

The remainder of this paper is organized as follows. Section 2 provides a descrip-

tion of the problem and derives the payoff functions of the customer and the agent.

Sections 3 and 4 describe how to model and solve negotiation through the classical

Nash bargaining process and also its modified version through price discount, where

Sects. 3.1 and 3.2 determine the threat points of the agent and customer, respectively.

Section 4.1 calculates the maximum total profit, and Sect. 4.2 determines the price

discount contract. In Sect. 5, we numerically examine the effect of negotiation with

and without price discount on the outcome of the contract. Finally, Sect. 6 concludes

the paper and outlines the directions for future research.

2 Problem Description and Model Formulation

The owner of a piece of equipment makes revenue R per unit time when the equip-

ment is in operation and makes no revenue when it fails. The time to failure of

the equipment, denoted by X, has a known probability density function (pdf) f (x),
cumulative distribution function (cdf) F(x), and reliability function ̄F(x) = 1 − F(x).
The equipment’s failure rate 𝜆(x) = f (x)∕ ̄F(x) is an increasing function of time (i.e.,

increasing failure rate).
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The owner outsources preventive and failure replacement services to a service

agent and thus becomes a customer of the service agent. If the agent and the cus-

tomer come to an agreement, the service agent is responsible for doing preventive

replacement at equipment age TR and failure replacement whenever the equipment

fails based on the contract. For both cases, spare parts are required to fulfill the ser-

vice, and the equipment is as good as new after replacement. The service agent orders

a spare part after time TO followed by each service, and the lead time L is fixed. The

service agent can hold at most one spare part with inventory holding cost of Ci per

unit of time. We assume that TO + L ≤ TR (Armstrong and Atkins 1996) and TO ≥ 0
to ensure that the inventory is empty upon the arrival of a new spare part. When a

replacement service is requested, there are two possibilities. If a spare part is on-

hand, the agent does an immediate replacement; otherwise replacement is delayed

until the ordered spare part arrives and the agent has to pay shortage cost S per unit

time to the customer to compensate the downtime loss. The agent charges the cus-

tomer Pp and Pf for each preventive and failure replacement, respectively, where

Pp ≤ Pf . In this paper, we first assume that the charges are exogenously determined

by the market, and later relax this assumption by making them negotiable between

the customer and the agent. For the agent, the cost Cf for performing each failure

replacement is higher than the one Cp for preventive replacement. It is worth point-

ing out that Murthy and Yeung (1995) assumed a zero lead time and uniformly dis-

tributed repair time, but we consider a fixed lead time and instantaneous repairs.

In establishing the maintenance service contract, decision variables (i.e., terms to

be specified in the contract) are the preventive replacement age TR for the customer

and the spare part reordering time TO for the agent. According to game theoretic

terminology, the two decision variables are called the strategies of the two players.

Particularly, the set of simultaneous strategies is given by:

S = {(TR,TO) |TO ≥ 0 , TO + L ≤ TR}. (1)

The expected profits per unit time can be naturally considered as the payoff functions

of the players, which will be derived next.

Nomenclature

TR Preventive replacement age (deci-

sion variable of the customer)

ΠB
c Customer’s Nash bargaining

profit

TO Spare part order time (decision

variable of the agent)

ΠB
a Agent’s Nash bargaining

profit

Πc Payoff function of the customer ̄Πc Customer’s extended Nash

bargaining profit

Πa Payoff function of the agent ̄Πa Agent’s extended Nash bar-

gaining profit

Π◦
c Threat value of the customer Π Total profit

Π◦
a Threat value of the agent Π∗

Maximum total profit
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2.1 Customer’s Payoff Function

The customer’s long-run profit per unit of time can be determined based on the

renewal reward theorem (Ross 2013; Murthy and Yeung 1995), which can be

expressed as the expected cycle profit divided by the expected cycle length. We

define a service cycle length as the time interval between the installation of a new part

and its replacement. Under the assumption that TO + L ≤ TR, three scenarios may

occur in a cycle. The first one is that the equipment fails before the agent receives

a spare part, i.e., X < TO + L. In this case, replacement is delayed until the agent

receives the part at TO + L, so the corresponding cycle length is TO + L. The cus-

tomer’s profit in such a cycle is RX + S(TO + L − X) − Pf , as the agent must compen-

sate the shortage cost to the customer. The second scenario is that a failure occurs

after the arrival of the ordered part while before the preventive replacement, i.e.,

TO + L < X < TR. In this case, the agent replaces the failed part immediately, so the

cycle length is X and the customer’s profit is RX − Pf . Lastly, when the equipment

does not fail before the scheduled preventive replacement time, i.e., X > TR, the agent

performs preventive replacement at TR, so the cycle length is TR and the customer’s

profit is RTR − Pp.

Considering these scenarios, the expected cycle profit for the customer can be

expressed as:

EPC =
∫

TO+L

0
(Rx + S(TO + L − x) − Pf )f (x)dx

+
∫

TR

TO+L
(Rx − Pf )f (x)dx +

∫

∞

TR

(RTR − Pp)f (x)dx.

After simplification, we have:

EPC = R
∫

TR

0
̄F(x)dx + S

∫

TO+L

0
F(x)dx − Pf F(TR) − Pp

̄F(TR).

On the other hand, the expected cycle length can be expressed as:

ECL =
∫

TO+L

0
(TO + L)f (x)dx +

∫

TR

TO+L
xf (x)dx +

∫

∞

TR

TRf (x)dx = TR −
∫

TR

TO+L
F(x)dx.

As a result, the long-run profit per unit time for the customer is given by:

Πc =
EPC
ECL

=
R∫ TR

0
̄F(x)dx + S∫ TO+L

0 F(x)dx − Pf F(TR) − Pp
̄F(TR)

TR − ∫
TR

TO+L F(x)dx
. (2)
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2.2 Agent’s Payoff Function

The expected cycle profit for the agent can also be determined based on the three

scenarios: if X < TO + L, the agent’s profit is Pf − Cf − S(TO + L − X); if TO + L <

X < TR, the profit is Pf − Cf − (X − TO − L)Ci, and it should be noted that the agent

pays the holding cost in such a cycle; if X > TR, the profit is Pp − Cp − (TR − TO −
L)Ci. Therefore, the expected cycle profit for the agent can be expressed as:

EPA =
∫

TO+L

0
(Pf − Cf − S(TO + L − x))f (x)dx

+
∫

TR

TO+L
(Pf − Cf − (x − TO − L)Ci)f (x)dx

+
∫

∞

TR

(Pp − Cp − (TR − TO − L)Ci)f (x)dx.

After simplification, we have:

EPA = (Pf − Cf )F(TR) + (Pp − Cp) ̄F(TR) − S
∫

TO+L

0
F(x)dx − Ci

∫

TR

TO+L
̄F(x)dx,

and the agent’s long-run profit per unit time can be expressed as:

Πa = EPA
ECL

=
(Pf − Cf )F(TR) + (Pp − Cp) ̄F(TR) − S∫ TO+L

0 F(x)dx − Ci∫
TR

TO+L
̄F(x)dx

TR − ∫
TR

TO+L F(x)dx
.

(3)

3 Nash Bargaining Solution

The decision-making process involves bargaining, where the customer and agent

determine their strategies TR and TO via negotiation. We model the bargaining

process by the Nash bargaining model (Nash 1953). Nash presented six axioms that

all bargaining solutions should satisfy and proved that there is a unique solution that

meets these axioms (Nash 1950). In particular, the six axioms are: (1) symmetry

meaning that if the players are identical, they receive identical payoffs; (2) feasibil-

ity requiring that the players can distribute only existing amount of profit; (3) Pareto

optimality showing that if both players can increase their payoffs, this solution has

to be included in the agreement; (4) independence from monotone increasing lin-

ear transformations stating that changing the unit in which the payoffs are computed

cannot change the solution; (5) rationality, so players do not agree with payoff val-
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ues which are below payoffs they can receive without bargaining; (6) independence

from unfavorable strategies meaning that if additional constraints restrict the feasible

set and the solution still remains feasible, then the solution must remain the same. A

thorough explanation of the axioms can be seen in Roth (1979). The Nash bargaining

solution can be obtained using different concepts as well. If the bargaining process

is considered as individual decision problem for each player under uncertain choice

of the other player, then the Nash bargaining solution is the common decision maxi-

mizing both expected profits (Matsumoto and Szidarovszky 2016), and if a modified

version of the alternating offer bargaining process is considered with offer depen-

dent break-down probabilities, then the Nash solution is the limit, the final outcome

of the process. So a fictitious bargaining process is considered instead of cooperative

agreement between the players.

In our case, the Nash bargaining solution (ΠB
c ,Π

B
a ) is defined as the profits of

the customer and agent, which maximize the product of the differences between the

payoff functions and fixed disagreement payoffs given by the following optimization

problem:

max

(

Πc − Π◦
c

)(

Πa − Π◦
a

)

(4)

subject to Πc ≥ Π◦
c , (5)

Πa ≥ Π◦
a, (6)

(Πc,Πa) ∈ H, (7)

whereΠc andΠa are customer’s and agent’s payoffs given by (2) and (3), respectively,

Π◦
c andΠ◦

a are the disagreement points, and H is the payoff set H = {(Πc,Πa)|(TR,TO)
∈ S} where S is the strategy set defined in (1).

It is important to mention that the disagreement payoff vector (Π◦
c ,Π

◦
a) is defined

as the guaranteed payoff obtained by the players in case they disagree to negotiate or

negotiation breaks down. To determine the disagreement point, different alternatives

are available. One is to let (Π◦
c ,Π

◦
a) = (0, 0), another possibility is a non-cooperative

equilibrium, and a third one is to select it as a threat point (Myerson 1991). Here

we assume that the customer needs to outsource the maintenance services, and the

agent is the only service provider, and on the other hand, the equipment owner is

the major customer of the service agent. That is, some sort of business has to take

place between the customer and the agent, so (0, 0) is not the best choice. Here, we

consider the threat point as the disagreement point for the players (Anbarci et al.

2002). The main purpose of making threat is to increase the cost of possible conflict

to the other player, in order to make him negotiate and agree on mutually satisfactory

strategies (Harsanyi 1986). However, if the customer and agent have the possibility

to avoid each other and to have business with others, the disagreement payoffs for

both players can be considered as zero. Constraints (5)–(6) assert that neither player

should get less than (Π◦
c ,Π

◦
a) in the bargaining, since this is the profit they could get

without negotiation. So the Nash bargaining payoff is at or above this security level

for each player. Figure 1 shows how posing threat shrinks the feasible set H.
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Fig. 1 Nash bargaining

solution

The optimal solution of problem (4)–(7) is Pareto optimal. That is, there is no

other feasible solution which is better than the Nash bargaining solution for one

player and not worse for the other player. In other words, it ensures that all other solu-

tions, which make one player better off, make the other player worse off. In this case,

the Pareto frontier, 𝜔, can be determined by max
TR,TO

(1 − 𝜃) Πc(TR,TO) + 𝜃Πa(TR,TO)

where 𝜃 ∈ [0, 1]. At 𝜃 = 0, the objective function considers only the payoff function

of the customer, at 𝜃 = 1 it considers only the agent, and for values between 0 and 1

it considers some trade-off between the profits. For each constant 𝜃 ∈ [0, 1], the opti-

mum strategy, (T𝜃

R,T
𝜃

O), and the corresponding profits Πc(T𝜃

R,T
𝜃

O) and Πa(T𝜃

R,T
𝜃

O) can

be calculated, and the entire Pareto frontier can be determined. The Nash Bargaining

solution (TB
R ,T

B
O) selects the unique point from the Pareto frontier, which maximizes

the objective function in (4) while satisfying constraints (5) and (6). The parameters

of the contract are (TB
R ,T

B
O), which determine the profits of the customer and agent

as ΠB
c = Πc(TB

R ,T
B
O) and ΠB

a = Πa(TB
R ,T

B
O). Figure 1 also illustrates a Pareto frontier,

𝜔, and the corresponding Nash profits of the customer and agent B = (ΠB
c ,Π

B
a ).

We next derive (Π◦
c ,Π

◦
a), the threat point of the customer and agent, in Sects. 3.1

and 3.2, respectively, by the maximin (max-min) value. However, because of the very

different non-algebraic properties of the Nash bargaining solution (Anbarci et al.

2002), it is difficult to derive the solution of (4)–(7) analytically. Instead, we will

look closely into this solution using simulation in a numerical study.

3.1 Threat Point for the Agent

To make the agent reluctant to cause conflict in negotiation, the customer can adopt

the threat strategy T◦
Ra = arg min

TR

Πa in case of disagreement, which causes the great-

est damage to the agent. Given the threat of the customer, the agent improves his
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bargaining position by choosing strategy T◦
Oa = arg max

TO

Πa(T◦
Ra), which maximizes

his payoff (maximin strategy). Therefore, the threat profit Π◦
a (maximin profit) is the

guaranteed payoff for the agent in the worst case, and the agent won’t agree on any

less profit when he negotiates. Technically, the agent’s threat payoff, Π◦
a, and the

corresponding optimal strategies (Harsanyi 1956) can be determined by solving the

following problem:

Π◦
a =max

TO
min

TR

(Pf − Cf )F(TR) + (Pp − Cp) ̄F(TR) − S∫ TO+L
0 F(x)dx − Ci∫

TR
TO+L

̄F(x)dx

TR − ∫
TR

TO+L F(x)dx

subject to 0 ≤ TO ≤ TR − L.
(8)

where the objective function is the payoff function of the agent, Πa. To solve this

problem, we consider a two-step optimization process. In the first step, we find the

customer’s threat strategy against the agent T◦
Ra; in the second step, we determine the

reordering time T◦
Oa that maximizes the agent’s payoff function with the value of T◦

Ra
determined in the first step.

In particular, the first step solves:

min
TR

(Pf − Cf )F(TR) + (Pp − Cp) ̄F(TR) − S∫ TO+L
0 F(x) dx − Ci∫

TR
TO+L

̄F(x) dx

TR − ∫
TR

TO+L F(x) dx

subject to TO + L ≤ TR.

We assume that the profits the agent obtains from failure replacement and preventive

replacement are the same (i.e., Pf − Cf = Pp − Cp). As a result, the numerator of the

derivative of the objective function with respect to TR divided by ̄F(TR) is:

D(TO) = −(Pp − Cp) + S
∫

TO+L

0
F(x) dx − Ci(TO + L),

which is independent of TR. The following proposition provides the optimum TR and

the corresponding conditions (see Appendix for the proof).

Proposition 1 For any fixed TO, the value of TR that minimizes the agent’s payoff
function is: T◦

Ra = ∞ if D(TO) < 0, T◦
Ra = TO + L if D(TO) > 0, and all TR ≥ TO + L

if D(TO) = 0.

The next step is to determine the maximum value of Πa with respect to TO. Due to

the tedious computation required to obtain analytical results, we will only consider

one parameter set corresponding to the case of D(TO) < 0, and the other cases of

D(TO) ≥ 0 can be considered similarly. Substituting T◦
Ra = ∞ into Πa, the problem

to be solved is:
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max
TO

Pf − Cf − S∫ TO+L
0 F(x) dx + Ci(TO + L)

𝜇 + ∫
TO+L
0 F(x) dx

− Ci

subject to TO ≥ 0,

(9)

where 𝜇 = ∫
∞
0 xf (x) dx. The numerator of the derivative of the objective function

with respect to TO is:

G(TO) = Ci

(

𝜇 +
∫

TO+L

0
F(x) dx

)

− F(TO + L)
(

Pf − Cf + Ci(TO + L) + S𝜇
)

.

(10)

The following theorem provides the optimum TO and the corresponding conditions

(see Appendix for the proof).

Theorem 1 The objective function in (9) is unimodal and pseudo-concave in TO.
For T◦

Ra = ∞, the value of TO that maximizes the agent’s payoff function satisfies
G(T◦

Oa) = 0.

In this case, the following proposition provides the threat point (maximin payoff)

for the agent, which can be obtained by substituting (10) into the objective function

in (9).

Proposition 2 The threat value for the agent is Π◦
a= − S + Ci

̄F(T◦
Oa+L)

F(T◦
Oa+L)

if D(T◦
Oa) < 0,

and the corresponding threat strategies are T◦
Ra = ∞ and G(T◦

Oa) = 0.

Proposition 2 shows that the customer threatens the agent by the threat strat-

egy T◦
Ra = ∞ (do not do preventive replacement), which hurts the agent as much

as possible by minimizing agent’s payoff. Given the threat of the customer, the agent

improves his bargaining position by choosing strategy T◦
Oa which maximizes his pay-

off, and the corresponding threat payoff Π◦
a = Πa(T◦

Ra,T
◦
Oa) is the agent’s security

payoff in the bargaining process.

3.2 Threat Point for the Customer

The agent threatens the customer that if he causes disagreement in negotiation, the

agent will implement the threat strategy, T◦
Oc = arg min

TO

Πc, which hurts the customer

as much as possible by minimizing customer’s payoff. The purpose of the agent by

making threat against the customer is to make him more reluctant to risk a conflict in

negotiation. Given the threat of the agent, the customer improves his bargaining posi-

tion by choosing strategy T◦
Rc = arg max

TR

Πc(T◦
Oc) which maximizes his payoff. The

customer’s threat profit, Π◦
c , can be determined by solving the following problem:
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Π◦
c =max

TR
min

TO

R∫ TR
0

̄F(x)dx + S∫ TO+L
0 F(x)dx − Pf F(TR) − Pp

̄F(TR)

TR − ∫
TR

TO+L F(x)dx

subject to 0 ≤ TO ≤ TR − L,

(11)

where the objective function is the customer’s payoff function (2). In order to solve

the problem, we consider a two-step optimization approach: in the first step, we find

T◦
Oc as the ordering time that minimizes the customer’s payoff function for a given

value of TR; and next, we determine T◦
Rc, as the optimum preventive replacement time

that maximizes the customer’s payoff function with the value of T◦
Oc determined in

the first step (Danskin 1966). In the first step, the following problem is solved:

min
TO

R∫ TR
0

̄F(x) dx + S∫ TO+L
0 F(x) dx − Pf F(TR) − Pp

̄F(TR)

TR − ∫
TR

TO+L F(x) dx

subject to 0 ≤ TO ≤ TR − L.

Clearly, the numerator of the derivative of the objective function with respect to TO
divided by F(TO + L) is independent of TO:

W(TR) = (S − R)
∫

TR

0
̄F(x) dx + Pf F(TR) + Pp

̄F(TR). (12)

The following proposition provides the optimum TO and the corresponding condition

(see Appendix for the proof).

Proposition 3 For any fixed TR, the value of TO that minimizes the customer’s payoff
function is T◦

Oc = 0 when W(TR) > 0, and T◦
Oc = TR − L when W(TR) < 0.

Proposition 3 indicates that the agent can pose threat against the customer by

adjusting spare part availability. That is, the agent can delay a failure replacement

when the customer prefers an instant replacement, or he can do an instant replace-

ment when the customer prefers a delayed one. In other words, the spare part avail-

ability can affect the number of failure replacements and the customer’s profit.

The next step for the customer is to choose the action T◦
Rc that maximizes the

worst-case payoff. We will only consider the case for W(TR) > 0, and the case for

W(TR) < 0 can be considered similarly. By substituting T◦
Oc = 0 into Πc, the problem

for the customer to solve is:

max
TR

R∫ TR
0

̄F(x) dx + S∫ L
0 F(x) dx − Pf F(TR) − Pp

̄F(TR)

TR − ∫
TR

L F(x) dx
subject to TR − L ≥ 0.

(13)

The numerator of the derivative of the objective function with respect to TR divided

by ̄F(TR) is:
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B(TR) = (Pp − Pf )𝜆(TR)(TR −
∫

TR

L
F(x) dx)

+ (R − S)
∫

L

0
F(x) dx + Pf F(TR) + Pp

̄F(TR).
(14)

The following theorem gives the optimality conditions (see Appendix for the proof).

Theorem 2 The objective function in (13) is unimodal and pseudo-concave in TR.
For T◦

Oc = 0, the value of TR that maximizes the customer’s payoff function satisfies
B(T◦

Rc) = 0.

The following proposition provides the threat point for the customer, which can

be proved by substituting B(TR) = 0 into the objective function in (13).

Proposition 4 The threat point for the customer is Π◦
c = (Pp − Pf )𝜆(T◦

Rc) + R if
W(T◦

Rc) > 0, and the corresponding threat strategies are T◦
Oc = 0 and B(T◦

Rc) = 0.

Proposition 4 shows that the agent can threaten the customer with the threat strat-

egy T◦
Oc = 0 (doing failure replacement when the customer prefers a delayed replace-

ment), which minimizes the customer’s payoff. Given the threat of the agent, the

customer improves his bargaining position by choosing strategy T◦
Rc that maximizes

his payoff in this worst case scenario, and the corresponding threat payoff of the cus-

tomer Π◦
c is his security payoff in bargaining. Based on the obtained threat points the

Nash bargaining solution can be obtained by solving the optimum problem (4)–(7)

which provides the corresponding strategies and payoff values of the players as the

solution of the bargaining process.

In many bargaining situations the players realize that by considering the interest of

each other simultaneously their payoffs can be increased in comparison to the Nash

overall profit, which will be divided among the players in a fair, mutually acceptable

way. Another way of establishing the highest possible overall profit is that one player

selects a strategy such that with the corresponding best response of the other player

they get the maximum possible overall profit.

4 Extended Nash Bargaining Solution

In the previous section, we focused on the results for classical Nash bargaining

model, but this solution generally does not lead to the maximum total profit for the

customer and agent. An alternative solution is for the decision makers to act coopera-

tively in order to increase their total profit (Nagarajan and Sošić 2008). Next, we will

study a second bargaining problem in which the total profit of the players equals its

maximum level, and both players get higher payoff than in the case of Nash bargain-

ing solution. In this modified bargaining process the following optimization problem

has to be solved:
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max

(

Πc − ΠB
c

)(

Πa − ΠB
a

)

subject to Πc ≥ ΠB
c ,

Πa ≥ ΠB
a ,

Πc + Πa = Π∗
,

(15)

where ΠB
c and ΠB

a are the payoffs at the Nash bargaining solution, and Π∗
is the

maximum total profit of the players. The last constraint requires that the total profit

of players is at its maximal level.

In the previous discussion the decision variables were preventive replacement

age, TR, and spare part order time, TO. So the prices of replacement services were

considered given and were not part of negotiation process. In this alternative model,

we require that the overall profit of the players is at maximum level, and the subject

of the bargaining is a set of four decision variables: TR, TO and the failure and pre-

ventive replacement prices, Pf and Pp. That is, Πc and Πa now depend on the four

decision variables. Next, we will first determine the maximum total profit Π∗
and

the corresponding strategies (T∗
R,T

∗
O) in Sect. 4.1, which satisfy the last constraint of

problem (15), and second we will solve the problem in Sect. 4.2 by determining the

profits ( ̄Πc, ̄Πa) and the corresponding discounted prices ( ̄Pp,
̄Pf ).

4.1 Maximum Total Profit

In a cooperative regime, the players choose the set of strategies (T∗
R,T

∗
O), that solves

Π∗ = max {Πc + Πa}, where Πc and Πa are the payoffs of the customer and the

agent given in (2) and (3), respectively. We determine the optimal values by solving:

Π∗ =max
TO ,TR

{Πc + Πa} =
R∫ TR

0
̄F(x) dx − Ci∫

TR
TO+L

̄F(x) dx − Cf F(TR) − Cp
̄F(TR)

TR − ∫
TR

TO+L F(x) dx

subject to 0 ≤ TO ≤ TR − L.
(16)

In this formulation, the customer and agent seek to jointly maximize their total profit.

We consider a two-step optimization process to solve the problem: in the first step, we

find T∗
R as the optimum preventive replacement age that maximizes the total payoff

function for a given value of TO; in the second step, we determine T∗
O as the optimum

ordering time that maximizes the total payoff function for the value of T∗
R determined

in the first step. One can see that the numerator of the derivative of the objective

function with respect to TR is:
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K(TR) = − (Cf − Cp)𝜆(TR)(TR −
∫

TR

TO+L
F(x) dx) + Cf F(TR)

+ Cp
̄F(TR) + R

∫

TO+L

0
F(x) dx − Ci(TO + L).

The following proposition gives the optimum TR value and the corresponding con-

dition (see Appendix for the proof).

Proposition 5 For any fixed TO, the value of TR that maximizes the total payoff
function is T∗

R = TO + L, when K(TR = TO + L) < 0.

The next step is to determine the maximum of Πc + Πa with respect to TO. After

substituting T∗
R = TO + L into Πc + Πa, problem (16) becomes:

max
TO

R∫ TO+L
0

̄F(x) dx − Cf F(TO + L) − Cp
̄F(TO + L)

TO + L
subject to TO ≥ 0.

(17)

The numerator of the derivative of the objective function with respect to TO is:

H(TR = TO + L) = [R ̄F(TR) − (Cf − Cp)f (TR)]TR − R
∫

TR

0
̄F(x) dx + Cf F(TR) + Cp

̄F(TR).

(18)

Here we assume Rf (TR) + f ′ (TR)(Cf − CP) > 0 to ensure that the objective function

in (17) is a unimodal and pseudo-concave function in TO. The following proposition

addresses the optimum solution (see Appendix for the proof).

Proposition 6 The total maximum profit is Π∗ = R ̄F(T∗
R) − (Cf − Cp)f (T∗

R), and the
corresponding strategies are (T∗

R,T
∗
O) = (T∗

O + L,H(T∗
O) = 0) when K(T∗

R,T
∗
O) < 0.

Choosing strategies (T∗
R,T

∗
O) by the customer and agent guarantees that the total

profit is at its maximum level Π∗
, satisfying the last constraint of problem (15).

4.2 Price Discount Contract

Now, we define ΔΠ as:

ΔΠ = Π∗ − ΠB
> 0 (19)

where ΠB = ΠB
c + ΠB

a is the sum of the Nash bargaining profits. Notice that ΔΠ is

the difference between the total maximum profit and the total profit of the players

at the Nash bargaining solution. We call ΔΠ the joint profit gain, which is the extra

profit the players jointly achieve by cooperation. The outcome of problem (15) can

be described as follows.



Maintenance Outsourcing Contracts Based on Bargaining Theory 271

Fig. 2 Extended Nash

bargaining solution

Proposition 7 The solution of the modified Nash bargaining process shows that the
profits of the customer and agent respectively are:

̄Πc = ΠB
c + ΔΠ

2
=

Π∗ + ΠB
c − ΠB

a

2
,

̄Πa = ΠB
a + ΔΠ

2
=

Π∗ + ΠB
a − ΠB

c

2
,

(20)

The proof can be found in Muthoo (1999). Proposition 7 states that when the

players cooperate then they can equally increase their payoffs in comparison to the

Nash bargaining solution by equally sharing the joint profit gain,ΔΠ. It can be proven

that this solution also coincides with the Shapley values that are also based on certain

fairness axioms (Shapley 1952). This solution is illustrated in Fig. 2. The shaded

region H is the feasible set of the original Nash bargaining problem, point A gives

Π∗
, the maximum overall profit on this region. In the modified bargaining process

we introduce the −45◦ line passing through point A, and the feasible set is expanded

to the entire triangle under this line, Πc + Πa = Π∗
. The original Nash bargaining

solution is point B = (ΠB
c ,Π

B
a ), where no player accepts any profit less than this,

and the solution of the modified bargaining process is point C = ( ̄Πc, ̄Πa). Since the

players have equal gains, as stated by Proposition 7, the BC segment has unit slope.

In addition to the optimal profits, the solution of problem (15) presents the pre-

ventive and failure replacement prices as follows.
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Proposition 8 The negotiated preventive and failure replacement prices are given
by:

̄Pp = Pp − 𝜏T∗
R, (21)

̄Pf = Pf − 𝜏T∗
R, (22)

where
𝜏 = Πa(T∗

R,T
∗
O,Pp,Pf ) − ̄Πa. (23)

The discounted prices ( ̄Pp,
̄Pf ) ensure that the customer’s and agent’s profits are

ΔΠ∕2 higher than the original Nash bargaining profits. The discounted prices can

be interpreted as a payment 𝜏 ≥ 0 per unit of time from the agent to the customer.

Because of this interpretation some authors call this kind of price setting as side

payment.

We present the following procedure to find the proper bargaining profits and deci-

sion variables.

1. Use Propositions 2 and 4 to compute threat point (Π◦
c ,Π

◦
a).

2. Compute the Nash bargaining solution of problem (4)–(7) with profits (ΠB
c ,Π

B
a )

and the corresponding strategies (TB
R ,T

B
O), also derive ΠB = ΠB

c + ΠB
a .

3. If the players wish to cooperate, use Proposition 6 to compute the maximum total

profit Π∗
and the corresponding strategies (T∗

R,T
∗
O), also derive the joint profit

gain ΔΠ = Π∗ − ΠB
.

4. Use Propositions 7 and 8 to calculate the extended profits ( ̄Πc, ̄Πa) and the nego-

tiated preventive and failure maintenance prices, ̄Pp and ̄Pf .

Therefore, if the agent chooses discounted prices ̄Pp and ̄Pf and the players select

the preventive replacement time and the spare part order time (T∗
R,T

∗
O), then both

players enjoy higher profits than in the original Nash bargaining solution, and their

total profit is at its maximum level.

5 Numerical Examples

In this section, numerical examples are presented to illustrate the application of

the two bargaining models for the customer and agent. We begin with a base case

where the equipment’s time to failure distribution is assumed to be Weibull with

pdf f (x) = 𝛽

𝛼

( x
𝛼

)𝛽−1e−(x∕𝛼)𝛽 , with scale parameter 𝛼 = 40, and shape parameter 𝛽 = 3.

Other parameters assumed for the problem setting are order lead time L = 10 days,

inventory cost Ci = $10/day, equipment’s generated revenue R = $30/day, failure

replacement cost Cf = $300, preventive replacement cost Cp = $100, price of each

failure replacement Pf = $600, price of each preventive replacement Pp = $400, and

shortage cost S = $30/day.
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In Tables 1 and 2, we study the sensitivity of the Nash bargaining solution and

the extended Nash bargaining solution to the scale parameter 𝛼 and revenue R.

For the Nash bargaining model, we numerically obtain the threat profit of the cus-

tomer Π◦
c and the threat profit of the agent Π◦

a. Next, the bargaining solutions to

the problem in (4)–(7) are calculated, where TB
R is the preventive replacement age

of the equipment, TB
O is the time the agent has to order the spare part after each

replacement, ΠB
c = Πc(TB

R ,T
B
O) is the profit of the customer, ΠB

a = Πa(TB
R ,T

B
O) is the

profit of the agent, and ΠB = ΠB
c + ΠB

a is the total profit of the players. For the

extended Nash bargaining solution, we numerically solve the problem in (16) and

derive the maximum total profit Π∗
and the optimal preventive replacement age and

ordering time, (T∗
R,T

∗
O) = arg max

TR,TO

(Πc + Πa). The negotiated preventive and failure

maintenance prices ( ̄Pp,
̄Pf ) and the expected payoffs ̄Πc = Πc(T∗

R,T
∗
O,

̄Pp,
̄Pf ) and

̄Πa = Πa(T∗
R,T

∗
O,

̄Pp,
̄Pf ) are also presented.

One can see that the threat profits and the bargaining outcomes are highly sensitive

to the scale parameter of the equipment 𝛼 and also generated revenue R. The customer

has a higher bargaining position when he owns a more reliable equipment. Also the

higher the revenue generated by the equipment, the higher the bargaining position

of the customer. For example, when the scale parameter increases from 𝛼 = 30 to

60 (mean time to failure increases from 26.78 days to 53.57), the threat profit of the

customer increases fromΠ◦
c = $8.36/day to 19.14, and his bargaining profit increases

from ΠB
c = $9.99/day to 19.97.

In Tables 3 and 4, we evaluate the results of the extended Nash bargaining model.

We define the relative increase in the agent’s profit in the price discount contract over

the general Nash bargaining contract as:

ΔΠa =
̄Πa − ΠB

a

ΠB
a

100%.

The relative increase in profit of the customer and total profit are also determined

in the same manner. Furthermore, we define ΔTR and ΔPp, the relative changes in

preventive replacement age and price as:

ΔTR =
T∗

R − TB
R

TB
R

100%,

ΔPp =
̄Pp − Pp

Pp
100%,

Tables 3 and 4 show the advantages of price-discount contract over the gen-

eral Nash bargaining model. As can be seen, price discount contract increases the

maintenance quality of equipment, since the preventive maintenance age in price-

discount contract is shorter than the general bargaining contract, ΔTR < 0. Besides,

this scheme is economically beneficial to both parties. At 𝛼 = 50, although the agent
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Table 3 Comparison of the extended Nash bargaining model for different scale parameters

𝛼 ΔTR ΔPp ΔPf ΔΠc ΔΠa ΔΠ
[%] [%] [%] [%] [%] [%]

30 −33.37 −30.52 −20.35 8.70 9.49 9.13
40 −36.30 −34.47 −22.98 6.21 15.27 8.88
50 −38.82 −38.16 −25.44 5.50 23.49 8.93

60 −40.75 −41.23 −27.48 5.10 34.34 8.93

Table 4 Comparison of the extended Nash bargaining model for different revenues

R ΔTR Δ ̄Pp Δ ̄Pf ΔΠc ΔΠa ΔΠ
$/day [%] [%] [%] [%] [%] [%]
20 −30.12 −32.65 −21.77 8.34 7.18 7.81

30 −36.30 −34.47 −22.98 6.21 15.27 8.88

40 −44.85 −36.74 −24.49 6.70 31.09 11.06

50 −49.97 −36.04 −24.03 5.01 30.37 8.61

decreases preventive maintenance price by ΔPp = 38.16% and failure maintenance

price by ΔPf = 25.44%, the customer decreases the preventive maintenance interval

by ΔTR = 38.82%, and this increases the profit of customer by ΔΠc = 5.50% and the

profit of the agent by ΔΠa = 23.49%.

6 Conclusions and Future Research Directions

In this paper, we studied a problem when an equipment owner outsources preven-

tive and failure replacement services to a service agent, where the players bargain to

determine the terms of contract. We considered the Nash bargaining solution to com-

pute the bargaining profit of players and determined the optimal threat strategies a

player can pose against the other player in order to increase his bargaining position.

We next extended the Nash bargaining solution, where the players achieved their

maximum total profit. Our numerical examples illustrated the feasibility and advan-

tage of using such extended contract in maintenance service outsourcing. Our result

showed that posing threat can dramatically increase the profit of the player with a

higher bargaining position (the customer in our example), moreover both the cus-

tomer and agent can benefit in the extended bargaining model.

The analysis in this paper is focused on a two-person game in the context of con-

tract negotiation. An interesting direction for future research is to consider cases

where there are several players with different payoff parameters leading to multi-

player games. The development of such models will provide insights into the effect

of increased competition on maintenance outsourcing contracts.
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Appendix

Proof of Proposition 1. If D(TO) < 0 then Πa is a decreasing function, and its min-

imum is at T◦
Ra = ∞. If D(TO) > 0, then Πa is an increasing function of TR and

achieves the minimum at T◦
Ra = T0 + L. This completes the proof. □

Proof of Theorem 1. One can see that:

𝜕G(TO)
𝜕TO

= −f (TO + L)
(

(Pf − Cf ) + Ci(TO + L) + S𝜇
)

< 0

as Pf > Cf and f (TO + L) > 0. Therefore, G(TO) has at most one zero point, and if it

exists it must be a maximum, otherwise, the function is monotonic. In other words,

the objective function is unimodal and pseudo-concave in TO. If there is a strategy

T◦
Oa at which G(T◦

Oa) = 0, this strategy must be the unique maximum of (9). This

completes the proof. □

Proof of Proposition 3. Notice that S ≤ R, so depending on the sign of W, there

are two possibilities for the optimum strategy of T◦
Oc for a given value of TR. For

any fixed TR, if W(TR) > 0, Πc is increasing in TO. According to the constraint 0 ≤

TO ≤ TR − L, minimum of Πc is at T◦
Oc = 0. If W ≤ 0, Πc is decreasing in TO, so one

minimum is at T◦
Oc = TR − L. This completes the proof. □

Proof of Theorem 2. The derivative of B(TR) with respect to TR is:

𝜕B(TR)
𝜕TR

= 𝜆

′ (TR)(Pp − Pf )
[
TR −

∫

TR

L
F(x) dx

]
< 0

because Pp < Pf , 𝜆(TR) is an increasing function of TR (i.e., 𝜆
′ (TR) > 0), and TR =

∫
TR
0 1 dx > ∫

TR
0 F(x) dx > ∫

TR
L F(x) dx. Therefore, B(TR) is a decreasing function of

TR. Because there is a unique T◦
Rc strategy such that B(T◦

Rc) = 0, where the derivative

of (13) is zero as well, this strategy gives the unique maximum of (13). □

Proof of Proposition 5. One can see that:

𝜕K(TR)
𝜕TR

= −𝜆′ (TR)(Cf − Cp)(TR −
∫

TR

TO+L
F(x)dx) < 0, (24)

since Cf > Cp and the equipment has an increasing failure rate function (𝜆
′ (TR) > 0).

This means that K(TR) is a decreasing function in TR where TR ≥ TO + L. If K(TR =
TO + L) < 0 then K(TR) is always negative, and so the objective function (16) is a

decreasing function of TR and achieves the maximum at T∗
R = TO + L. □

Proof of Proposition 6. Assuming Rf (TR) + f ′ (TR)(Cf − CP) > 0, there is a unique

T∗
O strategy such that H(T∗

O) = 0, where the derivative of (17) is zero as well, and this

strategy gives the unique maximum of (17). Substituting H(TR) = 0 in the objective

function in (17) yields the value of Π∗
stated in Proposition 6. □



278 M. Hamidi and H. Liao

Proof of Proposition 8. The agent transfers 𝜏 = Πa(T∗
R,T

∗
O,Pp,Pf ) − ̄Πa to the cus-

tomer by adjusting the service prices, where ̄Πa = Πa(T∗
R,T

∗
O,

̄Pp,
̄Pf ). Substituting

T∗
R = T∗

O + L into agent’s payoff function (3) and assuming Pp − Cp = Pf − Cf , we

have:

Πa(T∗
R,T

∗
O,Pp,Pf ) =

(Pp − Cp) − S∫ T∗
R

0 F(x)dx
T∗

R

and

̄Πa =
( ̄Pp − Cp) − S∫ T∗

R
0 F(x)dx

T∗
R

Equating 𝜏 = Πa(T∗
R,T

∗
O,Pp,Pf ) − ̄Πa and solving for ̄Pp lead to the adjusted

prices. □
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Agricultural Production Planning
in a Fuzzy Environment

M.R. Salazar, R.E. Fitz and S.F. Pérez

Abstract A model for the planification of agricultural production is proposed in
the Alto Rio Lerma Irrigation District (ARLID) located in the state of Guanajuato in
Mexico. The ARLID have a limited water supply from ground and surface sources,
as well as area restrictions. In addition, producer faces the problem of high price
uncertainty, which affect seriously the amount of expected profit in each season.
Therefore, farmers need to distribute their available land between crops in a fuzzy
environment. A multiobjective linear programming model in a fuzzy environment
(MLFM) is proposed to approach the problem described above. Ten price scenarios
are considered according to the records of the last 10 years, these prices were given
in the same scale base 2009. In the results all available area, 112,000 ha, was used.
Each price scenario generate one objective to be maximize, some price scenarios
generate high profits, while others low profits. The results obtained in the MLFM
produce the best expected benefit, 4,820 million of pesos, when prices behave as
random variables. For Winter season land is distributed mainly between red tomato
and wheat, while in the Spring season between corn and wheat. Sorghum was the
only second crop to be sown. The model applied in this particular problem of
agricultural planification, show the best land use distribution when market fluctu-
ations are expected.
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1 Introduction

More than 50% of Mexico is considered as a semiarid region where water avail-
ability is limited by the low annual precipitations below 500 mm. In addition 74%
of the rainfall is concentrated in 4 months from June to September. This fact has
forced the construction of large infrastructure for water uptake. The surface with
irrigation infrastructure in México is 6.5 million hectares distributed among 85
irrigation districts and 39,492 irrigation units (Martinez 2013). The National Water
Commission (CONAGUA) recognizes the irrigation districts as geographic areas
where irrigation service is provided by hydro-agricultural infrastructure such as
storage vessels, direct referrals, pumping stations, wells, canals and roads.

The Alto Rio Lerma Irrigation District (ARLID) is the biggest in the Lerma
Chapala Basin as shown in Fig. 1. It is located in the southern part of the state of
Guanajuato. INEGI (2010) reported that 10 states of Mexico generated 65% of total
gross domestic product and Guanajuato is one of them. This Irrigation District
provides water to 11 crop production modules which are legal civil associations
with concessions granted by the Government that allow them to use the irrigation
infrastructure and water (Kloezen et al. 1997), for the purpose of growing crops.

The ARLID has a total area of 112,772 ha under irrigation from which
77,697 ha have surface water, 7,421 ha are irrigated from official wells and
27,654 ha from particular wells. The main Autumn-Winter crops are wheat, barley,
beans, broccoli which need 4–5 irrigations. Spring and Summer crops are sorghum,
corn, beans and broccoli, which use one or two irrigations and wait for the rain. The
available surface water amount was 872 MCM (Millions of cubic meters) and
groundwater availability 330 MCM in 1999, with a water availability reduction of
10% every year (Pérez et al. 2011). However, the National Water Commission
(NWC) for the period 2013–2014, announce a water availability of 800 MCM in
the Irrigation District 011 for 46, 000 ha in Winter, and 77,000 ha in Spring and 2°
crops with a total area availability of 112,000 ha (Dominguez 2013).

Fig. 1 The Alto Rio Lerma irrigation district in guanajuato
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There are differences in irrigation patterns of different crops; the main and most
obvious difference is based on the season, given that during the Spring-Summer
cycle water comes from rainfall, whereas for the Autumn-Winter cycle it almost
entirely comes from irrigation sources.

Due to the necessity to optimize the water management in agriculture, many
studies have been done in Irrigation Districts in Mexico. Ortega et al. (2009)
proposed a model for resource optimization for the Irrigation District 005 located in
Chihuahua which was a linear programming model to maximize benefit subject to
water and land constraints, with four scenarios of water availability. Four crop
patterns were found that maximize the benefits.

Zetina et al. (2013) pointed out the use of linear programming models by many
authors (Liu et al. 2007; Jabeen et al. 2006; Godínez et al. 2007; Florencio et al.
2002; Garrido et al. 2004) to obtain an economic valuation of water. Particularly,
Florencio et al. (2002) modeled scenarios with linear programming in the Alto Río
Lerma Irrigation District to estimate the economic value of water, the obtained
economic price of water varied between 0.54 and 2.28 pesos per m3 for surface
water, and between 0.66 and 1.25 for underground water, values that are higher
than the current prices paid.

Another approach used in Irrigation Districts in México is Multiobjective
Optimization to help in the decision making process. Sanchez et al. (2006) applied
multiobjective decision making in the Irrigation District 017 using the following
criteria: productivity of water for irrigation, increase of the conduction efficiency,
increase in the global efficiency of the irrigation district. They concluded that this
tool is very useful when we have conflicting objectives related with water man-
agement. Salazar et al. (2005) applied multicriteria decision making to an irrigation
district in mexico considering economic and environmental objectives and they
found a compromise solution to minimize the environmental damage of the region.
Also Salazar et al. (2010) approach a problem for water distribution between
agriculture, industry and domestic usage in the Mexican Valley using a multiob-
jective linear model and they propose three policy scenarios and two priority orders
of importance but the final decision depends on the decision maker.

A specific problem arises in agricultural production by the uncertainty in prices
which affect dramatically the farmer´s income. Figure 2 shows the price variation in
the main agricultural products in ARLID, all prices were converted to prices base
2009 using the inflation rate and agricultural price index.

Specially for horticultural products price can vary even in a daily basis, so in
addition with many production problems, farmers have to deal with high uncer-
tainty in agricultural prices. Therefore, the purpose of this study is to concentrate
our attention in how price variation can affect the farmer’s net income and how to
deal with this problem, using a modelling technique to maximize the net income in
a fuzzy environment.
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2 Mathematical Model

In agricultural production profit coefficients depend on the climatological variables
so farmers have to deal with uncertain factors during the growing season, stochastic
analysis could be the most natural model to deal with prices as random variables.
However to define the probability density functions for the random variables could
be difficult and not realistic for the producers. An alternative approach is proposed
by Itoh et al. (2003) for minimum value maximization of the total gains subject to
the probability distributions of the n-dimensional profit coefficients which were
treated as a discrete random vector. Garg and Raj (2010) improved the Itoh model
by applying fuzzy multiobjective linear programming to the same problem and they
concluded that the results obtained in their algorithm are clearly superior to the
approach of Itoh because it is free of an arbitrary parameter value d as taken by Itoh.

The Garg and Raj model can be used when the profit coefficients are crisp
discrete random variables. The fuzzy multiobjective linear programming approach
is summarized below.

The first step is to solve the problem under different probabilistic scenarios one
by one using linear programming techniques taking one objective function with
constraints at a time while ignoring the other probabilistic cases. Then the lower and
upper bounds (z

0
k and z*k) for each objective function zk(x) are obtained, where x is

the decision vector.
Next a linear and nondecreasing membership function is applied based on the

concept of preference or satisfaction:
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μkðxÞ=
1 if zkðxÞ > z*k
zkðxÞ− z

0
k

z*k − z0k
if z

0
k ≤ zkðxÞ≤ z*k

0 if zkðxÞ < z
0
k

8><
>: ð1Þ

Then multiobjective fuzzy linear programming is transformed into a linear
programming problem introducing the maximum and minimum objective values
into the constraints.

Using the above approach, in this paper we will find the most profitable scenario
for the Alto Rio Lerma Irrigation District (ARLID) in Mexico, given uncertain crop
prices.

The fuzzy multiobjective linear programming model for the ARLID is described
below. Assume we have K price predictions, which are uncertain. First we ignore
the uncertainty and construct deterministic model. For each price prediction we
have the objective function

zk = ∑
n

j=1
ðYjPðkÞ

j −CjÞ
h i

*Xj ð2Þ

where

zk net benefit in pesos ($)
n number of crops
Yj yield of crop j

PðkÞ
j

predicted Price of crop j in scenario k (peso/ton)

Cj production cost of crop j (peso/ha)
Xj decision variable, area of crop j (ha)

These objectives define a multiobjective optimization problem. The constraints
are as follows:

(a) Winter crops require more irrigation water, so the irrigated area in Winter is
limited

∑
W

j=1
Xj ≤ AW ð3Þ

where W is the number of Winter crops
(b) Area limitation for Spring and Summer crops

∑
n

j=W +1
Xj ≤ AS ðAS > AWÞ ð4Þ
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(c) Annual water usage is bounded by its availability

∑
W

j=1
CWRjXj ≤ WA ð5Þ

where
CWRj = water requirement of crop j per year

(d) Some crops need to be irrigated by groundwater and some by surface water
only. Let G and S define the sets of such crops, respectively. Then we have to
add two constraints to the model:

∑
jεG

CWRjXj ≤ WAG ð6Þ

∑
jε S

CWRjXj ≤ WAs ð7Þ

(e) Each crop needs a minimum area by the minimum possible demands:

Xj ≥ Xmin
j ð8Þ

In applying the model introduced by Garg and Raj we have to identify lower and
upper bounds for each objective. The upper bound is selected as the maximum
value z*k of the objective. It can be obtained by using the simplex method, since all
objectives and constraints are linear. We can also define lower bounds which are the
minimal acceptance levels of the objective functions. If zmin

k is the minimal value of
objective zk then the lower bound zk* can be selected as a value in interval [zmin

k , z*k].
The following fuzzy membership function is chosen:

μðzkÞ=
zk − zk*
z*k − zk*

if zk* ≤ zk ≤ z*k
0 if zk < zk*

�
ð9Þ

So the multiobjective model can be replaced by minimizing the minimal
membership α= mink μ ðzkðxÞÞ value of the objectives.

Then we have the following new objective and constraints:

max α ð10Þ

Subject to

∑
n

j=1
aðkÞj Xj − zk*

z*k − zk*
≥ α ðk=1, 2, . . . ,MÞ ð11Þ
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where

aðkÞj =YjP
ðkÞ
j −Cj ð12Þ

Notice that constraints (10) are also linear

∑
n

j=1
aðkÞj Xj − αðz*k − zk*Þ ≥ zk* ðk=1, 2, . . . ,MÞ ð13Þ

Finally, the fuzzy model is summarized below:

Max α

Subject to

∑
W

j=1
Xj ≤ AW

∑
n

j=W +1
Xj ≤ AS ðAS > AWÞ

∑
W

j=1
CWRjXj ≤ WA

∑
jεG

CWRjXj ≤ WAG

∑
jε S

CWRjXj ≤ WAS

Xj ≥ Xmin
j

∑
n

j=1
aðkÞj Xj − αðz*k − zk*Þ ≥ zk* ðk=1, . . . ,MÞ

The decision variables are Xjð1 ≤ j ≤ nÞ and α.
Notice this is a linear programming problem.

3 Model Parameters and Data

According to past price records ten probabilistic price scenarios (in base 2009) are
considered in Table 1 for different crops. The yield and production costs are also
presented.

From 10 years records in the ARLID, each crop has a minimum area sown
displayed in Table 2. According to NWC the water availability for the year 2013–
2014 is 800 Mm3. The most important season for irrigation is the Winter season
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from November to May when the irrigation requirement is high. The total surface
water availability is 584 Mm3; and groundwater availability is 216 Mm3.

4 Results

Each price scenario in Table 1 generates a different objective to be maximized.
Using a linear programming solver we obtained the maximum values for each
objective. The corresponding values of the other objectives are shown in Table 3,
the values in the diagonal represent the maximum values for objectives 1–10. In
column 2 we notice that when objective 1 is maximized objective three also reached
the same value, and similar cases happened in the other objectives except for
objectives 3 and 5. A more detailed description is provided in Table 4, where each

Table 2 Crop water requirements for different water sources

Crop MA1 (Has) CWR2 (m3) Crops S and G3

Winter Onion 256 7860 G
Barley 2082 7870 S
Beans 29 6950 S
Broccoli 1057 9400 G
Carrots 79 7000 G
Cauliflower 273 9400 G
Red tomato 93 3700 G
Wheat 8902 5800 S

Spring Onion 9 5590 G
Barley 0 6500 S
Beans 199 5150 S
Broccoli 104 6870 G
Carrots 22 7150 G
Corn 161 6410 S
Red tomato 54 6200 G
Sorghum 313 8200 S
Wheat 288 5800 S

2nd crops Beans 0 16670 S
Corn 0 6410 S
Sorghum 415 2200 S

1Minimum area
2Annual crop water requirement
3Crops irrigated by Surface (S) and Groundwater (G)
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column represents the optimal cropping pattern for each maximized objective. In
the Winter season red tomato and wheat changes the sown area according to the
price scenarios, the rest of the crops in this season remains with the same area. In
the spring season four crops: onion, barley, corn, red tomato, and wheat have area
variation for different price scenarios. The most drastic situation occurs with barley,
for this crop only scenario 5 could be suitable, in the other cases the recommen-
dation is zero area for this crop. Finally, the second crops, corn is the one that has
drastic variations, only price scenarios 9 and 10 are favorable for sowing this crop.

The last column in Table 4 represent the optimal cropping pattern scenario under
price uncertainty, solved by using Multiobjective Fuzzy Linear Programming
(MFLP). This result represents the best outcome the farmers can expect given the
price uncertainty. In other words, the result is obtained by minimizing the maxi-
mum loss in this situation. These results are very similar to scenarios 6–10 until the
row 14 (carrots in Spring). The MFLP results have a substantial increase in the area
dedicated to corn and wheat in the Spring season.

The last row in Table 4 show the maximum net income for each scenario
including the Fuzzy Multiobjective scenario, we can observe that the maximum net
income is obtained for scenario 9 because red tomato is one of the most profitable
crops reaching its maximum price in this scenario. Another important observation is
that the maximum net income for farmers can vary from 1,054 to 10,162 millions of
pesos, which represents a large range in net returns of 9,108 million of pesos. For
the Fuzzy Multiobjective Model (last row last column) the maximum net income is
4,820 million pesos, which is not as high as in scenario 9 but it is the benefit the
farmers can expect to distribute the available land between crops.

Table 5 reports the best use of the available land under price uncertainty, for
Winter season the most important crops are red tomato and wheat and for the Spring
season corn and wheat, for second crops only sorghum.

Table 3 Optimal profit values for ten prices scenarios in millions of pesos

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z1 1054 1493 1842 2691 3738 3651 3949 5705 5808 5232
Z2 915 2368 1885 5874 4626 9495 8941 9156 10153 7549
Z3 1054 2274 2055 5231 4739 8227 7935 8633 9464 7285
Z4 915 2368 1885 5874 4626 9495 8941 9156 10153 7549
Z5 1039 2259 2038 5156 4755 8168 7898 8344 9413 7141
Z6 915 2368 1885 5874 4626 9495 8941 9156 10153 7549
Z7 915 2368 1885 5874 4626 9495 8941 9156 10153 7549
Z8 915 2368 1885 5874 4626 9495 8941 9156 10153 7549
Z9 696 2179 1648 5723 4543 9354 8925 8891 10162 7763
Z10 696 2179 1648 5723 4543 9354 8925 8891 10162 7763
Zmax-Zmin 358 875 407 3182 1016 5843 4992 3451 4354 2530
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5 Conclusions

This work applied multiobjective linear programming in a fuzzy environment to
solve the problem of maximizing profits in the Alto Rio Lerma Irrigation District
when prices are uncertain. Given historical data of price variations the different
crops, ten price scenarios were proposed. The most profitable scenarios were 6 and
9 however there is a low chances that the farmer can get these prices. Planning the
agricultural production is a difficult task because the farmers have to face many
uncontrollable factors. Therefore, we need to distribute the available land in a less
risky environment. The approach we apply here provides a compromise solution or
the best solution the farmers can take to maximize the minimum value of the total
gains given the random prices.

The total area occupied by the crops for all seasons was 112,000 ha, with a
weighted profit of 4820 millions of pesos. For winter season the most profitable
crops were red tomato and wheat, while in the Spring season corn and wheat and
for the second crops sorghum was more profitable.
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Optimal Replacement Decisions
with Mound-Shaped Failure Rates

Qiuze Yu, Huairui Guo and Miklos Szidarovszky

Abstract Time-to-failure distributions with mound-shaped failure rates are
examined, and the existence of optimal preventive replacement policies is studied.
Sufficient and necessary conditions are derived for the existence and the uniqueness
of the optimal solutions. The cases of lognormal, log-logistic, log-gamma and
log-Weibull variables are discussed in detail. Examples of lognormal cases are
provided for illustration.

1 Introduction

Determining optimal preventive replacement policies is one of the most important
tasks of reliability engineering. Many different models have been proposed (Jardine
2006; Jardine and Tsang 2006; Elsayed 1996; Wang 2002; Wang and Pham 2006;
Misra 2008; Nakagawa and Yasui 1987). In industrial applications, the reward
renewal model is probably the most popular approach (Jardine 2006; Jardine and
Tsang 2006). The reward renewal model offers a mathematical method to determine
optimal preventive replacement policies by minimizing the expected cost per unit
time. In the case of distributions with increasing failure rates, such as normal,
Gumbel and Weibull distribution (when the shape parameter is larger than 1), there
is always a unique optimum, and a preventive replacement should be conducted at
this optimum. However, if the failure rate does not increase monotonically, is there
still an optimum preventive replacement time? Failures caused by fatigue are often
modeled by lognormal distributions; however, the failure rate of a lognormal dis-
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tribution always increases first and then starts to decrease. In this paper, we will
consider distributions with mound-shaped failure rates including lognormal,
log-logistic, log-gamma and log-Weibull variables.

After a brief review of the reward renewal optimization model, general formulas
will be introduced for the exponential transformation of random variables, which
will be then used to obtain the cumulative distribution function (cdf), probability
density function (pdf) and failure rate of each of the distribution types under con-
sideration in this paper. These results will be the basis for examining the existence
of finite optima and their computations in the considered cases.

2 Model for Optimum Preventive Replacement

Let T denote the time to failure of an object with pdf f ðtÞ, cdf FðtÞ, reliability
function RðtÞ, and failure rate ρðtÞ. If the preventive replacement is scheduled at
time period t, then the object is replaced unless it has failed before, in which case, it
is replaced immediately. Assume that the average replacement cost Cf at a failure is
higher than the average cost Cp of a scheduled preventive replacement. The
expected cost of replacement is:

CpRðtÞ+Cf 1−RðtÞð Þ ð1Þ

and the expected time until replacement is:

Z t

0
tf ðtÞdt+ tR tð Þdt=

Z t

0
RðtÞdt ð2Þ

Therefore, the expected cost per unit time is given as (Jardine 2006; Jardine and
Tsang 2006):

GðtÞ= CpRðtÞ+Cf 1−RðtÞð ÞR t
0 RðτÞdτ

ð3Þ

which has to be minimized by finding the optimum replacement time t. Notice that
limt→ 0 GðtÞ=∞ and limt→∞ GðtÞ=Cf ̸EðTÞ. In order to find the optimum, the
derivative of GðtÞ has to be examined, which has the same sign as:

Cf −Cp
� �

RðtÞ f ðtÞ
RðtÞ

Z t

0
RðτÞdτ+RðtÞ− Cf

Cf −Cp

� �
ð4Þ

Since Cf >Cp and RðtÞ>0, the sign of G′ðtÞ is the same as the sign of function:
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kðtÞ= ρðtÞ
Z t

0
RðτÞdτ+RðtÞ− Cf

Cf −Cp
ð5Þ

The shape of this function can be examined if we can analyze the sign of its
derivative:

k′ðtÞ= ρ′ðtÞ
Z t

0
RðτÞdτ ð6Þ

Therefore, the monotonic properties of kðtÞ are the same as those of ρðtÞ. If ρðtÞ
is mound-shaped, then the same holds for kðtÞ, and both ρðtÞ and kðtÞ have max-
imum at the same value of t.

If EðTÞ=∞, then GðtÞ→ 0 as t→∞, and since GðtÞ>0 for all t>0, there is no
finite optimum and GðtÞ has its infimum at t=∞. So we will assume that EðTÞ
exists and is finite.

Notice that mound-shaped failure rates occur with lognormal, log-logistic
ðσ <1Þ, log-Weibull ðβ>1Þ and log-gamma ðα>1Þ distributions, where:

ρð0Þ= lim
t→∞

ρðtÞ=0

Furthermore, ρðtÞ increases for t< t* and decreases as t> t*, where t* > 0 is a
distribution dependent value. Clearly:

kð0Þ=0+Rð0Þ− Cf

Cf −Cp
<0

and

lim
t→∞

kðtÞ=0+ 0−
Cf

Cf −Cp
<0

Based on the value of kðt*Þ, there are two cases:

• If kðt*Þ≤ 0, then kðtÞ<0 for all t≠ t*, so GðtÞ strictly decreases and no finite
optimum exists. GðtÞ has its infimum at infinity.

• If kðt*Þ>0, then there are values t1 ∈ 0, t*ð Þ and t2 ∈ t*,∞ð Þ such that
kðt1Þ= k t2ð Þ=0, kðtÞ<0 if t< t1 or t> t2, and kðtÞ>0 as t1 < t< t2.

Therefore, t =̄ t1 is the local minimum and t2 is the local maximum. If
GðtÞ̄≤Cf ̸EðTÞ, then t has global minimum; otherwise, no finite optimum exists.

Since the distribution types to be examined in this paper are obtained by
exponential transformation from well-known distributions, we will briefly review
how the pdf, cdf, reliability function and failure rate can be determined.
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3 Exponential Transformation of Random Variables

Let Y denote a random variable with pdf fYðyÞ, cdf FYðyÞ, reliability function RYðyÞ
and failure rate ρYðyÞ. Assume that fYðyÞ>0 is defined in interval IY = α, βð Þ and
TðyÞ is a strictly increasing function in IY . Introduce the transformed variable
X =TðYÞ, then its cdf can be obtained as FXðxÞ=0 if x<TðαÞ, and FXðxÞ=1 if
X >TðβÞ. If x∈ IX = TðαÞ, TðβÞð Þ, then:

FXðxÞ=PðX < xÞ=PðTðyÞ< xÞ=Pðy< T − 1ðxÞÞ
=Fy T − 1ðxÞ� �

=Fy T ̄ðxÞð Þ=FYðyÞ
ð7Þ

where T ̄ðxÞ denotes the inverse function of TðyÞ. The pdf of X is therefore:

fXðxÞ=F
0
Y T ̄ðxÞð ÞT ̄0 ðxÞ= fY yð Þ 1

T 0ðyÞ ð8Þ

The reliability function is:

RXðxÞ=1−FXðxÞ=1−FYðyÞ=RYðyÞ ð9Þ

and the failure rate function becomes:

ρXðxÞ=
fXðxÞ
RXðxÞ =

fYðyÞ
T 0ðyÞRYðyÞ =

ρYðyÞ
T 0ðyÞ ð10Þ

Exponential transformation of random variables guarantees positivity of the
resulting variable. If the domain of Y is the interval −∞,∞ð Þ, then the transformed
variable is X = expðYÞ, and if the domain of Y is only interval 0,∞ð Þ, then the
values of X = expðYÞ− 1 run through the entire set of the positive real numbers. So
in such cases, TðyÞ is either expðyÞ or expðyÞ− 1 with common derivative
T 0ðyÞ= expðyÞ, and the inverse function T ̄ðyÞ is either ln x or ln x+1ð Þ. Thus, in
both cases:

FXðxÞ=FYðyÞ, RXðxÞ=RYðyÞ, fXðxÞ= fYðyÞ
exp yð Þ , and ρXðxÞ=

ρYðyÞ
exp yð Þ ð11Þ

Since transformation T yð Þ is strictly increasing, the monotonic properties of
these functions in x are the same as their monotonic properties in y.
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4 Particular Distributions

In this section, we will discuss the existence of the optimal replacement time for
lognormal, log-logistic, log-gamma and log-Weibull distributions.

4.1 Lognormal Distribution

If Y is a normal distribution with parameters μ and σ, then the failure time
T = exp Yð Þ is lognormal. From Eq. (11), we can get:

FðtÞ=Φ
ln t− μ

σ

� �
, RðtÞ=1−Φ

ln t− μ

σ

� �

f ðtÞ= 1
t σ

ϕ
ln t− μ

σ

� �

where Φ and ϕ are the standard normal cdf and pdf. So the lognormal failure rate is
as follows:

ρ tð Þ=
1

σ
ffiffiffiffi
2π

p exp − x2
2 − σ x− μ

	 

1−Φ xð Þ ð12Þ

with x= ln t− μ
σ . The failure rate functions for lognormal distributions with μ=0 and

different σ values are shown in Fig. 1.
The derivative of ρðtÞ has the same sign as:

exp −
x2

2
− σ x− μ

� �
1−ΦðxÞð Þ ρN xð Þ− x+ σð Þð Þ

where ρN is the standard normal failure rate. It is known that ρ
0
N <1, where ρN

strictly increases and approaches the horizontal axis as x→ −∞ and the 45° line as
x→ +∞. Therefore, there is a unique value x* such that ρNðx*Þ= x* + σ, and
ρNðxÞ> x+ σ as x< x* and ρNðxÞ< x+ σ as x> x*. Hence, the maximum of ρðtÞ and
kðtÞ occurs at t* = expðσ x* + μÞ. The value of kðt*Þ is used to determine the
existence of the optimal replacement time as given in Sect. 2. If kðt*Þ≤ 0, then there
is no optimum, and if kðt*Þ>0, then we have to solve the monotonic equation
kðtÞ=0 in interval ð0, t*Þ. Let t denote the solution. If GðtÞ̄≤Cf ̸EðTÞ, then t is the
global minimum; otherwise, there is no optimum.
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4.2 Log-Logistic Distribution

For a log-logistic distribution, the cdf and pdf are:

F tð Þ= expðxÞ
exp xð Þ+1

, f tð Þ= expðxÞ
σtðexp xð Þ+1Þ2

with x= ln t− μ
σ . Its failure rate is

ρðtÞ= expðxÞ
σ t expðxÞ+1ð Þ ð13Þ

If σ ≥ 1, then ρðtÞ decreases; otherwise, it is mound-shaped. It is easy to see that
ρ′ðtÞ has the same sign as:

expðxÞð1− σ − σ exp xð ÞÞ

This is negative if exp xð Þ> 1− σ
σ , positive as exp xð Þ< 1− σ

σ , and ϱðtÞ has maxi-
mum at x* = ln 1− σ

σ with the corresponding value of t* = expðσ x* + μÞ. The opti-
mum may exist if kðt*Þ>0, and the local minimizer t is obtained by solving the

Lognormal Distribution Failure Rate vs Time
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Fig. 1 Mound-shaped failure rate for lognormal distribution
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monotonic equation kðtÞ=0 in interval 0, t*ð Þ, and t gives global minimum if
GðtÞ≤Cf ̸EðTÞ.

4.3 Log-Gamma Distribution

In the case of the log-gamma variable, T = eY − 1, where Y is a gamma variable, the
cdf and pdf of T are as follows:

FðtÞ=FY lnðt+1Þð Þ, f ðtÞ= λ λ lnðt+1Þð Þα− 1e− λ lnðt+1Þ

Γ αð Þ t+1ð Þ

where FY is the gamma cdf with parameters α and λ. The failure rate is given as

ρðtÞ= zα− 1 exp − ðλ+1Þzð ÞR∞
z μα− 1 exp − λμð Þdμ ð14Þ

with z= lnðt+1Þ. If α≤ 1, then ρðtÞ strictly decreases, and if α>1, then ρðtÞ is
mound-shaped. ρ′ðtÞ has the same sign as:

zα− 2 exp − λ+1ð Þzð Þ α− 1− λ+1ð Þzð Þ½
Z ∞

z
μα− 1 exp − λ μð Þdμ+ zα exp − λ zð Þ

α− 1− λ+1ð Þz�

Let gðzÞ denote the bracketed term in the above equation. Clearly:

• gð0Þ>0,
• limz→ α− 1

λ+1 − 0 gðzÞ= +∞, limz→ α− 1
λ+1 + 0 gðzÞ= −∞

• limz→∞ gðzÞ=0

and

g′ðzÞ= zα− 1 exp − λ zð Þ
α− λ+1ð Þzð Þ2 − ðλ+1Þz2 + ðα− 1Þz+ ðα− 1Þ� �

which has the same sign as the second factor, the quadratic polynomial. Its roots
are:

z1, 2 =
α− 1±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα− 1Þ2 + 4ðα− 1Þðλ+1Þ

q
2ðλ+1Þ

where z1 < 0 and z2 > α− 1
λ+1. Therefore, g

′ðzÞ>0 if z< z2, and g′ðzÞ<0 as z> z2.
Therefore, gðzÞ is strictly increasing as z< z2, with a pole at z= α− 1

λ+1, and strictly
decreasing for z> z2, so g z2ð Þ has to be positive. The shape of gðzÞ for α=2 and
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λ=1 is shown in Fig. 2, where z2 = 1 and α− 1
λ+1 = 0.5. Since g z2ð Þ>0, there is a

unique value between α− 1
λ+1 and z2 such that g z*ð Þ=0. Notice that ρ′ðtÞ>0 as z< z*,

and ρ′ðtÞ<0 as z> z*. Therefore, z* and the corresponding value t* = exp z*ð Þ− 1
gives the maximum of ρðtÞ as well as the maximum of kðtÞ. If kðt*Þ≤ 0, then there
is no finite optimum; otherwise, there is a unique value t in interval 0, t*ð Þ such that
kðtÞ=0, which gives global minimum if GðtÞ≤Cf ̸EðTÞ. For computing the value
of z* ∈ α− 1

λ+1 , z2
� �

, the monotonic equation:

Z ∞

z
μα− 1 exp − λ μð Þdμ+ zα exp − λ zð Þ

α− 1− λ+1ð Þz =0

needs to be solved, and then t∈ 0, t*ð Þ is obtained by solving kðtÞ=0.

4.4 Log-Weibull Distribution

In the case of log-Weibull variable, T = eY − 1, where Y is a Weibull variable, the
cdf and pdf of T are as follows:

FðtÞ=1− exp −
lnðt+1Þ

η

� �β
 !

,

f ðtÞ= β

ηðt+1Þ
lnðt+1Þ

η

� �β− 1

exp −
lnðt+1Þ

η

� �β
 !
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Fig. 2 Plot of g(z) for α=2
and λ=1
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By introducing the new variable z= lnðt+1Þ as before, the failure rate becomes:

ρðzÞ= β
z
η

� �β− 1 1
ηez

=
β

ηβ
zβ− 1e− z ð15Þ

If β≤ 1, then this function is decreasing, and if β>1, then it is mound-shaped.
Since

ρ′ðzÞ= β

ηβ
zβ− 2e− z β− 1− zð Þ

the maximum of ρ zð Þ as well as the maximum of kðtÞ occurs at z* = β− 1 or at
t* = eβ− 1 − 1. So if kðt*Þ≤ 0, then no optimum exists; otherwise, the global mini-
mum is at the unique solution t of kðtÞ=0 in interval ð0, t*Þ if GðtÞ≤Cf ̸EðTÞ.

5 Examples

Since lognormal is probably the most popularly used distribution in life data
analysis, several examples of lognormal distributions are given in this section to
illustrate the theory discussed in the previous sections.

Assume that a component’s failure time distribution is a lognormal distribution
with μ=1 and the value of σ is given in each of the following examples. The
average preventive maintenance cost is Cp =400, and the average corrective
maintenance cost is Cf = 5,000.

Example 1: Assume that σ =2. We will determine the optimum replacement time
for this component.

Following the method given in Sect. 4.1, we have z* = − 1.937 and
kðt*Þ= − 0.082. Remember that kðtÞ has the same sign as the derivative of the cost
function GðtÞ. Since kðt*Þ<0, the cost function GðtÞ is always decreasing with t;
therefore, it does not have an optimum for this case. Notice that:

limGðtÞ
t→∞

=
Cf

EðTÞ =
Cf

exp μ+ σ2 ̸2ð Þ =676.676

The graph of kðtÞ is shown in Fig. 3.
The graph of the cost function GðtÞ is illustrated in Fig. 4.
Cleary there is no optimal replacement time interval.

Example 2: Assume next that σ =0.8. We will find the optimum replacement time
for this component.

Following the equations given in Sect. 4.1, we have z* = − 6.589× 10− 3 and
kðt*Þ=0.203. kðtÞ has the same sign as the derivative of the cost function GðtÞ. The
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two roots for kðtÞ=0 in Eq. (5) are t1 = 0.273 and t2 = 2.611. Gðt1Þ=2.379× 103

gives the local minimum and Gðt2Þ=3.716× 103 is the local maximum. Since
Gðt1Þ is less than lim

t→∞
GðtÞ= Cf

exp μ+ σ2 ̸2ð Þ =3.631 × 103, the unique solution for the

optimal replacement is therefore t1. The graph of kðtÞ is shown in Fig. 5, and that of
GðtÞ is illustrated in Fig. 6.

It is clear that there is an optimal replacement time interval for this example.

Example 3: Assume now that σ =1.05.
Following the equations of Sect. 4.1, we have z* = − 0.582 and kðt*Þ=0.027.

kðtÞ has the same sign as the derivative of the cost function GðtÞ. The two roots for
kðtÞ=0 in Eq. (5) are t1 = 0.29 and t2 = 0.898. Gðt1Þ=3.414× 103 gives the local
minimum, while Gðt2Þ=3.58 × 103 is the local maximum. Since Gðt1Þ is larger than
limt→∞ GðtÞ=2.881× 103, there is no optimal replacement time. The graphs of
kðtÞ and GðtÞ are shown in Figs. 7 and 8.

Fig. 3 Plot of k(t) for σ =2
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Fig. 4 Plot of G(t) for σ =2
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Fig. 5 Plot of k(t) for σ =0.8
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Fig. 6 Plot of G(t) for
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Fig. 7 Plot of k(t) for
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Obviously, G(t) does not have finite optimum.
The examples above illustrate the three possible cases for the lognormal dis-

tribution. From the theory discussed in this paper, it can be seen that the existence
of the optimal solution depends on the distribution parameters μ, σ, the average
preventive maintenance cost Cp and the average corrective maintenance cost Cf .
For the other distribution types with mound-shaped failure rates, as discussed in
Sect. 4 and as illustrated in the above three examples, the optimal replacement time
interval may or may not exist.

6 Conclusions

It is well known that an optimal replacement interval usually exists for components
with increasing failure rates. However, for some of the widely used failure time
distributions, such as lognormal and log-logistic, their failure rates are
mound-shaped. It is unclear if there is an optimal replacement interval for com-
ponents with such distributions. In this article, the solution of the optimal
replacement model, which minimizes the cost per unit time, was investigated in the
cases of mound-shaped failure rates, including the cases of lognormal, log-logistic,
log-gamma and log-Weibull distributions. A sufficient and necessary condition was
derived for the existence of the optimal solution, and a simple algorithm was
introduced to find the optimal solution, which is based on solving
single-dimensional monotonic equations for which standard methods are available
(Yakowitz and Szidarovszky 1989).

Fig. 8 Plot of G(t) for
σ =1.05
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A System Dynamics Approach to Simulate
the Restoration Plans for Urmia Lake, Iran

Mahdi Zarghami and Mohammad AmirRahmani

Abstract Increasing water demand is threatening many hydro-environmental
systems, particularly lakes in arid regions. The goal of this research is to assess
restoration plans for a drying saline lake, Urmia Lake, in Iran. In order to include
interactions of different lake sub-systems, effectiveness of the plans, as a chal-
lenging question for decision makers, is studied by a system dynamics model. The
plans that are studied and modeled are increasing irrigation efficiency, decreasing
irrigated land area, cloud seeding, inter-basin water transfer projects, and using
refined wastewater. Here, it is found that increasing irrigation efficiency by 4%
annually and controlling irrigated lands would have around 60% effect in revital-
izing the lake to its ecological level, among those considered restoration plans. By
linking potential policies to their outcomes, this modeling effort is a step toward
supporting the consensus to restore the lake.

1 Introduction

About 1.2 billion people are estimated to work in water-dependent sectors globally;
on the other hand, about 1.6 billion people are facing serious economic water
shortages (WWAP 2016). Several water management practices, like water transfer,
efficient usage, and demand reduction are proposed by managers to address eco-
nomic water shortages. However, due to resources limitations and interconnectivity
of the actions, there is usually not a straightforward and consensus based solution.
This inconsistency on the decisions by stakeholders, hence, has resulted in large
hydro-political fragmentations and conflicts among water stakeholders (Cooper
et al. 2015). Robust negotiations could play key role in solving this dilemma (Islam
and Susskind 2015), nevertheless, as long as the ambiguity of these problems and
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potential solutions and impacts persist, engagement of main patrons in an appro-
priate action is unexpected (e.g. climate talks, genetically modified foods, and polar
code among others). The resulting delay may end in loss of humanitarian, financial,
and natural resources.

The degradation of inland lakes typically has many known and unknown causes:
usually with analogy among them (AghaKouchak et al. 2015). Diverting water for
industrial, agricultural and domestic uses and climate change are among the reasons
found for the degradation of inland lakes. The Amu-Darya and Syr-Darya rivers
have almost ceased to flow to the Aral Sea due to irrigation withdrawals in
Central-Asia. This resulted in a 23 m drop in the level of the lake between 1940 and
2000. Two shallow separated remained lakes accelerated the desertification in the
region and consequently caused a deep social, ecological and economic crisis
(Nihoul 2004). Although some restoration plans have been implemented, the Aral
Sea has not been revitalized due to lack of co-operation between regional gov-
ernments (Barghouti 2006). Lake Chad is another striking example of a drying lake.
Decreasing precipitation and the growth of agriculture are almost equally blamed
for dramatic decline in the level of the lake (Coe and Foley 2001). The neighboring
countries of Lake Chad have agreed to divert water from the Oubangui River to the
lake basin to save Lake Chad, but consequences are not clear.

Decision makers can see the outcomes of different policies in
hydro-environmental management by employing simulation models. Identifying
interventions and feedbacks among systems elements is an essential part of sus-
tainable development solutions (Simonovic 2009). The System dynamics (SD) ap-
proach, which is designed for complex dynamic problems, is an effective tool for
policy analysis studies of social, economic and hydro-environmental systems
(Forrester 1973; Simonovic 2009; Arshadi and Bagheri 2014). SD allows modelers
to conduct multi-scenario, multi-attribute analyses that result in relative compar-
isons of many alternative management strategies over time (Sahlke and Jacobson
2005). It provides a process to facilitate negotiations, joint understanding of water
problems and cause-and-effect relationships between stakeholders’ actions. A few
hydro-environmental research studies have been conducted on lakes using the SD
approach. For example, Guo et al. (2001) used this method to evaluate the envi-
ronmental, social, and economic impacts of Chinese government policy on the
quality of water in Erhai Lake. Liu et al. (2008) used SD to understand the effect of
urban population increase and economic development on the eutrophication of a
lake. Hassanzadeh et al. (2012) simulated Urmia Lake basin by a SD model to
determine how much each known cause had been co-respondent in the level fall of
the lake. Mirchi (2013) developed an eco-environmental dynamic model to study
the recovery of Lake Allegan under several policies.

The recent decline in water levels in Urmia Lake, located in Northwestern Iran,
is an environmental disaster in progress. The main reasons of this decline in water
levels are still being challenged by academics and researchers. Rapid population
growth, improper crop patterns, insufficient irrigation systems and water misman-
agement are also suggested as causes of water overuse (Madani 2014; Merufinia
et al. 2014). Analysis of facts indicates during 1984–2005, water consumption in
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irrigated lands has been increased by almost 150% in the basin whereas population
is estimated to have risen by almost 50% (WRI 2013a). Delju et al. (2013) analyzed
climate variability by statistical methods and found that mean precipitation has
decreased by 9.2% and average maximum temperature has increased by 0.8 °C.
Also, they used an index to study drought in the region and concluded that since
1996, the watershed has faced moderate to extreme droughts. Fathian et al. (2014)
estimated trends of precipitation, temperature and measured flows in Urmia Lake
basin using non-parametric statistical tests. High correlation between decreasing
trend of streamflows in the basin and increasing of temperature is an evidence for
contribution of climate change.

The goal of this research is to propose a framework to test the effectiveness of
recovery solutions for dead and drying lakes to facilitate the understanding of effects
of plans. To achieve this goal, a simulation model is first developed to model
different drivers and processes for the Urmia Lake case study in order to assess plans
to achieve its sustainability for current and future generations. The main advantage
of this approach is that by simulating consequences of different policies on the lake
management, “fixes that fail” might be reduced. For example, the Urmia Lake
Restoration Program (ULRP) has suggested nineteen solutions; these plans include
hard and soft solutions, such as increasing irrigation efficiency, decreasing irrigated
lands area, cloud seeding, inter-basin water transfer projects, and using refined
wastewater. Estimating environmental and economic consequences of each plan is
highly enlightening. This paper, based on available data and modeling limitations,
simulates six restoration plans for this case study and compares their separate and
combined effectiveness. Moreover, a simulation model can help stakeholders reach
an agreement and build trust. Lack of co-operation and trust are the most important
crisis in achieving robust restoration strategy and implementation of it (Zarghami
and Alemohammad 2015). Hence, achieving a joint fact-finding of the complex
system of lakes is essentials to have effective water management. Hence this research
—by providing a tool to visualize the effects of the restoration plans—could help to
build trust among conflicting users to address the current fragmentation.

In the rest of chapter, the Urmia Lake case is presented in Sect. 2. In Sect. 3, the
methodology of SD is used to model the Urmia Lake problem. In Sect. 4 the results
of applying six restoration plans are provided and finally, Sect. 5 concludes the
research.

2 Problem Description: Urmia Lake Case Study in Iran

Urmia Lake is the largest inland lake of the country and one of the largest saline
lakes in the world (Fig. 1). Within the lake basin is a highly influential and valuable
aquatic ecosystem. Approximately 800 species of birds, mammals and inland
plants, including the unique Artemia sp., inhabit the lake and its wetlands (adopted
from Asem et al. 2014). Because of its unique natural and ecological features, the
lake and its surrounding wetlands have been designated as a National Park, Ramsar
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Site, and a UNESCO Biosphere Reserve (CIWP 2008). The lake basin, as a
socio-ecological region, has experienced extreme water shortages in recent years
(Alipour 2006; Zarghami 2011; Khatami 2013; AghaKouchak et al. 2015). The
groundwater level in some parts of the basin has dropped by up to 16 m. As
presented in Fig. 2 the water level of the lake and its surrounding area are now
below the critical level (1274.1 m above sea level based on Abbaspour and
Nazaridoust 2007). Wind-blown salty dusts from dry areas of the lakebed can
become a serious threat to the health of the people residing in the area if the water
inflow falls short of its minimum level of 3 billion cubic meters annually to sustain
the lake.

Given the severity of the situation, saving drying Urmia Lake is currently one of
the top priorities of national and several international organizations (including
United Nations Development Programme, United Nations Environment

Fig. 1 Map of Urmia Lake basin
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Programme, and the Japan International Cooperation Agency). However, there is a
lack of comprehensive research to evaluate the effects of alternative restoration
plans on the lake. This research, therefore, provides a SD framework to determine
the feasibility and compare the effectiveness of plans in order to help better to
understand the effects of them. This research deals with two important questions.
The first set of questions concerns the condition of the lake in the near future
without action, while the second evaluates effective plans to address the current
conditions. Theoretically, the first question leads to an argument about “the tragedy
of the commons,” and the second heads an argument to prevent “fixes that fail.”
The question of this paper is focused on the second one that which plans would be
most effective and efficient in sustaining the basin. These options will be studied in
two groups:

• Soft solutions: Increasing water efficiency, water allocation adjustments like
reuse of refined wastewater for environmental needs.

• Hard solutions: Reducing agricultural area, cloud seeding, inter-basin water
transfer.

These proposed solutions need to be compared and contrasted objectively and
SD tools can be used to simulate their effect on the lake.

3 SD Model Framework

Studying dynamic behavior of a complex system with interacting subsystems is
simplified by SD. Analyzing a hydro-environmental system without the systems
thinking can lead to an unsustainable management (Mirchi 2013). SD, with its
capacity to model casual relationships and system thinking, is well suited for
simulating and understanding water resources and environmental systems. Hence,
the Urmia Lake System Dynamics (ULSD) model is developed as a prototype for
comprehensive analysis of the Urmia Lake’s behavior and possible solutions to
restore it.
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Fig. 2 Mean annual water
level in Urmia Lake (Data
source Iran Water Resources
Management Company)
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Defining key variables based on approaches and goals is a crucial step in
developing the model. Usually, lake volume and level are variables which could
indicate the environmental condition. For instance, salt concentration of water or
aquatic population could be estimated by volume of the lake. Hence, lake volume
and level are key variables, and they are employed to indicate the lake condition.

Determining system goals and variables, and visualizing them using a casual
loop diagram, is essential to understand nature of the model and interactions of the
variables. Figure 3 demonstrates interactions of variables in the SD model of the
lake. Modeling circular feedbacks of variables is the core of system thinking. This
loop diagram could be drawn based on former studies and based on interviews with
the experts working on different aspects of the system. In other words, in this step,
drivers of complex system of a lake are identified and linked by arrows.

The data are obtained and collected from the regional water authorities as well as
the agricultural departments and ULRP. Table 1 demonstrates main variables and
their data sources.

Variables which affect the key variable (Lake Level/Volume) are easy to iden-
tify. Inlet to the lake includes direct precipitation on the lake. A simple water
balance equation also could be used to estimate direct inflow to the lake. Direct
evaporation from the lake is the most crucial outlet of the terminal lakes. In this case
study, water in the lake is salty; hence, there is no water extraction or diversion
from the lake.

Lake
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Shortage
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-
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Water Demand

+

Water Supply +

+
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Cloud Seeding+

Water Stress
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Fig. 3 Casual loop diagram of ULSD model
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The social system of the lake is influenced by the basin population. Usually the
more people that live in the basin, the more water is consumed. In addition, when
more water is available and the lake is not in disastrous condition, population
growth rate and immigration to the basin tend to be positive. The gross domestic
product of the basin partially depends on agriculture; this economic interaction
links the hydro-environmental and social systems. Economic growth could affect
the population and the tendency of farmers to increase their cultivated land.

News about the lake in the media is a proxy which can demonstrate the public
sensitivity to critical condition of the lake and the disaster happening; The water
news in the media is not a precise indicator of water situations (as shown in
Hurlimann and Dolnicar 2012 and Garcia et al. 2016) however it is really an
effective measure of population variables, especially the interest of people in
migrating in or out of the basin. In this research, the number of alarming news on
the lake is measured by web search and the result in Fig. 4 shows a strong inverse
correlation with the lake level shortfall.

To couple social awareness and hydrological conditions of the basin, shortage
index, SI, is introduced. Then the following equation is developed to define the
shortage index for the lake:

SI =
0 H ≥ H
H
H

HE < H < H
2 H
HE

H < HE

8<
: ð1Þ

H is water depth in the lake, H is long-term average depth and HE is ecologic
water depth in the lake. The aim of proposing restoration plans in this research is to
increase the lake level and then reduce the shortage index. In reverse, increasing the
shortage index will motivate the managers to pursue restoration plans. In Fig. 3,
dashed arrows demonstrate the variables which are added to the casual model in
case of using restoration plans. More detailed information about restoration plans
are explained in Sect. 3.2.

The last step in developing the model is articulating it with mathematical
equations in a software environment and calibrating it. VENSIM software, which is

Table 1 Main variables of the model and sources for their historical data

Variable Source

Irrigated area WRI (2013a)
Lake level Urmia Lake Restoration Program
Population WRI (2013b)
Precipitation Rahmani and Zarghami (2013), updated from IWRMa for 2011–2015.
Temperature Rahmani and Zarghami (2013), updated from IRIMOb for 2011–2015.
Evaporation Calculated based on modified pan evaporation data from WRI
Evapotranspiration Calculated based on Belaney and Criddle (1950)
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free for educational purposes, is selected for this research. In this study, a dynamic
water balance approach is employed to develop the model because of its simplicity
and operationality. The water balance equation which is based on the principle of
conservation of water mass in a terminal lake is demonstrated as:

SðtÞ =
Ztn

t0

½GWðtÞ+RðtÞ+ SWðtÞ+ IðtÞ−EðtÞ�dt+Vðt0Þ ð2Þ

where S(t) is lake storage, GW(t) is groundwater volume inlet to the lake, R(t) is
rainfall volume inlet to the lake including the cloud seeing effect, SW(t) is surface
water volume inlet to the lake including inter basin water transfer and refined
wastewater, I(t) is water inflow to the lake, E(t) is evaporation volume from lake
and V(t0) is initial lake volume; all at monthly periods of t.

The evaporation volume of the lake is calculated as:

EðtÞ=CpanCsaltEFðtÞAðtÞ ð3Þ

EF(t) is the rate of evaporation of fresh water from the pan in that area, and A
(t) is the lake wet area at time t. Since evaporation from natural water body is less
than the pan, then Cpan or pan coefficient is used to amend it. A coefficient Csalt is
also employed to adjust difference between evaporation from fresh and salty water.

To estimate domestic water demand, population is multiplied by average water
consumption per capita in the basin. Industrial demand is roughly assumed to be a
percentage of domestic demand. Irrigated area multiplied by average agricultural
water consumption per area in the basin which then equals to water demand in
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agriculture sector. Evapotranspiration in the basin is calculated based on Belaney
and Criddle (1950) formula.

3.1 Calibration and Validation

To test the model, its results are compared with observations. In addition, the
behavior of a model under different circumstances can help determine if the model
is behaving properly. Therefore, two tests, behavior reproduction and behavior
anomaly (Sterman 2000), are employed to test the model.

For behavior reproduction, lake volume changes are best suited for testing. The
calculated volume of the lake from its volume-elevation table for the period of
1991–2011 is used to calibrate the model. Observed lake level and modeled values
are plotted in Fig. 5. The correlation measure (R2) is 0.95 and normalized
root-mean-square error (RMSE) for the lake level change is 0.10, which show
acceptable fitness of modeled values to the observed data.

For behavior anomaly, two key variables (irrigation area and precipitation) are
assumed zero to evaluate the behavior of the system. These two variables are
important because they are representing the main drivers of water supply and
demand. Figure 6 represents the change in the volume of the lake by assuming zero
irrigation and zero precipitation. In the first case the lake will be full without any
decline and in the second case the test represents that lake will be completely dried.
Then both cases are reasonable and it shows that model has acceptable behavior.

Variables of population, news, farmed area and groundwater are also validated
by two mentioned tests (behavior reproduction and behavior anomaly tests), which
their report is omitted to save the chapter space. Although the modeling approach of
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this paper differs from that of the Regional Council on Lake Urmia Basin Man-
agement (2012), the results of this modeling approach confirm their findings.

3.2 Restoration Plans

The scientific approach to recovering dead and drying lakes is to investigate the
causes of the disaster and to stop them, if they are anthropogenic. Sometimes,
eliminating source of the problem is not beneficial in bringing back the lake then
additional means are needed. In addition, political, social and economic factors
could prevent the removal of the drivers. Hence, six lake restoring plans which are
among suggestions of ULRP for saving the lake are considered. There are also other
plans suggested by the scholars (such as not cultivating water intensive crops)
however due to the modeling limitations they are not considered here but will be the
topic of future work. The modeled plans are explained as below and also sum-
marized in Table 2.

Plan 1—Increasing irrigation efficiency: Most academics and engineers agree
that low efficiency of agricultural water use is problematic and one of the reasons
for water overuse (Ardakanian 2005; Madani 2014 among others). Hence,
increasing water efficiency is often considered as a solution for water scarcity
problems. For the case of Urmia Lake, it is assumed in a 10 year plan that water
efficiency could be raised from 30 to 70% in the basin (i.e., 4% annual increase of
this parameter).

Plan 2—Reducing irrigated land: Rapid growth in water consumption for
agricultural section is a major factor in some cases of drying lakes (Aral Sea, Urmia
Lake, etc.). Therefore, plan 2 is to stop the growth of irrigated area and to decrease
it then it could be a solution which is followed in this plan (Zarghami and Ale-
mohammad 2015). The land reduction variable linearly decreases based on the
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shortage index, however it is assumed to have maximum reduction of 5% (constant
and not compounded) because of the social resistance regarding this plan.

Plan 3—Cloud seeding: Cloud seeding (to increase precipitation over an area)
could make an effective contribution toward reducing water stress. Consequently,
adding some water to the basin by this plan could help to restore the Urmia Lake.
Although cloud seeding impact is uncertain based on the seeding method, climate
of the region, and type of clouds, it is assumed that cloud seeding could enhance the
annual precipitation by up to 7%. This value is the rough average of numbers found
in the literature (e.g. Curic et al. 2007; Silverman 2010; Acharya et al. 2011,
DeFelice et al. 2014).

Plans 4 and 5—Inter basin water transfers: The other way of adding water to
a basin is via inter-basin water transfer projects. Two main water transfer projects,
considered by ULRP, are from the Zaab and Aras basins. The Zaab plan, in south of
Urmia Lake, could transfer 600 million cubic per year (MCM/Y) to the basin to
supply increasing water demands and not directly to the lake. Also there is a plan to
transfer 140 MCM/Y from the Aras basin, north of Urmia Lake (Zarghami 2011).
However, these projects are under construction/study and supposed to be in action
at least from 2020. Another issue is that these transfers will be partially allocated to
the current water demands other than the lake need. Then they are just to alleviate
the local and growing demands within the basin however their water return could be
a source.

Plan 6—Wastewater: Reuse of refined domestic and industrial wastewater is a
common solution to the water shortage in many regions. Hence, refining this water
and draining it directly to the lakes is among restoration plans. This project is
supposed to contribute 250 MCM/Y to Urmia Lake volume.

In addition to the level of the lake that serves best for measuring the restoration
success, two other indicators were selected to check if the plans lead the basin
towards sustainability. Relative water stress indicator (RWSI) computes the
demands on available water resources in a basin as

Table 2 Name of restoration plans and their characteristics

Plans Aim Horizon of
implementation

Annual
effect

Tolerance

P.1 Increasing irrigation
efficiency

2015–2025 4%a 2–6%

P.2 Reducing irrigated land Based on drought
intensity

0–5%a 0–10%

P.3 Cloud seeding 2015–2030 7% 5–9%
P.4 Transfer from Zaab 2020–2030 600 MCMb 500–700

MCM
P.5 Transfer from Aras 2020–2030 140 MCMb 120–160

MCM
P.6 Wastewater 2018–2030 250 MCM 200–300

MCM
a not compounding
b transfer to the basin and not directly to the lake
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RWSI =
DIA
Q

ð4Þ

where DIA is total demand (MCM) in a basin including domestic, industrial and
agricultural water needs and Q is total available surface and ground water (MCM).
RWSI > 0.4 for a basin indicates a highly stressed and critical condition (Vör-
ösmarty et al. 2005). Second, groundwater dependency (GD) expresses the relative
contribution of groundwater to basin water supply (Vrba et al. 2007). This indicator
can be computed as follow:

GD =
total groundwater abstraction

total surface and ground water supplies
ð5Þ

A favorable value for GD is assumed less than 0.25. Basins with high depen-
dency to groundwater have a GD value over 0.50.

4 Results

Here the results of simulating ULSD model from 2015 to 2030 are presented. The
results will be shown in two parts. First, the effect of each plan will be presented
and discussed individually. Second, the combined effect of the plans will be shown
in the first year of possible restoration of the lake.

4.1 Individual Effect of Restoration Plans

Figure 7 illustrates the lake level changes under each plan in comparison to the no
action condition. Plan 1 follows the policy of increasing water efficiency by 4%
annually. Hence, water efficiency increases to 70% by 2025 in the basin. It is seen
that improving this parameter could not save the lake on its own, because unin-
tended effect of this policy is to increase the irrigated area in addition to the crop
density by farmers to compensate the renovation costs of their irrigation systems. It
is estimated that RWSI and GD are almost 0.8 and 0.4 in the basin under this plan.
Hence, implementing only this plan neither restores the lake nor leads the basin to
sustainability because of the socio-economic responses of the stakeholders.

Reducing irrigation area (Plan 2) is shown to have no considerable difference
with the no action plan. Although decreasing area, results in 33% less agricultural
area after 15 years, however farmers’ reaction to this plan, might be to increase crop
density, therefore gradually makes this plan ineffective. While this plan cannot
bring back the lake, RWSI and GD are estimated to be almost 0.9 and 0.3 in the
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basin under this plan. This plan, if implemented, would result in negative
socio-economic consequences.

It is seen in Fig. 7 that adding extra water to the basin by cloud seeding cannot
revitalize the lake on its own, but it is beneficial. Cloud seeding project improves
GD to 0.3, but it makes RWSI worse in the basin because of more water con-
sumption as a consequence of having more water. As a note, it is assumed that this
project raises precipitation 7% in the basin, though the uncertainties of this esti-
mation must be acknowledged.

Inter-basin water transfers of Zaab and Aras are expected to have considerable
favor for restoration of the Urmia Lake. However based on Fig. 7 it appears these
projects cannot help the lake from drying up, because they partially contribute to
the agricultural water consumption but not to restoration of the lake. Transferring
water without any adjustment in water consumption habits and policies can backfire
(Gohari et al. 2013). It must be also noted that some international water transfer
plans would require additional levels of understanding, cooperation and diplomacy
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Fig. 7 Simulation of the individual effect of each plan on lake level by ULSD model
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(Islam and Susskind 2015). It is seen that stopping agricultural growth like other
plans cannot restore the lake on its own. Also, it is no more effective than Zaab and
Aras projects in contribution to sustainability indicators of RWSI and GD.

Zaab and Aras projects are proposed to transfer water to the basin and to supply
water needs, but refined wastewater is proposed to be transferred straight to the
Urmia Lake. Therefore, this project is expected to be more effective in saving the
lake, but implementing this project is not much more effective than Zaab and Aras
because of the low volume that it contributes to the lake.

4.2 Accumulative Effect of Plans

It is seen that a single plan could not restore the lake, therefore, a combination of
plans is required. Hence, assuming all of the plans are in action with sufficient
funds, then estimating the contribution of each plan is the objective of this paper. In
the case of implementing all six plans, RWSI is estimated to be almost 0.6 and GD
almost 0.4. Although RWSI indicates the basin is still highly stressed based on
international standards, it is below average RWSI in the region, which could make it
acceptable. In this scenario, the dynamics of the basin are totally different from the
scenarios in which each plan is applied alone. Due to the combination of plans in
this scenario, there is more water in the basin because of water transfers and cloud
seeding, and consequently, smaller area needs to be taken out from farming. The
contribution of each plan is plotted in Fig. 8.

Based on the results of this paper, implementing all of the plans could cause
Urmia Lake to be restored by 2022 to minimum ecological level even though some

Fig. 8 Contribution of each plan (%) in restoring the Urmia Lake to reach its ecological level by
2022
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plans are not completed by that time. It is seen that increasing water efficiency has
the most important share in saving the Urmia Lake. Having 7% increase in annual
precipitation by cloud seeding has a contribution about 28% in restoration of the
Lake. Based on the dynamics in ULSD model, 8% decrease in agricultural area in
3 years and stopping agricultural growth—until Urmia Lake is reached its historical
level (5 years after reaching minimum ecological level)—could have an 18% share
in revitalizing Urmia Lake. Implementing all plans makes it unnecessary to lower
agricultural area continuously. Refined water drained into the Urmia Lake is 8%
effective in refilling the lake. Since water transfer projects are in action from 2020
and the lake is restoring in 2022, these 2 years’ contributions in set of action plans
provides a small impact of 4%. Economic, social and environmental externalities of
each plan must be evaluated in detail, and these are the topics of next coming
researches. Considering the costs of plans, cloud seeding and increasing irrigation
efficiency are the most financially efficient ones. In addition, as there are uncer-
tainties in the parameters and modeling, the results need sensitivity analysis. For
this purpose, the Monte Carlo simulation is used to test the effects of the uncertain
plans. The tolerance in the effect of plans (as shown in the last column of Table 1)
is used in establishing uniform probability distribution functions. Finally, Fig. 9
represents the accumulative effect of plans on the lake level under uncertain con-
dition in implementing the six plans.

However, since restoring the lake is a complex problem, more studies are nee-
ded. One important extension of this work is to compare alternative plans using
multi-criteria analysis. Finding near-optimal combinations of cultivated land areas
to restore the lake and also improve agricultural sustainability is vital. Conflict
resolution mechanisms and experiments with stakeholder groups need to be added
to the model and also conducted with real stakeholders in future research. However,
the main contribution of the study is that it showed that the lake could be revived by
using a combination of the restoration plans described above. This is in contra-
diction with the statement of some scholars (e.g. Kardovani 2014) who already
rejected any hope for the lake. In addition, there is currently a debate over whether
the resources within the basin should be used for restoration or water should be
imported from the outside. In this case also, it is very clearly presented that both the

Fig. 9 Simulation of the accumulative effect of plans on lake level within 50% limits representing
uncertainty
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inner and outer resources are collectively needed for lake restoration. The results of
this research bring hopes to reach consensus and cooperation among conflicting
users which has positive (Zarghami et al. 2015) effect in water management.

5 Conclusions

The results of ULSD model support the possibility of Urmia Lake restoration.
Based on the outcomes, increasing the water efficiency over a 10 year period is the
most effective plan to restore the lake. In short term, the Zaab and Aras water
transfer has the lowest contribution to lake recovery among the plans and would
need high levels of cooperation which may be difficult to achieve. Also, it is shown
that decreasing agricultural area by 8% within a 3 year period (2015–2018) and
stopping any agricultural growth for 8 years (2018–2026) could make a contribu-
tion of about 18% to lake level restoration. Using the simulation model and pro-
viding its visualized results can help the stakeholders to see the effects of different
policies and then it may help to foster the lake restoration process. The impact of
climate change on the success of the plans is the topic of next forthcoming research.
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A Decision Support System for Managing
Water Resources in Real-Time Under
Uncertainty

Emery A. Coppola and Suna Cinar

Abstract Over-pumping of groundwater resources is a serious problem
world-wide. In addition to depleting this valuable water supply resource,
hydraulically connected wetlands and surface water bodies are often impacted and
even destroyed by over-pumping. Effectively managing groundwater resources in a
way that satisfy human needs while preserving natural resources is a daunting
problem that will only worsen with growing populations and climate change. What
further complicates management of these systems is that even when pumping rates
of wells are held fairly constant, their hydraulic effects are often highly transient due
to variable weather and hydrologic conditions. Despite this, transient conditions are
rarely if ever accounted for by management models due to the difficulties in sep-
arating pumping effects from natural factors like weather. To address this short-
coming, a conceptual real-time decision support system for managing complex
groundwater/surface water systems affected by variable weather, hydrologic, and
pumping conditions over space and time is presented in this chapter. For the
hypothetical but realistic groundwater/surface water system presented here, the
decision support system, based upon previous work by Coppola et al. (2003a, b,
2005a, b, c, 2007, 2014) consists of real-time data streams combined with artificial
neural network (ANN) prediction models and formal optimization. Time variable
response coefficients derived from ANN prediction models are used by an opti-
mization model to maximize total groundwater pumping in a multi-layered aquifer
system while protecting against aquifer over-draft, streamflow depletion, and
dewatering of riparian areas. Optimization is performed for different management
constraint sets for both the wet and dry seasons, resulting in significantly different
groundwater pumping extraction solutions. Stochastic optimization is also
performed for different precipitation forecast events to address corresponding
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uncertainty associated with weather-dependent irrigation pumping demand. This
data-driven support system can continuously adapt in real-time to existing and
forecasted hydrological and weather conditions, as well as water demand, providing
superior management solutions.

1 Introduction

Groundwater resources are being depleted by over-pumping in almost all parts of
the world across the entire development spectrum, from economically disadvan-
taged to economically advanced nations (Brown 2011). In many instances,
over-pumping not only mines the aquifer but degrades and even destroys
hydraulically connected riparian areas and surface water bodies (Barlow and Leake
2012; Winter et al. 1998). There is no shortage of examples of over-pumped
groundwater resources resulting in irreversible losses of ecologically and eco-
nomically valuable areas (Brown 2011; Mays 2007).

Tucson, Arizona is a mid-sized city located in the southwestern United States.
Relying exclusively upon groundwater in a desert valley, Tucson pumped the water
table aquifer down hundreds of feet, destroying riparian corridors along once
perennial rivers that are now dry except in the monsoon season. The city that was
once inhabited by the Tohono O’odom Native Americans, famously known as “the
water harvesters of the desert”, now depends for its survival upon diverted Col-
orado River water, transported hundreds of miles from its source.

The Minquin Oasis, a once highly productive agricultural region in northwestern
China, lost its vast system of lakes and wetlands by groundwater overpumping. By
destroying the natural equilibrium, surrounding deserts encroached into this once
lush oasis, transforming its fertile croplands into desert wasteland, which is now the
source of the largest dust storms in Asia. Because of the dropping water table
residents were forced to drill much deeper wells. The deeper and older groundwater
contains higher dissolved concentrations of natural compounds like arsenic, causing
cancer and other illnesses in residents and livestock to soar in the region.

Despite the abundance of tragic cautionary examples like Tucson and the
Minquin Oasis, groundwater over-pumping continues unabated world-wide because
of socioeconomic pressures, with climate change stresses and exploding popula-
tions imposing increasingly unsustainable demands on shrinking resources (Brown
2011). Because groundwater resources are finite, and in many areas are not
replenished by nature at rates necessary to prevent aquifer over-draft, there is an
urgent need for optimal water management. Achieving this will require better
decision support systems than those currently used today.

The current state-of-the-art approach is to couple numerical groundwater models
with optimization management models to identify appropriate pumping strategies
(Karamouz et al. 2003; Mays 2007; Peralta and Kalwij 2012). Numerical
groundwater models consist of equations that embody the physics of groundwater
and when necessary surface water flow (i.e., conservation of mass and momentum).
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Although theoretically capable of approximating the spatial and temporal variability
of real-world groundwater/surface water systems, the models’ predictive accuracy
are inherently limited by simplifying physical and mathematical assumptions
combined with incomplete characterization of complex hydrogeologic systems
(Coppola et al. 2003a, 2014). Furthermore, numerical groundwater models are
typically calibrated with limited historical data to select their boundary and initial
conditions. These limitations not only reduce model robustness, but also precludes
models from being initialized to real-time or even pseudo real-time conditions,
further reducing their prediction and optimization capabilities.

ANNs provide a compelling alternative to numerical models. As shown by
Coppola, et al. (2003a, 2014), they can achieve higher predictive accuracy than
numerical groundwater models in complex hydrogeologic systems. ANNs can also
be integrated with optimization management models to serve as the simulator of the
real-world system (Coppola et al. 2007, 2014). Because ANNs are “data-driven”,
they are ideal for coupling with real-time data streams for continuous initialization
to real-time conditions, further increasing their prediction and simulation accuracy,
thereby improving the corresponding optimization solutions. Furthermore, ANNs
models can also be continuously retrained using the real-time data streams.

In this chapter, the applications of automatic data collection and control systems,
ANN models, and optimization to water resources are briefly presented. Following
this, a hypothetical but realistic groundwater/surface water system with production
wells is presented. From this, the corresponding hypothetical ANN prediction
models and optimization management formulations, with their corresponding
LINDO-generated solutions for optimal pumping strategies, are presented.
A stochastic optimization analysis is then performed to account for uncertain
pumping requirements due to weather-driven agricultural irrigation demand.
Finally, the conclusions drawn from this study and the advantages of the real-time
decision support system are summarized.

2 Data Collection Systems

Over the last several decades, there has been a digital data revolution in hydrology.
While even large-scale regional water studies were once performed by deploying
field personnel to manually collect data, automatic data loggers with sophisticated
telemetry systems are replacing human labor. Today, many water utilities as well as
large industrial and agricultural water users who operate their own water systems
are installing automated data collection systems.

Field instruments automatically measure and record at any frequency of interest
(e.g., every 5 s) a broad range of critical system information, including state
variables like groundwater and surface water elevations, water temperature, and
water quality, decision variables like pumping rates, and random variables like
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weather conditions. Telemetry relays the data in real-time to computer work stations
for retrieval and processing as desired. Data collection systems have evolved into
SCADA (i.e., Supervisory Control and Data Acquisition) systems, where data
collection and operational variables are remotely controlled. Pumping rates of
supply wells can be automatically adjusted by pre-set threshold values and/or
interactively by operator preference in response to changing water demand and
other system conditions like reservoir levels.

While stored data is sometimes used to retrospectively assess system perfor-
mance and/or for regulatory compliance purposes, the data is largely under-utilized,
and is rarely used for facilitating real-time decision making capability. Conse-
quently, for the vast majority of systems, there is a lost opportunity to exploit the
enormous untapped potential of SCADA for optimizing operational controls and
strategies. As presented next, the data-driven structure of the ANN models is ideal
for exploiting the enormous value of real-time data streams to their full potential.

3 ANN Prediction Models

ANNs are a form of artificial intelligence modeled after the brain in both their
structure and operation (Poulton 2001). Because they “learn” directly from data,
they are often called “data-driven models.” The ANN models consist of nodes (i.e.,
brain neurons) assembled in distinct layers which are interconnected by transfer
functions (i.e., brain synapses). ANN models generally consist of three layers,
including the input layer, representing the predictor variables, the hidden layer,
which receives the mathematically transformed values of the input values, and the
output layer, which represents the final prediction values. During the learning
process, representative data sets are processed through the ANN architecture,
during which connection weights between nodes within the transfer functions are
adaptively adjusted to minimize the prediction errors. As proven by Kolmogorov’s
Theorem, because of their mathematical structure, ANNs are highly adept at
accurately modeling complex non-linear systems. A more detailed overview of the
theoretical foundation of ANNs, their mathematical structure, and learning algo-
rithms with related development issues and guidelines may be found in Coppola
et al. (2014).

Coppola et al. (2003a, b, 2005a, b, c, 2007, 2014) proved the feasibility of
developing accurate prediction models using easily measurable field data for a
number of a range of important water resources applications. Applications include
predicting groundwater elevations, surface water elevations, water demand, water
distribution system pressures and storage tank water levels, and groundwater and
surface water quality. A small subset of these ANN applications would constitute
the prediction component of the conceptual real-time water management system
presented in this chapter.
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4 Optimization

Optimization has been applied to numerous water management problems, including
aquifer overdraft, salt-water intrusion, contaminant remediation, and conjunctive
groundwater/surface water management (Mays 2007; Peralta and Kalwij 2012).
Although single and multi-objective optimization are typically performed with a
numerical model simulator, ANN models have been used with much success.
Coppola, et al. performed a multi-objective optimization for a real-world public
supply wellfield where the conflicting objectives of maximizing groundwater
pumping while minimizing vulnerability to contamination were optimized using
ANN models developed from a numerical groundwater flow model (Coppola et al.
2005c). Coppola et al. also performed optimization for a real-world water distri-
bution system for a mid-sized city using ANN models developed directly from
hydraulic data collected from the actual system (Coppola et al. 2014).

5 Conceptual Study Area

As depicted in Fig. 1, the hypothetical watershed used in this example application is
bounded by mountains.

A large river flows through the watershed, with its headwaters beginning at the
mountain range to the east and discharging into the large lake on the western side of
the watershed. Portions of the river are “losing reaches”, where surface water seeps
downward through the river bed and recharges the underlying water table aquifer.
Most of the river, however, consists of “gaining reaches”, where some groundwater

Fig. 1 Hypothetical watershed used for modeling analysis
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from the water table aquifer discharges into the river. Along most of the river is a
riparian corridor, which is a habitat for plants, fish, reptiles, mammals, and birds.

As depicted in Fig. 2, the subsurface portion of the groundwater/surface water
system is a complex multi-layered aquifer, with the alluvial unconfined (i.e., water
table) aquifer separated from the deeper regional confined aquifer by a low per-
meability clay layer. High capacity production wells are installed in both aquifers.

As is common to groundwater systems, each aquifer consists of different geo-
logic media or lithologies that vary over space (i.e., heterogeneity). As depicted by
Figs. 3 and 4 for the alluvial and regional aquifers, respectively, the sediments
range from finer grained materials like silty sand that yield and transmit less water
to coarser grained materials like sand and gravels which are highly prolific water
bearing and transmission zones.

Seven high capacity production wells operate in the study area, with five wells
pumping from the unconfined aquifer, and two deeper wells pumping from the
confined aquifer. Because of the geologic heterogeneity and variable boundary
conditions, both aquifers respond differently over space to pumping stresses.
Similarly, river reaches (i.e., discrete sections) also respond differently to the
pumping stresses of the individual production wells, depending upon their prox-
imity and surrounding hydrogeology. Adding to system complexity are the
time-varying hydrologic and weather conditions, particularly distinct by season,
which produce temporally varying pumping responses in the system.

Fig. 2 Simplified cross-section of hypothetical watershed
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6 Conceptual Real-Time Management System

For this real-time management system, field data consisting of groundwater ele-
vations, surface water flows, precipitation, and pumping rates are collected to
develop ANN prediction models. The ANNs predict in real-time groundwater
elevations in both the unconfined and confined aquifers, including riparian areas,
and surface water flows in the river in response to variable weather, hydrologic, and
pumping conditions.

Fig. 3 Alluvial aquifer lithology

Fig. 4 Regional aquifer lithology
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Symbolic functional representation of the ANN models is presented below. The
models predict groundwater elevations and surface water flows as a function of
initial hydraulic conditions (i.e., groundwater elevation and streamflow rates),
weather conditions, and pumping rates of the production wells.

GWLUi, t = f GWLUi, t− 1,Qm, t,Qn, t,Pt, Tt, SWFj, t− 1
� � ð1Þ

SWFj, t = f GWLUi, t− 1,Qm, t, ,Qn, t,Pt,Tt, SWFj, t− 1
� � ð2Þ

GWLCk, t = f GWLCk, t− 1,Qm, t,Qn, tð Þ ð3Þ

where

GWLUi,t the vector element representing the final groundwater elevations in the
unconfined aquifer at each location i at the end of prediction period t;

GWLUi,t−1 the vector element representing the initial groundwater elevations in
the unconfined aquifer at each location i at the beginning of prediction
period t;

Qm,t the vector element representing the measured pumping rates of the
production wells in the unconfined aquifer at each location m corre-
sponding to prediction period t;

GWLCk,t the vector element representing the final groundwater elevations in the
confined aquifer at each location k at the end of prediction period t;

GWLCk,t−1 the vector element representing the initial groundwater elevations in
the confined aquifer at each location k at the beginning of prediction
period t;

Qn,t the vector element representing the measured pumping rates of the
production wells in the confined aquifer at each location n corre-
sponding to prediction period t;

Pt a representative precipitation value for the study area corresponding to
prediction period t;

Tt a representative air temperature value for the study area corresponding
to prediction period t;

SWFj,t−1 the vector element representing the initial surface water flow rate in the
river at each location j at the beginning of prediction period t;

SWFj,t the vector element representing the final surface water flow rate in the
river at each location j at the end of prediction period t;

Each of the ANN prediction models include some subset of the state variables of
interest, namely groundwater elevations and surface water flow rates, random
weather variables like precipitation and temperature values, and finally, the
pumping rates of the wells, which constitute the decision control variables we seek
to optimize. The initial state values, as well as the combination of weather and
pumping conditions, collectively determine the final values of the state variables at
the end of the prediction period.

334 E.A. Coppola and S. Cinar



As demonstrated by Coppola et al. (2003a, b, 2005a, b, c, 2007, 2014), a
fundamental understanding of the hydrogeological system combined with sensi-
tivity analyses is important for converging to the critical set of prediction variables
for each ANN model. For this system, it is assumed that the confined aquifer is not
significantly affected by precipitation and temperature over the length of the pre-
diction period. Accordingly, these variables would be excluded from the ANN
models used to predict groundwater elevations in this deeper aquifer.

These inter-variable functional relationships help demonstrate how ANN models
can be initialized to real-time conditions. They also illustrate how ANN models can
be developed to simulate any range of conditions for which historical data exists,
and equally important, differentiate weather and/or hydrologic conditions from
pumping effects on critical system states like groundwater elevations and river flow
rates. This is a significant advantage over traditional physics-based models, the de
facto method for simulating and optimizing pumping in complex
groundwater/surface water systems. Despite the significant influence of weather
and hydrologic conditions on these systems and how they respond to pumping,
these natural time-varying factors are typically ignored.

As stated by the United States Geological Survey in their 2012 report entitled
“Streamflow Depletion by Wells—Understanding and Managing the Effects of
Groundwater Pumping on Streamflow” (Mays 2007):

Theoretically, response functions could be determined by monitoring changes in stream-
flow that result from pumping at a particular well, but this approach is often not technically
feasible because of difficulty in separating depletion changes from streamflow responses to
other changes, such as those driven by climate. In practice, response functions are deter-
mined by using analytical or numerical models.

ANN models bridge the gap between what is theoretically possible and what is
achievable by learning directly from real-world data, and functionally mapping a
combination of weather, hydrologic, and pumping variables to distinct system
states at specific locations. Because of this, with sufficient data, system responses to
any combination of conditions and stresses can be accurately predicted.

The set of ANN equations constitutes a highly efficient representation of the
physical system behavior of interest. These equations can be explicitly embedded
into the optimization program or used to generate response coefficients for the
optimization model as part of the constraint set and/or objective function. The next
section describes the general optimization formulation for this problem.

7 Management Formulation

In this water management problem, at any given time, there is a finite volume of
water within the watershed that varies by season, day, and even time of day. As
groundwater is extracted, loss of aquifer storage will reduce groundwater elevations
and potentially surface water flows. Depending upon their severity, a combination
of adverse environmental and economic impacts may occur.
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Environmental impacts include drying of river reaches and riparian areas which
destroy habitats for flora and fauna. Beyond less easily quantifiable loses like
aesthetics and overall quality of life, environmental loses can also translate directly
into economic costs, like loss of aquatic species for harvesting and diminished
eco-tourism. More easily measurable economic costs included higher costs to drill
deeper wells to reach the dropping water table aquifer, higher electricity costs
associated with lifting the dropping groundwater surface, and by extension, more
powerful and expensive pumps.

For this management problem, the decision makers want to maximize total
groundwater pumping while minimizing potential negative impacts, which include:

• Excessive drawdown in the unconfined aquifer;
• Excessive drawdown in the confined aquifer;
• Excessive drawdown in the riparian corridor;
• Streamflow depletion of the river.

The objective is to maximize the combined groundwater pumping of the pro-
duction wells without violating the groundwater and surface water management
constraints imposed on the groundwater/surface water system. These constraints are
formulated to help ensure that over-depletion of groundwater and surface water
does not occur.

A single linear objective optimization management formulation was devised as
follows:

Objective Function

Maximize Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 ð4Þ

Linear Constraint Types

RCu1, 1Q1 + RCu1, 2Q2 + RCu1, 3Q3 + RCu1, 4Q4 + RCu1, 5Q5 + RCu1, 6Q6 + RCu1, 7Q7 ≤ DDu1

ð5Þ

RCc1, 1Q1 + RCc1, 2Q2 + RCc1, 3Q3 + RCc1, 4Q4 + RCc1, 5Q5 + RCc1, 6Q6 + RCc1, 7Q7 ≤ DDc1

ð6Þ

RCr1, 1Q1 + RCr1, 2Q2 + RCr1, 3Q3 + RCr1, 4Q4 + RCr1, 5Q5 + RCcr, 6Q6 + RCr1, 7Q7 ≤ DDr1

ð7Þ

RCs1, 1Q1 + RCs1, 2Q2 + RCs1, 3Q3 + RCs1, 4Q4 + RCs1, 5Q5 + RCcs, 6Q6 + RCs1, 7Q7 ≤ SFDs1

ð8Þ

0 ≤ Qi ≤ Qupperlimit i = 1, 7 ð9Þ
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Equation 4 is the objective function used to maximize total pumping of the
seven production wells subject to the imposed constraints, where Qi represents the
pumping rate of public supply well Pi in cubic feet/second (cfs). Equations 5, 6, and
7 are example constraints for limiting drawdown (DD) in the unconfined aquifer,
the confined aquifer, and riparian areas (which are part of the unconfined aquifer),
respectively, in feet. Equation 8 is an example constraint for limiting streamflow
depletion (SFD) in the river along a particular reach in cfs. Equation 9 bounds the
pumping rate of each production well between 0 and some maximum value, typ-
ically equal to the maximum sustainable pumping rate of the well.

The response coefficients in each constraint, generically symbolized by RC,
quantifies how much a system state value changes at a particular location per unit
stress of the corresponding production well (i.e., decision or control variable). For
example, RCr1,3 in Eq. 7 is the response coefficient for production well P-3
(pumping rate designated as Q3) pertaining to drawdown at location 1 of the
riparian area. In quantitative terms, a drawdown response coefficient of 3.50 sig-
nifies that each unit pumping rate (e.g., one cubic feet per second) by P-3 induces
3.5 feet of drawdown (i.e., groundwater elevation decline) at location 1 of the
riparian area. Similarly, a streamflow depletion response coefficient of 0.52 for a
particular production well signifies that for each unit pumping rate, it induces a loss
in the river flow or discharge rate of 0.52 cfs at the stream location of interest. The
higher the response coefficient, the more the particular production well induces
a response in the state variable of interest at the corresponding monitoring/
management location.

The general process is as follows. ANN models trained with real-world data
generate the response coefficient values for each decision variable for all responses
and locations of interest. The response coefficients are generated in real-time to
account for existing hydrological and weather conditions (e.g., wet period). The
generated response coefficients are substituted into the optimization model, which is
then solved to compute the optimal pumping rates for all seven production wells.
Response coefficients are re-computed and updated as necessary to reflect changing
conditions for each subsequent optimization management period.

For the analysis presented here, different combinations of upper bound constraint
values were assigned to the optimization formulation to reflect a possible range of
decision-making preferences. For example, in some cases, limiting drawdown
values in the aquifers would not be considered as important as protecting the river
against depletion.

Because of varying but generally present hydraulic interconnections between
aquifers, the river, and riparian areas, the optimization solution in minimizing
impacts to one resource will often reduce impacts to other resources. An exception,
as shown later, is during the wet season, when groundwater pumping has minimal
hydraulic effects on river flows. In contrast, during the dry season, surface water is
much more to vulnerable to groundwater pumping, which if not properly managed,
can deplete river flows.
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As will be shown, these significant variations in system responses and corre-
sponding optimization solutions under different hydrologic conditions (e.g., wet
versus dry) demonstrate the utility and value of a dynamic decision support system
that accurately reflect real-time conditions.

8 Computed Optimal Solutions

Table 1 presents the assigned constraint values for the ten optimization scenarios.
The ten optimization scenarios provide a wide range of possible upper constraint

values for drawdown in the two aquifers and the riparian area, as well as depletion
of river flow. The only upper bound constraint value that does not change is the
upper pumping rate of each of the seven production wells.

Table 2 shows the corresponding computed optimal solutions for the ten different
scenarios for both the dry and wet seasons generated by the optimization software
program LINDO, where Qi represents the pumping rate of production well i.

Figure 5 is a bar graph depicting the different optimization solutions for the ten
scenarios for both the dry and wet seasons.

For most scenarios, the optimal solution for the dry season produced lower total
pumping than the corresponding solution for the wet season. For scenarios where
the upper bound constraint values were low (i.e., highly protective), the optimal
pumping solutions were identical for both wet and dry seasons. There are no
scenarios where the dry season had total higher optimal pumping rates than the wet
season.

In addition to seasonal influences, time-constant hydrogeological conditions also
affected computed optimal solutions. Deeper production wells P-6 and P-7 gener-
ally pump at higher rates than the shallow production wells, as the unconfined wells
are more hydraulically connected to the river and riparian areas, and therefore,
impact these resources more.

Table 1 Constraint sets for the ten scenarios for dry and wet seasons

Constraint 1 2 3 4 5 6 7 8 9 10

Unconfined
drawdown (ft.)

≤ 100 ≤ 65 ≤ 65 ≤ 65 ≤ 65 ≤ 65 ≤ 100 ≤ 100 ≤ 65 ≤ 35

Confined
drawdown (ft.)

≤ 80 ≤ 60 ≤ 60 ≤ 60 ≤ 60 ≤ 80 ≤ 60 ≤ 80 ≤ 60 ≤ 30

Wetlands
drawdown (ft.)

≤ 50 ≤ 50 ≤ 5 ≤ 50 ≤ 5 ≤ 50 ≤ 50 ≤ 50 ≤ 10 ≤ 5

Streamflow
depletion (cfs)

≤ 5 ≤ 5 ≤ 5 ≤ 2 ≤ 2 ≤ 5 ≤ 5 ≤ 2 ≤ 5 ≤ 2

Maximum
pumping rate
(cfs)

≤ 20 ≤ 20 ≤ 20 ≤ 20 ≤ 20 ≤ 20 ≤ 20 ≤ 20 ≤ 20 ≤ 20
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Table 2 Computed optimal pumping solutions for the ten scenarios for dry and wet seasons (in
cfs)

Solutions Dry season scenarios
Q1 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0
Q3 0 0 0 0 0 0 0 0 0 0
Q4 0 0 0.42 0 0.42 0 0 0 0.84 0.42
Q5 3.48 4.41 0.6 0.1 0.6 3.48 4.41 0 1.21 0.6
Q6 15.8 11.46 3.11 12.4 3.11 15.8 11.46 20 6.22 3.11
Q7 17.9 12.91 0 14.26 0 17.9 12.91 8.11 0 0
Total Q (gpm) 37.27 28.79 4.14 26.77 4.14 37.27 28.79 28.11 8.29 4.14
Solutions Wet season scenarios

Q1 18.28 3.96 0 8.8 0 1.84 18.66 0 0 0
Q2 0 4.73 0 9.17 0 2.31 10.77 18.42 0 0
Q3 0 6.85 0 0 0 0.19 0 0 0 0
Q4 0 6.15 0.42 0 0.42 2.69 5.49 0 0.84 0.42
Q5 4.85 7.74 0.6 0 0.6 5.65 4.97 0 1.21 0.6
Q6 11.92 4.08 3.31 10.43 3.31 13.04 0 10 6.22 3.11
Q7 6.11 4.8 0 0 0 15.15 0 0 0 0
Total Q (gpm) 41.19 38.42 4.14 28.41 4.14 40.89 39.9 28.42 8.29 4.14

Fig. 5 Optimal solutions for dry and wet seasons for ten scenarios
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9 Stochastic Analysis

The above optimization analysis considered distinct dry and wet seasons, the effects
of which can significantly change the relative pumping effects of individual wells
on components of the hydrogeologic system like river flow. What this analysis did
not consider is the stochastic component where pumping demand can change in
response to changing weather conditions. In this section, it is assumed that two
production wells, P-5 and P-7, are used exclusively for irrigating agricultural areas.
In a properly managed area, groundwater pumping for irrigation is modified as a
function of weather conditions, where higher precipitation periods require less
irrigation than during lower precipitation periods.

To account for time-varying weather driven irrigation demand, stochastic
groundwater pumping optimization was performed in accordance with precipitation
forecasts and their associated uncertainty. In this analysis, it is assumed that weather
forecasts have historically been shown to be accurate to within plus or minus 0.2
inches for a 90% confidence interval within the range of forecasts provided in this
analysis. In reality, the range of the lower and upper bound 90% confidence interval
would likely change during different seasons and for different ranges of values of
precipitation forecasts.

Irrigation demand changes in direct linear proportion to precipitation for a given
management period. When no precipitation occurs over this period, the irrigation
demand is 100% of what the crops require, assumed equivalent to 14 cfs for the
agricultural management area. It was also assumed that if precipitation over the
optimization management period is 2.4 inches or more in the agricultural area, no
groundwater irrigation is required as rainfall satisfies total crop water demand. Any
precipitation less than this constitutes a crop water deficit condition that requires
some linearly proportional contribution from groundwater pumping.

The weather forecast for the management period was used to predict expected
agricultural groundwater pumping demand by computing the expected percent
irrigation demand required with a 90% confidence interval. To do this, the lower
and upper 90% statistical bound estimates of the forecasted precipitation as well as
the actual forecasted value are used to compute the percent irrigation demand for
each. The optimization management problem was then solved separately for each of
these three values by constraining the total combined pumping of production wells
P-5 and P-7 equal to the corresponding stochastically estimated irrigation pumping
demand.

Table 3 depicts the three different irrigation water demand forecasts, repre-
senting a lower than average, average, and higher than average precipitation fore-
casts for the area during the wet season. The total irrigation demand represents
values, obtained in accordance with the precipitation forecasts and their corre-
sponding 90% statistical bounds, derived from the above described linear rela-
tionship. For example, for the lower than average precipitation forecast event, in
accordance with the forecasted precipitation, the expected irrigation water demand
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to meet total crop water demand is 8.87 cfs, with lower and upper 90% statistical
bounds of 10.03 cfs, and 7.7 cfs, respectively, corresponding to their estimated
precipitation values.

These irrigation demand values were assigned to an equality constraint for
combined pumping of the two irrigation production wells, which was added to the
constraint set used for optimization scenario 2, presented in Table 1. The resulting
optimization solutions for this stochastic analysis are included in Table 3.

As shown, the combined groundwater pumping rates for the seven production
wells do not significantly change between the lower than average, average and
higher than average precipitation forecast events. What often does change, how-
ever, is the distribution of the pumping rates among production wells. For the
higher precipitation forecast periods, when the expected total required irrigation
pumping via production wells P-5 and P-7 is lower, higher pumping rates are
distributed to other production wells. For example, the pumping rate of P-4 for the
lower than average precipitation forecast event almost doubles for the higher than
average precipitation forecast event.

From a water management perspective, for higher than average precipitation
periods, higher groundwater pumping can be allocated to the industrial and public
supply sectors. This surplus water extraction can be stored in reservoirs for future
use during periods when demand by different sectors may be higher and/or for
emergency storage for use during prolonged low precipitation periods like drought.
In contrast, during lower than average precipitation periods, less pumping can be
diverted from irrigation to the other sectors.

10 Conclusions

The conceptual water management system presented in this chapter, based upon
previous work by Coppola et al. (2003a, b, 2005a, b, c, 2007, 2014) combines
continuous data streams with the real-time accuracy of data-driven ANN prediction
models coupled to optimization management models. In this hypothetical appli-
cation, optimal pumping rates were identified to reflect real-time conditions, rep-
resenting dry and wet seasons, for a complex multi-layered groundwater/surface
water system.

The solutions are consistent with the hydraulics of the hydrogeologic system.
During the dry season, the higher potential for river flow depletion by groundwater
pumping produced lower optimal pumping rates for the unconfined production
wells. That is, because there is less water in the hydrologic system during the dry
season, pumping hydraulically captures more river water.

In contrast, during the wet season, snowmelt from neighboring mountains would
produce significantly higher surface water flows. Streams and sections of the river
that are often dry or with low flow would be flowing full, also resulting in higher
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bank storage and additional surface water accumulation in wetland areas, as well as
higher groundwater recharge into the unconfined aquifer. There would also be
increased groundwater flux into the watershed via mountain front recharge. These
additional water sources in the watershed provide more water for the production
wells to draw from, decreasing their relative pumping effects on the river during the
wet season. As a result, the streamflow depletion constraint in the wet season has
little or no effect on the optimization solutions.

The optimization results demonstrate how sensitive the optimal pumping solu-
tions are to dry and wet seasons. They also show how a failure to represent
real-time conditions can result in identification and implementation of inappropriate
and even dangerous groundwater pumping strategies, putting water and ecological
resources at risk. Although not shown here, many if not most watersheds have
significant intra-daily and even inter-daily variability in hydrologic conditions,
which could change the optimal pumping rates in very short time periods.

To further improve decision making capability, stochastic analysis was per-
formed to factor precipitation forecasts and their uncertainty into optimized
groundwater pumping strategies. Stochastic optimization as presented here would
allow decision makers to more appropriately allocate groundwater pumping among
different sectors in real-time, while also providing more effective longer term water
management strategies.

In contrast to the ANN-based prediction system presented here, physics-based
numerical groundwater models generally lack the capability to accurately reflect
real-time hydrologic and weather conditions. Because of this limitation, there is the
increased possibility of over-pumping groundwater, particularly during drought
periods, which are becoming more prevalent with climate change. At the other
extreme is under-pumping during wetter or higher precipitation conditions, which
can result in lost opportunities for increased water storage as insurance to help
mitigate shortages during high demand and/or drought conditions.

In conclusion, the conceptual real-time decision support system presented here
provides numerous important advantages and benefits. This includes maximizing
the value of automated data collection systems, providing a more transparent
data-driven modeling process that, unlike traditional physics-based models, can
accurately differentiate between pumping and natural factors like weather, and
computing more appropriate real-time and longer-term water management strate-
gies. As water demand continues to increase world-wide, imposing more stress on
dwindling groundwater and surface water resources, the type of dynamic decision
support system presented here that continuously adapts to real-time conditions will
be essential.
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