A Study on OPNET State Machine Model Based IoT
Network Layer Test

Young-hwan Ham'®?, Hyo-taeg Jung', Hyun-cheol Kim?, and Jin-wook Chung’

! Quality Innovation Team, ETRI, 218 Gajeong-ro, Yuseong-gu, Daejeon, Korea
{yhham, htjung}@etri.re.kr
2 Computer Science, Namseoul University, 21 Maeju-ri, Seonghwan-eup, Cheonan,
Chungcheongnam-do, Korea
hckim@nsu.ac.kr
3 Computer Engineering, SungKyunKwan University, 2066 Seobu-ro,
Jangan-gu, Suwon-si, Gyeonggi-do, Korea
jwchung@skku.edu

Abstract. Model based testing can enable automated test case generation for
many kind of application. Even test code can be generated from the model by
specialized tools. IoT protocols for network layer have many constraints for
exhaustive or manual testing because of battery problem and large number of
sensor nodes. To solve these testing constraints, this paper proposes an efficient
State Machine based test case generation for IoT network layer by using OPNET
simulation model and test case generation tool. The size of test suite is compared
according to the size of State Machine model from OPNET.

Keywords: State machine - IoT - Network layer test - Test generation - OPNET

1 Introduction

IoT (Internet of Things) normally has hundreds or thousands of sensor nodes and battery
constraints in case of outdoor field test. Therefore, it is necessary to efficient testing
method for the IoT.

In addition, it is necessary to consider an application layer interaction which is useful
for dynamics caused by mobility, failures, and dynamic power modes of IoTs. The
traditional layered structure passes a limited set of information over defined interfaces
between separate layers of the protocol. It is good for abstraction and development, but
bad for efficiency in case that high level information is useful in over layers or vice versa.
The examples are power control, overlay service, error control, aggregation, fusion,
localization, service discovery, semantic addressing, etc.

In this study, we are going to use State Machine-based testing for the cost saving in
test case design, systematic testing and controlling of the model coverage and the number
of tests [1, 2]. It can help the early detection of flaws and ambiguities in the specification,
and the conformance of implementation to the corresponding State Machine model.

For the State Machine based testing of IoT protocol, application layer and network
layer should be reflected on the protocol State Machine to cover the standard

© Springer Nature Singapore Pte Ltd. 2017
K. Kim and N. Joukov (eds.), Information Science and Applications 2017,
Lecture Notes in Electrical Engineering 424, DOI 10.1007/978-981-10-4154-9_5

A Study on OPNET State Machine Model 39

specification. It is very critical to limit the number of test case in IoT because of battery
power constraints, so it is necessary to draw efficient test cases [3].

2 OPNET Modelling for Test Case Generation

2.1 IoT Network Layer and OPNET Simulation

ZigBee sensor network standard, which is a representative low-power standard for IoT
applications, was modelled by OPNET [4].

Application ZigBee Device
Object Object

Security
Service
Providér™*

OPNET Model

Fig. 1. The OPNET model of zigbee protocol stack

A simulation model based on OPNET was developed for the simulation of sensor
networks. Through the OPNET based simulation, various parameters related to the
sensor network can be set in advance to find suitable ones for the application system.
The candidate technology or structure to be applied to the developed system can be
evaluated in advance to receive feedback. Using the existing OPNET library, the inter-
operability between different protocols and systems can be verified in advance [5]

(Fig. 1).

1. Physical layer: This layer is the lowest layer. It consists of two layers, operating in
two separate frequency ranges [4].

2. Medium Access Control layer: The responsibility of the MAC layer is to control
access to the radio channel using CSMA/CA. The MAC layer provides support for
transmitting beacon frames, network synchronization and reliable transmission [4].

3. Network layer: This layer sends and receives data to and from the application layer.
It performs the task of associating to and disassociating from a network. This layer
network protocol allows us to extend the battery life of the nodes, allowing it to do

40 Y. Ham et al.

only the minimum work when it needs to transmit data [4]. The emphasis is on very
low cost communication of neighboring devices with no other wired/wireless
network infrastructure. The low cost communication results in lower power
consumption, which is even more important.

The following shows the result of simulating a Beacon-enabled ZigBee Network
using the ZigBee library.

e OPNET Simulation: End-to-end delay and Receiver-on time of ZigBee network
— Mode 1: Random Beacon Slot (Beacon Enabled Mode)
— Mode 2: Proposed Beacon Scheduling (Beacon Disabled Mode)

Figure 2 shows that the delay increases exponentially with Beacon-Disabled mode
as sensor node increases. Figure 3 shows that the beacon-enabled mode has much less
awake time than the beacon-enabled mode, which is much better in terms of battery
consumption.

In a ZigBee application that generates traffic with a frequency lower than a certain
level, such as remote meter reading and environmental monitoring, the battery usage time
can be greatly improved when the beacon-enabled mode is applied. However, it can be
adversely affected in a heavy traffic environment. Through the event/traffic simulation
results, the correct operation of OPNET model including network layer has been verified.

End-to-End Delay (sec)

=] <1>[ZDO1 ETE Delay.End-to-End Delay (sec) <[-all ... [C]|[E]E]
W =1 =[{ZDC] ETE Delay End-to-End Delay (sec) <[-&ll Devices-][Unicastl= sample mean

1,200
1,100
1,000

[00 -

S00 -
FoOo

S00
400 -

200 <
100 o I\;—\L
o s
=] 4 s & 7 =]
Experiment &

Scenarios (Beacon Order of ZigBee)

Fig. 2. End-to-End Delay simulation result by OPNET model

A Study on OPNET State Machine Model 41

Battery Life Time (days)

—+| Enterprise Network.Node-A.<4>[PHY] Energy.Batte... [] 'DIE]
B Enterprise Network Node-A =4=[PHY] Energy .Battery Life Estimation (Days).sample

Scenarios (Beacon Order of ZigBee)

Fig. 3. Receiver-on time (Battery Life Time) simulation result by OPNET model

2.2 Network Layer State Machine for Test Case Generation

OPNET uses a state machine based modeling technique to simulate each layer.
Figure 4 shows the network protocol layer state machine of the implemented model. We
propose a method to efficiently generate a test case by using the state machine. The
circles below represent each state, and the terms on the arrows represent interrupts.

| Process Model: WPAN_MAC_Root_ver10 (=13
File Edit Interfaces FSM Code Blocks Compile Windows Help

B IR E =S

LD

(dafauk) (defaul (@sFaul) (deFaul
e A ,(,——/l)’)) (deFault) (___2,
< , N =
B\ (Go_Ackcon) R e (Go_Pendconfy B
e —°=—‘f-5" pendsend])- - reniconr)
(Go_Adksend) (Go partend) (adurs) (D) (GotFS)

(de?(‘l_‘)\ (Go_Rese)) (GoIFS)
§

Reset

/
e Go_tdle) Go_tdle)
2173

(Go_BRxRX))
e)

2612 <afm

2 py AL <20
(deFaimy-" ==~ efault)) (default)

Fig. 4. The State Machine of OPNET model network layer

42 Y. Ham et al.

In this way, the finite state machine that defines the operation of the network layer can
check whether the network layer of the actually implemented sensor node is operating
properly. An automated tool such as ModelJunit [6] can be used to obtain a test case that
can test the operation of the network using the network state transition diagram. Model-
Junit is an available and prevalent State Machine based test case generation tool. It is
very easy to learn and convenient because it is based on Java language.

3 Experiment Result and Analysis

The State Machine of OPNET network layer is slightly modified and simplified for
excluding the meaningless interrupt in point of test case generation, such as “default”.
The final state machine is as follow. The possible test cases for network layer can be
generated from this state machine diagram by using appropriate test case generation
tool.

The experiments for test case generation were executed by ModelJUnit, and each
experiment result has averaged among 10 times executions of test.

The comparison experiment has been performed by using Random Walk & Greedy
Random Walk test case generation algorithm [6]. Random Walk algorithm simply tests
a system by making random walks through a State Machine model, and Greedy Random
walk gives priority to transition never taken before. In addition to generation algorithm,
test case coverage is also important factor and the ModelJUnit supports three kinds of
coverage metrics such as state metric, event metric, and transition metric [7]. The state
metric shows how many states are traveled at least once. The event metric shows how
many events are triggered at least once. Transition metric represents how many transi-
tions are exercised at least one was chosen in this study because it is important to cover
every state transition to ensure correct operation of the network layer [7]. The details of
experiments for comparison are as follows.

o Experiment 1: The number of state is same as original OPNET network model

When the state machine model had 16 states and the number of interrupt (event) was
25 (Fig. 5), test length (the number of test suite) for 100% transition coverage metric
was as follows.

o State Machine Model: 16 states, 25 event
e Random Walk: 210
e Greedy Random Walk: 160

When the relatively small number of State Machine states were randomly added for
test, the number of test length (Random Walk) was exponentially increased.

o Experiment 2: The number of state is reduced by simplifying original OPNET
network model

The similar group of states are merged as follows for the simplification of state
machine mode as follows.

e (ACK SEND, ACK CONF) => ACK SEND

A Study on OPNET State Machine Model 43

(PEND SEND, PEND CONF) => PEND SEND
(RXDN, ACK RCV) => RXDN

(BRXRXON, BRxRX) => BRXRXON
(BTxTXON, BTxTX, BTXCONF) => BTxTXON

When the Network had 10 states and the number of interrupt (event) was 19 (Fig. 6),
test length was as follows.

o State Machine Model: 10 states, 19 event
e Random Walk: 170
e Greedy Random Walk: 50

Go_PEND SEND

R_GO_PEND CONF
Go_RXDN

Go_PEND SEND,

Go_DLE

Go_DLE

Go_BTxTX

BTxCONF

Fig. 5. The State Machine of network layer for ModelJUnit

The test length for the network testing can be very critical in such resource
constrained IoT environment. The experiment 2 shows that simplified by state merging
can dramatically reduce the number of test case especially in case of greedy random
walk. It should be considered that how we can reduce the number of states by simplifying
the state machine from OPNET model. The simplified version of state machine model
can be also verified by putting & executing it in OPNET modeler. The effect of merged
states can be monitored by the simulation result of OPNET. This can be a reciprocal
way for an efficient test case generation and network simulation.

44 Y. Ham et al.

100. ACK SEND

Go_ACK SEND

Go_PEND SEND,

Go_IFS

Go_IDLE

Go_IDLE

Fig. 6. The Simplified State Machine of network layer for ModelJUnit

4 Conclusions

The IoT normally has hundreds or thousands of sensor nodes and battery constraints in
case of outdoor field test. Therefore, it is necessary to efficient testing method for the
IoT. In addition, it is necessary to consider a network layer operation which is useful
for dynamics caused by mobility, failures, and overlay modes of IoTs.

For the State Machine based testing of IoT protocol, ModelJUnit tool and OPNET
ZigBee model are used. The tool generated the test cases by using OPNET network layer
state machine model. By the result of these experiments, we realized that the test cases
can be generated by using the state machine model of OPNET. Because the number of
test length could be rapidly increased in proportion to the number of state machine, a
simplification of FSM is necessary. The effect of merged states can be checked & moni-
tored by simulating the simplified model in OPNET.

The more various test case generation experiment is also necessary for verification
of the network layer design. The ModelJUnit has many benefits as a tool of State
Machine based test case generation. We have used transition-tour test generation algo-
rithm by the tool, but it doesn’t support other test sequence generation methods [8, 9].
The study about overcoming above weaknesses also should be done in the future.

A Study on OPNET State Machine Model 45
References

1. Gansner, E., North, S.: An open graph visualization system and its Appl. Soft. Pract. Experience
30, 1203-1233 (1999)

2. Javed, A., Strooper, P., Watson, G.: Automated generation of test cases using model-driven
architecture. In Proceedings of the 2nd International Workshop on Automation of Software
Test (AST 2007), p. 3 (2007)

3. Link, J., Frohlich, P.: Unit Testing in Java: How Tests Drive the Code. Morgan Kaufmann
Publishers Inc., Burlington (2003)

4. IEEE Standards Association: IEEE standard for local and metropolitan area networks—Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) (2011). http://
standards.ieee.org/about/get/802/802.15.html

5. Xiaolong, L., Peng, M.: OPNET-based modeling and simulation of mobile Zigbee sensor
networks. Peer-to-Peer Netw. Appl. (2015). doi:10.1007/s12083-015-0349-8

6. http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/ (2016)

7. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach, pp. 157-162.
Morgan Kaufmann Publishers Inc., San Francisco (2007)

8. Lelis, L., Pedrosa, C.: A new method for incremental testing of finite state machines. In:
NFM2010

9. Ural, H.: Formal methods for test sequence generation. Comput. Commun. 15(5), 311-325
(1992)

http://standards.ieee.org/about/get/802/802.15.html
http://standards.ieee.org/about/get/802/802.15.html
http://dx.doi.org/10.1007/s12083-015-0349-8
http://www.cs.waikato.ac.nz/%7emarku/mbt/modeljunit/

	A Study on OPNET State Machine Model Based IoT Network Layer Test
	Abstract
	1 Introduction
	2 OPNET Modelling for Test Case Generation
	2.1 IoT Network Layer and OPNET Simulation
	2.2 Network Layer State Machine for Test Case Generation

	3 Experiment Result and Analysis
	4 Conclusions
	References

