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Abstract
A large number of genomic studies have provided important insights into molecu-
lar pathogenesis of ovarian cancer. Ovarian cancer is divided into two types: type 
I and type II tumors. Type I ovarian tumors include clear cell, endometrioid, muci-
nous, and low-grade serous carcinomas, while type II tumors are mainly high-
grade serous carcinomas. High-grade serous carcinomas are characterized by TP53 
gene mutations and extensive copy number alterations. Approximately half of 
high-grade serous ovarian carcinomas harbor homologous recombination pathway 
deficiency. Clear cell carcinomas are characterized by upregulation of HNF1B and 
IL6 and mutations in PIK3CA and ARID1A. Alterations of HNF1B pathway, IL6 
pathway, PI3K pathway, and SWI/SNF complex are influenced by copy number 
alterations and epigenetic regulation. Endometrioid carcinomas are divided into 
low-grade (G1–G2) and high-grade (G3) tumors, although some of high-grade 
serous carcinomas have been misclassified as high-grade endometrioid carcino-
mas. Low-grade endometrioid carcinomas harbor mutations in CTNNB1, PTEN, 
KRAS, PIK3CA, and ARID1A, while high-grade endometrioid carcinomas harbor 
TP53 mutations. Mucinous carcinomas exhibit ERBB2/KRAS/BRAF pathway 
activation by KRAS or BRAF mutations or ERBB2 amplifications. Unlike other 
type I tumors, half of mucinous carcinomas harbor TP53 mutations. Low-grade 
serous carcinomas evolve from serous borderline tumor. KRAS and BRAF muta-
tions are common in serous borderline tumors and low- grade serous carcinomas.
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7.1  Introduction

There are two types of epithelial ovarian cancer: type I and type II [1]. Type I 
tumors grow slowly, while type II tumors behave aggressively. Type I tumors con-
tain low- grade serous, clear cell, endometrioid, and mucinous cancers, while type II 
tumors are mainly high-grade serous cancers. A large number of genomic studies 
have provided important insights into molecular pathogenesis of ovarian cancer. 
This chapter summarizes genomic alterations of epithelial ovarian cancer from his-
tology to histology.

7.2  High-Grade Serous Ovarian Carcinoma

7.2.1  Germline Mutations in Ovarian Carcinoma

Ovarian carcinoma, mainly high-grade serous, can occur via germline gene mutations 
in DNA repair system. In a study of 1915 ovarian carcinoma cases, 347 (18%) carried 
pathogenic germline mutations, 280 (15%) had mutations in BRCA1 (n = 182) or 
BRCA2 (n = 98), and the remaining cases had mutations in other 5 homologous 
recombination (HR) pathway genes (BARD1, BRIP1, PALB2, RAD51C, RAD51D) 
and four mismatch repair (MMR) genes (MSH2, MLH1, PMS2, and MSH6) [2].

7.2.2  The Genomic Landscape of High-Grade Serous Ovarian 
Carcinoma

The Cancer Genome Atlas (TCGA) project analyzed more than 300 high-grade 
serous ovarian carcinoma cases with whole-exome sequencing, SNP array (to ana-
lyze copy number alterations), mRNA expression microarray, DNA methylation 
microarray, and microRNA microarray [3]. The TCGA analyses identified four 
ovarian cancer transcriptional subtypes, three miRNA subtypes, four promoter 
methylation subtypes, and a transcriptional signature correlated with prognosis.

Strikingly, nearly all the high-grade serous ovarian carcinoma cases harbored 
somatic mutations in TP53 (96%). Furthermore, a study by five gynecologic pathol-
ogists who reviewed the negative TP53 cases from TCGA study found that all of the 
negative tumors except for one were histologically misclassified. The one exception 
contained a homozygous deletion of the gene, indicating that all high-grade serous 
ovarian carcinomas have a TP53 abnormality, which is almost always a mutation 
[4]. Somatic gene mutations other than TP53 occurred in less than 5% of high-grade 
serous ovarian carcinomas.

Additional feature of high-grade serous ovarian carcinoma is the widespread 
copy number alterations. The TCGA analysis identified regional copy number aber-
rations including 8 recurrent gains and 22 losses [3], all of which have been reported 
previously [5]. Focal amplifications were observed in 63 regions. The most com-
mon focal amplifications encoded CCNE1, MYC, and MECOM in more than 20% 
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of tumors. The TCGA study also identified homozygous deletions of known tumor 
suppressor genes, such as PTEN, RB1, and NF1. A focal deletion at 10q23.31 that 
includes only PTEN has been found in approximately 7% of tumors, which is asso-
ciated with downregulation of PTEN mRNA expression [3]. Another group con-
firmed that PTEN loss is a common event in high-grade serous ovarian cancer with 
significantly worse prognosis [6].

Exome sequencing has a limited ability to detect gene mutation by structural 
rearrangement. A whole-genome sequencing analysis for 92 cases of high-grade 
serous ovarian carcinoma was performed focusing on the mechanism of chemore-
sistance [7]. Although NF1 and RB1 were inactivated by truncating point mutations 
and indels in limited number of samples (NF1; n = 3, RB1; n = 2, out of 80), inclu-
sion of gene breakage raised the frequency of inactivating mutations to 20% for 
NF1 and 17.5% for RB1. Gene inactivation by breakage was also seen for PTEN 
(7.5%) and RAD51B (5%).

Homologous recombinant (HR) pathway-deficient tumors, having extensive 
copy number alterations and increased single nucleotide variants, are sensitive to 
platinum and PARP inhibitor. HR pathway-deficient tumors tend to use error-prone 
nonhomologous end joining to repair DNA, leading to extensive genome DNA vari-
ations. Approximately 50% of high-grade serous ovarian carcinomas exhibit genetic 
or epigenetic alterations in the FA-BRCA pathway (Fig. 7.1) [3, 8]. In TCGA analy-
sis, germline BRCA1/2 mutations are present in 14% [3], whereas somatic BRCA1/2 
mutations have been identified in 6% [3]. Importantly, 81% of BRCA1 and 72% of 
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Fig. 7.1 HR-deficient and HR-proficient tumors of high-grade serous ovarian carcinoma [8]
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BRCA2 mutations are accompanied by heterozygous loss [3]; thus, both alleles are 
inactivated. Epigenetic silencing via promoter hypermethylation occurs for BRCA1, 
but not BRCA2, in approximately 10% and is mutually exclusive of BRCA1/2 muta-
tions [3]. Other HR pathway alterations include mutations in FA genes (mainly 
PALB2, FANCA, FANCI, FANCL, and FANCC), in RAD genes (RAD50, RAD51, 
RAD51C, and RAD54L), and in DNA damage response genes (ATM, ATR, CHEK1, 
and CHEK2). RAD51C was also epigenetically silenced via promoter hypermethyl-
ation in about 2% of the cases [3]. CDK12 is known to promote the transcription of 
several HR pathway genes, including BRCA1. Inactivation mutation of CDK12, 
found in 3% of the cases [3], leads to downregulation of BRCA1 and other HR genes 
[9, 10]. HR defect may also occur via indirect mechanism. PTEN inactivation has 
been reported to be synthetically lethal with PARP inhibition, and one of the pro-
posed mechanisms is downregulation of RAD51 [11, 12]. Additionally, overexpres-
sion and amplification of EMSY, which inhibits transcriptional activity of BRCA2 
[13], is found in as high as 17% of high-grade serous ovarian carcinomas [3]. 
Furthermore, there may be other mechanisms of HR deficiency, such as miRNAs 
that target BRCA1/2 [14, 15].

HR pathway proficient tumors with CCNE1 amplification were common in pri-
mary resistant and refractory cases [7]. Inactivation of the p53 pathway and activa-
tion of the CCNE1 pathway also contribute to chromosomal instability [16]. 
Alterations in nucleotide excision repair (NER) and mismatch repair (MMR) have 
been reported in up to 8% and 3% of high-grade serous ovarian carcinomas, which 
tumors are sensitive to platinum and resistant to PARP inhibitor [17].

Mechanism of acquired resistance to chemotherapy included breakage of tumor 
suppressor genes, reversion mutation of BRCA1/2 mutated cases, and upregulation 
of BRCA1 gene expression by demethylation of the methylated BRCA1 promoter 
region in a primary tumor. Additionally, gene fusion of ABCB1 with SLC25A40 
promoter caused upregulation of ABCB1 expression, which can cause increased 
excretion of chemotherapeutic agents [7] (see also Sect. 3.4.1.1 in Chap. 3).

7.2.3  Experiments to Identify Origin of High-Grade Serous 
Ovarian Carcinoma

Recently, fallopian tubal epithelial cell has been thought as the origin of high-grade 
serous ovarian carcinoma [1]. Using a genetically engineered mouse that expresses 
Cre recombinase from a Pax8 promoter, Brca, Tp53, and Pten genes were targeted 
in fallopian tubal secretory epithelial cells. This mouse model generated serous 
tubal intraepithelial carcinoma as the precursor lesion that gave rise to high-grade 
serous ovarian and peritoneal carcinomas [18]. In this model, tumor-bearing mice 
had higher serum CA125 levels than controls. Furthermore, the tumors had exten-
sive copy number alterations similar to human high-grade serous ovarian 
carcinomas.

There is another idea regarding cell of origin of high-grade serous ovarian carci-
noma. Cells of the hilum ovarian surface epithelium, the transitional area between 
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the ovarian surface epithelium, mesothelium, and tubal epithelium, express stem 
cell markers and display stem cell properties. The hilum cells show increased trans-
formation potential after inactivation of tumor suppressor genes Tp53 and Rb1. 
Therefore, stem cell niches in those areas are susceptible to malignant transforma-
tion and could be the origin of high-grade serous ovarian carcinoma [19].

7.3  Ovarian Clear Cell Carcinoma

7.3.1  Gene Expression of Ovarian Clear Cell Carcinoma

Ovarian clear cell carcinoma shows unique clinical features including an associa-
tion with endometriosis and poor prognosis. A gene expression microarray analysis 
identified genes commonly expressed in both ovarian clear cell carcinoma cell lines 
and clinical samples, which comprise an ovarian clear cell carcinoma gene signa-
ture. The gene signature contains known markers of ovarian clear cell carcinoma, 
such as HNF1B, VCAN, IL6, and other genes that reflect oxidative stress. Expression 
of ovarian clear cell carcinoma signature genes was induced by treatment of immor-
talized ovarian surface epithelial cells with the contents of endometriotic cysts, indi-
cating that the ovarian clear cell carcinoma signature is largely dependent on the 
tumor microenvironment [20].

7.3.2  DNA Methylation Analysis of Ovarian Clear Cell Carcinoma

Recently, genome-wide methylation and expression data were generated for 14 
ovarian clear cell carcinoma, 32 non-ovarian clear cell carcinoma, and four normal 
cell lines. Consensus clustering showed that ovarian clear cell carcinoma is epige-
netically distinct. Inverse relationships between expression and methylation in ovar-
ian clear cell carcinoma were identified, suggesting functional regulation by 
methylation, and included 22 hypomethylated genes and 276 hypermethylated 
genes. The ovarian clear cell carcinoma-specific hypomethylated genes were 
involved in response to stress and many contain HNF1-binding sites, while the ovar-
ian clear cell carcinoma-specific hypermethylated genes included members of the 
ERα network and genes involved in tumor development [21].

7.3.3  Genetic Analyses of Ovarian Clear Cell Carcinoma

ARID1A mutations were reported in 46–57% and PIK3CA mutations in 31–33% of 
ovarian clear cell carcinoma samples [22–24]. A whole-exome sequencing of 39 
ovarian clear cell carcinoma samples identified recurrent somatic mutations in 426 
genes [25]. In these 39 samples, ARID1A (62%) and PIK3CA (51%) were frequently 
mutated, and known key ovarian clear cell carcinoma-related genes such as KRAS 
(10%), PPP2R1A (10%), and PTEN (5%), as well as novel genes MLL3 (15%), 
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ARID1B (10%), and PIK3R1 (8%) were also mutated. Gene interaction analysis and 
functional assessment revealed that mutated genes were clustered into groups per-
taining to chromatin remodeling, cell proliferation, DNA repair and cell cycle 
checkpointing, and cytoskeletal organization.

A copy number variation analysis based on the above exome sequencing identi-
fied frequent amplification of MYC (chr8q, 64%), ZNF217 (chr20q, 54%), and 
ERBB2, STAT3, HNF1B, PPM1D (chr17q, 46%) loci as well as deletion in 
SMARCA4 (chr19p, 41%), RB1 (chr13q, 28%), NOTCH1 (chr9q, 21%), and SMAD4 
(chr18q, 21%) loci. Other copy number alterations included amplification of IL6, 
IL6R, KRAS, PIK3CA, PIK3C2B, CDK2, CDK4, and CCNE1, as well as deletion of 
ARID1A, SMARCC1, SMARCA2, ARID1B, CDKN1A, CDKN2A, CDKN2B, and 
TP53. Integration of the analyses discovered that frequently mutated or amplified/
deleted genes were involved in the KRAS/PI3K signaling (82%) and MYC/RB sig-
naling (75%) pathways as well as the critical chromatin remodeling complex SWI/
SNF (85%) [25] (see also Sect. 3.4.3 in Chap. 3).

7.3.4  Role of ARID1A, PIK3CA, and IL6 in the Carcinogenesis 
of Ovarian Clear Cell Carcinoma

Concurrent Arid1a inactivation and Pik3ca activation in mouse ovaries generated 
adenocarcinomas similar to human ovarian clear cell carcinomas. These tumors 
expressed Hnf1b, a marker of ovarian clear cell carcinoma. Furthermore, in this 
model, the tumor growth was promoted through sustained IL6 overproduction [26].

Ovarian clear cell carcinoma was generated in vitro by introducing ARID1A 
knockdown and mutant PIK3CA into a normal human ovarian epithelial cell line. 
Loss of ARID1A impairs the recruitment of the Sin3A-HDAC complex, while the 
PIK3CA mutation releases RelA from IκB, leading to NF-kB pathway activation 
resulting in IL6 overexpression [27].

Collectively, these findings indicate that ARID1A and PIK3CA mutations, fre-
quently seen in ovarian clear cell carcinoma, are sufficient to generate ovarian clear 
cell carcinoma, associated with the specific gene expression including HNF1B and 
IL6 (see also Sect. 3.4.3 in Chap. 3).

7.4  Ovarian Endometrioid Carcinoma

7.4.1  Genetic Analysis of Ovarian Endometrioid Carcinoma

Gene mutations in ovarian endometrioid carcinoma samples with different grades 
(grade 1, n = 20; grade 2, n = 26; grade 3, n = 26) were analyzed, and mutations in 
CTNNB1 (13%, 5%, 0%), APC (5%, 0%, 0%), KRAS (10%, 12%, 0%), PTEN (20%, 
8%, 0%), PIK3CA (20%, 8%, 0%), and TP53 (15%, 46%, 65%) were found [28]. 
Therefore, high-grade ovarian endometrioid carcinomas are likely to harbor TP53 
mutations, while low-grade ovarian endometrioid carcinomas frequently harbor 
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mutations of Wnt/β-catenin pathway and/or KRAS/PI3K pathway genes. In another 
study, ARID1A mutations were reported in 10 of 33 ovarian endometrioid carcino-
mas (30%) [23]. Another group reported mutations of CTNNB1 (53%), PIK3CA 
(40%), ARID1A (30%), PTEN (17%), KRAS (33%), PPP2R1A (17%), and TP53 
(7%) in low-grade (grade 1 and 2) ovarian endometrioid carcinomas (n = 30) [29]. 
Activating mutations of the CTNNB1 gene is associated with squamous differentia-
tion [30].

High-grade endometrioid carcinoma tumors with TP53 mutations have expres-
sion profiles similar to those of high-grade serous carcinoma [31]. However, these 
tumors may have been misclassified, as suggested by more recent studies reporting 
a subset of high-grade serous carcinomas that display a pseudoendometrioid pattern 
[32] (see also Sect. 3.4.2 in Chap. 3).

7.4.2  Mouse Models of Ovarian Endometrioid Carcinoma

Like ovarian clear cell carcinomas, ovarian endometrioid carcinomas are frequently 
associated with endometriosis. Peritoneal endometriosis occurs in mice by the acti-
vation of an oncogenic K-ras. Additionally, expression of oncogenic K-ras and Pten 
deletion within the ovarian surface epithelium leads to the induction of adenocarci-
nomas similar to human ovarian endometrioid carcinomas [33]. In another study, 
inactivation of the Pten and Apc in murine ovaries resulted in the formation of endo-
metrioid adenocarcinomas [28]. More recently, codeletion of Arid1a and Pten 
resulted in ovarian endometrioid carcinoma [34].

7.4.3  Microsatellite Instability (MSI) in Ovarian Endometrioid 
Carcinoma

Ovarian cancer, particularly endometrioid adenocarcinoma, is associated with 
Lynch syndrome, although the risk is much smaller than for uterine cancer. Among 
71 cases with ovarian endometrioid adenocarcinoma, 7 (10%) tumors had abnormal 
mismatch repair (MMR) protein status, defined as complete loss of expression of 
MLH1, MSH2, MSH6, and/or PMS2. Each of these tumors with abnormal MMR 
status demonstrated MSI. Importantly, concurrent uterine tumor was present in 5/7 
patients whose ovarian tumor had abnormal MMR/MSI [35].

7.4.4  Genetic Analysis of Synchronous Endometrial and Ovarian 
Carcinoma

Five to ten percent of women with ovarian endometrioid carcinomas present with 
concurrent endometrial carcinoma. Based on both targeted and exome sequencing 
of 18 synchronous endometrial and ovarian tumors, most (17/18) cases showed 
evidence of clonality. Importantly, 10 of 11 cases that fulfilled clinicopathological 
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criteria that would lead to classification as independent endometrial and ovarian 
primary carcinomas showed evidence of clonality [36]. Therefore, the genome-wide 
analysis demonstrated that most synchronous endometrial and ovarian carcinoma 
tumors develop from a clonal origin.

7.5  Mucinous Ovarian Tumors

7.5.1  Origin of Mucinous Ovarian Tumors

Mucinous ovarian carcinomas typically display heterogeneity, with lesion of muci-
nous cystadenoma admixed with borderline tumor and carcinoma. The identical 
KRAS mutation in these components provides strong evidence that mucinous cyst-
adenomas are the precursor lesions of mucinous carcinoma [37, 38].

In terms of the origin of mucinous cystadenoma, a subset develops from muci-
nous epithelium in mature teratomas. A microsatellite genotyping analysis of muci-
nous tumors associated with a teratoma revealed five of six pairs of tumors with 
teratoma showed a high or complete degree of allelotype matching, which differed 
from the somatic allelotypes of the normal control tissue [39].

It has been proposed that many of nongerm cell mucinous tumors are derived 
from Brenner tumors. In a study of 40 mucinous cystadenomas, 67 Brenner tumors, 
and 13 combined tumors, a total of 25% of tumors with a mucinous component 
contained a Brenner component, and 16% of tumors with a Brenner component 
contained a mucinous component. Mucinous tumors are typically large, whereas 
Brenner tumors tend to be smaller. Accordingly, the Brenner tumor is compressed 
by the large mucinous cystadenoma and may be overlooked [40]. This hypothesis 
was supported by a recent study showing that, in combined Brenner and mucinous 
tumors, the Brenner and mucinous components are clonally related [41] (see also 
Sect. 3.4.4 in Chap. 3).

7.5.2  Genetic Features of Mucinous Ovarian Tumors

KRAS-activating mutation is the most common single molecular genetic alteration 
in mucinous carcinomas, occurring in 65% of cases [42]. Another study identified 
mutations in a novel gene, RNF43, a zinc finger-dependent E3 ubiquitin protein 
ligase. RNF43 mutations were observed with a frequency of 2/22 (9%) in mucinous 
ovarian borderline tumors and 6/29 (21%) in mucinous ovarian carcinomas [43]. In 
contrast to other type I ovarian carcinomas, TP53 mutation is frequent in mucinous 
carcinomas, being present in approximately one-half of cases [42, 43]. In a genetic 
analysis of a total of 82 mucinous ovarian tumors, which included exome sequenc-
ing of 24 tumors and a validation cohort of benign 58 tumors for specific gene 
regions, benign, borderline, and carcinoma samples harbored mutations in BRAF 
(0%, 10%, 23%), TP53 (9%, 14%, 52%), and RNF43 (0%, 7%, 20%), respectively, 
which mutations were associated with progression of the disease. Other recurrent, 
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but not associated with progression, mutations were found in KRAS (54%), CDKN2A 
(16%), ARID1A (8%), ELF3 (6%), GNAS (6%), ERBB3 (5%), and KLF5 (5%) [44].

Overexpression and amplification of ERRB2 was observed in 11/176 (6%) muci-
nous borderline tumors and 29/154 (19%) mucinous cancers. KRAS mutations and 
ERRB2 amplification are near mutually exclusive (#41#). Thus, mutations in KRAS, 
BRAF, and/or ERRB2 amplification are present in the majority of mucinous neo-
plasms, indicating RAS/RAF pathway activation is frequent in this tumor. (See also 
Sect. 3.4.4 in Chap. 3).

7.6  Serous Borderline Tumor and Low-Grade Serous 
Ovarian Carcinoma

It has been well established that low-grade serous ovarian carcinomas can develop 
from serous borderline tumor. Deletions of ch1p36 and ch9p21 are much more com-
mon in low-grade serous ovarian carcinomas than in serous borderline tumors [45]. 
The ch1p36 region contains several candidate tumor suppressor genes including miR-
34a. Then, the ch9p21 region including the CDKN2A/B locus encodes three tumor 
suppressor proteins, p14 (Arf), p16, and p15. Thus, deletions of ch1p36 or ch9p21 may 
cause progression of some serous borderline tumors to low-grade serous carcinomas.

KRAS mutations occur in one-third of serous borderline tumors and log-grade 
serous ovarian carcinomas, and BRAF mutations occur in another one-third of serous 
borderline tumors but less commonly in low-grade serous ovarian carcinomas [46, 
47]. BRAF-mutated advanced-stage low-grade serous ovarian carcinomas are much 
less common than are BRAF-mutated advanced-stage serous borderline tumors [48–
50]. ERBB2 and NRAS mutations are also detected in a small percentage of low-
grade serous ovarian carcinomas [47, 51]. These mutations result in activation of the 
MAP kinase signal transduction pathway. Exome sequencing analyses also identified 
BRAF and KRAS as the most frequently mutated genes (#43#, #44#).

A better outcome has been reported for women whose tumors contain BRAF 
mutations than for women with KRAS mutations or wild-type BRAF and KRAS [48, 
49, 52]. BRAF mutations correlate with the presence of cells with abundant eosino-
philic cytoplasm, which may suggest cellular senescence caused by BRAF activa-
tion [53, 54] (see also Sect. 3.4.1.2 in Chap. 3).

 Conclusion
Type I tumors, containing low-grade serous, clear cell, endometrioid, and muci-
nous cancers, are characterized by activating mutations in the ERRB2/KRAS/
BRAF/MEK pathway, PI3K/AKT pathway, and Wnt pathway and inactivation 
mutations in the PTEN- and ARID1A-related chromatin remodeling. In contrast, 
type II tumors, mainly high-grade serous cancers, are characterized by inactiva-
tion of the TP53, deficiency of the HR pathway, and extensive copy number 
alterations. Representative genetic alterations are summarized in Table 7.1. 
These findings would lead to discovery of effective molecularly targeted drugs 
and their biomarkers.
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