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1 Introduction

In the present paper, we prove, under appropriate assumptions, the existence of
solutions for a second order evolution inclusion with boundary conditions governed
by subdifferential operators of the form

f (t) ∈ ü(t) + Mu̇(t) + ∂ϕ(u(t)), t ∈ [0, T ]. (I)

Here, M is positive, ϕ is a lower semicontinuous convex proper function defined
on Rd and ∂ϕ(u(t)) is the subdifferential of the function ϕ at the point u(t) and
the perturbation f belongs to L2

Rd ([0, T ]). It is well known that this problem is
difficult and needs a specific treatment via the Moreau-Yosida approximation or
epiconvergence approach. See Attouch–Cabot–Redon [4] and Schatzmann [24] for a
deep study of these problems, Castaing–Raynaud de Fitte–Salvadori [11], Castaing–
Le Xuan Truong [8] dealing with second order evolution with m-point boundary
conditions via the epiconvergence approach. These considerations lead us to consider
the variational limits of a fairly general approximating problem

f n(t) ∈ ün(t) + Mu̇n(t) + ∂ϕn(u
n(t)), t ∈ [0, T ] (II)

where un is aW 2,1
Rd ([0, T ])-solution, f n weakly converging in L2

Rd ([0, T ]) to f ∞,ϕn

is a convex Lipschitz function which epiconverges to a lower semicontinuous convex
proper functionϕ∞. This approximating problem covers various type of problems of
practical interest in several dynamic systems, evolution inclusion, control theory etc.
Here we focus on several variational limits of solutions via the Biting Lemma and
Young measures and other tools occurring in this approach by showing under suit-
able limit assumption on the boundary conditions that (ün) is L1

Rd ([0, T ])-bounded.
This main fact allows to study the variational limit of solutions in this problem, in
particular, the traditional estimated energy for the variational limit solutions is con-
served almost everywhere. The applicability of our abstract framework given therein
(Proposition 3.3) will be exemplified in considering the existence of solution for
second order differential inclusions

f (t) ∈ ü(t) + Mu̇(t) + ∂ϕ(u(t)), t ∈ [0, T ]

under m-point boundary condition or anti-periodic conditions and further related
second order evolution inclusions in the literature. This will be done by applying our
abstract result to the single valued approximating problem

f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(u
n(t)), t ∈ [0, T ] (III)

where∇ϕn is the gradient of theC1, Lipschitz, convex functionϕn that epi-converges
to a proper convex lower semicontinuous function ϕ∞ and f n weakly converges in
L2
Rd ([0, T ]) to f ∞ so that the variational limit solutions u∞ to (III) are generalized

solutions to the inclusion
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f ∞(t) ∈ ü∞(t) + Mu̇∞(t) + ∂ϕ∞(u∞(t)), t ∈ [0, T ]

with appropriate properties, namely, the solution limit u∞ is W 1,1
BV ([0, T ]), that is,

u∞ is continuous and its derivative u̇∞ is bounded variation (BV for short) and the
estimated energy holds almost everywhere

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u0) + 1

2
||u̇0)||2

− M
∫ t

0
||u̇∞(s)||2ds +

∫ t

0
〈 f ∞(s), u̇∞(s)〉ds

with further related variational inclusion, in particular,

f ∞(t) ∈ ζ∞(t) + Mu∞(t) + ∂ϕ∞(u∞(t)), t ∈ [0, T ]

almost everywhere, ζ∞ being the biting limit of the L1
Rd ([0, T ])-bounded sequence

(ün). Section3 is devoted to second order evolution inclusion with boundary con-
ditions. We present the variational limits of the general approximating problem (II)
and the applications of variational limits of the approximating problem (III) to the
existence problem of second order evolution inclusion (I) involving variational tech-
niques, the Biting Lemma, the characterization of the second dual of L1

Rd and Young
measures. It is worth to mention that the approximation (III) occurs in practical
cases of second order evolution inclusion governed by subdifferential operators. For
instance, Attouch–Cabot–Redon [4] considered the approximating problem

0 = ün(t) + γu̇n(t) + ∇ϕn(u
n(t)), t ∈ [0, T ]

un(0) = un0, u̇
n(0) = u̇n1

where γ is positive, ∇ϕn is the gradient of a C1, smooth function. Schatzmann [24]
considered the approximating problem

f (t) = üλ(t) + ∂ϕλ(uλ(t)), t ∈ [0, T ]

uλ(0) = u0, u̇λ(0) = u1

where f ∈ L2
Rd ([0, T ]) and ∂ϕλ is the Moreau-Yosida approximation to the lower

semicontinuous convex proper function ϕ. M. Mabrouk [19] continued the work of
M. Schatzmann [24] by considering the approximating problem

fλ(t) = üλ(t) + ∇ϕλ(uλ(t)), t ∈ [0, T ]
uλ(0) = u0, u̇λ(0) = u1,
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with fλ ∈ L1
Rd ([0, T ]). In Sect. 4, we apply our techniques to the study of both first

order and second order evolution equations with anti-periodic boundary condition
using the approximating problem

f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(u
n(t)), t ∈ [0, T ]

un(0) = −un(T ),

where un ∈ W 2,2
Rd ([0, T ]) and f n ∈ L2

Rd ([0, T ]), see H. Okochi [22], A. Haraux [17],
Aftabizadeh, Aizicovici and Pavel [1, 2], Aizicovici and Pavel [3] and the references
therein.

A general analysis of some related problems in Hilbert space is available, c.f K.
Maruo [19] and M. Schatzmann [24].

2 Some Existence Theorems in Second Order Evolution
Inclusions with m-Point Boundary Condition

Wewill use the following definitions and notations and summarize somebasic results.

• Let E be a separable Banach space, BE (0, 1) is the closed unit ball of E .
• c(E) (resp. cc(E)) (resp. ck(E))(resp. cwk(E)) is the collection of nonempty
closed (resp. closed convex) (resp. compact convex) (resp. weakly compact con-
vex) subsets of E .

• If A is a subset of E , δ∗(., A) is the support function of A.
• L([0, T ]) is the σ-algebra of Lebesgue measurable subsets of [0, T ].
• If X is a topological space, B(X) is the Borel tribe of X .
• L1

E ([0, T ], dt) (shortly L1
E ([0, T ])) is the Banach space of Lebesgue–Bochner

integrable functions f : [0, T ] → E .
• A mapping u : [0, T ] → E is absolutely continuous if there is a function u̇ ∈

L1
E ([0, T ]) such that u(t) = u(0) + ∫ t

0 u̇(s) ds, ∀t ∈ [0, T ].
• If X is a topological space, CE (X) is the space of continuousmappings u : X → E
equipped with the norm of uniform convergence.

• A set-valued mapping F : [0, T ] ⇒ E is measurable if its graph belongs to
L([0, T ]) ⊗ B(E).

• A convex weakly compact valued mapping F : X → ck(E) defined on a topo-
logical space X is scalarly upper semicontinuous if for every x∗ ∈ E∗, the scalar
function δ∗(x∗, F(.)) is upper semicontinuous on X .

We refer to [13] for measurable multifunctions and Convex Analysis.
For the sake of completeness, we recall and summarize some results developed

in [9]. By W 2,1
E ([0, T ]) we denote the set of all continuous functions in CE ([0, T ])

such that their first derivatives are continuous and their second derivatives belong to
L1
E ([0, T ]).
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Lemma 2.1 Assume that E is a separable Banach space. Let 0 < η1 < η2 < · · · <

ηm−2 < 1, γ > 0, m > 3 be an integer number, and αi ∈ R (i = 1, . . . ,m − 2) sat-
isfying the condition

m−2∑
i=1

αi − 1 + exp (−γ) −
m−2∑
i=1

αi exp (−γηi )) �= 0.

Let G : [0, 1] × [0, 1] → R be the function defined by

G(t, s) =
{ 1

γ (1 − exp(−γ(t − s))) , 0 ≤ s ≤ t ≤ 1
0, t < s ≤ 1

+ A

γ
(1 − exp(−γt))φ(s),

(2.1)
where

φ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − exp(−γ(1 − s)) − ∑m−2
i=1 αi (1 − exp(−γ(ηi − s))) , 0 ≤ s < η1,

1 − exp(−γ(1 − s)) − ∑m−2
i=2 αi (1 − exp(−γ(ηi − s))) , η1 ≤ s ≤ η2,

......

1 − exp(−γ(1 − s)), ηm−2 ≤ s ≤ 1,
(2.2)

and

A =
(
m−2∑
i=1

αi − 1 + exp(−γ) −
m−2∑
i=1

αi exp(−γηi )

)−1

. (2.3)

Then the following assertions hold

(i) For every fixed s ∈ [0, 1], the function G(., s) is right derivable on [0, 1[ and
left derivable on ]0, 1]. Its derivative is given by

(
∂G

∂t

)
+

(t, s) =
{
exp(−γ(t − s)), 0 ≤ s ≤ t < 1
0, 0 ≤ t < s < 1

+ A exp(−γt)φ(s),

(2.4)(
∂Gτ

∂t

)
−

(t, s) =
{
exp(−γ(t − s)), 0 ≤ s < t ≤ 1
0, 0 < t ≤ s ≤ 1

+ A exp(−γt)φ(s).

(2.5)
(ii) G(·, ·) and ∂G

∂t (·, ·) satisfies

|G(t, s)| ≤ MG and

∣∣∣∣∂G∂t (t, s)

∣∣∣∣ ≤ MG ∀(t, s) ∈ [0, 1] × [0, 1],

where

MG = max{γ−1, 1}
[
1 + |A|

(
1 +

m−2∑
i=1

|αi |
)]

.
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(iii) If u ∈ W 2,1
E ([0, 1]) with u(0) = x and u(1) = ∑m−2

i=1 αi u(ηi ), then

u(t) = ex (t) +
∫ 1

0
G(t, s)(ü(s) + γu̇(s))ds, ∀t ∈ [0, 1],

where

ex (t) = x + A

(
1 −

m−2∑
i=1

αi

)
(1 − exp(−γt))x .

(iv) Let f ∈ L1
E ([0, 1]) and let u f : [0, 1] → E be the function defined by

u f (t) = ex (t) +
∫ 1

0
G(t, s) f (s)ds ∀t ∈ [0, 1].

Then we have

u f (0) = x u f (1) =
m−2∑
i=1

αi u f (ηi ).

Further the function u f is weakly derivable on [0, 1] and its weak derivative
u̇ f is defined by

u̇ f (t) = lim
h→0

u f (t + h) − u f (t)

h
= ėx (t) +

∫ 1

τ

∂G

∂t
(t, s) f (s)ds,

with

ėx (t) = γA

(
1 −

m−2∑
i=1

αi

)
exp(−γt)x .

(v) If f ∈ L1
E ([0, 1]), the function u̇ f is weakly derivable, and its weak derivative

ü f satisfies
ü f (t) + γu̇ f (t) = f (t) a.e. t ∈ [0, 1].

The following is a direct consequence of Lemma 2.1.

Proposition 2.1 Let f ∈ L1
E ([0, 1]). The m-point boundary problem

{
ü(t) + γu̇(t) = f (t), t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

has a unique W 2,1
E ([0, 1])-solution u f , with integral representation formulas

{
u f (t) = ex (t) + ∫ 1

0 G(t, s) f (s)ds, t ∈ [0, 1]
u̇ f (t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s) f (s)ds, t ∈ [0, 1].
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where

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
.

The following result and its notation will be used in the next section.

Proposition 2.2 With the hypotheses and notations of Proposition 2.1, let E be a
separable Banach space and let X : [0, 1] ⇒ E be ameasurable convex weakly com-
pact valued and integrably bounded mapping. Then the solution set of W 2,1

E ([0, 1])-
solutions to {

ü f (t) + γu̇ f (t) = f (t), f ∈ S1X
u f (0) = x, u f (1) = ∑m−2

i=1 αi u f (ηi )

is bounded, convex, equicontinuous and sequentially weakly compact in CE ([0, 1]).
Proof Let us set

X :=
{
u f ∈ CE ([0, 1] : u f (t) = ex (t) +

∫ 1

0
G(t, s) f (s)ds, t ∈ [0, 1], f ∈ S1X

}

with

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x, t ∈ [0, 1]

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x, t ∈ [0, 1]

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
.

Taking account of the properties of G in Lemma 2.1, it is not difficult to show that
X is bounded, convex, equicontinuous and relatively weakly compact in CE ([0, 1])
because for each t ∈ [0, T ], ∫ 1

0 G(t, s)X (s)ds is convex and weakly compact, see
e.g. [11]. We only need to check the compactness property since other properties
are obvious. Indeed, let u fn ∈ X . As S1X is σ(L1

E , L∞
E∗
s
) sequentially compact, we

may assume that ( fn) σ(L1
E , L∞

E∗
s
) converges to f∞ ∈ S1X . Then we have for each

t ∈ [0, 1],

w− lim
n

u fn (t) = ex (t) + w − lim
n

∫ 1

0
G(t, s) fn(s)ds

= ex (t) +
∫ 1

0
G(t, s) f∞(s)ds := u f∞(t).
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This means that u fn (t) converges to u f∞(t) in Eσ for every t ∈ [0, 1]. Hence u fn

converges weakly in CE ([0, 1]) to u f∞ ∈ X . Similarly using the properties of ∂G
∂t in

Lemma 2.1,

Y :=
{
u̇ f ∈ CE ([0, 1] : u̇ f (t) = ėx (t) +

∫ 1

0

∂G

∂t
(t, s) f (s)ds, t ∈ [0, 1], f ∈ S1X

}

is bounded, convex, equicontinuous and sequentially weakly compact in CE ([0, 1])
with ⎧⎨

⎩
ėx (t) = γA

(
1 − ∑m−2

i=1 αi

)
exp (−γt)x, t ∈ [0, 1]

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
,

and we have

w − lim
n

u̇ fn (t) = ėx (t) + w − lim
n

∫ 1

0

∂G

∂t
(t, s) fn(s)ds

= ėx (t) +
∫ 1

0

∂G

∂t
(t, s) f∞(s)ds := u f∞(t).

This means that u̇ fn (t) converges to u̇ f∞(t) in Eσ for every t ∈ [0, 1]. �

Remark In the context of Control Theory, we have stated in the proof of Proposition
2.2, the dependence of the solution with respect to the control f ∈ S1X . Namely, if
u fn is the W

2,1
E ([0, 1])-solution to

{
ü fn (t) + γu̇ fn (t) = fn(t), t ∈ [0, 1]
u fn (0) = x, u fn (1) = ∑m−2

i=1 αi u fn (ηi )

and if ( fn) converges σ(L1
E , L∞

E∗
s
) to f∞ ∈ S1X , then (u fn (t)) converges to u f∞(t) and

(u̇ fn (t)) converges to u̇ f∞(t), in Eσ for every t ∈ [0, 1]where u f∞ is theW 2,1
E ([0, 1])-

solution to {
ü f∞(t) + γu̇ f∞(t) = f∞(t), t ∈ [0, 1]
u f∞(0) = x, u f∞(1) = ∑m−2

i=1 αi u f∞(ηi ).

The above remark is of importance since it allows to prove further results. Here is
an application to the existence ofW 2,1

E ([0, 1])-solution to a second order differential
inclusion with m-point boundary condition.

Proposition 2.3 Let X : [0, 1] ⇒ E be a convex weakly compact valued measur-
able and integrably bounded mapping, F : [0, 1] × E × E ⇒ E be a convex weakly
compact valued mapping satisfying
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(1) For each x∗ ∈ E∗, the scalar function δ∗(x∗, F(., ., .)) isLλ([0, 1]) ⊗ B(Eσ) ⊗
B(Eσ)-measurable,1

(2) For each x∗ ∈ E∗ and for each t ∈ [0, 1], the scalar function δ∗(x∗, F(t, ., .))
is sequentially weakly upper semicontinuous, i.e., for any sequence (xn) in E
weakly converging to x ∈ E, for any sequence (yn) in E weakly converging to
y ∈ E, lim supn δ∗(x∗, F(t, xn, yn)) ≤ δ∗(x∗, F(t, x, y)),

(3) F(t, x, y) ∈ X (t) for all (t, x, y) ∈ [0, 1] × E × E.
Then the W 2,1

E ([0, 1])-solutions set to
{
ü(t) + γu̇(t) ∈ F(t, u(t), u̇(t))), t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

is non empty and weakly compact in the space CE ([0, 1]).
Proof The sets

X :=
{
u f ∈ CE ([0, 1] : u f (t) = ex (t) +

∫ 1

0
G(t, s) f (s)ds, f ∈ S1X , t ∈ [0, 1]

}

(2.3.1)

and

Y :=
{
u̇ f ∈ CE ([0, 1] : u̇ f (t) = ėx (t) +

∫ 1

0

∂G

∂t
(t, s) f (s)ds, t ∈ [0, 1], f ∈ S1X

}

(2.3.2)

are bounded, convex, equicontinuous and weakly compact in CE ([0, 1]). By condi-
tion (3), it is clear that

F(t, u f (t), u̇ f (t)) ⊂ X (t) (2.3.4)

for all t ∈ [0, 1] and for all f ∈ S1X . Further, recall that S
1
X is σ(L1

E , L∞
E∗)-compact

(see e.g. [10]).Using (1)–(3), for each f ∈ S1X , let us consider the convexσ(L1
E , L∞

E∗)-
compact valued mapping � : S1X ⇒ S1X defined by

�( f ) := {g ∈ S1X : g(t) ∈ F(t, u f (t), u̇ f (t)), a.e. t ∈ [0, 1]}.

Nowweare going to show that� is upper semi continuous on the convexσ(L1
E , L∞

E∗)-
compact set S1X . We need to check that the graph of � is σ(L1

E , L∞
E∗)-closed in

S1X × S1X . Let gn ∈ �( fn) such that fn , σ(L1
E , L∞

E∗)-converges to f ∈ S1X and gn
σ(L1

E , L∞
E∗)-converges to g ∈ S1X . By compactness of X and Y , it follows that

u fn (t) → u f (t) in Eσ and u̇ fn (t) → u̇ f (t) in Eσ for every t ∈ [0, 1]. From the inclu-
sion gn ∈ �( fn), we have, for each x∗ ∈ E∗ and for each A ∈ Lλ([0, 1])

1Actually B(Eσ) = B(E) since E is separable.



10 C. Castaing et al.

〈1A(t)x
∗, gn(t)〉 ≤ 1A(t)δ

∗(x∗, F(t, u fn (t), u̇ fn (t))),

so that, by integration,

∫
A
〈x∗, gn(t)〉dt ≤

∫
A
〈x∗, F(t, u fn (t), u̇ fn (t))〉dt.

We thus have
∫
A
〈x∗, g(t)〉dt = lim

n

∫
A
〈x∗, gn(t)〉dt

≤ lim sup
n

∫
A
δ∗(x∗, F(t, u fn (t), u̇ fn (t))dt

≤
∫
A
δ∗(x∗, F(t, u f (t), u̇ f (t))〉dt.

Whence we get

∫
A
〈x∗, g(t)〉dt ≤

∫
A
δ∗(x∗, F(t, u f (t), u̇ f (t))dt

for every A ∈ Lλ([0, 1]). Consequently

〈x∗, g(t)〉 ≤ δ∗(x∗, F(t, u f (t), u̇ f (t)) a.e.

Taking a dense sequence (e∗
k ) in E∗ with respect to the Mackey topology τ (E∗, E),

we get
〈e∗

k , g(t)〉 ≤ δ∗(e∗
k , F(t, u f (t), u̇ f (t)) a.e.

for all k ∈ N. By [13, Proposition III.35], we get finally

g(t) ∈ F(t, u f (t), u̇ f (t))) a.e.

which proves that g in�( f ). Whence by Kakutani-Ky Fan fixed point theorem
� admits a fixed point f ∈ S1X . This is a solution to the second order differential
inclusion under consideration. Using Lemma 2.1, such a fixed point f verifies

{
ü f (t) + γu̇ f (t) ∈ F(t, u f (t), u̇ f (t)), a.e. t ∈ [0, 1]
u f (0) = x, u f (1) = ∑m−2

i=1 αi u(ηi ).

The compactness of the solution set follows from the compactness of X . �

Second Order Evolution Inclusions Governed by Subdifferential Operators

We need to recall and summarize some notions on the subdifferential mapping of
local Lipchitz functions developed by L. Thibault [25]. Let E be a separable Banach
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space. Let f : E → R be a locally Lipschitz function. By Christensen [14, Theorem
7.5], there is a set D f such that its complementary is Haar-nul (hence D f is dense
in E) such that for all x ∈ D f and for all v ∈ E

r f (x, v) = lim
δ→0

f (x + δv) − f (x)

δ

exists and v �→ r f (x, v) is linear and continuous. Let us set∇ f (x) = r f (x, .) ∈ E∗.
Then r f (x, v) = 〈∇ f (x), v〉, ∇ f (x) is the gradient of f at the point x . Let us set

L f (x) = { lim
j→∞ ∇ f (x j )|x j ∈ D f , x j → x}.

By definition, the subdifferential ∂ f (x) in the sense of Clarke [15] at the point x ∈ E
is defined by

∂ f (x) = coL f (x).

The generalized directional derivative of f at a point x ∈ E in the direction v ∈ E
is denoted by

f .(x, v) = lim sup
h→0,δ→0

f (x + h + δv) − f (x + h)

δ
.

Proposition 2.4 Let f : E → R be a locally Lipchitz function. Then the subdiffer-
ential ∂ f (x) at the point x ∈ E is convex weak star compact and

f .(x, v) = sup{〈ζ∗, v〉|ζ∗ ∈ ∂ f (x)} ∀v ∈ E

that is, f .(x, .) is the support function of ∂ f (x).

Proof See Thibault [25, Proposition I.12]. �

Here are some useful properties of the subdifferential mapping.

Proposition 2.5 Let f : E → R be a locally Lipchitz function. Then the convex
weak star compact valued subdifferential mapping ∂ f is upper semicontinuous with
respect to the weak star topology.

Proof See [25, Proposition I.17]. Indeed we have

δ∗(v, ∂ f (x)) = f .(x; v) = lim sup
h→0,δ→0

[ f (x + h + δv) − f (x + h)]
δ

.

As f .(.; v) is upper semicontinuous and ∂ f is convex compact valued in E∗
s , by

[13], ∂ f is upper semicontinuous in E∗
s . �

Proposition 2.6 Let (T, T ) a measurable space, and let f : T × E → R such that
f (., ζ) is T -measurable, for every ζ ∈ E.
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f (t, .) is locally Lipschitz for every t ∈ T .
Let f .

t (x; v) be the directional derivative of f (t, .) := ft in the direction v for every
fixed t ∈ T . Let x and v be two T -measurable mappings from T to E. Then the
following hold:

(a) the mapping t �→ f .
t (x(t); v(t)) is T -measurable.

(b) the mapping t �→ ∂ ft (x(t)) is graph measurable, that is, its graph belongs to
T ⊗ B(E∗

s ).

Proof See Thibault [25, Proposition I.20 and Corollary I.21]. Note that the con-
vex weak star compact valued mapping t �→ ∂ ft (x(t)) is scalarly T -measurable,
and so enjoys good measurability properties because E∗

s is a locally convex Lusin
space. �

We begin with a second order differential inclusion involving the subdifferential
operator.

Proposition 2.7 Assume that E = Rd , and h : [0, 1] × Rd × Rd → Rd be a
bounded Carathéodory mapping, that is, h is separately Lebesque-measurable
on [0, 1], separately continuous on Rd × Rd , ||h(t, x, y)|| ≤ α(t), ∀(t, x, y) ∈
[0, T ] × Rd × Rd where α is positive Lebesque-integrable. Let f : [0, 1] × E → R
be a mapping such that

(1) ∀x ∈ E, f (., x) is Lebesgue-measurable,
(2) There exists β ∈ L1

R+([0, 1]) such that, for all t ∈ [0, 1], for all x, y ∈ E,

|| f (t, x) − f (t, y)|| ≤ β(t)||x − y||.

Then the following hold

(a) ∂ ft (x) ⊂ β(t)BE, for all (t, x) ∈ [0, 1] × E,
(b) The W 2,1

E ([0, 1])-solution set to
{
ü(t) + γu̇(t) ∈ ∂ ft (u(t)) + h(t, u(t), u̇(t)), a.e. t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

is compact in the space CE ([0, T ]).
Proof The proof is immediate by applying Proposition 2.3 to the convex compact
valued mapping (t, x, y) �→ ∂ ft (x) + h(t, x, y), taking account of the properties of
the subdifferential mapping and its measurable properties given in Proposition 2.6.

�

We finish this section with a variant which has some importance in the study of
epiconvergence problem for the approximating system

ü(t) + γu̇(t) = h(t, u(t), u̇(t)) − ∇ϕ(u(t))

where ϕ is C1 and Lipschitz.
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Proposition 2.8 Assume that E = Rd , ϕ : E → R is C1, Lipschitz, and that h :
[0, 1] × Rd × Rd → Rd is a boundedCarathéodorymapping, that is, h is separately
Lebesque-measurable on [0, 1], separately continuous on Rd × Rd , ||h(t, x, y)|| ≤
α(t), ∀(t, x, y) ∈ [0, T ] × Rd × Rd where α is positive Lebesque-integrable.Then
the W 2,1

E ([0, 1])-solution set to

{
ü(t) + γu̇(t) = h(t, u(t), u̇(t)) − ∇ϕ(u(t)) a.e. t ∈ [0, 1]
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi )

is compact in the space CE ([0, T ]).
Proof The proof is immediate by applying Proposition 2.3 with F(t, x, y) =
h(t, x, y) − ∇ϕ(x),∀(t, x, y) ∈ [0, 1] × E × E and by observing that the subdif-
ferential x �→ ∂ϕ(x) = ∇ϕ(x) is bounded and continuous. �

3 Applications. Towards the Variational Convergence in
Second Order Evolution Inclusions

Let us recall a useful Gronwall type lemma [12].

Lemma 3.1 (A Gronwall-like inequality) Let p, q, r : [0, T ] → [0,∞[ be three
nonnegative Lebesgue integrable functions such that for almost all t ∈ [0, T ]

r(t) ≤ p(t) + q(t)
∫ t

0
r(s) ds.

Then

r(t) ≤ p(t) + q(t)
∫ t

0
[p(s) exp(

∫ t

s
q(τ ) dτ )] ds

for all t ∈ [0, T ].
We recall below some notations and summarize some results which describe the

limiting behavior of a bounded sequence in L1
H ([0, T ]). See [10, Proposition 6.5.17].

Proposition 3.1 Let H be a separableHilbert space. Let (ζn) be a bounded sequence
in L1

H ([0, T ]). Then the following hold:

(1) (ζn) (up to an extracted subsequence) stably converges to a Young measure ν
that is, there exist a subsequence (ζ ′

n) of (ζn) and a Young measure ν belonging
to the space of Young measure Y([0, T ]; Hσ) with t �→ bar(νt ) ∈ L1

H ([0, T ])
(here bar(νt ) denotes the barycenter of νt ) such that

lim
n→∞

∫ T

0
h(t, ζ ′

n(t))) dt) =
∫ T

0

[∫
H
h(t, x) νt (dx)

]
dt
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for all bounded Carathéodory integrands h : [0, T ] × Hσ → R,
(2) (ζn) (up to an extracted subsequence) weakly biting converges to an inte-

grable function f ∈ L1
H ([0, T ]), which means that there is a subsequence (ζ ′

m)

of (ζn) and an increasing sequence of Lebesgue-measurable sets (Ap) with
lim p λ(Ap) = 1 and f ∈ L1

H ([0, T ]) such that, for each p,

lim
m→∞

∫
Ap

〈h(t), ζ ′
m(t)〉 dt =

∫
Ap

〈h(t), f (t)〉 dt

for all h ∈ L∞
H ([0, T ]),

(3) (ζn) (up to an extracted subsequence) Komlós converges to an integrable func-
tion g ∈ L1

H ([0, T ]), which means that there is a subsequence (ζβ(m)) and an
integrable function g ∈ L1

H ([0, T ]), such that

lim
n→∞

1

n
�n

j=1ζγ( j)(t) = g(t), a.e. ∈ [0, T ],

for every subsequence ( fγ(n)) of ( fβ(n)).

(4) There is a filter U finer than the Fréchet filter such that U − limn ζn = l ∈
(L∞

H )′weak where (L∞
H )′weak is the second dual of L1

H ([0, T ]).
Let wla ∈ L1

H ([0, T ]) be the density of the absolutely continuous part la of l in
the decomposition l = la + ls in absolutely continuous part la and singular part
ls .
If we have considered the same extracted subsequence in (1)–(4), then one has

f (t) = g(t) = bar(νt ) = wla (t) a.e. t ∈ [0, T ].

ByW 2,1
Rd ([0, T ]) (resp.W 2,2

Rd ([0, T ]) we denote the set of all continuous functions
in CRd ([0, T ]) such that their first derivatives are continuous and their second deriv-
atives belong to L1

Rd ([0, T ]) (resp. L2
Rd ([0, T ])) and by W 1,1

BV ([0, T ]) we denote the
set of all continuous functions in CRd ([0, T ]) such that their first derivatives are of
bounded variation (BV for short).

We begin with a preliminary result which shows the limiting properties of
W 2,1

Rd ([0, 1])-solutions for a second order ordinary differential equation withm-point
boundary conditions.

Proposition 3.2 Let E = Rd . Let ( fn)n∈N be a bounded sequence in L1
E ([0, 1]). For

each n ∈ N, let us consider the W 2,1
E ([0, 1])-solution un : [0, 1] → E of the equation

ün(t) + γu̇n(t) = fn(t), t ∈ [0, 1]; un(0) = x, un(1) =
m−2∑
i=1

αi un(ηi ).

Then there exist a subsequence of (un) still denoted by (un), a W 1,1
BV ([0, 1])-function

u : [0, 1] → E andaYoungmeasureν ∈ Y([0, 1]; E) such that t �→ bar(νt )belongs
to L1

E ([0, 1]) which satisfy the following conditions:
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(a) (un(.)) converges in CE ([0, 1]) to u(.) with u(0) = x, u(1) = ∑m−2
i=1 αi u(ηi ).

(b) (u̇n(.)) converges in L1
E ([0, 1]) to u̇(.).

(c) (δün ) stably converges in Y([0, 1], E) to ν.
(d) Assume further that the negative parts 〈un, ün〉− of the functions 〈un, ün〉 are

uniformly integrable in L1
R([0, 1]).

Then

lim inf
n→∞

∫ 1

0
〈un(t), ün(t)〉 dt ≥

∫ 1

0
〈u(t), bar(νt )〉 dt =

∫ 1

0

[∫
E
〈u(t), x〉 νt (dx)

]
dt.

Proof Existence and uniqueness of a W 2,1
E ([0, 1])-solution for the equation

ün(t) + γu̇n(t) = fn(t), t ∈ [0, 1]; u(0) = x, u(1) =
m−2∑
i=1

αi u(ηi ).

are ensured by Proposition 2.1 with integral representation formulas

{
un(t) = ex (t) + ∫ 1

0 G(t, s) fn(s)ds, t ∈ [0, 1]
u̇n(t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s) fn(s)ds, t ∈ [0, 1]

where

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1
.

Since ( fn(.)) is bounded in L1
E ([0, 1]) by assumption, (u̇n(.)) is uniformly bounded

by using the integral formula for u̇n and the boundedness of the Green function
G given in Lemma 3.1. So (u̇n(.)) is uniformly bounded and bounded in vari-
ation. In view of the Helly–Banach theorem (see e.g. [20, p. 11]), we may, by
extracting a subsequence, assume that (u̇n(.)) pointwise converges to a BV func-
tion v(.). Let us set u(t) = ∫ t

0 v(s) ds for all t ∈ [0, 1]. Then u ∈ W 1,1
BV ([0, 1])

with u̇(t) = v(t) for almost every t ∈ [0, 1]. Then (u̇n(.)) is uniformly bounded
and pointwise converges to v(.). By Lebesgue’s theorem, we conclude that (u̇n(.))
converges in L1

E ([0, 1]) to u̇(.). Hence (un(.)) converges uniformly to u(.) with
u(0) = x, u(1) = ∑m−2

i=1 αi u(ηi ). It remains to check (c) and (d). Since (ün(.)) is
bounded, in view of Proposition 3.1, we may assume that the sequence (δün ) of asso-
ciated Young measures stably converges in Y([0, 1], E) to a Young measure ν such
that t �→ bar(νt ) belongs to L1

E ([0, 1]). Let us prove the last Fatou property (d). We
may suppose that

a := lim
n→∞

∫ 1

0
〈un(t), ün(t)〉 dt ∈ R.
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Furthermore, since (ün(.)) is bounded in L1
E ([0, 1]), in view of Proposition 3.1 we

may suppose that (ün(.)) weakly biting converges to a function f ∈ L1
E ([0, 1]), that

is, there exist a subsequence (still denoted by (ün(.))) of (ün(.)) and an increasing
sequence of measurable sets (Ap) in [0, 1] such that lim p→∞ λ(Ap) = 1, and such
that, for each p and for each g ∈ L∞

E (Ap, Ap ∩ L([0, 1]),λ|Ap ), the following holds:

lim
n→∞

∫
Ap

〈ün(t), g(t)〉 dt =
∫
Ap

〈 f (t), g(t)〉 dt.

Let ε > 0 be given. Pick N ∈ N such that

∫
AN

〈u(t), f (t)〉 dt ≥
∫

[0,1]
〈u(t), f (t)〉 dt − ε,

and that

lim sup
n→∞

∫
[0,1]\AN

〈un(t), ün(t)〉− dt ≤ ε

(this is possible because (〈un, ün〉−)n is uniformly integrable by hypothesis). As
||un(.) − u(.)|| → 0 uniformly, it is easy to see that

lim
n→∞

∫
AN

||un(t) − u(t)|| ||ün(t)|| dt = 0.

See [6, 16] for a more general case. Whence

lim
n→∞

[ ∫
AN

〈un(t), ün(t)〉 dt −
∫
AN

〈u(t), ün(t)〉 dt
] = 0.

An easy computation gives

a ≥ lim
n→∞

∫
AN

〈un(t), ün(t)〉 − lim sup
n→∞

∫
[0,1]\AN

〈un(t), ün(t)〉− dt

≥ lim
n→∞

∫
AN

〈un(t), ün(t)〉 dt − ε.

Finally we get

a ≥ lim
n→∞

∫
AN

〈un(t), ün(t)〉 dt − ε

= lim
n→∞

∫
AN

〈u(t), ün(t)〉 dt − ε

=
∫
AN

〈u(t), f (t)〉 dt − ε
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≥
∫

[0,1]
〈u(t), f (t)〉 dt − 2ε.

By virtue of Proposition 3.1 f (t) = bar(νt ) a.e. The proof is therefore complete
because ∫ 1

0
〈u(t), bar(νt )〉 dt =

∫ 1

0

[∫
E
〈u(t), x〉 νt (dx)

]
dt. �

The above techniques can be used to prove the existence of a solution for second order
evolution inclusion with boundary conditions governed by subdifferential operators
of the form

f (t) ∈ ü(t) + Mu(t) + ∂ϕ(u(t)), t ∈ [0, T ] (I)

where M is positive, ϕ is a proper convex proper lower semicontinuous function
defined on Rd , and ∂ϕ(u(t)) is the subdifferential of the function ϕ at the point u(t)
and the perturbation f belongs to L2

Rd ([0, T ]). Similar results in this direction are
obtained by [1–4, 11].

Now we present a fairly general result for the approximating problem via the
epiconvergence approach in a second order evolution problem. The applicability of
our abstract results will be exemplified below.

Proposition 3.3 Assume that M > 0,β ∈ L2
R+([0, T ]). For each n ∈ N, let ϕn :

Rd → R+ be a convex, Lipschitz function and let ϕ∞ be a nonnegative l.s.c proper
function defined onRd such thatϕn(x) ≤ ϕ∞(x) for all n ∈ N and for all x ∈ Rd . Let
f n ∈ L2

Rd ([0, T ]) such that || fn(t)|| ≤ β(t), ∀n ∈ N, ∀t ∈ [0, T ]. For each n ∈ N,
let un be a W 2,1

Rd ([0, T ])-solution to the problem
{
f n(t) ∈ ün(t) + Mu̇n(t) + ∂ϕn(un(t)), t ∈ [0, T ]
un(0) = un0; u̇n(0) = u̇n0.

Assume that

(i) f n σ(L2
Rd , L2

Rd )-converges to f ∞ ∈ L2
Rd ([0, T ]),

(ii) ϕn epi-converges to ϕ∞,
(iii) limn un(0) = u∞

0 ∈ dom ϕ∞, limn ϕn(un(0)) = ϕ∞(u∞
0 ), and limn u̇n(0) =

u̇∞
0 ,

(iv) There exist r0 > 0 and x0 ∈ Rd such that

sup
n∈N

sup
v∈BL∞

Rd
([0,T ])

∫ T

0
ϕ∞(x0 + r0v(t)) < +∞

where BL∞
Rd

([0,T ]) is the closed unit ball in L∞
Rd ([0, T ]).
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(a) Then up to extracted subsequences, (un) converges uniformly to a
W 1,1

BV ([0, T ])-function u∞ and (u̇n) pointwisely converges to a BV function v∞
with v∞ = u̇∞, and (ün) biting converges to a function ζ∞ ∈ L1

Rd ([0, T ]) so
that the limit function u∞, u̇∞ and the biting limit ζ∞ satisfy the variational
inclusion

f ∞ ∈ ζ∞ + Mu̇∞ + ∂ Iϕ∞(u∞)

where ∂ Iϕ∞ denotes the subdifferential of the convex lower semicontinuous inte-
gral functional Iϕ∞ defined on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Furthermore limn ϕn(un(t)) = ϕ∞(u∞(t)) < ∞ a.e. and limn
∫ T
0 ϕn(un(t))

dt = ∫ T
0 ϕ∞(u∞(t))dt. Subsequently, the energy estimate holds true almost

everywhere t ∈ [0, T ],

ϕ∞(u∞(t))+ 1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 )) + 1

2
||u̇∞

0 ||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Further (ün) weakly converges to the vector measure m ∈ Mb
Rd ([0, T ]) so that

the limit functions u∞(.) and the limitmeasurem satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt +

∫ 1

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉
(Mb

Rd
([0,T ]),CRd ([0,T ])).

In other words, the vector measure −m + [−Mu̇∞ + f ∞] dt belongs to the
subdifferential ∂ Jϕ∞(u∞) of the convex functional integral Jϕ∞ defined on

CRd ([0, T ]) by Jϕ∞(v) = ∫ 1
0 ϕ∞(t, v(t)) dt, ∀v ∈ CRd ([0, T ]).

(b) There are a filter U finer than the Fréchet filter, l ∈ L∞
Rd ([0, T ])′ such that

U − lim
n

[ f n − ün − Mu̇n] = l ∈ L∞
Rd ([0, T ])′weak

where L∞
Rd ([0, T ])′weak is the second dual of L

1
Rd ([0, T ]) endowed with the topol-

ogy σ(L∞
Rd ([0, T ])′, L∞

Rd ([0, T ])) and n ∈ CRd ([0, T ])′weak such that

lim
n

[ f n − ün − Mu̇n] = n ∈ CRd ([0, T ])′weak
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where CRd ([0, T ])′weak denotes the space CRd ([0, T ])′ endowed with the weak
topology σ(CRd ([0, T ])′, CRd ([0, T ])). Let la be the density of the absolutely
continuous part la of l in the decomposition l = la + ls in absolutely continuous
part la and singular part ls . Then

la(h) =
∫ T

0
〈h(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

for all h ∈ L∞
Rd ([0, T ]) so that

I ∗
ϕ∞(l) = Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) + δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined on
L1
Rd ([0, T ]) associated with ϕ∗∞, I ∗

ϕ∞ the conjugate of the integral functional
Iϕ∞ , dom Iϕ∞ := {u ∈ L∞

Rd ([0, T ]) : Iϕ∞(u) < ∞} and

〈n, h〉 =
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt + 〈ns , h〉, ∀h ∈ CRd ([0, T ]).

with 〈ns, h〉 = ls(h), ∀h ∈ CRd ([0, T ]). Further n belongs to the subdifferential
∂ Jϕ∞(u∞) of the convex lower semicontinuous integral functional Jϕ∞ defined
on CRd ([0, T ])

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

(c) Consequently the density f ∞ − ζ∞ − Mu̇∞ of the absolutely continuous
part na

na(h) :=
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, T ])

satisfies the inclusion

f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and for any nonnegative measure θ on [0, T ] with respect to which ns is
absolutely continuous

∫ T

0
hϕ∗∞(

dns
dθ

(t))dθ(t) =
∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)

here hϕ∗∞ denotes the recession function of ϕ∗∞.
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Proof Step 1 ||u̇n(.)|| and ϕn(un(.)) are uniformly bounded.
Multiplying scalarly the inclusion

f n(t) − ün(t) − Mu̇n(t) ∈ ∂ϕn(u
n(t))

by u̇n(t) and applying the chain rule theorem [21, Theorem 2] yields

〈u̇n(t), f n(t)〉 − 〈u̇n(t), ün(t)〉 − 〈u̇n(t), Mu̇n(t)〉 = d

dt
[ϕn(un(t))]

that is,

− 〈Mu̇n(t), u̇n(t)〉 + 〈u̇n(t), f n(t)〉 = d

dt

[
ϕn(un(t)) + 1

2
||u̇n(t)||2

]
. (3.3.1)

Integrating this equality on [0, t], we get

ϕn(u
n(t)) + 1

2
||u̇n(t)||2

= ϕn(u
n(0)) + 1

2
||u̇n(0)||2

−
∫ t

0
〈Mu̇n(s), u̇n(s)〉ds +

∫ t

0
〈u̇n(s), f n(s)〉ds

≤ ϕn(u
n(0)) + 1

2
||u̇n(0)||2

+ M
∫ t

0
||u̇n(s)||2ds + || f n||L2

Rd
([0,T ])

(∫ t

0
||u̇n(s)||2ds

) 1
2

≤ ϕn(u
n(0)) + 1

2
||u̇n(0)||2

+ M
∫ t

0
||u̇n(s)||2ds + 1

2
|| f n||L2

Rd
([0,T ])

(
1 +

∫ t

0
||u̇n(s)||2ds

)

≤ ϕn(u
n(0)) + 1

2
||u̇n(0)||2

+ M
∫ t

0
||u̇n(s)||2ds + 1

2
||β||L2

R([0,T ])

(
1 +

∫ t

0
||u̇n(s)||2ds

)
.

Then, from (i i i), the preceding estimate and the Gronwall like inequality (Lemma
3.1), it is immediate that

sup
n≥1

sup
t∈[0,T ]

||u̇n(t)|| < +∞ and sup
n≥1

sup
t∈[0,T ]

ϕn(u
n(t)) < +∞. (3.3.2)

Step 2 Estimation of ||ün(.)||. As
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zn(t) := f n(t) − ün(t) − Mu̇n(t) ∈ ∂ϕn(u
n(t))

by the subdifferential inequality for convex lower semi continuous functions we have

ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ Rd . Now let v ∈ BL∞
Rd

([0,T ]), the closed unit ball of L∞
Rd [0, T ]). Taking

x = w(t) := x0 + r0v(t) in the preceding inequality we get

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈w(t) − un(t), zn(t)〉.

Integrating the preceding inequality gives

∫ T

0
〈x0 + r0v(t) − un(t), zn(t)〉dt

=
∫ T

0
〈x0 − un(t), zn(t)〉dt + r0

∫ T

0
〈v(t), zn(t)〉dt

≤
∫ T

0
ϕn(x0 + r0v(t))dt −

∫ T

0
ϕn(u

n(t))dt.

Whence follows

r0

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕn(x0 + r0v(t))dt (3.3.3)

−
∫ T

0
ϕn(u

n(t))dt −
∫ T

0
〈x0 − un(t), zn(t)〉dt.

We compute the last integral in the preceding inequality. For simplicity, let us set
vn(t) = un(t) − x0 for all t ∈ [0, T ]. By integration by parts and taking into account
(3.3.2), we have

−
∫ T

0
〈x0 − un(t), zn(t)〉dt = −

∫ T

0
〈vn(t), v̈n(t) + M v̇n(t)〉 − f n(t)〉dt (3.3.4)

= − [〈vn(t), v̇n(t) + Mvn(t)]T0 +
∫ T

0
〈v̇n(t), v̇n(t) + Mvn(t)〉dt +

∫ T

0
〈vn(t), f n(t)〉dt

≤ − 〈vn(T ), v̇n(T )〉 + 〈vn(0), v̇n(0)〉 − 〈Mvn(T ), vn(T )〉

+ 〈Mvn(0), vn(0)〉 +
∫ T

0
||v̇n(t)||2dt +

∫ T

0
〈v̇n(t), Mvn(t)〉dt +

∫ T

0
〈vn(t), f n(t)〉dt.

By (3.3.2)–(3.3.4), we get

r0

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕ∞(x0 + r0v(t))dt + L (3.3.5)
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for all v ∈ BL∞
Rd

([0,T ]), where L is a generic positive constant independent of
n ∈ N. By (iv) and (3.3.5) we conclude that (zn = f n − ün − Mu̇n) is bounded in
L1
Rd ([0, T ]), then so is (ün). It turns out that the sequence (u̇n) is uniformly bounded

by using (3.3.2) and is bounded in variation. By Helly theorem, we may assume that
(u̇n) pointwisely converges to a BV function v∞ : [0, T ] → Rd and the sequence
(un) converges uniformly to an absolutely continuous function u∞ with u̇∞ = v∞
a.e. At this point, it is clear that (u̇n) converges in L1

Rd ([0, T ]) to v∞, using (3.3.2)
and the dominated convergence theorem. Hence (Mu̇n(.)) converges in L1

Rd ([0, T ])
to Mv∞(.).
Step 3 Young measure limit and biting limit of ün . As (ün) is bounded in L1

Rd ([0, T ]),
we may assume that (ün) stably converges to a Young measure ν ∈ Y([0, T ]);Rd)

with bar(ν) : t �→ bar(νt ) ∈ L1
Rd ([0, T ]) (here bar(νt ) denotes the barycenter of νt ).

Further by Proposition 3.1, we may assume that (ün) biting converges to a function
ζ∞ : t �→ bar(νt ) that is, there exists a decreasing sequence of Lebesgue-measurable
sets (Bp)with lim p λ(Bp) = 0 such that the restriction of (ün) on each Bc

p converges
weakly in L1

Rd ([0, T ]) to ζ∞. Note that (Mu̇n) converges in L1
Rd ([0, T ]) to Mv∞.

It follows that the restriction of (zn = f n − ün − Mu̇n) to each Bc
p weakly con-

verges in L1
Rd ([0, T ]) to z∞ := f ∞ − ζ∞ − Mv∞, because ( f n) weakly converges

in L1
Rd ([0, T ]) to f ∞, (Mu̇n) converges in L1

Rd ([0, T ]) to Mv∞ and (ün) biting
converges to ζ∞ ∈ L1

Rd ([0, T ]). It follows that

lim
n

∫
B
〈−ün − Wn(t), w(t) − un(t)〉 =

∫
B
〈− bar(νt ) − W (t), w(t) − u(t)〉dt

(3.3.6)

for every B ∈ Bc
p ∩ L([0, T ]), and for every w ∈ L∞

Rd ([0, T ]), where Wn(t) =
Mu̇n(t) − f n(t) andW (t) = Mu̇∞(t) − f ∞(t). Indeed,we note that (w(t) − un(t))
is a bounded sequence in L∞

Rd ([0, 1]) which pointwisely converges to w(t) − u∞(t),
it converges uniformly on every uniformly integrable subset of L1

Rd ([0, T ]) by virtue
of a Grothendieck Lemma [16], recalling here that the restriction of −ün − Wn on
each Bc

p is uniformly integrable. Now, since ϕn lower epiconverges to ϕ∞, for every
Lebesgue-measurable set A in [0, T ], by virtue of Corollary 4.7 in [11], we have

+ ∞ > lim inf
n

∫
A
ϕn(u

n(t))dt ≥
∫
A
ϕ∞(u∞(t))dt. (3.3.7)

Combining (3.3.2)–(3.3.5)–(3.3.6)–(3.3.7) and using the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−ün(t) − Wn(t), w(t) − un(t)〉

gives

∫
B

ϕ∞(w(t)) dt ≥
∫
B

ϕ∞(u∞(t)) dt +
∫
B
〈− bar(νt ) − W (t), w(t) − u∞(t)〉 dt.
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This shows that t �→ − bar(νt ) − W (t) is a subgradient at the point u∞ of the convex
integral functional Iϕ∞ restricted to L∞

Rd (Bc
p), consequently,

− bar(νt ) − W (t) ∈ ∂ϕ∞(u∞(t)), a.e. onBc
p.

As this inclusion is true on each Bc
p and Bc

p ↑ [0, T ], we conclude that

− bar(νt ) − W (t) ∈ ∂ϕ∞(u∞(t)), a.e. on[0, T ].

Step 4 Limit measure in Mb
Rd ([0, T ]) of ün . As (ün) is bounded in L1

Rd ([0, T ]), we
may assume that (ün) weakly converges to the vector measure m ∈ Mb

Rd ([0, T ]) so
that the limit functions u∞(.) and the limitmeasurem satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt +

∫ 1

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
E ([0,T ]),CRd ([0,T ])).

In otherwords, the vectormeasure−m + [−Mu̇∞ + f ∞] dt = −m − W.dt belongs
to the subdifferential ∂ Jϕ∞(u∞) of the convex functional integral J f∞ defined
on CRd ([0, T ]) by Jϕ∞(v) = ∫ 1

0 ϕ∞(v(t)) dt , ∀v ∈ CRd ([0, T ]). Indeed, let w ∈
CRd ([0, T ]). Integrating the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−ün(t) − Wn(t), w(t) − un(t)〉

and noting that ϕ∞(w(t)) ≥ ϕn(w(t)) gives immediately

∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕn(w(t))dt

≥
∫ T

0
ϕn(u

n(t))dt + 〈−ün(t) − Wn(t), w(t) − un(t)〉dt.

We note that

lim
n

∫ T

0
〈−Wn(t), w(t) − un(t)〉dt =

∫ T

0
〈−W (t), w(t) − u∞(t)〉dt

because (Wn := Mu̇n − f n) is uniformly integrable, and weakly converges to
W := Mu̇∞ − f ∞ and the bounded sequence in w(t) − un(t) pointwise converges
to w − u∞ so that it converges uniformly on uniformly integrable subsets by virtue
of Grothendieck lemma. Whence follows
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∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕ∞(u∞(t))dt +

∫ T

0
〈−W (t), w(t) − u∞(t)〉dt

+〈−m, w − u∞〉(Mb
Rd

([0,T ]),CRd ([0,T ])),

which shows that the vector measure −m − W.dt is a subgradient at the point u∞
of the of the convex integral functional Jϕ∞ defined on CRd ([0, T ])) by Jϕ∞(v) :=∫ T
0 ϕ∞(v(t))dt,∀v ∈ CRd ([0, T ]).
Step 5 Claim limn ϕn(un(t)) = ϕ∞(u∞(t)) < ∞ a.e. and limn

∫ T
0 ϕn(un(t))dt =∫ T

0 ϕ∞(u∞(t))dt < ∞, and subsequently, the energy estimate holds for a.e. t ∈
[0, T ]:

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞(0)) + 1

2
||u̇∞(0)||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

With the above results and notations, applying the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−ün(t) − Wn(t), w(t) − un(t)〉

withw = u∞, integrating on [0, T ], and passing to the limit when n goes to∞, gives
the inequalities

∫
B

ϕ∞(u∞(t))dt ≥ lim inf
n

∫
B

ϕn(u
n(t))dt

≥
∫
B

ϕ∞(u∞(t))dt ≥ lim sup
n

∫
B

ϕn(u
n(t))dt

on B ∈ Bc
p ∩ L([0, T ]) so that

lim
n

∫
B

ϕn(u
n(t))dt =

∫
B

ϕ∞(u∞(t))dt (3.3.8)

on B ∈ Bc
p ∩ L([0, T ]). Now, from the chain rule theorem given in Step 1, recall that

〈u̇n(t), f n(t)〉 − 〈u̇n(t), ün(t) − Mu̇n(t)〉 = d

dt
[ϕn(un(t))],

that is,

〈u̇n(t), zn(t)〉 = d

dt
[ϕn(un(t))].

By the estimate (3.3.2) and the boundedness in L1
Rd ([0, T ]) of (zn), it is immedi-

ate that ( d
dt [ϕn(un(t))]) is bounded in L1

R([0, T ]) so that (ϕn(un(.)) is bounded in
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variation. By Helly theorem, we may assume that (ϕn(un(.)) pointwisely converges
to a BV functionψ. By (3.3.2), (ϕn(un(.)) converges in L1

R([0, T ]) toψ. In particular,
for every k ∈ L∞

R+([0, T ]) we have

lim
n→∞

∫ T

0
k(t)ϕn(un(t))dt =

∫ T

0
k(t)ψ(t)dt. (3.3.9)

Combining (3.3.8) and (3.3.9) yields

∫
B

ψ(t) dt = lim
n→∞

∫
B

ϕn(u
n(t)) dt =

∫
B

ϕ∞(u∞(t)) dt

for all ∈ Bc
p ∩ L([0, T ]). As this inclusion is true on each Bc

p and Bc
p ↑ [0, T ], we

conclude that
ψ(t) = lim

n
ϕn(un(t)) = ϕ∞(u∞(t)) a.e.

Hencewe get limn ϕn(un(t)) = ϕ∞(u∞(t)) a.e. Subsequently, using (iii) the passage
to the limit when n goes to ∞ in the equation

ϕn(u
n(t)) + 1

2
||u̇n(t)||2 = ϕn(u

n(0)) + 1

2
||u̇n(0)||2

−
∫ t

0
〈Mu̇n(s), u̇n(s)〉ds +

∫ t

0
〈u̇n(s), f n(s)〉ds

yields for a.e. t ∈ [0, T ]

ϕ∞(u∞(t))+1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 ) + 1

2
||u̇∞

0 ||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Noting that ( f n) is uniformly integrable and u̇n is uniformly bounded and pointwise
converges to u̇∞, by virtue of Grothendieck lemma [16], it converges uniformly on
uniformly integrable (=relatively weakly compact) subsets of L1

Rd ([0, T ]), so that

lim
n

∫ t

0
〈u̇n(s), f n(s)〉ds =

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Step 6 Localization of further limits and final step.
As (zn = f n − ün − Mu̇n) is bounded in L1

Rd ([0, T ]), in view of Step 3, it is rel-
atively compact in the second dual L∞

Rd ([0, T ])′ of L1
Rd ([0, T ]) endowed with the

weak topology σ(L∞
Rd ([0, T ])′, L∞

Rd ([0, T ])). Furthermore, (zn) can be viewed as a
bounded sequence in CRd ([0, T ])′. Hence there are a filter U finer than the Fréchet
filter, l ∈ L∞

Rd ([0, T ])′ and n ∈ CRd ([0, T ])′ such that
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U − lim
n

zn = l ∈ L∞
Rd ([0, T ])′weak (3.3.10)

and
lim
n

zn = n ∈ CRd ([0, T ])′weak (3.3.11)

where L∞
Rd ([0, T ])′weak is the second dual of L1

Rd ([0, T ]) endowed with the topol-
ogy σ(L∞

Rd ([0, T ])′, L∞
Rd ([0, T ])) and CRd ([0, T ])′weak denotes the space CRd ([0, T ])′

endowed with the weak topology σ(CRd ([0, T ])′, CRd ([0, T ])), because CRd ([0, T ])
is a separable Banach space for the norm sup, so that we may assume by extract-
ing subsequences that (zn) weakly converges to n ∈ CRd ([0, T ])′. Using Step 4, we
note that n = −m − W.dt = −m − (Mu̇∞ − f ∞).dt . Let la be the density of the
absolutely continuous part la of l in the decomposition l = la + ls in absolutely con-
tinuous part la and singular part ls , in the sense there is an decreasing sequence (An)

of Lebesgue measurable sets in [0, T ] with An ↓ ∅ such that ls(h) = ls(1An h) for all
h ∈ L∞

Rd ([0, T ]) and for all n ≥ 1. As (zn = f n − ün − Mu̇n) biting converges to
z∞ = f ∞ − ζ∞ − Mu̇∞ in Step 4, it is already seen (cf. Proposition 3.1) that

la(h) =
∫ T

0
〈h(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

for all h ∈ L∞
Rd ([0, T ]), shortly z∞ = f ∞ − ζ∞ − Mu̇∞ coincides a.e. with the den-

sity of the absolutely continuous part la . By [13, 23], we have

I ∗
ϕ∞(l) = Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) + δ∗(ls, dom Iϕ∞),

whereϕ∗∞ is the conjugate ofϕ∞, Iϕ∗∞ is the integral functional definedon L1
Rd ([0, T ])

associated with ϕ∗∞, I ∗
ϕ∞ is the conjugate of the integral functional Iϕ∞ and

dom Iϕ∞ := {u ∈ L∞
Rd ([0, T ]) : Iϕ∞(u) < ∞}.

Using the inclusion

z∞ = f ∞ − ζ∞ − Mu̇∞ ∈ ∂ Iϕ∞(u∞),

that is,

Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) = 〈 f ∞ − ζ∞ − Mu̇∞, u∞〉 − Iϕ∞(u∞),

we see that

I ∗
ϕ∞(l) = 〈 f ∞ − ζ∞ − Mu̇∞, u∞〉 − Iϕ∞(u∞) + δ∗(ls, dom Iϕ∞).

Coming back to the inclusion zn(t) ∈ ∂ϕn(un(t)), we have
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ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ Rd . By substituting x by h(t) in this inequality, where h ∈ L∞
Rd ([0, T ]),

and by integrating

∫ T

0
ϕn(h(t)) dt ≥

∫ T

0
ϕn(u

n(t)) dt +
∫ T

0
〈h(t) − un(t), zn(t)〉 dt.

Arguing as in Step 4 by passing to the limit in the preceding inequality, involving the
epiliminf property for integral functionals

∫ T
0 ϕn(h(t))dt defined on L∞

Rd ([0, T ]), it
is easy to see that

∫ T

0
ϕ∞(h(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt + 〈h − u∞,n〉.

Since this holds, in particular, when h ∈ CRd ([0, T ]), we conclude that n belongs to
the subdifferential ∂ Jϕ∞(u∞) of the convex lower semicontinuous integral functional
Jϕ∞ defined on CRd ([0, T ])

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

Now, let B : CRd ([0, T ]) → L∞
Rd ([0, T ]) be the continuous injection, and let B∗ :

L∞
Rd ([0, T ])′ → CRd ([0, T ])′ be the adjoint of B given by

〈B∗l, h〉 = 〈l, Bh〉 = 〈l, h〉, ∀l ∈ L∞
Rd ([0, T ])′, ∀h ∈ CRd ([0, T ]).

Then we have B∗l = B∗la + B∗ls , l ∈ L∞
Rd ([0, T ])′ being the limit of (zn = f n −

ün − Mu̇n) under the filterU given in Sect. 4 and l = la + ls being the decomposition
of l in absolutely continuous part la and singular part ls . It follows that

〈B∗l, h〉 = 〈B∗la, h〉 + 〈B∗ls, h〉 = 〈la, h〉 + 〈ls, h〉

for all h ∈ CRd ([0, T ]). But it is already seen that

〈la, h〉 = 〈 f ∞ − ζ∞ − Mu̇∞, h〉

=
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ L∞

Rd ([0, T ])

so that the measure B∗la is absolutely continuous

〈B∗la, h〉 =
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, T ])
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and its density f ∞ − ζ∞ − Mu̇∞ satisfies the inclusion

f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and the singular part B∗ls satisfies the equation

〈B∗ls, h〉 = 〈ls, h〉, ∀h ∈ CRd ([0, T ]).

As B∗l = n, using (3.3.10) and (3.3.11), it turns out that n is the sum of the absolutely
continuous measure na with

〈na, h〉 =
∫ T

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, T ])

and the singular part ns given by

〈ns, h〉 = 〈ls, h〉, ∀h ∈ CRd ([0, T ]),

which satisfies the property: for any nonnegative measure θ on [0, T ] with respect
to which ns is absolutely continuous,

∫ T

0
hϕ∗∞

(
dns
dθ

(t)

)
dθ(t) =

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t),

where hϕ∗∞ denotes the recession function of ϕ∗∞. Indeed, as n belongs to ∂ Jϕ∞(u∞)

by applying Theorem 5 in [23] we have

J ∗
ϕ∞(n) = Iϕ∗∞

(
dna
dt

)
+

∫ T

0
hϕ∗∞

(
dns
dθ

(t)

)
dθ(t) (3.3.12)

with

Iϕ∗∞(v) :=
∫ T

0
ϕ∗

∞(v(t))dt,∀v ∈ L1
Rd ([0, T ]).

Recall that
dna
dt

= f ∞ − ζ∞ − Mu̇∞ ∈ ∂ Iϕ∞(u∞),

that is,

Iϕ∗∞

(
dna
dt

)
= 〈 f ∞ − ζ∞ − Mu̇∞, u∞〉〈L1

Rd
([0,T ]),L∞

Rd
([0,T ])〉 − Iϕ∞ (u∞). (3.3.13)

From (3.3.13), we deduce
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J ∗
ϕ∞(n) = 〈u∞,n〉〈CRd ([0,T ]),CRd ([0,T ])′〉 − Jϕ∞(u∞)

= 〈u∞,n〉〈CRd ([0,T ]),CRd ([0,T ])′〉 − Iϕ∞(u∞)

=
∫ T

0
〈u∞(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

+
∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t) − Iϕ∞(u∞)

= Iϕ∗∞

(
dna
dt

)
+

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)).

Coming back to (3.3.12) we get the equality

∫ T

0
hϕ∗∞

(
dns
dθ

(t)

)
dθ(t) =

∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)). �

Actually, Proposition 3.3 completes Proposition 4.6 in [7], which is a precursor
of some results we present here.

We beginwith a second order evolution equationwithm-point boundary condition

Proposition 3.4 Assume that E = Rd , M > 0,β ∈ L2
R+([0, T ]). For each n ∈ N,

let ϕn : Rd → R+ be a C1, convex, Lipschitz function and let ϕ∞ be a nonnegative
l.s.c proper function defined on Rd such that ϕn(x) ≤ ϕ∞(x) for all n ∈ N and for
all x ∈ Rd . Let f : [0, T ] × E × E → E satisfying

(1) For each (x, y) ∈ E × E the scalar function t �→ f (t, x, y)〉 is Lebesgue mea-
surable,

(2) For each t ∈ [0, 1], function f (t, ., .) is continuous on E × E,
(3) || f (t, x, y)|| ≤ β(t) for all (t, x, y) ∈ [0, 1] × E × E.

For each n ∈ N, let un be a W 2,1
Rd ([0, 1])-solution to the approximating problem

(Pn)

{
f (t, un(t), u̇n(t)) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)), t ∈ [0, 1]
un(0) = x ∈ dom ϕ∞, un(1) = ∑m−2

i=1 αi un(ηi )

Assume that

(i) ϕn epi-converges to ϕ∞,
(ii) limn u̇n(0) = u̇∞

0 ,
(iii) There exist r0 > 0 and x0 ∈ Rd such that

sup
v∈BL∞

Rd
([0,1])

∫ T

0
ϕ∞(x0 + r0v(t)) < +∞

where BL∞
Rd

([0,1]) is the closed unit ball in L∞
Rd ([0, 1]).
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(a) Then, up to extracted subsequences, (un) converges uniformly to a W 1,1
BV

([0, 1])-function u∞ with u∞(0) = x ∈ dom ϕ∞, u∞(1) = ∑m−2
i=1 αi

u∞(ηi ) and (u̇n) pointwisely converges to a BV function v∞ with v∞ = u̇∞,
and (ün) biting converges to a function ζ∞ ∈ L1

Rd ([0, 1]) so that the limit
function u∞, u̇∞ and the biting limit ζ∞ satisfy the variational inclusion

(P∞) f ∞ ∈ ζ∞ + Mu̇∞ + ∂ Iϕ∞(u∞)

where f ∞(t) := f (t, u∞(t), u̇∞(t),∀t ∈ [0, 1], ∂ Iϕ∞ denotes the subdif-
ferential of the convex lower semicontinuous integral functional Iϕ∞ defined
on L∞

Rd ([0, 1]) by

Iϕ∞(u) :=
∫ 1

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, 1]).

(b) (ün) weakly converges to the vector measure m ∈ Mb
E ([0, 1]) so that the

limit functions u∞(.) and the limit measure m satisfy the following varia-
tional inequality:

∫ 1

0
ϕ∞(v(t)) dt ≥

∫ 1

0
ϕ∞(u∞(t)) dt +

∫ 1

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
Rd

([0,1]),CE ([0,1])).

(c) Furthermore lim
n

∫ 1

0
ϕn(u

n(t))dt =
∫ T

0
ϕ∞(u∞(t))dt. Subsequently

the energy estimate

ϕ∞
(
u∞(t)) + 1

2
||u̇∞(t)||2 ≤ ϕ∞(x) + 1

2
||u̇∞

0

)
||2

−
∫ t

0
〈Mu̇∞(s), u̇∞(s)〉ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds

holds a.e.
(d) There are a filter U finer than the Fréchet filter, l ∈ L∞

Rd ([0, 1])′ such that

U − lim
n

[ f n − ün − Mu̇n] = l ∈ L∞
Rd ([0, 1])′weak

where L∞
Rd ([0, 1])′weak is the second dual of L1

Rd ([0, 1]) endowed with the
topology σ(L∞

Rd ([0, 1])′, L∞
Rd ([0, 1])) and n ∈ CRd ([0, 1])′weak such that

lim
n

[ f n − ün − Mu̇n] = n ∈ CRd ([0, 1])′weak

whereCRd ([0, 1])′weak denotes the spaceCRd ([0, 1])′ endowedwith theweak
topology σ(CRd ([0, 1])′, CRd ([0, 1])) so that n = −m − (Mu̇∞ − f ∞)dt.
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Let la be the density of the absolutely continuous part la of l in the decom-
position l = la + ls in absolutely continuous part la and singular part ls .
Then

la(h) =
∫ T

0
〈h(t), f ∞(t) − ζ∞(t) − Mu̇∞(t)〉dt

for all h ∈ L∞
Rd ([0, 1]) so that

I ∗
ϕ∞(l) = Iϕ∗∞( f ∞ − ζ∞ − Mu̇∞) + δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined on
L1
Rd ([0, 1]) associatedwithϕ∗∞, I ∗

ϕ∞ the conjugate of the integral functional
Iϕ∞ , dom Iϕ∞ := {u ∈ L∞

Rd ([0, 1]) : Iϕ∞(u) < ∞} and

〈n, h〉 =
∫ 1

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt + 〈ns , h〉, ∀h ∈ CRd ([0, 1])

with 〈ns, h〉 = ls(h), ∀h ∈ CRd ([0, 1]). Further n belongs to the subdiffer-
ential ∂ Jϕ∞(u∞) of the convex lower semicontinuous integral functional
Jϕ∞ defined on CRd ([0, 1])

Jϕ∞(u) :=
∫ 1

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, 1]).

(c) Consequently the density f ∞ − ζ∞ − Mu̇∞ of the absolutely continu-
ous part na

na(h) :=
∫ 1

0
〈 f ∞(t) − ζ∞(t) − Mu̇∞(t), h(t)〉dt, ∀h ∈ CRd ([0, 1])

satisfies the inclusion

f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and for any nonnegative measure θ on [0, T ] with respect to which ns is
absolutely continuous

∫ 1

0
hϕ∗∞(

dns
dθ

(t))dθ(t) =
∫ T

0
〈u∞(t),

dns
dθ

(t)〉dθ(t)

where hϕ∗∞ denotes the recession function of ϕ∗∞.

Proof Existence of a W 2,1
Rd ([0, 1])-solution for the approximating equation

{
ün(t) + Mu̇n(t) + ∇ϕn(un(t) = f (t, un(t), u̇n(t)), a.e. t ∈ [0, 1]
un(0) = x, un(1) = ∑m−2

i=1 αi un(ηi )
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is ensured by Proposition 2.8 with integral representation formulas

{
un(t) = ex (t) + ∫ 1

0 G(t, s)[ün(t) + Mu̇n(s)]ds, t ∈ [0, 1]
u̇n(t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s)[ün(t) + Mu̇n(s)]ds, t ∈ [0, 1]

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1

where G is the Green function given by Lemma 2.1. Then un(0) = x and un(1) =∑m−2
i=1 αi un(ηi ).
The rest of the proof follows the same lines as that of Proposition 3.3. �

The following is a new variant on the existence of solutions for the second order
evolution inclusion with m-point boundary condition.

Proposition 3.5 Let (∂ϕn) (n ∈ N ∪ {∞}) be a sequence of subdifferential oper-
ators associated with a sequence of nonnegative normal convex integrands (ϕn)

(n ∈ N ∪ {∞}). Assume that the following conditions are satisfied:

(1) For each n ∈ N, |ϕn(t, x) − ϕn(t, y)| ≤ βn(t)||x − y|| for all t ∈ [0, 1] and for
all x, y ∈ Rd , where βn is a nonnegative integrable functions.

(2) For each Lebesgue-measurable set A ∈ [0, 1], for each w ∈ L∞
Rd ([0, 1]),

lim sup
n

∫
A
ϕn(t, w(t)) dt ≤

∫
A
ϕ∞(t, w(t)) dt.

(3) For each t ∈ [0, 1], ϕn(t, .) lower epiconverges to ϕ∞(t, .), that is, for each
fixed t ∈ [0, 1], for each (xn) in Rd , converging to x ∈ Rd , lim inf ϕn(t, xn) ≥
ϕ∞(t, x).
For each n ∈ N, let un : [0, 1] → Rd be a W 2,1

Rd ([0, 1])-solution to

{
ün(t) + γu̇n(t) ∈ ∂ϕn(t, un(t)), a.e. t ∈ [0, 1]
un(0) = x, un(1) = ∑m−2

i=1 αi un(ηi ).

(4) Assume further that

sup
n∈N

∫ 1

0
ϕn(t, un(t))dt < +∞

and

sup
n∈N

∫ 1

0
|∂ϕn(t, u

n(t))|dt < +∞.

Then the following hold:
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(a) Up to extracted subsequences, (un) converges uniformly to a W 1,1
BV ([0, 1]) func-

tion u∞ with u∞(0) = x, u∞(1) = ∑m−2
i=1 αi u∞(ηi ) and (u̇n) pointwisely con-

verges to the BV function u̇∞, and (ün) stably converges to a Young measure
ν∞ ∈ Y([0, 1];Rd)with t �→ bar(ν∞

t ) ∈ L1
Rd ([0, 1]) (here bar(ν∞

t ) denotes the
barycenter of ν∞

t ) such that the limit functions u∞(.), u̇∞(.) and the Young limit
measure ν∞ satisfy

∫ 1

0
ϕ∞(t, u∞(t))dt ≤ lim inf

n

∫ 1

0
ϕn(t, u

n(t))dt

consequently

lim
n

∫ 1

0
ϕn(t, u

n(t))dt =
∫ 1

0
ϕ∞(t, u∞(t))dt < ∞

and
bar(ν∞

t ) + γu̇∞(t) ∈ ∂ϕ∞(t, u∞(t)), a.e.

equivalently the function t �→ bar(ν∞
t ) + γu̇∞(t) belongs to the subdifferential

∂ Iϕ∞(u∞) of the convex lower semicontinuous integral functional Iϕ∞ defined
on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(t, u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

(b) Up to extracted subsequences, (un) converges uniformly to a W 1,1
BV ([0, 1]) func-

tion u∞ with u∞(0) = x, u∞(1) = ∑m−2
i=1 αi u∞(ηi ) and (u̇n) pointwisely con-

verges to the BV function u̇∞, (ün) weakly converges to m∞ ∈ Mb
Rd ([0, 1]) so

that the limit functions u∞(.) and the limit measure m∞ satisfy the variational
inequality: for every v ∈ CRd ([0, 1]),
∫ 1

0
ϕ∞(t, v(t)) dt ≥

∫ 1

0
ϕ∞(t, u∞(t)) dt +

∫ 1

0
〈γu̇∞(t)), v(t) − u∞(t)〉 dt

+ 〈m∞, v − u∞〉(Mb
Rd

([0,1]),CRd ([0,1])).

In other words, the vector measure m∞ + γu̇∞ dt belongs to the subdifferential
∂ Iϕ∞(u) of the convex functional integral Iϕ∞ defined on CRd ([0, 1]) by Iϕ∞(v) =∫ 1
0 ϕ∞(t, v(t)) dt, ∀v ∈ CRd ([0, 1]).

Proof Existence of a W 2,1
Rd ([0, 1])-solution un to

{
ün(t) + γu̇n(t) ∈ ∂ϕn(t, un(t)), a.e. t ∈ [0, 1]
un(0) = x, un(1) = ∑m−2

i=1 αi un(ηi )
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is ensured by Proposition 2.7 with integral representation formulas

{
un(t) = ex (t) + ∫ 1

0 G(t, s)[ün(s) + γu̇n(s)]ds, t ∈ [0, 1]
u̇n(t) = ėx (t) + ∫ 1

0
∂G
∂t (t, s)[ün(s) + γu̇n(s)]ds, t ∈ [0, 1]

where

⎧⎪⎪⎨
⎪⎪⎩

ex (t) = x + A(1 − ∑m−2
i=1 αi )(1 − exp(−γt))x

ėx (t) = γA
(
1 − ∑m−2

i=1 αi

)
exp (−γt)x

A =
(∑m−2

i=1 αi − 1 + exp(−γ) − ∑m−2
i=1 αi exp(−γ(ηi ))

)−1

where G is the Green function given by Lemma 2.1.
Step 1 (a) As supn

∫ 1
0 |∂ϕn(t, un(t))|dt < +∞, it follows that (ün + γu̇n) is bounded

in L1
Rd ([0, 1]), namely

sup
n

∫ 1

0
||(ün(t) + γu̇n(t)||dt < +∞,

so that, by the representation formulas given above, it is immediate that (un) and
(u̇n) are uniformly bounded. Hence (ün) is bounded in L1

Rd ([0, 1]) and (u̇n(.)) is

bounded in variation because supn
∫ 1
0 ||ün(t)|| dt < +∞. In view of the Helly–

Banach theorem, we may, by extracting a subsequence, assume that (u̇n(.)) con-
verges pointwisely to a BV function v∞(.). Let us set u∞(t) = ∫ t

0 v∞(s) ds for
all t ∈ [0, 1]. Then u∞ ∈ W 1,1

BV ([0, 1]). As (u̇n(.)) is uniformly bounded and point-
wise converges to v∞(.), by Lebesgue’s theorem, we conclude that (u̇n(.)) con-
verges in L1

Rd ([0, 1]) to u̇∞(.). Hence un(.) converges uniformly to u∞(.) with

u∞(0) = x, u∞(1) = ∑m−2
i=1 αi u∞(ηi ). So (a) is proved. From the general com-

pactness result for Young measures, [5, 10] one may assume that ün stably converge
to an Young measure ν∞. Further, by virtue of Proposition 3.1 we may assume that
(ün) biting converges to the integrable function bar(ν∞) : t �→ bar(ν∞

t ), that is, there
exists a decreasing sequence (Bp) of Lebesgue measurable sets with λ(∩Bp) = 0
such that the restriction of (ün) on each Bc

p converges σ(L1, L∞) to bar(ν). It follows
that

lim
n

∫
B
〈ün + γu̇n(t), w(t) − un(t)〉 dt =

∫
B
〈bar(νt ) + γu̇∞(t), w(t) − u∞(t)〉 dt

(3.5.1)
for every B ∈ Bc

p ∩ L([0, 1]), and for every w ∈ L∞
E ([0, 1]) because the sequence

(w − un) in L∞
Rd ([0, 1]) is bounded and pointwise converges to w − u∞, so it con-

verges uniformly on uniformly integrable subsets of L1
Rd ([0, 1]). Since (ϕn) lower

epiconverges to ϕ∞, by Corollary 4.7 in [11], we have
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lim inf
n

∫
A
ϕn(t, u

n(t)) dt ≥
∫
A
ϕ∞(t, u∞(t)) dt (3.5.2)

for every Lebesgue-measurable set A in [0, 1]. Combining (3.5.1), (3.5.2) and
Assumption (2), and integrating the subdifferential inequality

ϕn(t, w(t)) ≥ ϕn(t, u
n(t)) + 〈ün(t) + γu̇n(t), w(t) − un(t)〉 (3.5.3)

on each B ∈ Bc
p ∩ L([0, 1]) and for every w ∈ L∞

Rd ([0, 1]), we get
∫
B

ϕ∞(t, w(t)) dt ≥
∫
B

ϕ∞(t, u∞(t)) dt +
∫
B
〈bar(ν∞

t ) + γu̇∞(t), w(t) − u∞(t)〉 dt.

This shows that t �→ bar(ν∞
t ) + γu̇∞(t) is a subgradient at the pointu∞ of the convex

integral functional Iϕ∞ restricted to L∞
E (Bc

p), consequently,

bar(νt ) + γu̇∞(t) ∈ ∂ϕ∞(t, u∞(t)), a.e. on Bc
p.

As this inclusion is true on each Bc
p and Bc

p ↑ [0, 1], we conclude that

bar(ν∞
t ) + γu̇∞(t) ∈ ∂ϕ∞(t, u∞(t)), a.e. on [0, 1].

Finally, applying the above subdifferential inequality, and puttingw = u∞ in (3.5.3),
we deduce

∫
B

ϕ∞(t, u∞(t)dt

≥ lim sup
n

∫
B

ϕn(t, u
∞(t))dt

≥ lim sup
n

∫
B
[ϕn(t, u

n(t)) + 〈ün(t) + γu̇n(t), u∞(t) − un(t)〉]dt

= lim sup
n

∫
B

ϕn(t, u
n(t))dt ≥ lim inf

n

∫
B

ϕn(t, u
n(t))dt

≥
∫
B

ϕ∞(t, u∞(t))dt

because

lim
n

∫
B
〈ün(t) + γu̇n(t), u∞(t) − un(t)〉]dt = 0

recalling that 1B[ün + γu̇n] is uniformly integrable. Whence follows

lim
n

∫
B

ϕn(t, u
n(t))dt =

∫
B

ϕ∞(t, u∞(t))dt.
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As this inclusion is true on each B in Bc
p and Bc

p ↑ [0, 1], we conclude that

lim
n

∫ 1

0
ϕn(t, u

n(t))dt =
∫ 1

0
ϕ∞(t, u∞(t))dt.

Step 2 (b) Repeating the results in Step 1, up to extracted subsequences, (un)
converges uniformly to a W 1,1

BV ([0, 1]) function u∞ with u∞(0) = x, u∞(1) =∑m−2
i=1 αi u∞(ηi ) and (u̇n) pointwisely converges to the BV function u̇∞. As (ün)

is L1-bounded we may assume that (ün) weakly converges to a vector measure
m∞ ∈ Mb

Rd ([0, 1]) since the Banach space CRd ([0, 1]) is separable and its topo-
logical dual is Mb

Rd ([0, 1]). Let w ∈ CRd (([0, 1]). Integrating the subdifferential
inequality

ϕn(t, w(t)) ≥ ϕn(t, u
n(t)) + 〈ün(t) + γu̇n(.), w(t) − un(t)〉

and passing to the limit gives immediately

∫ 1

0
ϕ∞(t, w(t)) dt ≥

∫ 1

0
ϕ∞(t, u∞(t)) dt +

∫ 1

0
〈γu̇∞(t), w(t) − u∞(t)〉 dt

+ 〈m∞, w − u〉(Mb
Rd

([0,1]),CRd ([0,1])),

which shows that the vector measure m∞ + γu̇∞ dt belongs to the subdifferential
∂ Iϕ∞ of the convex functional integral Iϕ∞ defined on CRd ([0, 1]) by Iϕ∞(v) :=∫ 1
0 ϕ∞(t, v(t)) dt , ∀v ∈ CRd ([0, 1]). �

4 Further Applications: Second Order Evolution Problems
with Anti-periodic Boundary Condition

It is worth to focus on the main difference in discussing the various approximating
problems.

f n(t) = [ün(t) + Mu̇n(t)] + ∇ϕn(u
n(t)), t ∈ [0, T ] (4.1)

f n(t) ∈ [ün(t) + Mu̇n(t)] + ∂ϕn(u
n(t)), t ∈ [0, T ] (4.2)

f n(t) = −[ün(t) + Mu̇n(t)] + ∇ϕn(u
n(t)), t ∈ [0, T ] (4.3)

f n(t) ∈ −[ün(t) + Mu̇n(t)] + ∂ϕn(u
n(t)), t ∈ [0, T ]. (4.4)

Equations (4.1) and (4.2) are usual in second order dynamical systems. We refer to
Attouch et al. [4] and Schatzmann [24] for a deep study of such models. See also the
results developed in Propositions 3.2–3.5. Here, according to a traditional vein, we
prove the existence of generalized solution with the conservation of energy in (3.3)
and (3.4). Meanwhile (4.3) and (4.4) appear in the problem of anti-periodic solution
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developed in Aizicovici et al. [1–3]. Here in Proposition 4.3 we present a first result
of the existence of generalized solution for the problem

f (t) ∈ [ü(t) + Mu̇(t)] + ∂ϕ(u(t))

using the approximating problem (4.2) with application (Proposition 3.4) to problem

f (t, u(t), u̇(t)) ∈ ü(t) + Mu̇(t) + ∂ϕ(u(t)), t ∈ [0, T ]

with m-point boundary condition using the approximating problem

f (t, un(t), u̇n(t)) = ün(t) + Mu̇n(t)] + ∇ϕn(u(t)), t ∈ [0, T ]

with m-point boundary condition. Here one can see that the techniques employed
in (4.1) and (4.2) cannot be used to develop similar results to (4.3) and (4.4), in
particular, we cannot obtain the conservation of energy for the variational limits in
(4.3) and (4.4) by contrast with (4.1) and (4.2). So it is worth to mention that our tools
allow to study the approximating problem of anti-periodic solution in the framework
of Haraux–Okochi with anti-periodic solution

f n(t) = [ün(t)+ Mu̇n(t)] + ∇ϕn(u
n(t)), t ∈ [0, T ],

un(0) = −un(T ).

In our opinion, the general problem of the existence of energy conservation solution
to second order evolution inclusion of the form

f (t) ∈ [ü(t) + Mu̇(t)] + ∂ϕ(u(t)) (4.5)

where ϕ is a lower semicontinuous convex proper function is a difficult problem
when the perturbation f ∈ L1

H ([0, T ]) and H is a separable Hilbert space.
Now, to finish the paper, we show that our abstract result in Proposition 3.3 and the

tool developed therein can be applied to the first order of evolution equation and also
to the second order evolution equation with anti-periodic boundary conditions. H.
Okochi initiated the study for anti-periodic solutions to evolution equations inHilbert
spaces. Following Okochi’s work, A. Haraux proved some existence and uniqueness
theorems for anti-periodic solutions by using Brouwer’s or Schauder fixed point
theorems. Aftabizadeh, Aizicovici and Pavel have studied the anti-periodic solutions
to second order evolution equation in Hilbert spaces and Banach spaces by using
monotone and accretive operator theory for equations of type (4.3) and (4.4). Herewe
show the applicability of our abstract result to the study of evolution equations of type
(4.1) and (4.2) with anti-periodic boundary condition. For notational convenience let
us denote by H the set of of functions f ∈ L2

loc(R, H) such that f is anti-periodic,
that is, f (t + T ) = − f (t) for all t ∈ R and
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Hβ([0, T ]) := { f ∈ H : || f (t)|| ≤ β(t),β ∈ L2
R([0, T ]), t ∈ [0, T ]}.

We begin with some examples in the first order of evolution equation with anti-
periodic condition.

Proposition 4.1 Let H = Rd . Assume that ϕn : Rd → [0,+∞[ are even, convex,
Lipschitz and ϕ∞ : Rd → [0,+∞] is proper lower semicontinuous convex function
such that ϕn(x) ≤ ϕ∞(x) for all n ∈ N and for all x ∈ Rd . Let f n be sequence in
Hβ([0, T ]) and let un be a W 1,2

Rd ([0, T ])-solution to the problem
{
f n(t) ∈ u̇n(t) + ∂ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0)

Assume that the following conditions are satisfied:

(i) ϕn epiconverges to ϕ∞,
(ii) limn un(0) = u∞

0 ∈ dom ϕ∞ and limn ϕn(un(0)) = ϕ∞(u∞
0 ).

(iii) f n σ(L2
Rd ([0, T ]), L2

Rd ([0, T ]))-converges to f ∞ ∈ L2
Rd ([0, T ]).

Then the following hold

(a) Up to extracted subsequences, (un) converges pointwisely to an anti-periodic
absolutely continuous mapping u∞ with u∞(T ) = −u∞(0), (u̇n) σ(L2

Rd , L2
Rd )-

converges to ζ∞ ∈ L2
Rd ([0, T ])with ζ∞ = u̇∞, limn ϕn(un(t)) = ϕ∞(u∞(t)) <

+∞ a.e. and limn
∫ T
0 ϕn(un(t))dt = ∫ T

0 ϕ∞(u∞(t))dt < +∞.
(b) f ∞ − ζ∞ ∈ ∂ Iϕ∞(u∞) where ∂ Iϕ∞ denotes the subdifferential of the convex

lower semicontinuous integral functional Iϕ∞ defined on L∞
Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Proof Existence of W 1,2
Rd ([0, T ])-solution un to the problem

{
f n(t) ∈ u̇n(t) + ∂ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0)

is ensured. See Haraux [17], Okochi [22].
Step 1 Estimation of un , u̇n , and ϕn(un(.) Multiplying scalarly the inclusion

f n(t) − u̇n(t) ∈ ∂ϕn(u
n(t)

by u̇n(t) and applying the chain rule formula [21] for the Lipschitz functionϕn gives

〈u̇n(t), f n(t)〉 − ||u̇n(t)||2 = d

dt
[ϕn(u

n(t))]. (4.1.1)
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Hence by integration of (4.1.1) on [0, T ] and anti-periodicity condition we get the
estimate

||u̇n||L2
H ([0,T ]) ≤ || f n||L2

H ([0,T ]). (4.1.2)

From the Poincaré inequality

||un(t)|| ≤ √
T ||u̇n||L2

H ([0,T ]),∀t ∈ [0, T ]. (4.1.3)

Integrating (4.1.1) on [0, t] we get

0 ≤ ϕn(u
n(t)) = ϕn(u

n(0)) −
∫ t

0
||u̇n(s)||2ds +

∫ t

0
〈u̇n(s), f n(s)〉ds (4.1.4)

≤ ϕn(u
n(0)) +

∫ t

0
〈u̇n(s), f n(s)〉ds

so that by using the above estimates (4.1.2)–(4.1.3)–(4.1.4), the weak convergence
of f n in L2

H ([0, T ]) and (ii) we note that ϕn(un(t)) is uniformly bounded.
Step 2 Using the results in Step 1, up to extracted subsequences (un) converges
pointwisely to an anti-periodic absolutely continuous mapping u∞ with u∞(T ) =
−u∞(0), (u̇n) σ(L2

Rd , L2
Rd )-converges to ζ∞ ∈ L2

Rd ([0, T ])with ζ∞ = u̇∞. For sim-
plicity set zn(t) := f n(t) − u̇n(t). Since we have

〈u̇n(t), zn(t)〉 = d

dt
[ϕn(u

n(t))]

and 〈u̇n(.), zn(.)〉 is bounded in L1
R([0, T ]), ϕn(un(t)) is of bounded variation and

uniformly bounded.
Claim limn ϕn(un(t)) = ϕ∞(u∞(t)) < ∞ a.e and limn

∫ T
0 ϕn(un(t))dt = ∫ T

0
ϕ∞(u∞(t))dt < ∞.

From the above estimates and Helly theorem, we may assume that (ϕn(un(.))
pointwisely converges to a BV function θ so that (ϕn(un(.)) converges in L1

R([0, T ])
to θ. In particular, for every k ∈ L∞

R+([0, T ]), we have

lim
n→∞

∫ T

0
k(t)ϕn(un(t))dt =

∫ T

0
k(t)θ(t)dt.

Coming back to the inclusion zn(t) ∈ ∂ϕn(un(t)), and using the fact that ϕn(x) ≤
ϕ∞(x),∀n ∈ N,∀x ∈ Rd , we have

ϕ∞(x) ≥ ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ Rd . Let h ∈ L∞
Rd ([0, T ]). Substituting x by h(t) in this inequality and by

integrating on each measurable set B gives
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∫
B

ϕ∞(h(t)) dt ≥
∫
B

ϕn(h(t)) dt ≥
∫
B

ϕn(u
n(t)) dt +

∫
B
〈h(t) − un(t), zn(t)〉 dt

and passing to the limit in the preceding inequality when n goes to +∞, we get

∫
B

ϕ∞(h(t)) dt ≥
∫
B

θ(t) dt +
∫
B
〈h(t) − u∞(t), z∞(t)〉 dt (4.1.5)

with z∞ = f ∞ − u̇∞. In particular, by taking h = u∞ we get the estimate

∫
B

ϕ∞(u∞(t)) dt ≥
∫
B

θ(t) dt

for all B ∈ L([0, T ]). By the epi-lower convergence result [11, Corollary 4.7], we
have
∫
B

θ(t) dt = lim
n→∞

∫
B

ϕn(u
n(t)) dt ≥ lim inf

n→∞

∫
B

ϕ∞(un(t)) dt ≥
∫
B

ϕ∞(u∞(t)) dt

for all B ∈ L([0, T ]). It turns out that ϕ∞(u∞(t)) = θ(t) a.e. and

lim
n→∞

∫
B

ϕn(u
n(t)) dt =

∫
B

ϕ∞(u∞(t)) dt < ∞. (4.1.6)

From (4.1.5) and (4.1.6) it follows that f ∞ − ζ∞ ∈ ∂ Iϕ∞(u∞) where ∂ Iϕ∞ denotes
the subdifferential of the convex lower semicontinuous integral functional Iϕ∞
defined on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]). �

Here is a variant of Proposition 4.1.

Proposition 4.2 Let H = Rd . Assume that γ > 0,ϕn : Rd → [0,+∞] is even, con-
vex, Lipschitz,ϕ∞ : Rd → [0,+∞] is proper lower semicontinuous convex function
such that ϕn(x) ≤ ϕ∞(x) for all n ∈ N and for all x ∈ Rd . Let ( f n) be an anti-
periodic sequence inHβ([0, T ]). Let un be a W 1,2

Rd ([0, T ]) anti-periodic solution to
the problem {

f n(t) ∈ u̇n(t) + ∂ϕn(un(t)) − γun(t), t ∈ [0, T ]
un(T ) = −un(0).

Assume that the following conditions are satisfied:

(i) ϕn epiconverges to ϕ∞,
(ii) limn un(0) = u∞

0 ∈ dom ϕ∞ and limn ϕ(un(0)) = ϕ∞(u∞
0 ),

(iii) f n σ(L2
Rd ([0, T ]), L2

Rd ([0, T ]))-converges to f ∞ ∈ L2
Rd ([0, T ]).

Then the following hold
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(a) Up to extracted subsequences, (un) converges pointwisely to an anti-periodic
absolutely continuous mapping u∞ with u∞(T ) = −u∞(0), (u̇n) σ(L2

Rd , L2
Rd )-

converges to ζ∞ ∈ L2
Rd ([0, T ])with ζ∞ = u̇∞, limn ϕn(un(t)) = ϕ∞(u∞(t)) <

+∞ a.e. and limn
∫ T
0 ϕn(un(t))dt = ∫ T

0 ϕ∞(u∞(t))dt < +∞.
(b) f ∞ − ζ∞ ∈ ∂ Iϕ∞(u∞) where ∂ Iϕ∞ denotes the subdifferential of the convex

lower semicontinuous integral functional Iϕ∞ defined on L∞
Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Proof Existence of un for the problem

{
f n(t) − u̇n(t) + γun(t) ∈ ∂ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0),

is ensured. See Haraux [17], Okochi [22].
Step 1 Estimation of u̇n and un . Multiplying scalarly the inclusion

f n(t) − u̇n(t) + γun(t) ∈ ∂ϕn(u
n(t)) (4.2.1)

by u̇n(t) and applying the chain rule formula [21] for the Lipschitz function ϕn gives

〈u̇n(t), f n(t)〉 − ||u̇n(t)||2 + γ〈u̇n(t), un(t)〉 = d

dt
[ϕ(un(t))]. (4.2.2)

Hence by integration in (4.2.1) and anti-periodicity conditions we get the estimate

||u̇n||L2
H ([0,T ]) ≤ || f n||L2

H ([0,T ]). (4.2.3)

From the Poincaré inequality,

||un(t)|| ≤ √
T ||u̇n||L2

H ([0,T ]) ≤ √
T || f n||L2

H ([0,T ]). (4.2.4)

Integrating (4.2.2), we get

0 ≤ ϕn(u
n(t)) = ϕn(u

n(0)) −
∫ t

0
||u̇n(s)||2ds+

∫ t

0
〈u̇n(s), f n(s)〉ds

+ γ

∫ t

0
〈u̇n(s), un(s)〉ds

We note that
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∫ t

0
〈u̇n(s), f n(s)〉ds ≤ 1

2
|| f n||L2

H ([0,T ])(1 +
∫ t

0
||u̇n(s)||2ds) ≤ Const.

γ

∫ t

0
〈u̇n(s), un(s)〉ds ≤ Const.|| f n||2L2

H ([0,T ])

so that by using the above estimate, the σ(L2
Rd ([0, T ]), L2

Rd ([0, T ])) convergence of
f n and (i i), we conclude that ϕn(un(t)) is uniformly bounded. Now the remainder
of the proof is similar to that of Proposition 4.1. �

We finish the paper with the approximating problem in second order evolution
equation with anti-periodic condition

{
f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)),
un(T ) = −un(0).

where M is a positive constant,ϕn are convex Lipschitz,C1, even, functions that epi-
converges to a lower semicontinuous convex proper function ϕ∞, ( fn) is a sequence
in L2

H ([0, T ]) which weakly converges to a function f∞ ∈ L2
H ([0, T ]). Existence of

a W 2,2
Rd ([0, T ]) anti-periodic -solution to this approximating problem is well known.

See Haraux [17], Okochi [22].

Proposition 4.3 Let H = Rd , M ∈ R+. Assume that ϕn : Rd → [0,+∞[ is C1,
even, convex, Lipschitz and,ϕ∞ : Rd → [0,+∞] is proper convex lower semicontin-
uous with ϕn(x) ≤ ϕ∞(x), ∀x ∈ Rd . Let f n ∈ Hβ([0, T ]) Let un be a W 2,2

Rd ([0, T ])
anti-periodic solution to the approximated problem

{
f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)), t ∈ [0, T ],
un(T ) = −un(0).

Assume that

(i) f nσ(L2
H , L2

H ) converges to f ∞ ∈ L2
H ([0, T ]).

(ii) limn un(0) = u∞
0 ∈ dom ϕ∞, limn ϕn(un(0)) = ϕ∞(u∞

0 ), and limn u̇n(0) =
u̇∞
0 ,

(iii) ϕn epi-converges to ϕ∞,
(iv) There exist r0 > 0 and x0 ∈ Rd such that

sup
v∈BL∞

Rd
([0,T ])

∫ T

0
ϕ∞(x0 + r0v(t))) < +∞

where BL∞
Rd

([0,1]) is the closed unit ball in L∞
Rd ([0, T ]).

Then the following hold

(a) Up to extracted subsequences, (un) converges uniformly to a W 1,1
BV ([0, T ]) anti-

periodic function u∞ with u∞(T ) = −u∞(0), and (u̇n) pointwisely converges to
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the BV function u̇∞, and (ün) biting converges to a function ζ∞ ∈ L1
Rd ([0, T ])

which satisfy the variational inclusion

f ∞ − ζ∞ − Mu̇∞ ∈ ∂ Iϕ∞(u∞)

where ∂ Iϕ∞ denotes the subdifferential of the convex lower semicontinuous inte-
gral functional Iϕ∞ defined on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

Furthermore

lim
n

ϕn(u
n(t)) = ϕ∞(u∞(t)) < ∞ a.e.

lim
n

∫ T

0
ϕn(u

n(t))dt =
∫ T

0
ϕ∞(u∞(t))dt < ∞.

Subsequently, the estimated energy holds almost everywhere

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞(0)) + 1

2
||u̇∞(0)||2

− M
∫ t

0
||u̇∞(s)||2 ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds.

Further (ün) weakly converges to the vector measure m ∈ Mb
H ([0, T ]) so that

the limit functions u∞(.) and the limitmeasurem satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt +

∫ T

0
〈−Mu̇∞(t) + f ∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(Mb
E ([0,T ]),CE ([0,T ])).

In other words, the vector measure−m + [−Mu̇∞ + f ∞] dt belongs to the sub-
differential ∂ I f∞(u) of the convex functional integral I f∞ defined on CH ([0, T ])
by Iϕ∞(v) = ∫ T

0 ϕ∞(t, v(t)) dt, ∀v ∈ CH ([0, T ]).
Proof Existence of W 2,2

Rd ([0, T ])-solution un for the approximated problem

{
f n(t) = ün(t) + Mu̇n(t) + ∇ϕn(un(t)) t ∈ [0, T ],
un(T ) = −un(0)

follows fromHaraux [17]. Nowwe can finish the proof by repeatingmutatismutandis
themachinery developed in Proposition 3.3. Therefore ourW 1,1

BV ([0, T ]) anti-periodic
limit u∞ of (un) and biting limit ζ∞ of (ün) satisfies the inclusion
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f ∞(t) − ζ∞(t) − Mu̇∞(t) ∈ ∂ϕ∞(u∞(t))

and the energy estimate holds

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 ) + 1

2
||u̇∞

0 ||2

− M
∫ t

0
||u̇∞(s)||2 ds +

∫ t

0
〈u̇∞(s), f ∞(s)〉ds

almost everywhere. �
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