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Abstract. Recently, stereoscopic image quality assessment (SIQA) has been
attracted more attention in academia and industry nowadays. In this paper, a
wavelet decomposition and natural scene statistics based no reference stereo‐
scopic image quality assessment algorithm is proposed. Our motivation is based
on the observation that the statistics of the wavelet coefficients can be effectively
captured by a generalized Gaussian distribution (GGD), and the distributions of
image with different distortion have different shape and spread. The fitting param‐
eters of GGD are extracted as the features. In this paper, stereoscopic image rele‐
vant information including stereo pairs, cyclopean image and binocular disparity
are regarded as the factors that affecting stereoscopic image quality, and they are
involved in the process of feature extraction. Support vector regression (SVR) is
utilized to learn a regression model to predict the quality of stereoscopic image.
Experimental results demonstrate that the proposed algorithm achieves high
consistency with subjective assessment on two public available 3D image quality
assessment databases.

Keywords: Wavelet decomposition · Natural scene statistics · Generalized
Gaussian distribution · Feature extraction · Support vector regression

1 Introduction

Recently, many researches have focused on the development of image quality assess‐
ment (IQA), and stereoscopic/3D-IQA has becoming a super-hot.

The existing stereoscopic image quality assessment (SIQA) methods can be classi‐
fied into full-reference (FR) [1–3], reduced-reference (RR) [4], and no-reference (NR)
methods [5–9]. Our work aims emphasis on no-reference stereoscopic image quality
assessment (NR-SIQA), in which no reference image information is available. Akhter
et al. [5] propose a NR-SIQA algorithm by extracting segmented local features of arti‐
facts from stereo pairs and the estimated disparity map. Chen et al. [6] first use the
binocular fusion model to compute cyclopean image from left and right images of stereo
pairs. Features including 2D features and 3D features are extracted in spatial domain by
natural scene statistics (NSS). In [7], Su et al. also consider the binocular combination
model to generate a convergent cyclopean image from left and right images of stereo
pairs. Spatial domain univariate NSS features, wavelet domain univariate NSS features,
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and bivariate density and correlation NSS features are extracted from the convergent
cyclopean image. Zhou et al. [8] utilize the complementary local patterns of binocular
energy response and binocular rivalry response to simulate the binocular visual percep‐
tion. The local patterns of the binocular responses’ encoding maps are used to form
various binocular quality-predictive features. In [9], Wang et al. construct feature vectors
from binocular energy response and then use the machine learning method to learn a
visual quality prediction model. However, the problem is that all these existing methods
do not simultaneously take perceptual factors affecting 2D image quality and 3D stereo
perception into consideration. Furthermore, 3D visual characteristics are partial simu‐
lated. In order to design a well-defined NR-SIQA method, quality relevant features from
the independent left and right images could be useful. Moreover, features from trans‐
formed domain of cyclopean images are supplements. Others 3D visual perception
information should be involved.

In this paper, we propose a perceptual NR-SIQA algorithm, in which quality relevant
information including stereo pairs, cyclopean image and binocular disparity are consid‐
ered. Features are extracted from the wavelet coefficients using natural scene statistics
in the wavelet domain when stereo pairs, cyclopean image and binocular disparity map
are transformed by the steerable pyramid decomposition. Support vector regression
(SVR) is utilized to learn a regression model to predict the quality of stereoscopic image.

The remainder of this paper is organized as follows. The proposed algorithm is
described in detail in Sect. 2. Experimental results are analyzed in Sect. 3, and finally
conclusions are drawn in Sect. 4.

2 Proposed Algorithm

The flowchart of the proposed NR-SIQA algorithm is shown in Fig. 1.
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Fig. 1. Flowchart of the proposed algorithm
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2.1 Binocular Disparity Search

The binocular disparity of one point in 3D image is the distance between two projected
points in the left image and the right image, and the estimate of disparity for any point
in left image is to find the same point in the right image.

In this paper, a Gaussian average SSIM based disparity search algorithm is proposed.
SSIM index [10] measures the similarity between two image patch by

SSIM(1, r) =
(
2𝜇l𝜇r + c1

)(
2𝜎lr + c2

)

(
𝜇2

l
+ 𝜇2
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where 𝜇l and 𝜇r are the average of left image patch and the right mage patch. 𝜎2
l
 and 𝜎2

r

are the variance of left image and right image. 𝜎lr is the covariance of l and r. c1 and c2
are two parameters avoiding meaningless of the equation

In the process of disparity search, the leftmost part of the left image and the rightmost
part of the right image should be discarded, since they cannot be captured by both
cameras. For any point in left image with coordinate 

[
xl, yl

]
, its related point in the right

image is search from [xl − range, yl] to [xl + range, yl]. In our experiment, the range is
32. The matched point in the right image has the largest similarity between the current
point in the left image and the matched point in the search range of right image. The
SSIM value between point in the left block and related point in the right image is calcu‐
lated, and all the SSIM values are merged together with a Gaussian weighted sum.
Figure 2 shows the stereo pairs and disparity image. Figures 2(a) and (b) denote the right
view and left view of stereo pairs with high quality, respectively. The estimated disparity
image of the stereo pairs is shown in Fig. 2(c). Figures 2(d) and (e) denote stereo pairs
with gauss noise distortion, and the estimated disparity is shown in Fig. 2(f).

(a) (b) (c)

(d) (e) (f)

Fig. 2. Stereo pairs and disparity image
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2.2 Cyclopean Image Generation

Cyclopean image is a single metal image of a scene created by the brain when combining
two images from the two eyes. This process can be explained by binocular vision
combination characteristic.

In this paper, the latest biological model, Gain-Control Theory model is utilized to
simulate binocular fusion and explain cyclopean perception. The first step of cyclopean
image generation is to decide the base image between the left image and the right image.
In our implement, the image with better quality is selected as the base image, while the
other one image is the aid image.

If the left image is selected as base image, the synthesized cyclopean image I(x, y)
is calculated as follows,

I(x, y) = 𝜔L(x, y) ⋅ IL(x, y)

+𝜔R

(
x − DL(x, y), y

)
⋅ IR

(
x − DL(x, y), y

) (2)

where

𝜔L =
EL(x, y)

EL(x, y) + ER(x − DL(x, y), y)
; 𝜔R =

ER(x − DL(x, y), y)

EL(x, y) + ER(x − DL(x, y), y)

While if the right image is selected as base image, the synthesized cyclopean image
I(x, y) can be calculated as,

I(x, y) = 𝜔L

(
x + DR(x, y), y

)
⋅ IL

(
x + DR(x, y), y

)

+𝜔R(x, y) ⋅ IR(x, y)
(3)
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)
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)
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EL

(
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)
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In Eqs. (2) and (3), DL(x, y) and DR(x, y) are the estimated disparity map computed
using the left image and right image as the base image, respectively. 𝜔L and 𝜔R are
weighting maps. EL and ER denote the sum of the energies of wavelet coefficient
computed using a steerable pyramid. The stereo pairs and synthesized cyclopean image
are shown in Fig. 3. Figures 3(a) and (b) show the stereo pairs with no distortion existing,
and the synthesized cyclopean image computed from Fig. 3(a) and (b) is shown in
Fig. 3(c). Stereo pairs with gauss distortion are shown in Fig. 3(d) and (e), respectively.
Figure 3(f) shows the cyclopean image with gauss distortion.
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(a) (c)(b)

(e)(d) (f)

Fig. 3. Stereo pairs and cyclopean image

2.3 Features Extraction

The strategy that adopted for feature extraction is based on natural scene statistics (NSS),
which has been proved to be effective in image quality assessment [11].

To extract features, the estimated disparity image, synthesized cyclopean image and
image with better quality from the stereo pairs are processed by wavelet decomposition
to form oriented band-pass responses. The motivation is based on the fact that the scale-
space-orientation decomposition achieves a high performance in modeling the visual
signal processing mechanism, which occurs in the primary visual cortex of human visual
system (HVS).

In our implement, we perform wavelet decomposition over 2 scales and 6 orienta‐
tions. Thus, 12 sub-bands across scales and orientations labeled
S𝜃

𝛽

(
β ∈ {1, 2}and θ ∈

{
0◦ , 30◦ , 60◦ , 90◦ , 120◦ , 150◦

})
 are obtained for each image. Then,

a series of statistics features will be extracted from the obtained sub-band coefficients
as follow.

2.3.1 Single Sub-band-Based NSS Feature
To extract single scale feature, it is not necessary to use all the sub-bands, since some
of the sub-bands may be correlated with others. In this paper, four sub-bands (i.e.,
S0◦

1 , S90◦

1 , S0◦

2 and S90◦

2 ) are chosen to extract single sub-band based feature.
The single sub-band coefficients statistics of the cyclopean image in Fig. 3(c) for

various distortions are shown in Fig. 4. It demonstrates that the probability density
distribution of the sub-band coefficients exhibits a Gaussian-like appearance, which can
be effectively captured by a generalized Gaussian distribution (GGD). The density
function of GGD with zero mean is given by,

f (x;𝛼, 𝜎2) =
𝛼

2𝛽Γ(1∕𝛼)
exp

(
−

(
|x|
𝛽

)𝛼)
(4)
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where 𝛽 = 𝜎

√
Γ(1∕𝛼)
Γ(3∕𝛼)

, and Γ(.) is the gamma function: Γ(𝛼) = ∫
∞

0 ta−1e−tdt a > 0. In

the model of GGD, the shape parameter α controls the real shape of the distribution, and
𝜎2 controls the variance. We use the parameter α and 𝜎2 as the quality relevant features,
which can be reliably estimated using the moment-matching based approach in [12].
Features can be extracted from the wavelet coefficients of cyclopean image, disparity
image and stereo pairs.
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Fig. 4. Single sub-band statistics of the cyclopean image

2.3.2 Spatial Correlation-Based NSS Feature
There is a high correlation between sub-bands over the same scale and different orien‐
tation, as well as sub-bands over different scale and same orientation.

In Fig. 5(a), we plot the probability density distribution of coefficients formed by
[S0◦

1 :S90◦

1 ] to demonstrate the sub-bands correlation over the same scale and different
orientation. To show the correlation over different scale and same orientation, the prob‐
ability density distribution of coefficients formed by [S0◦

1 :S0◦

2 ] is shown in Fig. 5(b).
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Fig. 5. Sub-bands statistics of spatial correlation
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To extract features, the GGD model can also be utilized to fit the Gaussian-like
distortion. The parameter (α, 𝜎2) of GGD is extracted as features from the wavelet
coefficients of cyclopean image, disparity image and stereo pairs.

2.3.3 Spatial Difference-Based NSS Feature
In our work, we calculate the difference between two sub-bands coefficient at the same
scale across different orientation as,

D
(𝜃i−𝜃j)

1 = S
𝜃i

1 − S
𝜃j

1 ; D
(𝜃i−𝜃j)

2 = S
𝜃i

2 − S
𝜃j

2 (5)

where 𝜃i ∈ {0◦

} and 𝜃j ∈ {0◦ , 30◦ , 60◦ , 90◦ , 120◦ , 150◦

}.
The probability density distribution of D

(0◦

−90◦

)

1  and D
(0◦

−90◦

)

2  computed from the
cyclopean image are shown in Fig. 6(a) and (b). Similarly, to extract features from spatial
difference, the GGD model is used to fit the distributions of the difference. Thus, the
parameter (α, 𝜎2) of GGD computed from cyclopean image, disparity image and stereo
pairs are extracted as features.
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Fig. 6. Sub-band statistics of spatial difference

2.4 Quality Prediction

Machine learning is applied to map these features to quality score. Specifically, in the
train phase, the best map between features and subjective quality scores (MOSs)
included in the 3D image databases is obtained by the regression module. In the test
phase, correlation between predicted objective scores obtained by SIQA algorithm and
subjective scores is received. Multiple iterations of the above training and testing proce‐
dure are performed by varying the splitting of data over the training and test sets.
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3 Experimental Results and Analysis

3.1 Databases and Evaluation Criteria

The proposed 3D-IQA method is evaluated on two publicly available subject-rated
image quality databases: LIVE 3D IQA Database Phase I [13] and LIVE 3D IQA Data‐
base Phase II [6]. The LIVE 3D IQA Database Phase I consists of 20 reference images
and 365 distorted images. Five types of distortions: JPEG and JPEG2000 (JP2K)
compression, Gaussian blur (GB), White noise (WN) and a Rayleigh fast-fading (FF)
are symmetrically applied to the left and right reference images at various levels. The
LIVE 3D IQA Database Phase II consists of 120 symmetrically and 240 asymmetrically
distorted images generated from 8 reference images, with the same distortions as Data‐
base Phase I.

Three criterions including Pearson linear correlation coefficient (PLCC), Spearman rank
order correlation coefficient (SROCC) and root mean squared error (RMSE) are used to
evaluate the SIQA metrics. PLCC and RMSE are used to evaluate prediction accuracy of
SIQA metrics, and SROCC is used for prediction monotonicity. Before computing these
performance criterions, a nonlinear regression analysis is utilized to provide a nonlinear
mapping between the objective scores and subjective mean opinion scores (MOSs). For the
nonlinear regression, a five-parameter logistic function [14] is used,

f (x) = 𝛽1.
(1

2
−

1
1 + e𝛽2(x−𝛽3)

)
+ 𝛽4x + 𝛽5 (6)

where 𝛽i, i = 1, 2… 5, are parameters determined by the best fit of subjective scores and the
objective scores. Higher SROCC and PLCC and lower RMSE values demonstrate better
objective SIQA metrics.

3.2 Overall Performance Comparison

The overall performance comparison of proposed algorithm and other NR-SIQA
methods on both LIVE 3D image database Phase I and Phase II is shown in Table 1.
The top metric has been highlighted in boldface. It can be seen from Table 1 that the
proposed algorithm significantly outperforms (i.e., PLCC and SROCC are highest, while
RMSE is lowest) all the considered other metrics on both the two databases. Meanwhile,
the proposed metric and other NR-SIQA metrics achieve a better performance on LIVE
3D image quality database phase I than those on database phase II. The reason is that
LIVE 3D image quality database phase I contains only symmetric distortions, while
phase II contains both symmetric and asymmetric distortions. It is much more difficult
to assess the stereoscopic images with asymmetric distortions. That is because of the
limited understanding of human visual system when human eyes watching asymmetric
stereoscopic images.
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Table 1. Overall performance on LIVE Phase I and Phase II

Database Live Phase I Live Phase II
Criteria SROCC PLCC RMSE SROCC PLCC RMSE
Akhter [5] 0.383 0.626 14.827 0.543 0.568 9.249
Chen [6] 0.891 0.895 7.247 0.880 0.895 5.102
Su [7] – – – 0.905 0.913 4.657
Zhou [8] 0.887 0.928 6.025 0.823 0.861 5.779
Wang [9] 0.828 0.885 7.238 0.794 0.784 7.236
Proposed 0.934 0.945 5.433 0.915 0.928 4.215

We also evaluate our proposed algorithm on each type of distortion. To make a compre‐
hensive comparison, several state-of-the-art FR-SIQA metrics (i.e., Benoit [1], You [2], and
Chen [3]) are also considered. Performances on LIVE 3D image database Phase I and Phase
II are listed in Tables 2 and 3, respectively. The top two metrics are highlighted in bold‐
face, and italicized algorithms are FR-SIQA algorithms. It can be seen that the proposed
metric belongs to the top two metrics, which mean that the proposed method can predict the
stereoscopic image quality consistently across different types of distortions. For FR-SIQA
metrics, Benoit’s and You’s methods are based on 2D-IQA algorithms and simultaneously
consider disparity information. Chen’s algorithm in [3] uses the SSIM index to assess the
quality of cyclopean image. Even though the reference information is available in these FR-
SIQA metrics, the performance is not better than our method. For NR-SIQA metrics, the
scheme in [6] extracts NSS-model-based features of cyclopean in spatial domain, but others
3D visual perception are not considered adequately. Therefore, the performance is worse
than our proposed algorithm.

Table 2. Performance on each type of distortion on LIVE Phase I

FR-SIQA NR-SIQA
Benoit
[1]

You [2] Chen
[3]

Akhter
[5]

Chen
[6]

Su [7] Propos
ed

PLCC JPEG 0.640 0.487 0.603 0.905 0.907 – 0.861
JP2K 0.939 0.939 0.912 0.904 0.917 – 0.946
WN 0.925 0.925 0.942 0.729 0.695 – 0.975
GB 0.948 0.948 0.942 0.617 0.917 – 0.980
FF 0.747 0.747 0.776 0.503 0.735 – 0.856

SROCC JPEG 0.603 0.439 0.530 0.866 0.863 – 0.846
JP2K 0.910 0.860 0.888 0.914 0.919 – 0.942
WN 0.930 0.940 0.948 0.675 0.617 – 0.960
GB 0.931 0.882 0.925 0.555 0.878 – 0.910
FF 0.699 0.588 0.707 0.640 0.652 – 0.747

RMSE JPEG 5.022 5.709 5.216 5.438 5.402 – 3.076
JP2K 4.426 6.206 5.320 7.092 6.433 – 3.378
WN 6.307 5.621 5.581 4.273 4.532 – 3.601
GB 4.571 5.679 4.822 11.387 5.898 – 2.786
FF 8.257 8.429 7.837 9.332 8.322 – 6.255
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Table 3. Performance on each type of distortion on LIVE Phase II

FR-SIQA NR-SIQA
Benoit [1] You [2] Chen [3] Akhter

[5]
Chen [6] Su [7] Proposed

PLCC JPEG 0.853 0.830 0.862 0.776 0.899 0.888 0.854
JP2K 0.784 0.905 0.834 0.722 0.947 0.847 0.933
WN 0.926 0.912 0.957 0.786 0.901 0.953 0.941
GB 0.535 0.784 0.963 0.795 0.941 0.968 0.966
FF 0.807 0.915 0.901 0.674 0.932 0.944 0.923

SROCC JPEG 0.867 0.795 0.843 0.724 0.867 0.818 0.786
JP2K 0.751 0.894 0.814 0.714 0.950 0.845 0.907
WN 0.923 0.909 0.940 0.649 0.867 0.946 0.902
GB 0.455 0.813 0.905 0.682 0.900 0.903 0.906
FF 0.773 0.891 0.884 0.559 0.933 0.899 0.923

RMSE JPEG 3.787 4.086 3.865 6.189 4.298 4.169 3.337
JP2K 6.096 4.186 5.562 7.416 3.513 5.482 3.224
WN 4.028 4.396 3.368 4.535 3.342 3.547 3.289
GB 11.763 8.649 3.747 8.450 4.725 4.453 3.177
FF 6.894 4.649 4.966 8.505 4.180 4.199 4.120

4 Conclusion

In this paper, we propose a novel no-reference quality assessment for stereoscopic image
using wavelet decomposition and natural scene statistics. We find that the statistics of
the wavelet coefficients can be effectively captured by a generalized Gaussian distribu‐
tion (GGD). Therefore, the parameters of GGD are extracted as the quality relevant
features. To extract feature, stereo pairs, cyclopean image and binocular disparity image
are considered. Finally, machine learning is applied to map these features to quality
score. Experimental results demonstrate that the proposed algorithm achieves high
consistency with subjective assessment on two public available 3D image quality
assessment databases.
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