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Abstract. In this paper, we propose a parallel-friendly frame rate up-conversion
(FRUC) algorithm based on the patch match. The key points of the algorithm are
the generation of self-similarity patch, parallel true motion estimation and motion
vectors post-processing dealing with occlusion problem. Our algorithm is fully
parallel at each step and can be implemented on GPU. The GPU implementation
achieves up to 48 times speedup over its CPU implementation. Compared with
the traditional FRUC algorithm based on 3-D Recursive Search, our algorithm
has a good performance in handling the fine motion structure and occlusion
problem.
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1 Introduction

Frame rate up-conversion (FRUC) is the technique that increases the frame rate by
generating the intermediate frame between the original frame in the video. FRUC is
commonly applied to increase the time resolution and reduce the effect of motion blur.
The main approaches can be classified into three steps, motion estimation (ME), motion
vectors post-processing (MVPP), and motion compensated interpolation (MCI). Among
the three steps, ME is the most basic and important step. 3-D Recursive Search (3DRS)
[1] is a good performing true-motion estimation algorithm with low computational
complexity. And many improved methods [2, 3] based on 3DRS have been proposed.
Because 3DRS is based on the assumption that most objects are much larger than a block,
it recursively uses Motion Vectors (MVs) of spatial and temporal neighboring blocks
to estimate the MV of a block [2]. The assumption indicates that it is not a good motion
estimation method for a small object. And the spatial recursion, which depends on the
precomputation of the spatial neighbor block, is obviously sequential execution. This
prevents the algorithm to be applied in parallel computation. Besides 3DRS, optical
flow estimation is a more accurate algorithm. But the high computational complexity
limits the optical flow estimation in practical application.

Recently, numerous research proposed parallel-friendly algorithms which are suit‐
able to be implemented on GPU to gain significant speedup [4]. In [7], this parallel true
motion estimation algorithm adjust the 3DRS to use the temporal recursion only. But
this result in more convergence time. In [8], the algorithm applies jump flooding scheme
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proposed by Rong and Tan [5] for Patch Match. In [6], the Patch Match is applied in
EPPM algorithm, and it proves that carefully crafted local methods can reach quality on
par with global ones.

In this paper, we propose a parallel-friendly algorithm for FRUC, and implement it
on GPU. We focus on improving the ME performance of the small object and handling
the occlusion problem. Compared with 3DRS, proposed algorithm is based on dense
Motion Vector Field (MVF), which can handle the fine motion structure. Compared with
optical flow estimation, the adapted Patch Match in parallel reduces the high computa‐
tional complexity. Our algorithm can also be divided into three steps. The detail of
proposed algorithm is presented in Sect. 2. Section 3 describes the implementation of
the proposed algorithm in CUDA. The result of the proposed algorithm is presented in
Sect. 4. Section 5 concludes the paper.

2 Parallel-Friendly Frame Rate Up-Conversion Algorithm

Our algorithm can be classified into three steps: ME, MVPP and MCI. ME is based on
Patch Match to realize parallelization, and through this step, we obtain the forward and
backward MVF. Then MVPP is designed to eliminate and correct the outliers in forward
and backward MVF. Finally, the MCI step generates the intermediate frame. The outline
of proposed algorithm is depicted in Fig. 1.

Fig. 1. Outline of the proposed algorithm.

2.1 Motion Estimation

The main idea of original Patch Match is to initialize a random correspondence field and
then iteratively propagate good guesses among neighboring pixels [6]. The method has
been adapted for the application of FRUC. Two significant changes are made to enhance
the performance. Firstly, we change the block to self-similarity patch, which can
improve the accuracy of ME. Secondly, we restrict the search range from the whole
image to a certain window. Because it is impossible for the object in a video to move
from one side to another side within two frames. The adapted Patch Match can be divided
into 4 parts: Patch Generation, Initialization, Propagation and Random Search. The
process of acquiring the forward MVF is presented as follow.

Patch Generation. To compute the matching cost the of a MV, we allocate a block
B(x,y) for each pixel (x,y) to compute the Sum of Absolute Differences (SAD). Notice
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that, with the increase of the radius, the computational load shows quadratic increase.
This suggests a natural way to reduce the computational complexity which is that we
only use the n most similar pixel to compute SAD. In other words, we ignore dissimilar
pixel to the center pixel. For each pixel (x,y), we select the n most similar pixel from its
neighborhood, store them in the array Patch(x,y), and only use the pixel belonging to
the Patch(x,y) to compute the matching cost. Specifically, the matching cost is defined
as follows,

D(𝐚, MV(𝐚)) =
∑

𝐛∈Patch(𝐚)

|Ft(𝐛) − Ft+1 (𝐛 + MV(𝐚))| (1)

where Ft(.) represents the frame at time t, a(xa,ya) is the pixel in Ft, b(xb,yb) represents
the pixel belonging to Patch(a), MV(a) is the motion vector at position a.

Then a problem raised is that the brute-force preselection of n similar pixels for each
pixel actually can be too slow, especially when patch size is large, which may cancel
out a large portion of the speed gain of the Patch Match [6]. Note that the straight
implementation of the selection process takes O(Mn) complexity for each pixel.

For the sake of speeding up, our algorithm utilize the similarity between the adjacent
pixel to get the approximate n most similar pixel. The step of Patch(x,y) generation is
as follows: For each pixel (x,y), we randomly select n pixels from its neighbor pixel and
store them into a vector Patch(x,y) in order of their similarity to the center pixel (x,y);
Then we merge the adjacent pixel similarity vector Patch(x − 1,y), Patch(x,y − 1),
Patch(x + 1,y) and Patch(x,y + 1) into Patch(x,y). Since we do not intend to search
exactly the top n similar pixel for each pixel, the algorithm does not iterate more. All
the steps is depicted in Fig. 2, with n = 50 and patch size is 21 × 21. Note that all the
pixel in one patch tend to own the same true MV intuitionally, which improves the
accuracy of SAD criterion, and we will use this property in the MVPP step.

Fig. 2. Illustration of patch generation. (a) shows the 7 × 7 block around the center pixel. (b)
shows the random initialization within 21 × 21 range around the center. (c) shows the final patch
after merging. All the members belong to one patch can be seen as part of one object, so they
usually own the same true motion vector.

Initialization. The MVF can be initialized by assigning random MV, or by using prior
information. When initialize the forward MVF, we use the random values clamped to a
certain value w (usually one eighth of the width of the image), because it is impossible
for the object in a video to move from one side to another side within two frames. Then
we use formula (1) to compute the matching cost for each MV. Note that after the
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acquirement of the forward MVF, we can use the prior information to initialize the
backward MVF, which can reduce the number of iterations for backward MVF.

Iteration - Propagation. After initialization, we perform the iterative process of prop‐
agation to improve the accuracy of MVF. The propagation mode is based on jump
flooding algorithm [5] to realize parallel computing, but we adapt the method for the
FRUC. This process contains many rounds. For example, there are log l + 1 rounds with
halved step length of l, l/2, l/4, …, 1. Figure 3 clarifies how the MVs is propagated. In
each round with step l, we renew the MV(a) by MV(a + b), as b satisfies the follow
equation:

𝐛 = arg min D(𝐚, MV(𝐚 + 𝐛)), 𝐛 ∈ {(±l, 0), (0,±l), (0, 0)} (2)

L=4 L=2 L=1

Fig. 3. Illustration of propagation. In each round, the red pixel inquiries the MVs of four blue
neighbors as candidate MVs. (Color figure online)

Iteration - Random Search. Then we perform the iterative process of random search
to improve the MVF. Let mv0 = MV(a). We attempt to improve MV(a) by testing a
sequence of candidate MVs at an exponentially decreasing distance from mv0:

𝐮i = 𝐦𝐯0 + w𝛼i
𝐑i (3)

where Ri is a uniform random in [−1,1] × [−1,1], w is the clamped value mentioned
above, and α is a fixed exponentially decreasing ratio. We examine ui for i = 0, 1, 2.
until wαi is below 1 pixel. In our application, α = 1/2.

After computing with 2–3 iterations, the forward MVF has almost always converged
in practice. Then follow almost the same operations except the initialization step,
computing 1–2 iterations, we can also get backward MVF. Figure 4 illustrates the inter‐
mediate result of all the steps in motion estimation.
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Fig. 4. Illustration of Motion Estimation. (a) is the original image. (b, c, d) show the MVF at
different stages, with magnitude visualized as saturation and angle visualized as hue. For (c) and
(d), there is some noise introduced by the SAD metric. But most noise gathers in the occlusion
region (just like the up and left side of the forward MVF, and down and right side of the backward
MVF).

2.2 Motion Vector Post-processing

After Motion Estimation, we can get the forward and backward MVF. As shown in
Fig. 5, there are a lot of noise in both MVFs before MVPP. Because of the aperture
problem, the SAD metric alone is not reliable enough to determine the true motion [3].
In addition to the noise introduced by SAD metric, there are many wrong MVs in occlu‐
sion region. So it is necessary to take MVPP step to eliminate outliers and to handle
occlusion problem.

Consistency Check. After computing forward and backward MVFs between two
frames, we explicitly perform forward-backward consistency check [9] to detect wrong
MVs. All the inconsistent MVs is marked and wait to be corrected by the next step.

Correction. After the Consistency Check, we treat the consistent MVs as high-credi‐
bility MVs, and we will use these MVs to fix the wrong MVs. As we assumed in the
Patch step, most pixels in the same Patch own the same true MV. So for each wrong
MV(x,y), we will select 5 alternative MV(i,j), (i,j) belong to Patch(x,y) and MV(i,j) is
high-credibility MVs. Vector Median Filter is applied to choose the fixing MV from 5
alternative MVs. The fixing result is depicted in Fig. 5.
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Fig. 5. Illustration of MVPP and MCI. (a) shows the result of consistency check. All the blank
region is the inconsistent region. (b) and (c) shows the MVF after correction. (d) shows the fusion
result of the forward MVF and backward MVF.

2.3 Motion Compensated Interpolation

After the MVPP, we get two more reliable MVFs. Then we fuse the forward and back‐
ward MVFs into intermediate MVF for interpolation. But there may be still some holes
remained after fusion. So we use the vector median filter again on the intermediate MVF
to fill all the holes. The intermediate frame is constructed by the full intermediate MVF.
Before outputting the intermediate frame, a 3 × 3 median filter is applied on the inter‐
mediate frame to filter the pepper noise along the motion edge of the object. The full
intermediate MVF is shown in Fig. 5.

Fusion. For the pixel a(xa,ya) in Ft, and pixel b(xb,yb) in Ft+1, we define the intermediate
MVF as follows:

MVinter(𝐚 +
1
2

MVforward(𝐚)) =
1
2

MVforward(𝐚) or

MVinter(𝐛 +
1
2

MVbackward(𝐛)) = −
1
2

MVbackward(𝐛)

(4)

There may be conflicts in some positions. For example, pixel a and b may map to the
same position. In order to avoid conflicts, we give first priority to the consistent MVs
for selection and second priority to the fixed MVs. If two conflicted MVs are of the same
priority, we will choose the one with smaller matching cost.

Hole Filling. There may be still some holes remained after fusion. So we use the Vector
Median Filter again on the intermediate MVF to fill all the holes. For each hole, we will
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choose 5 nearest MVs in Manhattan distance on intermediate MVF as alternative MVs.
Then Vector Median Filter is applied to choose the filling MV from alternative MVs.

3 CUDA Implementation

On account of the inherently parallel-friendly nature, our algorithm is implemented
efficiently on GPU with CUDA. In detail, the block size 16 × 16 and the whole thread
size 960 × 540 (equal to the resolution of the video) is unified in our CUDA implemen‐
tation. The outline of our program is described in three part:

For ME part, only two kernel function is needed. The first kernel function is paral‐
leled at patch-level, i.e. each thread in the kernel takes charge of the generation of self-
similarity patch for each pixel. The patches of different threads are mutually exclusive.
The main task of second kernel function is to acquire MVF. Since the threads of different
blocks can not be synchronized, we have to store two MVF, one for the former round,
and one for the current round. In initialization procedure, forward MVF use random
MVs, and backward MVF shares the information from forward MVF. In the propagation
procedure, each thread inquiries the MVs stored in the former round, compares it to the
one in current round, and choose the best MVs for each pixel. After propagation, random
search is applied to improve the MVF.

For MVPP part, two kernel function is designed for Consistency Check and Correc‐
tion respectively. The Consistency Check function is paralleled at pixel-level, and each
thread in the kernel check the consistency of the MV for the corresponding pixel. Then
the Correction function is launched twice to correct the wrong MVs for forward MVF
and backward MVF.

For MCI part, the Fusion and Hole Filling procedure correspond to two kernel func‐
tion. The Fusion function is paralleled at MV-level, and each thread map the corre‐
sponding MV into the intermediate MVF. Then the Hole Filling function is launched to
fill the holes remained in intermediate MVF.

4 Experiment Result

In our implementations, the hardware is CoreTM i7-3770 k 3.4 GHz and NVIDIATM

GeForce GTX 780Ti with 1 GB dedicated graphic memory. Our algorithm is inherently
parallel and can be implemented on GPU with CUDA as mentioned above. We choose
the video with the resolution 960 × 540 for experiment. The GPU implementation takes
521 ms on average to generate an intermediate frame. Compared with 25 s for the CPU
implementation, the GPU implementation achieves up to 48 times speedup over its CPU
implementation. So far, the only parallel FRUC algorithm [7] has some defects, like
long convergence time and less effective than the 3DRS. Therefore, the FRUC algorithm
[10] based on 3DRS with 8 × 8 block is chosen as benchmark algorithm.
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4.1 Subjective Evaluation

We choose three classic videos with different features to judge the performance of our
FRUC algorithm. Figure 6 presents the results of our FRUC algorithm and benchmark
algorithm mentioned above. For the first video, the most difficult part is to estimate the
motion for the little black hawk on the top left corner, because it is very easy to be
disturbed by the large background. Our algorithm shows a good performance for the
fine motion structure. For the second video, the fast move of caterpillar and large occlu‐
sion region is a big challenge. The intermediate frame presents that our algorithm can
tract the fast motion and handle occlusion well. For the third video, it is hard to keep the
gird of window. As depicted in the result, we keep main grid, but still failed in some
positions. It suggest that there is still a potential for improvement.

Fig. 6. Visual comparison of interpolated frames by different FRUC algorithms. (a, b, c)
benchmark algorithm. (d, e, f) proposed algorithm. (g, h, i) are the partial enlarged details of the
result. Left side is from benchmark algorithm, and right side is from proposed algorithm.

4.2 Objective Evaluation

PSNR is applied to evaluate the objective quality of the proposed algorithm and the
benchmark algorithm. Table 1 presents the PSNR of the first 30 interpolated frames (to
avoid the influence of the scene change) of the attackOfTheHawks, HMoveFast, and
COMTrain sequences. As shown in the table, the proposed algorithm provides better
PSNR performance than the benchmark algorithm.

Table 1. Average PSNR (dB) obtained by proposed algorithm and bench mark algorithm.

Sequences attackOfTheHawks HMoveFast COMTrain
Proposed 28.23 36.57 24.28
Benchmark 26.34 34.23 23.36
Gain 1.89 2.34 0.92
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5 Conclusion

In this paper, we propose a parallel-friendly FRUC algorithm based on patch match.
This algorithm is inherently parallel and can be implemented on GPU with CUDA. The
speedup and the quality of intermediate frame are analyzed. The GPU implementation
achieves up to 48 times speedup over its CPU implementation. Compared with the
FRUC based on 3DRS, proposed algorithm has advantage in the fine motion structure
and occlusion problem.
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