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Abstract. Cardiovascular diseases are the most common 
cause of death for humans in the last decade. Understanding 
of the fluid flow through the aortic arch, flow properties and 
the influence of the blood flow on aorta’s wall to make 
better predictions on the progress of disease. The geometric 
model of aortic arch is created from the series of CT scans, 
so that 3D model is generated. Finite-volume method is 
used for discretization of the equations describing blood 
flow. Velocity profiles, flow structure, creation of second-
ary and reverse flow, pressure drop on different control 
volumes of aortic arch are shown. Relation between the 
secondary flow and aortic arteriosclerosis development is 
confirmed. The phenomena of reverse flow in certain mo-
ment of cardiac cycle, given by the numerical simulations, 
coincide with theoretical and experimental results. Numeri-
cal simulations are used for better understanding and predic-
tion of conditions triggering diseases such as aortic aneu-
rysm and arteriosclerosis. CFD could have a significant role 
in detection, early prediction and treatment of the diseases. 
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1 Background 

Cardiovascular diseases are leading cause of death of 
people in last decade. Some of these cardiovascular diseases 
affect parts of the aorta. Understanding the way how flow 
occurs in aorta, flow characteristics and flow impact on the 
wall is very important for better predictions of disease 
development. 

One of the main reasons for numerical simulations of 
blood flow in aortic arch is to understand development of 
atherosclerosis and its impact on flow structure. It is found 
that early atherosclerotic lesions develop in regions where 
vessels branching occurs and where flow is complex in 
several directions. Significant disruption of the fluid flow, 
as previously mentioned, occurs on branches and bends of 
aorta as consequence of very complex geometry of aorta 
and pulsatile nature of blood flow. Recent studies aimed to 
generate physiologically relevant flow based on the real 

geometry and real flow conditions. Therefore, it is 
unacceptable to approximate the flow as stationary and 
geometry as theoretically ideal smooth tube. 

The aortic arch is highly curved and it is expected to 
have skewed velocity profile with secondary flow. Also, it 
is expected that three leading branches to neck and brain 
have huge impact on flow through aortic arch. 

There were many experimental and numerical studies 
done on simplified aorta models, like study from Yaerwood 
i Chandran, Barakat i Rodkievicz [7]. These studies allowed 
good understanding regarding  complexity of the flow 
through coiled pipes such as aorta. The stationary flow is 
determined by Reynolds and Dean number, while in the 
case of unsteady flow Womersleys number is involved. 

2 Methodology  

The Finite Volume Method (FVM) is a numerical tech-
nique that transforms the partial differential equations into 
discrete algebraic equations over finite volumes. Then, the 
system of algebraic equation is solved to compute the vales 
of the variables for each of the elements. FVM is inherently 
conservative, making it the preferred method in Computa-
tion Fluid Dynamics (CFD). Besides that, it is easy to im-
plement boundary conditions in non-invasive manner, as 
unknown variables are evaluated at the center of the volume 
element, not at the boundary faces. In order to complete the 
mathematical model, initial and boundary conditions must 
be defined. The problem is considered well defined if the 
solutions exist, are unique and continuous. 

 
2.1.  Mathematical model 

Mathematical model is based on the principles of contin-
uum mechanics that are defined by conservation laws. 

• Conservation of mass 

 (1) 
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Where tis time,  density, dV elementary volume, u ve-
locity, n unit vector orthogonal to the surface, dS elemen-
tary surface. 

• Conservation of linear momentum 

 

(2) 

 
Where  is stress, mass forces. 
• Conservation of energy 

 
(3) 

Where  is work due to shear forces,  enthalpy, 
work due to viscosity. 
 
 

2.2  Discretization  

Spatial discretization 
Spatial domain is divided into discrete non-overlapping 

cells. This geometric discretization of the physical domain 
results in a mesh on which the conservation equation are 
solved. Elements are bounded by faces, that are shared be-
tween neighboring elements, except at the boundaries.  

Temporal discretization 
For transient simulations, governing equation are discretized 

in time, so the time interval is divided into certain number of 
time steps  t. Problems solved in CFD are unsteady and as 
such require solutions where variables change as a functions of 

time. Every term in equations is integrated over this time step. 
Time integral of a given variable is equal to a weighted average 
between current and future values 

Equation discretization 
The equation discretization is performed over each ele-

ment of computational domain to obtain an algebraic corre-
lation that relates the value to values neighboring elements 
Surface and volume integrals are approximated by the mid-
point rule, that is of 2nd order of accuracy.  

Values in the faces can be obtained with interpolation, 
where for approximation of convective term upwind scheme 
is used. For approximation of other terms, most often linear 
interpolation is used, There are several methods for gradient 
approximation, such as Gauss algorithm and least square 
method. 

3   Physiology of blood flow 

Blood is a complex mixture of plasma (the liquid 
component), white blood cells, red blood cells, and 
platelets. Red blood cells (erythrocytes) usually take 40% of 
blood volume. Since erythrocytes are semi-solid particles 
they increase the viscosity of the blood and affect the 
behavior of blood. The blood is approximately four times 
more viscous than water. Blood does not show a constant 
viscosity at all flow rates, and specifically shows a non-
Newtonian viscosity in micro circular systems. The non-
Newtonian behavior of the blood is most evident through 
the small capillaries, where viscous forces dominate. 
However, in the most arteries blood behaves as Newtonian 
fluid and the viscosity may be taken as constant, 3-4cP. [12] 

The flow rates and pressure levels are unsteady. The 
cyclical nature of the heart creates pulsating conditions in 
all arteries. Heart is released and filled with blood in sub-
cycles systolic and diastolic. Blood is pumped from the 
heart during systole, while heart is resting during diastole 

 

Fig. 1. Theoretical example of blood flow through aorta in phase of accelerating during systole (A), in phase of decelerating during 
systole (B), during diastole (C) (Copy from Kilner, P., et al. Circulation, 88 (5), 1993) 
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and does not pump blood. Aorta as the largest artery which 
carries the blood from the heart and serves as a repository of 
high pressure during cardiac cycle. 

For decades, there were ongoing investigations of the 
flow through heart and arteries. Dean (1928) was the first 
who assumed that blood flow through aorta is helical flow 
through curved pipe. Doby and Lowman (1961) used 
radiopaque streamer technique to detect blood flow rotation 
in vivo. First studies on blood flow through aortic arch were 
conducted in 1970s by Seed and Wood. Those studies 
showed flat velocity profiles and helical flow through aorta. 
Studies published by Segedal and Matre showed bi-
directional flow in ascending aorta from late systole to 
medium diastole. Blood had clockwise rotation when 
observed from left anterior position. [13] (Fig. 1.). 

3.1   Basic presumptions of fluid mechanics of blood 
flow through the aorta 

The existence of unsteady flow through the 
cardiovascular system includes the value if the local 
acceleration in most analyses. Typical Reynolds number 
which describe blood flow motion vary from 1 in the 
smallest capillaries to 4000 in the largest artery, aorta. 
[10,12]. Thus, there are differences between flow rates 
where inertial forces are dominant (arteries) and those flows 
where viscous forces are more dominant (capillaries and 
veins). Dimensional analysis of non-stationary Navier-
Stokes equations as result give dimensionless number 
labelled as Womersley parameter: 

                     
(4)

Where denominates radius of the tube,  is angular 
frequency and is kinematic viscosity. 

Womersleys parameter can also be characterized as the 
ratio of non-stationary forces and viscous forces. When 
Womersley number is small, viscous forces dominate, 
velocity profiles are parabolic and medium speed line 
oscillate in phase with the pressure gradient. For 
Womersley numbers above 10, non-stationary inertial 
forces dominate the flow and velocity profile is flat. 
Unsteadiness of the flow cannot be ignored and there are 
certain characteristics of blood flow through aorta which 
can be seen as less important to flow nature. These 
characteristics are elasticity of the walls, the non-Newtonian 
viscosity, semi-liquid matter in the fluid, body forces and 
temperature. Although each of these characteristics 
influence the flow, flow analysis is considerably simplified 

if these characteristics are neglected, as it is case in the most 
of studies on artery flows. 

3.2   Entrance region into aorta 

The flow in the entrance of  aorta is not fully developed. 
Velocity profile is flat and as flow develops midline 
velocity increases, while velocity near the wall decrease. 
Unsteady flow in the inlet region depends on Womersley 
and Reynolds number. If Womersley number is small, 
length required for fully developed flow primarily depends 
on Reynolds number and maximum length required for flow 
development is same as in stable flow under highest flow 
rates. For Womersley numbers bigger than 12.5 
development of boundary regions is faster and almost 
equivalent to the length of flow development in stationary 
case. Aortic arch, examined in this paper is the three-
dimensional helical tube which is rotated by more than 
180°. Apart from the current underdevelopment that 
characterizes the root of the aorta, it is characteristic that 
fluid core in the bend with potential vortex is tilted toward 
the inner wall. For other arteries except aorta the flow is 
always tilted to outer wall. 

4  Problem description 

In this section of the paper were carried out tests of flow 
through aortic arch. Special attention was paid to the ap-
pearance of velocity profiles and pressure drop through 
aorta. In addition to primary flow, vortex was examined 
which represent secondary flow. Certain approximations 
were made to simplify the problem: 

- The walls are rigid, 
- The walls are smooth, 
- The flow is in some simulation was specifically 

developed, 
- The temperature is constant, 
- The geometry of aorta is manually refined in plac-

es with atypical surface. 

Other flow characteristics taken into account: 
- Non-Newtonian fluid, 
- Unsteady flow, 
- Pulsating flow, 
- The real geometry, 
- Laminar or transitional flow, 
- Three-dimensional flow. 
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bers but can provide guidance for further work in this field. 
Experimental hypothesis are confirmed concerning ways 
and the distribution of blood flow through the arch.  

Further work in this field would introduce the interaction 
of the fluid and the wall (as elastic) for better understanding 
and better prognosis of conditions such as aortic aneurysm 
and aortic stenosis. The elasticity of the walls in these plac-
es is not the same as in healthy aorta or in other parts of the 
aorta. In the case of narrowing of arterial walls, speed is 
increasing and turbulence can occur, while in case of aneu-
rysm wall may break if the wall is too spread out. CFD 
could have a significant role in detection, early predicting 
and treatment of diseases. 
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