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Abstract. Numerous network inference models have been developed for under‐
standing genetic regulatory mechanisms such as gene transcription and protein
synthesis. Dynamic Bayesian network effectively represent the causal relation‐
ship between genes and gene and protein. Modern approaches employ single
multivariate gene expression data set to estimate time varying dynamic Bayesian
network. However, evaluating inferred time varying network is infeasible due to
the absence of known gold standards. In this paper, the simulation model for time
series gene expression level under certain network structure is proposed. The
network can be used for assessing inferred data which is estimated based on
simulated gene expression data.
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1 Introduction

For the past decades, numerous network inference methods have been developed to
model underlying genetic regulatory mechanisms such as gene transcription and protein
synthesis. The main focus of network inference is on investigating the interactions
between genes, and attempt to build descriptive models for understanding complex
system. For representing causal relationship dynamic Bayesian network (DBN) is one
of well-known probabilistic graphical models. While in static Bayesian network the
topology of network is fixed [1–3], dynamic Bayesian network is particularly well suited
to tackle the stochastic nature of gene regulation and gene expression measurement [4],
thus has been widely used for its ability to recover the underlying genetic regulatory
network [5]. With development of time series gene experimental expression data esti‐
mating time-varying DBN has became feasible. In [4], DBN is inferred based on a
penalized likelihood maximization implemented through an extended version of EM
algorithm. Also, [6] proposed temporally rewiring networks for capturing the dynamic
causal influences between covariates. For estimation, kernel reweighted L1-regularized
auto-regressive procedure is applied.

However, there has been a challenging problem due to the infeasibility to evaluate
inferred time-varying Bayesian network. Tranditionally, network inference model has
been assessed by comparing predicted genetic regulatory interactions with those known
from the biological literature [7]. This approach is controversial due to the absence of
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known gold standards, which renders the estimation of the sensitivity and specificity,
that is, the true and false detection rate, unreliable and difficult.

Rare attempts to generate simulated gene expression data have been developed. In
[8], author proposes simulation model for biological system to try on inferred DBN
resulted from the simulated gene expression data. [7] develops simulated gene expres‐
sion data from a realistic biological network involving DNAs, mRNAs, inactive protein
monomers and active protein dimers.

Modern approaches such as [6, 9, 10] make an assumption to fully utilize time series
dataset: underlying network structure are sparse, vary smoothly across time, and models
first-order Markovian. From the assumption, it is derived that temporally adjancent
networks are likely to share common edges than temporally distal networks. This
assumption makes it possible to reconstruct time varying network with single multi‐
variate time series data. Inituitively, inferred network resulted from time series gene
expression data which is generated from underlying network based on the assumption
should be maximally equivalent to the underlying network. In other words, time-varying
network made up based on the assumption gives upperbound of performance of network
inference model in which gene expression data is generated from the underlying
network. Therefore, in this paper totally different approach is used for assessing time
varying dynamic Bayesian network. First, time varying network is built, and time series
dataset is generated from the network. Then the simulated dataset can be used for meas‐
uring the performance of methodologies of which their assumption is based on first-
order Markovian model.

2 Method

2.1 Preliminaries

Models describing a stochastic temporal processes can be naturally represented as
dynamic Bayesian networks [11]. As defined in [6], taking the transcriptional regulation

of gene expression as an example, let 𝐗t :=
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where πi is the set of genes specifying the gene i, and the transition model p(𝐗t|𝐗t−1)

factors over individual genes. Each p(Xt
i|Xt

πi
) can be viewed as a regulatory gate function

that takes multiple covariates and produce a single response. A simple form of the tran‐
sition model p(𝐗𝐭|𝐗t−1) in a DBN is a linear dynamic model:
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where 𝐀 is a matrix of coefficients relating the expressions at time t − 1 to those of the
next time point, and 𝛜 is a vector of isotropic zero mean Gaussian noise with variance
𝜎2.

Our simulator generates time-series gene expression dataset under assumption (2):
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where xt
i is i-th gene expression level at time point t, and 𝛼0 is the parameter to regulate

the influence of the target gene expression level at previous time point on one at time
point t. 𝛽j is the degree of association that affects gene expression level at target time
point. Finally, expression level of each gene at a time point is generated with a noise
with 0 mean, and 𝜎2 variance.

At network building stage, a set of genes is grouped to generate gene expression data
based on the group in which a gene is belongs to only one group. Group is made to make
it possible to activate associations in the group at the same time. To represent temporal
interaction between genes, degree of activation of group is varying over time, and
multiple groups are activated at different time point for different time periods. The
example of interaction variation is illustrated in Fig. 1.

Fig. 1. The examples for variation of interactions possibly appeared in underlying network. 𝜷
ab

is the interaction between gene a and b. It is smoothly increased and decreased in activation over
time periods. 𝜷

ad
 repeats to be activated spontaneously.

2.2 Algorithm

The algorithm takes parameters the number of genes n, the number of time points m,
target influence parameter 𝛼0. And it produces time varying network and time series gene
expression data over m time points, and group information of each gene.
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At the first stage, time varying Bayesian network is built from line 2 to 5. Then gene
expression level is generated based on underlying network structure. At line 2, each
node belongs to a group, and their interactions within the group are randomly set at line
3. Finally, activation period of each group is set randomly.

At second stage, time series gene expression data is generated. The expression levels
of genes at initial time point are randomly set ranging from 0.3 to 1. Xi

[
j
]
 means gene

expression level of j-th gene at time point t, and G[i, j] is group number of interaction
between i-th gene and j-th gene. Activation period and degree of activation are contained
in the matrix gInfo whose row represents group, and first column for the starting point
of activation, and second column for ending point of activation, and third column for
degree of activation.

3 Result

This section shows the procedure of parameter optimization to generate gene expression
level smoothly varying over time. The parameter 𝛼0 is optimized to generate smooth
gene expression levels.

First, we attempted to generate small number of genes’ simulated data. As shown in
Fig. 2, gene expression level grows up to infinity as time increased because the number
of genes having influence on target gene is large. As parameter n is increased, the
expression level of target gene is not smoothly varying over time because the target gene
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affected by its associated gene is changed drastically. It leads us to attempting second
experiment with regulation of parameter 𝛼0. The configuration of setting target influence
parameter to .9 generates gene expression level as shown in Fig. 3.

Fig. 2. This is expression level of a gene from 20 genes nodes. The initial expression level is set
ranging from 0 to 1

Fig. 3. Two examples among 20 genes. The expression level at initial time point is set ranging
from 0 to 1. And target influence parameter 𝛼0 is set to 0.9

In third experiment, network is built based on group. The associations between genes
only appeared in group. Figure 4 illustrates simulation data generated from the group
setting. Without setting target influence parameter 𝛼0, gene expression level does not
look smooth across time.
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Fig. 4. Gene expression data generated from group setting. The gene expression level at initial
time point is set randomly ranging from 0 to 1.

Finally, we investigate how to set 𝛼0 to generate smooth time series gene expression
data set as the number of nodes increases. The Figs. 5, 6, and 7 illustrates smooth gene
expression levels.

Fig. 5. Gene expression level resulted from setting 𝛼0 to 0.8 and 0.9 for left and right figure
respectively. The number of genes is 32.

Fig. 6. Gene expression level resulted from setting 𝛼0 to 0.9 and 0.95 for left and right figure
respectively. The number of genes is 64.
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Fig. 7. Gene expression level resulted from setting 𝛼0 to 0.9 and 0.95 for left and right figure
respectively. The number of genes is 128.

4 Conclusion

Traditionally, network inference model has been assessed by comparing inferred
network with associations between genes known from the biological literature. This
approach is infeasible to measure false detection rate. In this paper, we propose a simu‐
lation model for the use of assessing network inference algorithm. The proposed simu‐
lator generates time varying Bayesian network, time series gene expression data resulted
from the network, and group information of genes. For generating gene expression level
smoothly varying across time, target influence parameter has been optimized. The simu‐
lated dataset can be used to evaluate network inference algorithms in which smoothness
of temporal process is assumed. As future work, simulation model for imitating genetic
regulatory system can be developed. Currently, gene expression level is affected only
by expression level at previous time point. However, in genetic regulatory system, gene
expression level can also be affected by protein. Simulation model that attempts to reflect
real regulatory system can be widely used to evaluate network inference model under
various network structure.
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