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1 Introduction

In the present paper, we prove, under appropriate assumptions, the existence of
solutions for a second order evolution inclusion with boundary conditions governed
by subdifferential operators of the form

f@) €ii(t) + Mu(t) + 0p(u(t)),t € [0, T]. @

Here, M is positive, ¢ is a lower semicontinuous convex proper function defined
on R? and d¢(u(t)) is the subdifferential of the function ¢ at the point u(z) and
the perturbation f belongs to L%{d([O, T]). It is well known that this problem is
difficult and needs a specific treatment via the Moreau-Yosida approximation or
epiconvergence approach. See Attouch—Cabot—Redon [4] and Schatzmann [24] for a
deep study of these problems, Castaing—Raynaud de Fitte—Salvadori [11], Castaing—
Le Xuan Truong [8] dealing with second order evolution with m-point boundary
conditions via the epiconvergence approach. These considerations lead us to consider
the variational limits of a fairly general approximating problem

@) il (t) + Mi"(t) + Op,(u" (1)), 1 € [0, T] (ID)

where u" is a Wé’dl ([0, T])-solution, f" weakly converging in Lf{d ([0, TD to f, vn
is a convex Lipschitz function which epiconverges to a lower semicontinuous convex
proper function .. This approximating problem covers various type of problems of
practical interest in several dynamic systems, evolution inclusion, control theory etc.
Here we focus on several variational limits of solutions via the Biting Lemma and
Young measures and other tools occurring in this approach by showing under suit-
able limit assumption on the boundary conditions that (") is L};d ([0, T])-bounded.
This main fact allows to study the variational limit of solutions in this problem, in
particular, the traditional estimated energy for the variational limit solutions is con-
served almost everywhere. The applicability of our abstract framework given therein
(Proposition 3.3) will be exemplified in considering the existence of solution for
second order differential inclusions

f@) eii(t) + Mu(t) + Op(u(t)), t €[0,T]

under m-point boundary condition or anti-periodic conditions and further related
second order evolution inclusions in the literature. This will be done by applying our
abstract result to the single valued approximating problem

J1 @) =" () + M (1) + Ve, (u" (1)), 1 € [0, T] (III)

where V¢, is the gradient of the C!, Lipschitz, convex function ¢, that epi-converges
to a proper convex lower semicontinuous function ¢, and f” weakly converges in
Lfy ([0, T]) to f* so that the variational limit solutions u#*° to (III) are generalized
solutions to the inclusion
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@) € ™) + Mu™ (1) + 0poc ™ (1)), t € [0, T]
with appropriate properties, namely, the solution limit #*° is W};J([O, T1), that is,

u® is continuous and its derivative #2°° is bounded variation (BV for short) and the
estimated energy holds almost everywhere

e+ O = o) + 31l
—t [ aeRds + [ . o
with further related variational inclusion, in particular,
) € ¢ + Mu™ (1) + 0pos (u™ (1)), 1 € [0, T]

almost everywhere, (*° being the biting limit of the L{{d ([0, T])-bounded sequence
(@"). Section 3 is devoted to second order evolution inclusion with boundary con-
ditions. We present the variational limits of the general approximating problem (II)
and the applications of variational limits of the approximating problem (III) to the
existence problem of second order evolution inclusion (I) involving variational tech-
niques, the Biting Lemma, the characterization of the second dual of L ;{d and Young
measures. It is worth to mention that the approximation (III) occurs in practical
cases of second order evolution inclusion governed by subdifferential operators. For
instance, Attouch—Cabot—Redon [4] considered the approximating problem

0=u"(t)+~yu"(t) + Ve, " @)),t €[0,T]
u"(0) = ug, " (0) = uf

where  is positive, Vi, is the gradient of a C', smooth function. Schatzmann [24]
considered the approximating problem

f@) =iin(®) + 0pr(ur(t)),t € [0, T]
ux(0) = uo, 14)(0) = u,

where [ € L%d([O, T1) and Oy, is the Moreau-Yosida approximation to the lower
semicontinuous convex proper function . M. Mabrouk [19] continued the work of
M. Schatzmann [24] by considering the approximating problem

H@) =iix(t) + Vor(ur(®),t €[0,T]
u)(0) = uo, 11(0) = uy,



4 C. Castaing et al.

with f) € Li{” ([0, T]). In Sect.4, we apply our techniques to the study of both first
order and second order evolution equations with anti-periodic boundary condition
using the approximating problem

[0 =" () + M (1) + Ve, " (1), t € [0, T]
u"(0) = —u"(T),

where u” € W ([0, T1)and f" € L%,([0, T1), see H. Okochi [22], A. Haraux [17],
Aftabizadeh, Aizicovici and Pavel [1, 2], Aizicovici and Pavel [3] and the references
therein.

A general analysis of some related problems in Hilbert space is available, c.f K.
Maruo [19] and M. Schatzmann [24].

2 Some Existence Theorems in Second Order Evolution
Inclusions with m-Point Boundary Condition

We will use the following definitions and notations and summarize some basic results.

e Let E be a separable Banach space, Bg(0, 1) is the closed unit ball of E.

e c(E) (resp. cc(E)) (resp. ck(E))(resp. cwk(E)) is the collection of nonempty

closed (resp. closed convex) (resp. compact convex) (resp. weakly compact con-

vex) subsets of E.

If A is a subset of E, §*(., A) is the support function of A.

L([0, T]) is the o-algebra of Lebesgue measurable subsets of [0, T'].

If X is a topological space, B(X) is the Borel tribe of X.

LIE([O, T], dt) (shortly LlE([O, T1)) is the Banach space of Lebesgue—Bochner

integrable functions f : [0, T] — E.

e A mapping u : [0, T] — E is absolutely continuous if there is a function & €
L% ([0, T1) such that u(t) = u(0) + [y ii(s)ds, ¥t € [0, T].

e If X isatopological space, C¢ (X) is the space of continuous mappingsu : X — E
equipped with the norm of uniform convergence.

e A set-valued mapping F : [0, 7] = E is measurable if its graph belongs to
L([0,T]) ® B(E).

e A convex weakly compact valued mapping F : X — ck(E) defined on a topo-
logical space X is scalarly upper semicontinuous if for every x* € E*, the scalar
function 6*(x*, F(.)) is upper semicontinuous on X.

We refer to [13] for measurable multifunctions and Convex Analysis.

For the sake of completeness, we recall and summarize some results developed
in [9]. By Wé’l([O, T1) we denote the set of all continuous functions in Cg ([0, T'])
such that their first derivatives are continuous and their second derivatives belong to
Ly ([0, T)).
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Lemma 2.1 Assume that E is a separable Banach space. Let0 <y <mp < --- <
Nm—2 < 1, v >0, m > 3 be an integer number, and o; e R (i =1, ..., m — 2) sat-
isfying the condition

m—2

Za,—l—i—eXp( 7= Za,eXp( ¥m)) # 0.

Let G : [0, 1] x [0, 1] — R be the function defined by

1
(@ —exp(—(—5)),0=<s=<r=<1 é B B
G(t,s) = [6 f<s <1 5 (1 —exp(—=1)) ¢(s),
2.1)
where
1 —exp(—y(1 — ) — XM 2 a; (1 — exp(—y(m; — ), 0 <s <171,
I —exp(—y(1 — ) — X2 a; (1 — exp(—y(m; — ), 1 <5 <12,
P(s) =
I —exp(—y(1 —)), Mm—2 <5 <1,
(2.2)
and

m—2 m—2 -1
A= (Z a; — L+ exp(=y) — Z Q; eXp(—’mi)) . (2.3)

i=l i=1
Then the following assertions hold

(i) For every fixed s € [0, 1], the function G(., s) is right derivable on [0, 1] and
left derivable on 10, 1]. Its derivative is given by

(8G) (t.5) = [exp( WmMD=S =T S exp(—10)60s),

ot ) O0<t<s<l1
2.4)
G, _ 0 |
(2) o= [P =02 2 2 i)
2.5)

(ii) G(-,-) and 9C.(-, ) satisfies

|G(t,5)| = Mg and ‘%—?(LS)

< Mg V(t,s)€][0,1] x [0, 1],

m—2
Mg = max{y~!, 1} |:1 + |A] (1 + z |Oéi|)i| .

i=1

where
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(iii) Ifu € W' ([0, 1]) with u(0) = x and u(1) = 37" cuu (), then

1
u(t) = ex(t) +/ G(t, s)(i(s) + yu(s))ds, Vtel0,1],
0

where
m—2

e(t)=x—+ A (1 - Z ai) (1 — exp(—71))x.

i=1

(iv) Let f € L}E([O, 1) and letuy : [0, 1] — E be the function defined by

1
up(t) =ex(t) +/0 G(t,s)f(s)ds Vtel0,1].

Then we have
m—2

ur(0)=x us(l) = Zaiuf(nil

i=1

Further the function uy is weakly derivable on [0, 1] and its weak derivative
iy is defined by

_ 1
g (1) = lim ”f“h; O o+ / %—f(t,s)f(s)ds,

with

m—2
ex(t) =~A (1 — z a;)exp(—’yt)x.

i=1

(v) If f e L}E([O, 11), the function 1 ; is weakly derivable, and its weak derivative
ii p satisfies
ip(t) +yup) = f(t) ae.t€l0,1].

The following is a direct consequence of Lemma 2.1.

Proposition 2.1 Let f € LL.([0, 1]). The m-point boundary problem

[ii(t) +u(t) = f(t), t € [0,1]
w(0) = x, u(l) = 377 au(n)

has a unique Wé'] ([0, 11)-solution u y, with integral representation formulas

up(t) = e(t) + [ G(t,8) f(s)ds, 1 € [0, 1]
(1) = éx(0) + [} 251, 5) f(s)ds, t € [0, 1].
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where
ex(t) = x + A(l = 3157 ) (1 — exp(—71)x
ey =74 (1= Z157 i) exp (—yn)x
A= (S0 o= 1 exp(—) — S0 avexp(—r ()
The following result and its notation will be used in the next section.

Proposition 2.2 With the hypotheses and notations of Proposition 2.1, let E be a
separable Banach space andlet X : [0, 1] = E be a measurable convex weakly com-
pact valued and integrably bounded mapping. Then the solution set of Wé’l ([0, 1)-

solutions to
Iﬁf(n +ig (1) = f(1), f €Sk
up0) =x, up(l)y=3""72cus(m)

is bounded, convex, equicontinuous and sequentially weakly compact in Cg([0, 1]).

Proof Let us set

1
X = [uf €Ce([0, 1] 1 uys(t) = ex(t) +/ G(t,s)f(s)ds, t €[0,1], f € S)'(]
0

with

ex(t) = x + Al = 372 ap)(1 — exp(—y0)x, £ € [0, 1]
eu(t) = vA (1 s ai) exp (—y0)x, t € [0,1]

~1
A = (X0 e — 1+ exp(—y) — T asexp(—y ()

Taking account of the properties of G in Lemma 2.1, it is not difficult to show that
X is bounded, convex, equicontinuous and relatively weakly compact in Cg ([0, 1])
because for each r € [0, T'], fol G(t,s)X (s)ds is convex and weakly compact, see
e.g. [11]. We only need to check the compactness property since other properties
are obvious. Indeed, let u;, € X'. As S)l( is o(L! ,L%O;) sequentially compact, we
may assume that (f,) o(L}, L%"?) converges to f € S,l(. Then we have for each
t €[0,1],

1
w—limug (1) =e (t) +w— lim/ G(t,s) fu(s)ds
n n O

1
=e,(1) +/ G(t,5) foo($)ds :=up (2).
0
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This means that u () converges to uy_(t) in E, for every ¢ € [0, 1]. Hence u,
converges weakly in Cg ([0, 1]) to u s € X. Similarly using the properties of %—? in
Lemma 2.1,

1
Y= {L'tf €Ce([0, 1]t p (1) = ex(®) +/ %—?(r,s)f(s)ds, tel0,1], fe S)l(}
0

is bounded, convex, equicontinuous and sequentially weakly compact in Cg ([0, 1])
with
e =7A (1= 57 ap) exp (=0, 1 € [0,1]

~1
A= (Z?’L}z a; — 1+ exp(—y) — X2 a eXp(—v(m))) :

and we have
. . . [toG
w—limiy (1) = é.(t) +w — hm/ E(l, s) fu(s)ds
n n 0
gle;
=¢,(1) —l—/ ——(t, ) foo(s)ds :=uy ().
o Ot

This means that i z, () converges to it s,_(¢) in E, for every t € [0, 1]. |

Remark In the context of Control Theory, we have stated in the proof of Proposition
2.2, the dependence of the solution with respect to the control f € Sk. Namely, if
uy, is the Wé’l([O, 1])-solution to

{ﬁfn(f) + iy, (1) = fu(t), tel0,1]
w0 = 2. () = XI5 g, )

and if (f,;) converges o(LL, L%?) to fxo € S)l(, then (u g, (¢)) converges to u _(¢) and

(it s, (¢)) convergestoii s (t),in E, forevery ¢t € [0, 1] where u r_ is the Wé’l ([0, 1D)-
solution to . )
[”f;o(t) +yig, (1) = foolt), tze [0, 1]
up, 0y =x, wup (1) =27 auy, ().

The above remark is of importance since it allows to prove further results. Here is
an application to the existence of Wé’l ([0, 17)-solution to a second order differential
inclusion with m-point boundary condition.

Proposition 2.3 Let X : [0, 1] = E be a convex weakly compact valued measur-
able and integrably bounded mapping, F : [0, 1] x E x E = E be a convex weakly
compact valued mapping satisfying
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(1) Foreachx* € E*, the scalar function §*(x*, F(., .,.)) is £,([0, 1]) ® B(E,) ®
B(E,)-measurable,’

(2) For each x* € E* and for each t € [0, 1], the scalar function §*(x*, F(t, ., .))
is sequentially weakly upper semicontinuous, i.e., for any sequence (x,) in E
weakly converging to x € E, for any sequence (y,) in E weakly converging to
y € E, limsup, 6" (x*, F(t, Xy, y,)) < 6" (x*, F(¢, x,)),

(3) F(t,x,y)e X(t)forall (t,x,y) €[0,1] x E x E.

Then the Wé’l ([0, 1])-solutions set to

[ii(t) +~u(t) € F(t,u(t),ut))), t € [0, 1]
w0 =x, u(l)=3""7aumn)

is non empty and weakly compact in the space Cg ([0, 1]).

Proof The sets

1
X = [uf €Ce([0,1] 1 uys(t) = ec(t) +/ G, s)f(s)ds, [ e S,l(, t €0, 1]]
0

(2.3.1)
and
Y= {b'tf €Cp(0, 1] : iy () = ex () +/01 %(t,S)f(S)ds, tef0.1], feSy
(2.3.2)

are bounded, convex, equicontinuous and weakly compact in Cg ([0, 1]). By condi-
tion (3), it is clear that
F(t,up(t),us(t)) C X(t) (2.3.4)

for all r € [0, 1] and for all f € S)'(. Further, recall that S)'( is o(L1., L%.)-compact
(seee.g.[10]). Using (1)—(3), foreach f € S}(,letus consider the convex o (L1, L%)-
compact valued mapping W : S} = Sy, defined by

W(f):={geSk:gt)e F(t,us(t), i), ae.t €0, 1]}

Now we are going to show that W is upper semi continuous on the convex o (L L, L%)-
compact set k. We need to check that the graph of W is o(L},, L% )-closed in
Sk x Sk. Let g, € W(f,) such that f,, o(LL, L%)-converges to f € S} and g,
o(LL, L%.)-converges to g € S)l(. By compactness of X and ), it follows that
up(t) = usp(t)in E;andiiys, (t) — uy(t) in E, forevery t € [0, 1]. From the inclu-
sion g, € W(f,), we have, for each x* € E* and for each A € L, ([0, 1])

1Actually B(E,) = B(E) since E is separable.
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(La(Ox™, gn (1)) < 1a()0"(x™, F(t,uy, (1), 15, (1)),

so that, by integration,

/(x*,gn(t»dt §/<x*,F(t,ufn(t),ufn(t))>dt.
A A
We thus have
[ e gonde =tim [ gy @nar
A nJA
< limsup/ O (x*, F(t,uy (1), 1y, (1))dt
n A
5/5*(x*,F(t,uf(t),uf(t))>dt.
A

Whence we get

/(x*,g(t))dt 5/5*(x*,F(t,uf(t),uf(t))dt
A A

for every A € £,([0, 1]). Consequently
(%, 9(0) < 6" (", F(t,uyp (1), iy (1)) ae.

Taking a dense sequence (ef) in E* with respect to the Mackey topology 7(E*, E),
we get
(e, g()) < 6 (ep, F(t,usp(t),up(1)) a.e.

for all k € N. By [13, Proposition II1.35], we get finally

gt) € F(t,us(t),urp(t))) a.e.

which proves that g inW(f). Whence by Kakutani-Ky Fan fixed point theorem
W admits a fixed point f € S )1( This is a solution to the second order differential
inclusion under consideration. Using Lemma 2.1, such a fixed point f verifies

ip(t)+yup(t) e F(t,up(t),us(t)), ae. t €[0,1]
w0y =x, wup(l)=""72au(m).

The compactness of the solution set follows from the compactness of X. |

Second Order Evolution Inclusions Governed by Subdifferential Operators

We need to recall and summarize some notions on the subdifferential mapping of
local Lipchitz functions developed by L. Thibault [25]. Let E be a separable Banach
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space. Let f : E — R be alocally Lipschitz function. By Christensen [14, Theorem
7.5], there is a set D such that its complementary is Haar-nul (hence D is dense
in E) such that for all x € Dy and forallv € E

Jfx +0v) — f(x)
)

re(x,v) = %i_l)l’(l)

exists and v > ry(x, v) is linear and continuous. Letus set V f (x) = ry(x,.) € E*.
Thenry(x,v) = (V f(x),v), Vf(x) is the gradient of f at the point x. Let us set
Le(x)={lim Vf(x;)|lx; € Df, x; = x}.
j—o00

By definition, the subdifferential O f (x) in the sense of Clarke [15] at the pointx € E
is defined by
0f(x) =coLy(x).

The generalized directional derivative of f at a point x € E in the direction v € E
is denoted by

F(r.v) = limsup LEFAT = fGE+h)
h—0,0—0 5

Proposition 2.4 Let f : E — R be a locally Lipchitz function. Then the subdiffer-
ential O f (x) at the point x € E is convex weak star compact and

J(x,v) = sup{(C7, v)IC" € 0f (x)} Vv eE
that is, f-(x,.) is the support function of 0 f (x).
Proof See Thibault [25, Proposition 1.12]. |
Here are some useful properties of the subdifferential mapping.

Proposition 2.5 Let f : E — R be a locally Lipchitz function. Then the convex
weak star compact valued subdifferential mapping O f is upper semicontinuous with
respect to the weak star topology.

Proof See [25, Proposition 1.17]. Indeed we have

50, 0F (X)) = f(ri v) = limsup LI 5? —fa ]
h—0,0—0

As f'(.;v) is upper semicontinuous and 0 f is convex compact valued in E}, by
[13], O f is upper semicontinuous in E7. |

Proposition 2.6 Let (T, 7) a measurable space, and let f : T x E — R such that
f (., ¢) is T-measurable, for every C € E.
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f(t,.) is locally Lipschitz for every t € T.

Let f, (x; v) be the directional derivative of f(t,.) := f; in the direction v for every
fixed t € T. Let x and v be two T -measurable mappings from T to E. Then the
following hold:

(a) the mapping t — f,;(x(t); v(t)) is T-measurable.
(b) the mapping t — O f;(x(t)) is graph measurable, that is, its graph belongs to
T ® B(EY).

Proof See Thibault [25, Proposition 1.20 and Corollary 1.21]. Note that the con-
vex weak star compact valued mapping ¢ — Of;(x(t)) is scalarly 7 -measurable,
and so enjoys good measurability properties because E} is a locally convex Lusin
space. |

We begin with a second order differential inclusion involving the subdifferential
operator.

Proposition 2.7 Assume that E = RY and h:[0,1]xRYxR? > R? be a
bounded Carathéodory mapping, that is, h is separately Lebesque-measurable
on [0, 11, separately continuous on R? x RY, ||h(t, x, V)|| < a(t), Y(t,x,y) €
[0, T] x R? x R where « is positive Lebesque-integrable. Let f : [0, 1] x E — R
be a mapping such that

(1) Vx € E, f(.,x) is Lebesgue-measurable,

(2) There exists 3 € L}H([O, 1]) such that, for all t € [0, 1], forall x,y € E,

I1Lf @ x) = f@ nIl < BOIx = yll.

Then the following hold
(a) Of,(x) C B(t)Bg, forall (t,x) € [0,1] x E,
(b) The W5 ([0, 1])-solution set to

[ i(t) +~vyu(t) € 0f;(u(t)) + h(t,u®),u()), ae.t €0, 1]
w(©0) =x, u(l)=>"720um)
is compact in the space Cg ([0, T]).

Proof The proof is immediate by applying Proposition 2.3 to the convex compact
valued mapping (¢, x, y) — 0f:(x) + h(t, x, y), taking account of the properties of
the subdifferential mapping and its measurable properties given in Proposition 2.6.

|

We finish this section with a variant which has some importance in the study of
epiconvergence problem for the approximating system

U(t) 4 yu(r) = h(t, u@), u(t)) — Vou(r))

where ¢ is C! and Lipschitz.
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Proposition 2.8 Assume that E =R?, ¢ : E — R is C', Lipschitz, and that h :
[0, 1] x R? x R? — R? is a bounded Carathéodory mapping, that is, h is separately
Lebesque-measurable on [0, 1], separately continuous on R? x RY, ||h(t, x, y)|| <
a(t), V(t,x,y) € [0, T] x R? x R? where v is positive Lebesque-integrable. Then
the Wé’l ([0, 1])-solution set to

[ii(t) 4+ yu(t) = h(t,u(t), u(t)) — Vo(u(r)) ae. t €0, 1]
w(0) = x, u(l) =" uln)

is compact in the space Cg([0, T]).

Proof The proof is immediate by applying Proposition 2.3 with F(¢,x,y) =
h(t,x,y) — Vpx),Y(t, x,y) € [0,1] x E x E and by observing that the subdif-
ferential x — Jp(x) = Vp(x) is bounded and continuous. |

3 Applications. Towards the Variational Convergence in
Second Order Evolution Inclusions

Let us recall a useful Gronwall type lemma [12].

Lemma 3.1 (A Gronwall-like inequality) Let p,q,r : [0, T] — [0, oo[ be three
nonnegative Lebesgue integrable functions such that for almost all t € [0, T]

r(t) < p(t) +q(t)/ r(s)ds.
0

Then . .
r() < p() +q(0) / [p(s) exp( / ¢(r) dm)]ds
0 K

forallt € [0, T].

‘We recall below some notations and summarize some results which describe the
limiting behavior of a bounded sequence in LIH ([0, TT). See [10, Proposition 6.5.17].

Proposition 3.1 Let H be a separable Hilbert space. Let ((,,) be a bounded sequence
in L}{([O, T1). Then the following hold:

(1) () (up to an extracted subsequence) stably converges to a Young measure v
that is, there exist a subsequence () of (C,) and a Young measure v belonging
to the space of Young measure Y ([0, T]; H,) with t — bar(v,) € L}LI([O, T
(here bar(v,) denotes the barycenter of v;) such that

T T
lim / h(t, €, (1)) dt) =/ [/ h(t, x) Vt(dx):| dt
n—oo 0 0 H
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for all bounded Carathéodory integrands h : [0, T] x H, — R,

(2) (¢y) (up to an extracted subsequence) weakly biting converges to an inte-
grable function f € L}i([O, T]), which means that there is a subsequence (C),)
of (¢u) and an increasing sequence of Lebesgue-measurable sets (A,) with
lim, A(A,) =1and f € L},([O, T1) such that, for each p,

Tim_ /A (h(1). G, (1) di = /A (h(D), £(1)) di

forallh € L5 ([0, TY),

(3) () (up to an extracted subsequence) Komlos converges to an integrable func-
tion g € L},([O, T1), which means that there is a subsequence () and an
integrable function g € L}LI([O, T1), such that

1,
lim — "G, )() = g(1), ae. €[0, T,

n—o0o 1

for every subsequence ( f-n)) of (faw))-

(4) There is a filter U finer than the Fréchet filter such that U —lim, (, =1 €
(L), our Where (LSS, .1 is the second dual of L}, ([0, T1).
Let w;, € L}L,([O, T]) be the density of the absolutely continuous part l, of | in
the decomposition | = 1, + [; in absolutely continuous part l, and singular part
L.
If we have considered the same extracted subsequence in (1)—(4), then one has

f@) =g@) =bar(v,) = w,(t) ae.t €[0,T].

By Wli;,1 ([0, T]) (resp. Wé’f([o, T]) we denote the set of all continuous functions
in Cra ([0, T']) such that their first derivatives are continuous and their second deriv-
atives belong to Ll'y([O, T1) (resp. sz[,([O, T1)) and by W;’&([O, T]) we denote the
set of all continuous functions in Cra ([0, T]) such that their first derivatives are of
bounded variation (BV for short).

We begin with a preliminary result which shows the limiting properties of
Wé’dl ([0, 1])-solutions for a second order ordinary differential equation with m-point
boundary conditions.

Proposition 3.2 Let E = R?. Let () nen be a bounded sequence in LIE ([0, 1)). For
eachn € N, let us consider the WZJl([O, 1])-solution u,, : [0, 1] — E of the equation

m—2

i (1) + it (1) = (1), 1 €10, 11 u,(0) =x, up(1) = D i, ().

i=1

Then there exist a subsequence of (u,) still denoted by (u,), a Wé’é([O, 1])-function
u : [0, 1] — E anda Young measurev € Y ([0, 1]; E) suchthatt +— bar(v;) belongs
to LIE([O, 1]) which satisfy the following conditions:
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(a) (u,(.)) converges in Cg ([0, 1]) to u(.) withu(0) = x, u(1) = 27:12 a;u(n;).
(b) (u1,(.)) converges in L}E([O, 1]) to u(.).
(c) (03,) stably converges in Y (|0, 1], E) to v.
(d) Assume further that the negative parts (u,, ii,)~ of the functions (u,, ii,) are
uniformly integrable in Lllz([O, 1]).
Then

1 1 o1
lim inf/ (up (1), iy (1)) dt 2/ (u(t), bar(vy)) dt :/ [/ (u(t), x) V[(dx)] dt.
n—00 Jo 0 JO E

Proof Existence and uniqueness of a Wﬁ’l ([0, 1])-solution for the equation

m—2

iin (1) + ity () = fu(0), 1 € 10,11 u (@) =x, u(l) = D" aiulm).

i=1

are ensured by Proposition 2.1 with integral representation formulas

Un(1) = ex(t) + [} G(t,5) fu(s)ds, t € [0, 1]
(1) = éx(0) + [ 21, ) f(s)ds, t € [0, 1]

where

ex(t) =x + A(l — X7 o) (1 — exp(—y1))x
éx(t) =~A (1 — Z;"z_lz ai) exp (—v1)x

-1
A = (X0 e — L+ ep(—y) = X5 aexp(—y(m))

Since (£, (.)) is bounded in L'E([O, 1]) by assumption, (i, (.)) is uniformly bounded
by using the integral formula for u, and the boundedness of the Green function
G given in Lemma 3.1. So (i,(.)) is uniformly bounded and bounded in vari-
ation. In view of the Helly-Banach theorem (see e.g. [20, p. 11]), we may, by
extracting a subsequence, assume that (i, (.)) pointwise converges to a BV func-
tion v(.). Let us set u(t) = [y v(s)ds for all £ € [0, 1]. Then u € Wy ([0, 11)
with u(z) = v(r) for almost every ¢ € [0, 1]. Then (1,(.)) is uniformly bounded
and pointwise converges to v(.). By Lebesgue’s theorem, we conclude that (i,,(.))
converges in LIE([O, 1]) to u(.). Hence (u,(.)) converges uniformly to u(.) with
u)=x,u(l) = Zf”z_lz a;u(n;). It remains to check (c) and (d). Since (ii,(.)) is
bounded, in view of Proposition 3.1, we may assume that the sequence (d;,) of asso-
ciated Young measures stably converges in ) ([0, 1], E) to a Young measure v such
that # +— bar(v;,) belongs to LL ([0, 1]). Let us prove the last Fatou property (d). We

may suppose that
1

a = lim (un(t),iin(2)) dt € R.

n—oo
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Furthermore, since (i, (.)) is bounded in L}E([O, 1]), in view of Proposition 3.1 we
may suppose that (ii, (.)) weakly biting converges to a function f € LlE([O, 1]), that
is, there exist a subsequence (still denoted by (ii,(.))) of (ii,(.)) and an increasing
sequence of measurable sets (A,) in [0, 1] such that lim,_, o, A(A,) = 1, and such
that, for each p andforeachg € LY (A,, A, N L([0, 1]), )\IA,,), the following holds:

lim (iin(t),g(t))dIZ/ (f(0), g(0))dt.

n—00
Ap Ap

Let ¢ > 0 be given. Pick N € N such that

/A(u(t),f(t))dtZ/ (u(), f()dr —e,

[0.1]

and that
lim sup/ (u, (1), i, (1)) dt <e
[0,1\Ay

n—oo

(this is possible because ({u,,ii,)”), is uniformly integrable by hypothesis). As
[lu, (.) — u(.)|| = O uniformly, it is easy to see that

lim lun (1) — u @I [iin ()| dt = 0.
n—o0 AN

See [6, 16] for a more general case. Whence
lim [ / G (1), i (1)) dt — / (u(t), iin (1)) dt] = 0.
n—oo Ay Ay
An easy computation gives
a > lim (uy (1), i, (t)) — lim sup/ (u, (1), U, (1))~ dt
=00 J Ay n—00 [0,1\AN

> lim (u, (1), it, () dt — .
n—0oQ AN

Finally we get

a > lim (uy (1), i, (t))dt — e

n—0o0

= lim / (u(t), ii,(t))dt — e
n—00 AN

/A (), f@)dr —e
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z/ W (o), £(0) di — 2e.
[0,1]

By virtue of Proposition 3.1 f(#) = bar(v;) a.e. The proof is therefore complete

because . .
/ (u(t), bar(v,)) dt =/ [/ (u(®), x) z/t(dx)} dt. -
0 0 E

The above techniques can be used to prove the existence of a solution for second order
evolution inclusion with boundary conditions governed by subdifferential operators
of the form

f@) €ii(t) + Mu(t) + 0p(u(t)),t € [0, T] 9]

where M is positive, ¢ is a proper convex proper lower semicontinuous function
defined on R?, and O (u(t)) is the subdifferential of the function ¢ at the point u(¢)
and the perturbation f belongs to L%d([O, T1). Similar results in this direction are
obtained by [1-4, 11].

Now we present a fairly general result for the approximating problem via the
epiconvergence approach in a second order evolution problem. The applicability of
our abstract results will be exemplified below.

Proposition 3.3 Assume that M > 0, 0 € L%ﬁ([O, T]). For each n € N, let @, :
R? — R* be a convex, Lipschitz function and let oo, be a nonnegative L.s.c proper
function defined on R? such that @, (x) < oo (x) foralln € Nandforall x € R?. Let
fre Lfy([O, T1) such that || f,(t)|| < B(t), Vn € N, Vt € [0, T]. For eachn € N,

let u" be a Wli‘dl ([0, T)-solution to the problem

fr@) € i (1) + Mu"(t) + 0, (u" (1)), 1 € [0, T]
u"(0) = ul; " (0) = il

Assume that

(i) f" o (L, Las)-converges to f € L}, ([0, T1),
(ii) @, epi-converges t0 Yoo,
(iii) lim, u"(0) = ug® € dom Yoo, lim, @, (u"(0)) = Yoo (uy’), and lim, u"(0) =
ug,
(iv) There exist ro > 0 and xo € R? such that

T
sup  sup / Yoo l(xg + rou(t)) < 400
0

neN yeB, -
VES L @0.7)

where EL:?,([O,TD is the closed unit ball in L%?,([O, T).
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(a)

(b)

C. Castaing et al.

Then up to extracted subsequences, (u") converges uniformly to a
W}g’& ([0, TD-function u®™ and (") pointwisely converges to a BV function v
with v>° = u, and (ii") biting converges to a function (* € Lllld([O, T]) so
that the limit function u™, u* and the biting limit (*° satisfy the variational
inclusion

e+ Mui™+01, ™)

where 01,_ denotes the subdifferential of the convex lower semicontinuous inte-
gral functional 1, defined on L3 ([0, T])

T
I () = / one () dt, Y € L (0, 7).
0

Furthermore lim,, o, (u"(t)) = poo(@™(t)) < 00 a.e. and lim, fOT (U (1))

dt = fOT Yoo (@™ (t))dt. Subsequently, the energy estimate holds true almost
everywhere t € [0, T,

=9} 1 . 00 2 0 ! 1002
Poo (1)) + S 1™ DII" = Poo(g)) + Flitg”||

- / (M (s), i (s))ds + / (s, £(5))ds.
0 0

Further (ii") weakly converges to the vector measure m € /\/lf{d ([0, T so that
the limit functions u® (.) and the limit measure m satisfy the following variational
inequality:

T 1 1
/0 Poo(v(r)) dt Z/O @oo(uoo(l))dl+/0 (=M™ (1) + 1), v(1) —u™ (@) dt

oo
M= TN D 10.71).Coa (0.7
In other words, the vector measure —m + [—Mu*> + f*°]dt belongs to the
subdifferential 0J, (u™) of the convex functional integral J,_ defined on

Cre([0. T1) by J,, (v) = [ poo(t, (1)) dt, Vv € Ca([0, T1).
There are a filter U finer than the Fréchet filter, | € Llof,, ([0, T such that

U —lim[f" —i" — Mi" =1 € LE([0, T,

weak

where Li’{f, ([0, T1).,) 1 i the second dual OfLiy ([0, T']) endowed with the topol-
ogy o(Lg ([0, T1)', L3 ([0, T]) and n € Cra([0, T1),,,oy Such that

wea

weak

lim[ f" — ii" — Mi"] = n € Cra ([0, T1)!
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(c)

where Cra([0, T1).,,.. denotes the space Cra([0, T1) endowed with the weak
topology o(Cra([0, T]), Cra([0, T1)). Let I, be the density of the absolutely
continuous part l, of | in the decomposition | = 1, + I, in absolutely continuous
part l, and singular part l;. Then

T
la(h) = /0 (h(t), f(t) — ¢ () — Mu™(1))dt
forall h € Li’fd([O, T)) so that
I:w(l) =l (f% — (% = Mu™) +6"(;, dom 1)

where @3 is the conjugate of ¢e, Iy the integral functional defined on
Lllzd([O, T1) associated with 7, 1  the conjugate of the integral functional
loy., dom 1, = {u € L3;([0,T]) : I, (u) < oo} and

T
n, h) = /0 (£ = (@) — M (), h(1))dt + (ng, h), Vh € Cpa ([0, T).

with (ng, h) = I;(h), Yh € Cra([0, T)). Further n belongs to the subdifferential
0J,.. (u™®) of the convex lower semicontinuous integral functional J,_ defined
on Cra ([0, T])

T
Joo (1) ::/ Yoo (t))dt, Yu € Cra([0, T]).
0

Consequently the density [ — (> — Mu®> of the absolutely continuous
part ng

T
n, (h) 1=/ (f*@) = () — Mu™(t), h(t))dt, Vh e Cra([0, T])
0
satisfies the inclusion

Ft) — (1) — Mi™ (1) € 0pos(u™(1)), a.e.

and for any nonnegative measure 0 on [0, T] with respect to which ny is
absolutely continuous

”;“‘ (0)do(t)

T dnY T
/()h¢;(d—é(t))d9(l)=/o =), 7

. . N
here h: denotes the recession function of 3.
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Proof Step 1 ||u"(.)|| and p, (u,(.)) are uniformly bounded.
Multiplying scalarly the inclusion

1) — (1) — M (1) € Do (1)
by i" (1) and applying the chain rule theorem [21, Theorem 2] yields
(), 10 — {0, 0(0) — (@ 0), Mty (1) = & i g (1)

that is,

— (M0, 8 O) + @O, 10 = 5 [son(un(r» + %nu"(rw] 63D
Integrating this equality on [0, 7], we get

o) + O

= a0 + S O
- /0 M s). i (5))ds + /0 i (5). £ (5))ds

1
< . (" (0)) + 5||»z"<0)||2

l—

t t
+M/ IIit"(s)IlzderIIf"IIL;d([o,T]) (/ IIﬂ"(s)Ilzds)
0 0
1.
< @n (" (0) + 5 |l )7
t 1 t
+M/ " ()I1ds + =11 f" 122 oy 1+/ [[i2" ()] *ds
0 2 Rd 0

1.
< . (u"(0)) + 5||u”<0)||2
t 1 t
+M/ ||u"<s>||2ds+§||ﬂ||L;([o,n> (1+/ ||u"(s>||2ds).
0 0

Then, from (iii), the preceding estimate and the Gronwall like inequality (Lemma
3.1), it is immediate that

sup sup [[u"(®)]] < +o0 and sup sup @,@" () < +oo. (3.3.2)
n>11€[0,T] n>11€[0,T]

Step 2 Estimation of ||ii" (.)||. As



Some Problems in Second Order Evolution Inclusions ... 21
(1) = (1) — i (1) — Mi" (1) € Opu(u" (1))
by the subdifferential inequality for convex lower semi continuous functions we have
Pn(X) = @u " (1)) + (x —u" (1), 2" (1))

for all x € R?. Now let v € EL;,([O,T]), the closed unit ball of L, [0, T']). Taking
x = w(t) := xo + rov(?) in the preceding inequality we get

en(w(n) = @ " (@) + (w(t) —u" (1), 2" ().

Integrating the preceding inequality gives
T
/ (xo + rov(t) — u" (1), 2" (1))dt
0
T T
= / (xo —u" (1), 2" (1))dt + ro/ (v(), 2" (1))dt
0 0

T T
5/ wn(XO+rov(t))dt—/ Pn (" (1))dr.
0

0

‘Whence follows
T T
o / (@), 2 (O)dr < / n (o + rov(t))d (333)
0 0
T T
- / (W (D)t — / (xo — u" (1), 2" (1))d1.
0 0

We compute the last integral in the preceding inequality. For simplicity, let us set
vi(t) = u"(t) — xo forall ¢ € [0, T]. By integration by parts and taking into account
(3.3.2), we have

T T
—/0 (xo —u"t (), " (t))dt = _/0 (@), 1" (1) + MO (1)) — f())dt (3.34)

T T
= — [(V"(1), V" (1) +Mv”(t)]g +/O (i;"(z),iJ"(t)+Mv"(t)>dt+/o "), fM@))dt

< — (D). (D) + (0 (0). 3" () — (MU (T, v'(T))
T T T
(MU (0), v (0)) + /0 110" (1)1 2dt + /O (57 (1), M (1)) dt + /O W @), f (o)

By (3.3.2)—(3.3.4), we get

T T
o / (), 2 (Ot < / o (X0 + rov())di + L (33.5)
0 0
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for all ve B L (0,77, Where L is a generic positive constant independent of
n e N. By (iv) and (3.3.5) we conclude that (" = f" — ii" — Mu") is bounded in
Rd ([0, T']), then so is (ii"). It turns out that the sequence (i") is uniformly bounded
by using (3.3.2) and is bounded in variation. By Helly theorem, we may assume that
(") pointwisely converges to a BV function v™ : [0, T] — R and the sequence
(u") converges uniformly to an absolutely continuous function #* with > = v
a.e. At this point, it is clear that (it,,) converges in Li{d([O, T1]) to v™°, using (3.3.2)
and the dominated convergence theorem. Hence (Mu"(.)) converges in L}{d ([0, T
to Mv>(.).
Step 3 Young measure limit and biting limit of ii,,. As (ii,,) is bounded in Llly (0, T,
we may assume that (ii") stably converges to a Young measure v € ) ([0, T']); RY)
with bar(v) : t — bar(y,) € Llll,,([O, T]) (here bar(v;,) denotes the barycenter of ;).
Further by Proposition 3.1, we may assume that (ii") biting converges to a function
(* : t — bar(v,) that is, there exists a decreasing sequence of Lebesgue-measurable
sets (B,) withlim, A(B,) = 0 such that the restriction of (ii,) on each B; converges
weakly in Ly, ([0, T]) to ¢*. Note that (Mi") converges in Ly, ([0, T]) to Mv™
It follows that the restriction of (" = f" — ii" — Mu") to each B}, weakly con-
verges in L] re ([0, T]) t0 2% 1= f — (> — Mv™, because (f") weakly converges
in Ly, ([0, T]) to £, (Mu”) converges in Ly, ([0, T]) to Mv®™ and (ii") biting
converges to (*° € Lllzé,([O, T)). It follows that

lim/(—ii” W), wit) — u (1)) :/(—bar(u,) W), w(t) — ult))dt
g g (3.3.6)

for every B € B, N L([0, T]), and for every w € Lg; ([0, T']), where W"(r) =
Mu"(t) — f" (1) and W) = Mu™ () — (). Indeed we note that (w(t) — u"(t))
is a bounded sequence in Lg; ([0, 1]) which pointwisely converges to w(¢) — u®(t),
it converges uniformly on every uniformly integrable subset of Lllzd ([0, T']) by virtue
of a Grothendieck Lemma [16], recalling here that the restriction of —ii" — W" on
each B, is uniformly integrable. Now, since ¢, lower epiconverges to ¢, for every
Lebesgue-measurable set A in [0, T], by virtue of Corollary 4.7 in [11], we have

+ 00 > lim inf/ o, " (1))dt > / oo (U™ (2))dt. 3.3.7)
n A A
Combining (3.3.2)—(3.3.5)—(3.3.6)—(3.3.7) and using the subdifferential inequality
on(w()) = o (" (1)) + (—id" (1) = W' (@), wt) — u"(1))

gives

/%o(w(t))dt z/%o(u""(t))dwr/<—bar(ut)— W), w(t) —u™(t))dt
B B B
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This shows thatt — — bar(v;) — W(¢) is a subgradient at the point #* of the convex
integral functional I, restricted to Lg; (B},), consequently,

—bar(v;) — W(t) € oo (u™(1)), a.e. onBj,.
As this inclusion is true on each B; and B; 1 [0, T'], we conclude that
—bar(v;) — W(t) € oo (u™(t)), a.e.on[0, T].

Step 4 Limit measure in M%d([o, T of ii". As (ii,) is bounded in LI'{J([O, T)), we
may assume that (ii") weakly converges to the vector measure m € M%d ([0, T]) so
that the limit functions #°°(.) and the limit measure m satisfy the following variational
inequality:
T 1 1
/ oo (v(1)) dt z/ Poo (U™ (1)) dt +/ (=Mu™(t) + f(t), v(t) —u™(t)) dt
0 0 0

+ {=m, v — u™) (M(10.71).Ca (10.77) -

In other words, the vector measure —m + [—Mu™ + f*°]dt = —m — W.dt belongs
to the subdifferential 9J, (u™) of the convex functional integral J; defined

on Cra([0,T]) by J, (v) = fol Yoo (V(t)) dt, Yv € Cra([0, T]). Indeed, let w €
Cra ([0, T]). Integrating the subdifferential inequality

on(w(t)) = p (" (1)) + (—id" (1) = W' (1), w(t) — u"(1))
and noting that ¢ (w(t)) > ¢, (w(r)) gives immediately
T T
/ Yoo (w(1))dt > / on(w(1))dt
0 0
T
> [ o)+ (i @) = W@ w0 — @)
0
‘We note that
T T
lim/ (=W" (@), w(t) — u"(t))dt =/ (=W(@), w(t) —u®™())dt
" Jo 0

because (W" := Mu" — f") is uniformly integrable, and weakly converges to
W := Mu* — f°° and the bounded sequence in w(t) — u”" (¢) pointwise converges
to w — u® so that it converges uniformly on uniformly integrable subsets by virtue
of Grothendieck lemma. Whence follows
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T T T
/ poo(w(n)di > / oo™ (D)1 + / (—W (). w(r) — u™)dr
0 0 0

+(—m,w — u”)(M;dqo,T]),CRd ([0.71))

which shows that the vector measure —m — W.dt is a subgradient at the point ©*
of the of the convex integral functional J,_ defined on Cr« ([0, T1])) by J, (V) :=

I oo (u(1))dt, Yo € Cra ([0, T).
Step 5 Claim lim,, ¢, (u" (1)) = Yoo (u*(t)) < 0o a.e. and lim, fOT (" (2))dt =

fOT Voo (U™ (t))dt < 0o, and subsequently, the energy estimate holds for a.e. ¢t €
[0, T]:

1 . L.
oo (U (D) + SEZDIIP = e (W™ (0)) + S |1 O]
t t
- / (M (s), u™(s))ds +/ (@>(s), f*(s))ds.
0 0
With the above results and notations, applying the subdifferential inequality

Pn(w(®) = " (1)) + (=ii" (1) = W (@), w(t) —u" (1))

with w = ™, integrating on [0, T'], and passing to the limit when n goes to 0o, gives
the inequalities

/ oo (W™ ())dt > lim inf / o (W™ (1)) d1
B n B
> / oo U™ (1))dt = lim sup / on (" (1))
B B

n

onB € B,N L([0, T]) so that

lim/ e, (1))dt = / Poo U™ (2))dt (3.3.8)
nJB B
onB e BIC, N L([0, T). Now, from the chain rule theorem given in Step 1, recall that

d
@" @), f* @) — @" (@), i" () — M, (1)) = 27 Pn n ()],

that is, J
"), z" (1)) = E[%(un(t))].

By the estimate (3.3.2) and the boundedness in Lllzl,([O, T]) of (z"), it is immedi-
ate that (%[gpn (u,(t))]) is bounded in L{{([O, T1) so that (¢, (u,(.)) is bounded in
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variation. By Helly theorem, we may assume that (¢, (1, (.)) pointwisely converges
toa BV function ¢. By (3.3.2), (¢, (4, (.)) converges in L{{([O, T1) to ¢. In particular,
for every k € L. ([0, T']) we have

T

T
lim k(t)(pn(u,,(t))dtz/ k(t)y(t)dt. 3.3.9)
0 0

n—o0o

Combining (3.3.8) and (3.3.9) yields

/wa)dr: lim/wn(u”(t))dt=/sooo(u°°(t))dt
B n—o0 B B

forall € B, N L([0, T]). As this inclusion is true on each B and B, 1 [0, T], we
conclude that

(@) =1im @, Un (1) = oo (™)) a.e.

Hence we getlim,, ¢, (u,, (1)) = poo(u®°(t)) a.e. Subsequently, using (iii) the passage
to the limit when n goes to oo in the equation

n 1 N 2 n 1 -1 2
on(u (t))+zllu OI" = n(u (0))+5llu Ol
—/ (Md”(s),d"(s))ds—i—/ w"(s), f(s))ds
0 0

yields for a.e. t € [0, T']

" "
oo U O+ DI = o) + S 111
t

- / (M (s), i (s))ds + / (% (5), £(5))ds.
0 0

Noting that (") is uniformly integrable and #" is uniformly bounded and pointwise
converges to #*°, by virtue of Grothendieck lemma [16], it converges uniformly on
uniformly integrable (=relatively weakly compact) subsets of Ll'y([O, T1), so that

lim [0, £60ds = [0, £ s

Step 6 Localization of further limits and final step.

As (" = f" —ii" — Mu") is bounded in L;{d([O, T1]), in view of Step 3, it is rel-
atively compact in the second dual L3 ([0, T of Lllld([O, T1) endowed with the
weak topology o (Lg ([0, T1)', Ly ([0, T1)). Furthermore, (z") can be viewed as a
bounded sequence in Cr« ([0, T'])'. Hence there are a filter U/ finer than the Fréchet
filter, [ € L ([0, T])" and n € Cre ([0, T])" such that
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U—-limz" =1€ Lyi([0, T eur (3.3.10)
and
limz" =n € Cre([0, 1), pur (3.3.11)
n

where L;‘fi([O, T1). ear 18 the second dual of Lllld([O, T'1) endowed with the topol-
ogy o(Lg ([0, T1)', L ([0, T1)) and Cra ([0, T1)),,, denotes the space Cr« ([0, T1)

weak

endowed with the weak topology o (Cre ([0, T])’, Cra ([0, T1)), because Cra ([0, T1)
is a separable Banach space for the norm sup, so that we may assume by extract-
ing subsequences that (z") weakly converges to n € Cr« ([0, T])". Using Step 4, we
note that n = —m — W.dt = —m — (Mu™> — f°°).dt. Let I, be the density of the
absolutely continuous part /, of / in the decomposition / = [, + [, in absolutely con-
tinuous part /, and singular part /;, in the sense there is an decreasing sequence (A,)
of Lebesgue measurable sets in [0, 7] with A,, | ¥ such that [;(h) = [;(14,h) for all
h e Ly ([0,T]) and for all n > 1. As (" = f" — ii" — Mu") biting converges to
7% = f° — (™ — Mu* in Step 4, it is already seen (cf. Proposition 3.1) that

T
la(h) = /O (h(@), f7(1) — (1) — Mu™(1))dt

forallh € L;’@ ([0, T]), shortly z° = f*° — (*° — Mu® coincides a.e. with the den-
sity of the absolutely continuous part /,. By [13, 23], we have

I () = Ly (f° = (™ — Mi™®) + 6*(l;. dom I,,_),

where 7, is the conjugate of ¢, I, is the integral functional defined on L;y (0, T
associated with 7, 17 is the conjugate of the integral functional /., and

dom /7, :={ue Ly([0,T]) : I, (u) < oo}.
Using the inclusion
20 = f* = (* = Mi*® € 91, _(u™),
that is,
Lo (f% = 0% = Mu™) = (f% = (% = Mu™, u®) — I, (u®),
we see that
1, (D)= (f"—=¢ = Mi*u>) — I, (u™) + 6"y, dom I,,).

Coming back to the inclusion 7" (¢) € 0y, (u" (1)), we have
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Oa(x) = @, " () + (x —u" (1), 2" (1))

for all x € R?. By substituting x by % (¢) in this inequality, where € Lgi([0, T,
and by integrating

T T T
/ son(h(t))dtz/ <pn(u”(t))dt+/ (h(t) —u" (1), 2" (1)) dt
0 0 0

Arguing as in Step 4 by passing to the limit in the preceding inequality, involving the
epiliminf property for integral functionals fo @n(h(t))dt defined on Lg; ([0, T']), it
is easy to see that

T T
/ Poo(h(1)) dt = / oo (U™ (t)) dt + (h — u™, n).
0 0

Since this holds, in particular, when & € Cr« ([0, T']), we conclude that n belongs to
the subdifferential 0J,,  (u>) of the convex lower semicontinuous integral functional
J,,. defined on Cr« ([0, T'])

T
Joo () :=/ Yoo (t))dt, Yu € Cra([0, T]).
0

Now let B : Cra([0, T]) — L - ([0, T]) be the continuous injection, and let B* :
([0, T]D" — Cra([0, T]) be the adjoint of B given by

(B*l,h) = (I, Bh) = (I, h), Vle Ly(0,T]), VheCre(0,T)).
Then we have B*l = B*l, + B*l, | € Ly;([0, T])" being the limit of (z, = f" —
i" — Mu') under the filter I/ given in Sect 4and! = [, + I; being the decomposition
of / in absolutely continuous part /, and singular part /;. It follows that
(B*l, h) = (B*ly, h) + (B*l, h) = (la, h) + (s, h)
for all & € Cra([0, T']). But it is already seen that

(lay h) = (f* = ¢ = Mi™, h)

/ (f*@) = ¢*@) — Mu> (@), h(t))dt, Yh e Ly ([0, T])

so that the measure B*, is absolutely continuous

(B*l,, h) / (f() = @) — Mu™ (), h(1))dt, Yh € Crae([0,T])
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and its density f*° — (*° — Mu satisfies the inclusion
) = (1) — Mi™ (1) € Opoe(u™ (1)), ace.
and the singular part B*[; satisfies the equation
(B*I5, h) = (I, h), Vh € Cra([0, T]).

As B*] = n,using (3.3.10) and (3.3.11), it turns out that n is the sum of the absolutely
continuous measure n, with

T
(ng, h) =/0 (f*@) = ¢*@) — Mu>™ (), h(t))dt, Vh € Cra([0, TT)

and the singular part ny given by
(g, h) = (ls, h), Vh € Crae([0, T]),

which satisfies the property: for any nonnegative measure 6 on [0, 7] with respect
to which ny is absolutely continuous,

T dns T -
/0 s (Wm)de(r)— /0 W),

where A« denotes the recession function of ¢, . Indeed, as n belongs to 9J,,_ (u™)
by applying Theorem 5 in [23] we have

% dn, T dng
JE () =1, ( = ) + /0 B (%(o) o) (3.3.12)

dng
70 (1))do(1),

with ;
I (v) :=/ i (u())dt, Vv € Lllld([O, T)).
0

Recall that

dn, .

= f*—=(* - Mu> € 0l, (u™),

dt

that is,
dna o0 lo'e] - 00 oo oo
Tpx, ( o ) =(f*"—-("—=Mu>*,u )<L:(d([0'T])’L;iI([O’T])) — Ly, (™). (3.3.13)

From (3.3.13), we deduce
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Jo () = (U™, m)(c (10,71).Cu (0,71) — Jipo @)
= (U™, M) (0 (10.71).Coa (10.71) — Lo ™)
T
= / W), ) — C°@) — Mu™(t))dt
0
T s
+/ (u™(), é(t))d9(t)—1¢w(uoo)
0

T
= I, (d““) + / W o), 2 0)d00)).
0

dn
d

dt do

Coming back to (3.3.12) we get the equality

S ()Y aoy = [
/0 or (E(t)) (t)—/o (u™ (@),

Actually, Proposition 3.3 completes Proposition 4.6 in [7], which is a precursor
of some results we present here.
We begin with a second order evolution equation with m-point boundary condition

dn, £))do(t
70 ())do(r)). -

Proposition 3.4 Assume that E =R, M > 0, 3 € L. ([0, T1). For each n € N,
let p, : RY — R* be a C', convex, Lipschitz function and let o, be a nonnegative
L.s.c proper function defined on R? such that ¢, (x) < @e(x) for all n € N and for
allx e R4 Let f : [0, T] x E x E — E satisfying

(1) Foreach (x,y) € E x E the scalar functiont — f(t, x,y)) is Lebesgue mea-
surable,
(2) Foreacht € [0, 1], function f(t,.,.) is continuous on E x E,

(3) Nf@ x, I < B@) forall (1, x,y) €[0,1] x E x E.
Foreachn € N, let u" be a Wé;,l ([0, 11)-solution to the approximating problem

f@ u" (1), a" (1) = il" (1) + Mu"(t) + Ve, " (1)), t € [0, 1]

(Pn) [u”(O) =x €dom po, u,(l)= Z?;z Qi (1))

Assume that
(i) pn epi-converges 1o Yoo,
(ii) lim, u"(0) = ug’,
(iii) There exist ro > 0 and xo € R? such that

T
sup / Voo (xg +1ov(?)) < 400
0

veB
EBLe 0.1

where ELEI([OJ]) is the closed unit ball in L;‘;([O, 1]).
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(a)

(b)

(c)

(d)
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Then, up to extracted subsequences, (u") converges uniformly to a W;"}
([0, 1)) -function u™ with u®(0) = x € dom oo, u®(1) =" 2q
u(n;) and (") pointwisely converges to a BV function v with v™° = u,
and (ii") biting converges to a function (*° € L;{,,([O, 1]) so that the limit
Sunction u™, u™ and the biting limit (*° satisfy the variational inclusion

(Px)  f® e(®+ Mu*™+0I, (u™)

where f(t) := f(t,u®(t), u>*),Vt € [0, 1], 01, denotes the subdif-
ferential of the convex lower semicontinuous integral functional I, defined
on L([0, 1) by

1
I () = / oo u(t)) dt, Y € L0, 1]).
0

(U") weakly converges to the vector measure m € M%([O, 1]) so that the
limit functions u™(.) and the limit measure m satisfy the following varia-
tional inequality:

1 1 1
/%o(v(t))dtz/ woo(u"o(t))dw/ (=Mu> (@) + @), v(t) —u™()) dt
0 0 0

o0
= v = W) vt 0.11).e£10.11)°

1 T
Furthermore lim/ pn (" (t))dt = / Voo W™ (t))dt.  Subsequently
" Jo 0
the energy estimate

00 1 - 00 2 1 - 00 2
Yoo | U (t))+5||u Ol SWoo(x)‘FEHU())H

t

t
- / (M (s), 1% (5))ds + / % (5), £(s))ds
0 0

holds a.e.
There are a filter U finer than the Fréchet filter, | € Ly ([0, 11)" such that

U—Tim[f" —ii" — Mi"1 =1 € L0, 11, 0t

where L, ([0, 11),, .0 is the second dual of Lllzd([O, 1]) endowed with the
topology o (Lg; (0, 11)", L. ([0, 11)) and n € Cra ([0, 11, such that

lim[ f" — " — Mu"] =n € Cra([0, 1])

’
weak

where Cra ([0, 1])/, . . denotes the space Cra ([0, 1]) endowed with the weak

weak

topology o (Cra ([0, 1])’, Cre ([0, 1])) s0 that n = —m — (Mu™ — f*)dzs.
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Let 1, be the density of the absolutely continuous part l, of | in the decom-

position | =1, + I, in absolutely continuous part l, and singular part I;.
Then

T
La(h) :/0 (h(t), f(t) = C(t) — Mu™(t))dt
forall h € LY ([0, 1]) so that
I;m(l) =l (f* = (% = Mu™) + 6", dom 1)

where @7 is the conjugate of Yoo, 1y the integral functional defined on
Ll re ([0, 1]) associated with %, 17 the conjugate of the integral functional
Iy, dom 1, = {u € L3;([0, 1]) I, (u) < oo} and

1
(m, h) =/0 (£ = (@) — Ma™ (), h(1))dt + (ng, h), Vh € Cpa ([0, 11)

with (ng, h) = [;(h), Vh € Cra([0, 1]). Further n belongs to the subdiffer-
ential 0J,_ (1) of the convex lower semicontinuous integral functional
Jo.. defined on Cra([0, 1])

1
o () = / () dt. Vu € Coa([0. 1]).
0

(c) Consequently the density f° — (*° — Mu®™ of the absolutely continu-
ous part n,

1
n,(h) 1=/ (f7(1) = () — Mu™(t), h(t))dt, Vh € Cra([0, 1])
0
satisfies the inclusion

) — (@) — Mu™ (1) € 0poe(u™ (1)), a.e.

and for any nonnegative measure 6 on [0, T'| with respect to which ny is
absolutely continuous

1 T
/0 ¢< o O)d0() = / (w

where h: denotes the recession function of ©j.

)do(t)

Proof Existence of a Wli;,l ([0, 1])-solution for the approximating equation

[iin(f) + M, (1) + Vo, (u"(t) = f(t,u" (1), 4" (1)), ae.t €[0,1]
un(o) =X, un(l) = Z:lr‘n:_l2 aiun(ni)
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is ensured by Proposition 2.8 with integral representation formulas

Un (1) = e, (1) + fy} G(t, $)liin (1) + Mii, (5)1ds, 1 € [0, 1]
i (1) = 6. (1) + Jy 291, $)liin (1) + Mity ()1ds, 1 € [0, 1]

ex(t) = x + Al = 202 ) (1 — exp(—y1))x
éx(t) =vA (1 — Zl'.”;lz ai) exp (—y1)x

-1
A = (X5 ar = 1+ exp(—y) = X157 arexp(—v(n)

where G is the Green function given by Lemma 2.1. Then #"(0) = x and u,(1) =
S ity ().

The rest of the proof follows the same lines as that of Proposition 3.3. |

The following is a new variant on the existence of solutions for the second order
evolution inclusion with m-point boundary condition.

Proposition 3.5 Let (Op,) (n € NU {00}) be a sequence of subdifferential oper-
ators associated with a sequence of nonnegative normal convex integrands ()
(n € N U {o0}). Assume that the following conditions are satisfied:

(1) Foreachn €N, |p,(t, x) — @u(t, y)| < Bu(D)llx — yl| forallt € [0, 1] and for
all x, y € RY, where (3, is a nonnegative integrable functions.
(2) For each Lebesgue-measurable set A € [0, 1], for each w € L%?,([O, 1),

lirnsup/ wn(t,w(t))dt < / Poolt, w(t))dt.
A A

n

(3) For each t € [0, 1], p,(t,.) lower epiconverges to puo(t,.), that is, for each
fixed t € [0, 1], for each (x,) in R¢, converging to x € R4, liminf oty x,) >

oot X).
Foreachn e N, letu" : [0, 1] — R? be a Wé’dl([O, 11)-solution to

[i;n(;) + i (t) € Op, (t, u" (1)), ae. t € [0, 1]
W) =x, w1 = XI5 ().
(4) Assume further that

1
sup/ on(t, uy(t))dt < +00
neN J0

and

1
sup/ [0, (t, u" ())|dt < +00.
neN Jo

Then the following hold:
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(a)

(b)

Up to extracted subsequences, (u") converges uniformly to a Wé’é([o, 1]) func-
tion u® with u®*(0) = x, u®*°(1) = Z;’;z a;u™(n;) and (u™) pointwisely con-
verges to the BV function u®, and (ii") stably converges to a Young measure
v>® e Y([0, 11; R witht > bar(v°) € L;{,,([O, 11) (here bar(vy®) denotes the
barycenter of v;°) such that the limit functions u®(.), t>°(.) and the Young limit
measure v*>° satisfy

1 1
/ Goolt, u™(t))dt < liminf/ on(t, u"(t))dt
0 n 0

consequently

1 1
lim/ on(t, u"(t))dt =/ Yoolt, u™(1))dt < 00
n 0 0

and
bar(v;°) + yu™®(t) € Opso(t, u™(t)), a.e.

equivalently the function t — bar(v°) + yu(t) belongs to the subdifferential
01, (u™) of the convex lower semicontinuous integral functional 1, defined
on Ly ([0, T])

T
I, (u) :=/ Goo(t, u(1)) dt, Yu € LE([0, T]).
0

Up to extracted subsequences, (u") converges uniformly to a W};&([O, 1]) func-
tion u® with u®*(0) = x, u®*(1) = Z;’:lz a;u™(n;) and (u™) pointwisely con-
verges to the BV function u®°, (ii") weakly converges to m* € M%d([o, 1]) so
that the limit functions u® (.) and the limit measure m® satisfy the variational
inequality: for every v € Cra ([0, 1]),

1 1 1
/%o(t, v(t))dtz/ sooo(t,uc"’(t))dt+/ (vt (1)), v(t) — u™ (1)) dt
0 0 0

oo o0
M0 = U MO (10,11),Ca (10,11

In other words, the vector measure m™ + yu® dt belongs to the subdifferential
01, (u) of the convex functional integral 1, defined on Cra ([0, 11) by I, (v) =

Jiy @oolt, v(1)) dt, Yo € Cra([0, 1]).

Proof Existence of a Wé;l ([0, 1])-solution u" to

[ii”(t) + " (1) € Do (1, u" (1)), ae.t € [0, 1]
W ©0) =x, u'(l) =37 ()
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is ensured by Proposition 2.7 with integral representation formulas

u'(t) = e, (t) + fol G(t,s)[i"(s) +~u"(s)lds, t € [0, 1]
W) = e (1) + fy 291, $)lii" (s) + yii" ()lds, t € [0, 1]

where

ex() =x+ A0 — X7 a1 — exp(—y0)x
eu(t) = vA (1 32 ozl-) exp (—v1)x

-1
A = (IS = 1+ exp(—y) — X0 s exp(—1m))

where G is the Green function given by Lemma 2.1.
Step I (a) As sup,, fol |0, (t, u (1))|dt < +o00, it follows that (ii"” + ~u") is bounded
in Li{d([O, 1]), namely

1
Sup/ [1Gi" () + it (t)||dt < +o0,
n Jo

so that, by the representation formulas given above, it is immediate that (¢") and
(u") are uniformly bounded. Hence (ii") is bounded in L;{d([O, 17) and (11,,(.)) is

bounded in variation because sup, fol |lii, (£)|| dt < 4o00. In view of the Helly—
Banach theorem, we may, by extracting a subsequence, assume that (i"(.)) con-
verges pointwisely to a BV function v*>°(.). Let us set u*°(¢) = fot v (s)ds for
all £ € [0, 1]. Then u*™ € Wy, ([0, 1]). As (it,(.)) is uniformly bounded and point-
wise converges to v™°(.), by Lebesgue’s theorem, we conclude that (i2"(.)) con-
verges in Lllld([O, 1]) to u*°(.). Hence u"(.) converges uniformly to ©#*°(.) with
u®*®0) =x, u*)= 2?1;12 a;u®™(n;). So (a) is proved. From the general com-
pactness result for Young measures, [5, 10] one may assume that #i" stably converge
to an Young measure v*°. Further, by virtue of Proposition 3.1 we may assume that
(ii") biting converges to the integrable function bar(v*>°) : t +— bar(;°), thatis, there
exists a decreasing sequence (B)) of Lebesgue measurable sets with A(NB,) =0
such that the restriction of (i) on each B, converges o(L', L) to bar(v). It follows
that

lim / (i + i (), w(t) — (1)) dit = / (bar(iy) + i (1), w(t) — (1)) dr
? ? 3.5.1)
for every B € B, N L([0, 1]), and for every w € LY ([0, 1]) because the sequence
(w —u") in L, ([0, 1]) is bounded and pointwise converges to w — u, so it con-
verges uniformly on uniformly integrable subsets of Llll,,([O, 1]). Since (¢,) lower
epiconverges to ¢, by Corollary 4.7 in [11], we have
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liminf/gon(t,u"(t))dt z/%o(t,u“(t))dt (3.5.2)
n A A

for every Lebesgue-measurable set A in [0, 1]. Combining (3.5.1), (3.5.2) and
Assumption (2), and integrating the subdifferential inequality

ot w(n)) = @ (r, u" (1)) + (" (1) + " (1), w(t) — u" (1)) (3.5.3)

on each B € B, N L([0, 1]) and for every w € Lg; ([0, 1]), we get

/gpoo(t,w(t))dtz / Poolt, u°°(t))dt+/(bar(z/;’o)+w°°(t),w(t)—u°°(t))dt.
B JB B

This shows that# +— bar(1/°) 4+ v°(¢) is a subgradient at the point #* of the convex
integral functional I, restricted to L3’ (B},), consequently,

bar(v,) + ™ () € Dpoo(t, u™ (1)), a.e. on B;.
As this inclusion is true on each B; and B; 1 [0, 1], we conclude that
bar(v;°) + ™ (t) € Opoo(t, u™(t)), a.e. on [0, 1].

Finally, applying the above subdifferential inequality, and putting w = u* in (3.5.3),
we deduce

B
> lim sup/ wn(t, u™(@))dt
n B
> lim SUP/ Lpn (t, u" (1)) + (" (t) + " (1), u™(t) — u"(1))1dt
n B
= lim sup/ wn(t, u" (t))dt > lim inf/ on(t, u"(t))dt
n B n B

> / Poo(t, u™ (1))dt
B

because
lim/(ii"(t) + " (1), u®™(t) — u"(1))]dt =0
nJB

recalling that 1[it" + ~u"] is uniformly integrable. Whence follows

lim/@n(t,u"(t))dt=/<poo(t,u°°(t))dt.
n B B
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As this inclusion is true on each B in B; and B; 1 [0, 1], we conclude that

1 1
lim/ en(t, u" (2))dt :/ Poolt, u™(r))dt.
n 0 0

Step 2 (b) Repeating the results in Step 1, up to extracted subsequences, (u")
converges uniformly to a W};&([O, 1]) function u*® with u*°(0) = x, u*(1) =
zl'.";lz a;u™(n;) and (u") pointwisely converges to the BV function u*°. As (ii,)
is L'-bounded we may assume that (ii,) weakly converges to a vector measure
m> e M%L,([O, 1]) since the Banach space Cra([0, 1]) is separable and its topo-
logical dual is M%(,([O, 1]). Let w € Cra(([0, 1]). Integrating the subdifferential
inequality

Pu(t, w(t)) = @, u" (1)) + (" () + yi" (), wt) —u"(1))

and passing to the limit gives immediately

1 1 1
/ Poolt, w(t)) dt Z/ Wm(t,uoo(t))df*'/ (v (), w(t) — u™(t)) dt
0 0 0
M w =) (e 10,10, 10,11

which shows that the vector measure m* + i dt belongs to the subdifferential
Ol of the convex functional integral I, _ defined on Cga ([0, 1]) by I, _(v) :=

I} oo, 0(0)) dt, Yv € Cra([0, 11). |
4 Further Applications: Second Order Evolution Problems
with Anti-periodic Boundary Condition

It is worth to focus on the main difference in discussing the various approximating
problems.

(@0 = [id" (1) + Mi" ()] + Ve, (" (1)), 1 € [0, T] (4.1)
(@) € li" (@) + Mu" ()] + O (u" (1)), 1 € [0, T (4.2)
J1(@0) = =[i" (@) + Mi" ()] + Ve (u" (1)), 1 € [0, T] (4.3)
(@) € —[i" (@) + Mi" ()] + O (u" (1)), 1 € [0, T]. 4.4)

Equations (4.1) and (4.2) are usual in second order dynamical systems. We refer to
Attouch et al. [4] and Schatzmann [24] for a deep study of such models. See also the
results developed in Propositions 3.2-3.5. Here, according to a traditional vein, we
prove the existence of generalized solution with the conservation of energy in (3.3)
and (3.4). Meanwhile (4.3) and (4.4) appear in the problem of anti-periodic solution
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developed in Aizicovici et al. [1-3]. Here in Proposition 4.3 we present a first result
of the existence of generalized solution for the problem

f@) € lii(t) + Mu()] + Op(u(t))
using the approximating problem (4.2) with application (Proposition 3.4) to problem
fu@),u() eiit) + Mu(t) + 0p(u(t)),t €[0,T]
with m-point boundary condition using the approximating problem
Fu" (@), 1" (1) = i" () + Mi" ()] + Vi (u(t)), t € [0, T]

with m-point boundary condition. Here one can see that the techniques employed
in (4.1) and (4.2) cannot be used to develop similar results to (4.3) and (4.4), in
particular, we cannot obtain the conservation of energy for the variational limits in
(4.3) and (4.4) by contrast with (4.1) and (4.2). So it is worth to mention that our tools
allow to study the approximating problem of anti-periodic solution in the framework
of Haraux—Okochi with anti-periodic solution

fr@) =" @) + Mi" ()] + Ve, (u" (1), t € [0, T],
u, (0) = —u,(T).

In our opinion, the general problem of the existence of energy conservation solution
to second order evolution inclusion of the form

f@) € lii(t) + Mu(t)] + Op(u(t)) (4.5)

where ¢ is a lower semicontinuous convex proper function is a difficult problem
when the perturbation f € L},([O, T]) and H is a separable Hilbert space.

Now, to finish the paper, we show that our abstract result in Proposition 3.3 and the
tool developed therein can be applied to the first order of evolution equation and also
to the second order evolution equation with anti-periodic boundary conditions. H.
Okochi initiated the study for anti-periodic solutions to evolution equations in Hilbert
spaces. Following Okochi’s work, A. Haraux proved some existence and uniqueness
theorems for anti-periodic solutions by using Brouwer’s or Schauder fixed point
theorems. Aftabizadeh, Aizicovici and Pavel have studied the anti-periodic solutions
to second order evolution equation in Hilbert spaces and Banach spaces by using
monotone and accretive operator theory for equations of type (4.3) and (4.4). Here we
show the applicability of our abstract result to the study of evolution equations of type
(4.1) and (4.2) with anti-periodic boundary condition. For notational convenience let
us denote by H the set of of functions f € L? (R, H) such that f is anti-periodic,

loc

thatis, f(t + T) = — f(¢) forall t € R and
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H(0, T :=={f € H:|If DI < B(), 5 € Lg([0, T, 1 € [0, T]}.

We begin with some examples in the first order of evolution equation with anti-
periodic condition.

Proposition 4.1 Let H = R?. Assume that On R? — [0, +00[ are even, convex,
Lipschitz and @, : R? — [0, +00] is proper lower semicontinuous convex function
such that p,(x) < @eo(x) for all n € N and for all x € RY. Let " be sequence in
Hs([0, T]) and let u™ be a Wlig,z([O, T1)-solution to the problem

(1) € i (1) + O (u" (1)) 1 €10, T],
un(T) = —Up (O)
Assume that the following conditions are satisfied:

(i) pn epiconverges to P,
(ll) llm,, u"(O) — ugo e dom Voo and llmn (,0,1(14'1(0)) — L)000(1480)
(iii) f" (L, ([0, T1), Ly, ([0, T1))-converges to f> € Lz, ([0, T1).

Then the following hold

(a) Up to extracted subsequences, (u") converges pointwisely to an anti-periodic
absolutely continuous mapping u® with u>*(T) = —u*(0), (") O'(L%{d, L%{L,)—
convergesto (™ € L%zd([()’ T with(™® = u®, lim,, @, (" () = peo@™(t)) <
~+00 a.e. and lim,, fOT 0, (" (t))dt = fOT Poo (U (1))dt < +00.

(b) f* — (> edl, (u>®) where Ol denotes the subdifferential of the convex
lower semicontinuous integral functional I, defined on Lg; ([0, T])

T
I, (u) ::/ Poou(t))dt, Yu € Ly ([0, T]).
0

Proof Existence of Wli;,z([O, T'1)-solution u" to the problem

fr(@) e a"(t) + 0p,(u" (1)) te€l0,T],
u,(T) = —u,(0)

is ensured. See Haraux [17], Okochi [22].
Step 1 Estimation of u", ", and ¢, (u" (.) Multiplying scalarly the inclusion

fr@) —u"(t) € Op, (u" (1)

by " (t) and applying the chain rule formula [21] for the Lipschitz function ¢, gives

d
@" @), f1(0) — " (0|* = Jrlen@ ). 4.1.1)



Some Problems in Second Order Evolution Inclusions ... 39

Hence by integration of (4.1.1) on [0, T'] and anti-periodicity condition we get the
estimate

||ﬂn||L§,([0,T]) = ||fn||L§,([o,T])~ (4.1.2)

From the Poincaré inequality
" O < VT 11i"|| 2, 0,7 Yt € 10, T1. (4.13)

Integrating (4.1.1) on [0, 7] we get

0 < ou (1)) = u (" (0)) — / @ (s) | Pds + / @), fHNds (41.4)
0 0
< 00 (" (0)) + /0 @ (s), £ (s))ds

so that by using the above estimates (4.1.2)—(4.1.3)—(4.1.4), the weak convergence
of f"in L%I([O, T]) and (ii) we note that ¢, (4" (¢)) is uniformly bounded.

Step 2 Using the results in Step 1, up to extracted subsequences (u") converges
pointwisely to an anti-periodic absolutely continuous mapping u*> with u*(T) =
—u®(0), (") 0(Lga. Ly.)-converges to (™ € Lg, ([0, T) with (* = i*. For sim-
plicity set z"(¢) := f"(t) — tt"(t). Since we have

d
(@), " 0) = —len @ (1))

and (1" (.), z"(.)) is bounded in L{{([O, T1), pu(u"(2)) is of bounded variation and
uniformly bounded.
Claim lim,, ¢, (1, (1)) = oo (too(t)) < 00 ae and lim, [; o, (u,(1)dr = [
Poo (U™ (t))dt < o0.

From the above estimates and Helly theorem, we may assume that (¢, (1, (.))
pointwisely converges to a BV function 6 so that (¢, (i, (.)) converges in Lllz([O, T])
to 6. In particular, for every k € L ([0, T]), we have

T

T
lim k(t)(pn(u,,(t))dt=/ k(t)0(t)dt.
n—oo O O

Coming back to the inclusion z"(¢) € ¢, (u"(t)), and using the fact that @, (x) <
Poo(x),Vn € N, Vx € R?, we have

Poo(X) = 0 (x) = @ (" (1)) + (x — u" (1), 2" (1))

forall x e RY. Leth € Ll"{ﬁ/ ([0, T]). Substituting x by &(¢) in this inequality and by

integrating on each measurable set B gives
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/ oo (h(1)) dt = / en(h(D)) dt > / on (1)) di + / h(t) — u™ (1), 2" (1)) dt
B B B B

and passing to the limit in the preceding inequality when n goes to 400, we get

/(poo(h(t))dt z/9(t)dt+/(h(t)—u°°(t),z°°(t)>dt 4.1.5)
B B B

with z° = f* — 4. In particular, by taking 1 = u® we get the estimate

/ oo (U (1)) dt = / 6(r) di
B B

for all B € L([0, T]). By the epi-lower convergence result [11, Corollary 4.7], we
have

/9(t)dt= lim/apn(u”(t))dt Zliminf/apoo(u"(t))dt Z/(poo(uoo(t))dt
B n—oo B n—oo B B

for all B € L([0, T]). It turns out that v, (u> (1)) = 6(¢) a.e. and

lim / tp,,(u"(t))dt:/gpoo(uoo(t))dt < 0. (4.1.6)

From (4.1.5) and (4.1.6) it follows that f*° — (> € I, _(u*) where O, denotes
the subdifferential of the convex lower semicontinuous integral functional I,
defined on Lg; ([0, T'])

T
I () :=/0 Poo(u (1)) dt, Yu € LZ([0, T1). -

Here is a variant of Proposition 4.1.

Proposition 4.2 Let H = RY. Assume that~y > 0, ¢, : R¢ — [0, +00] is even, con-
vex, Lipschitz, s : RY — [0, 4+00] is proper lower semicontinuous convex function
such that p,(x) < @ao(x) for all n € N and for all x € RY. Let (f") be an anti-
periodic sequence in Hg([0, T]). Let u” be a WII{;}([O, T1) anti-periodic solution to
the problem

[r@) € " (1) + 0pn (" (1)) — yu" (1), t €0, T]

u, (T) = —u,(0).

Assume that the following conditions are satisfied:

(i) pn epiconverges to P,
(ii) lim, u"(0) = u® € dom o and lim, eu"(0)) = oo (U),
(iii) f" o(L%, ([0, T1), L%, ([0, T1))-converges to f> € Lz, ([0, T1).

Then the following hold
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(a) Up to extracted subsequences, (u") converges pointwisely to an anti-periodic
absolutely continuous mapping u®™ with u®(T) = —u®(0), (u") O'(L%{d, Lf{d)—
converges to (> € L%d([O, T with (™ = u®, lim, @, (" (t)) = peo @™ (1)) <
+00 a.e. and lim,, fOT O, (W ())dt = fOT Voo (UX(1))dt < +00.

(b) f* —(* e dl, (u*) where Ol denotes the subdifferential of the convex
lower semicontinuous integral functional I, defined on L%Od (10, T))

T
I (u) 2=/ Poou(t))dt, Yu € Lga([0, T).
0
Proof Existence of u” for the problem

fr@) —a" (1) +yu" (1) € 0p,(u" (1)) t €10, T],
u,(T) = —Lt,l(O),

is ensured. See Haraux [17], Okochi [22].
Step 1 Estimation of u" and u”. Multiplying scalarly the inclusion

SO =i (1) +yu (1) € Doy (u" (1)) (4.2.1)
by " (¢) and applying the chain rule formula [21] for the Lipschitz function ¢, gives
(@" (@), " (@0) = |li" O +y@" (0), " 1)) = %[w(u”(t))]- (4.2.2)

Hence by integration in (4.2.1) and anti-periodicity conditions we get the estimate

a2, qo.rpy = "2, qo.7p)- (4.2.3)

From the Poincaré inequality,
"1 < VT i 112, 00.r) < VT 1"z, 00.7)- (4.2.4)
Integrating (4.2.2), we get
t t
0 < @u(u" (1)) = a(u"(0)) —/ IIb't”(S)Ilzder/ (@"(s), f"(s))ds
0 0
t
+’Y/ (@" (s), u"(s))ds
0

‘We note that
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L. 1 L
/ (u"(s), f"(s))ds < §||fn||L§,([o,T])(1 +/ |li" (s)||*ds) < Const.
0 0
t
’Y/O (u"(s), u"(s))ds < Const.||f”||2L§1([0’T])

so that by using the above estimate, the O'(L%{d (o, 7D, L%d ([0, T])) convergence of
f" and (ii), we conclude that o, (u"(¢)) is uniformly bounded. Now the remainder
of the proof is similar to that of Proposition 4.1. |

We finish the paper with the approximating problem in second order evolution
equation with anti-periodic condition

[ @) = ") + Mu"(t) + Vi, (" (1)),
W' (T) = —u"(0).

where M is a positive constant, ¢, are convex Lipschitz, C ! even, functions that epi-
converges to a lower semicontinuous convex proper function ¢, (f,) is a sequence
in L%,([O, T1) which weakly converges to a function f, € L%,([O, T)). Existence of

a Wli’dz([O, T1) anti-periodic -solution to this approximating problem is well known.
See Haraux [17], Okochi [22].

Proposition 4.3 Let H = RY, M € R*. Assume that ©n : RY — [0, +oo[ is C,
even, convex, Lipschitz and, po, : RY — [0, +00] is proper convex lower semicontin-
uous with ¢, (x) < poo(x), Vx € R%. Let f" € Hz([0, T) Let u” be a Wéf([O, T))
anti-periodic solution to the approximated problem

fr@) =i"@) + Mua"(t) + Vo, " @)),t €[0,T],
u,(T) = —u,(0).

Assume that
(i) fro(L3 ,L%,) converges to f° € L%,([O, T]).
(ii) lim, u"(0) = uy® € dom ¢, lim, @, (" (0)) = poo(us®), and lim, u"(0) =
ugy,
(iii) @, epi-converges t0 Yo,
(iv) There exist ro > 0 and xo € R? such that

T
sup / PoolXo + rov(t))) < 400
UEELQOd([O,T]) 0
R
where ELRNd([O,l]) is the closed unit ball in Li’{f, ([0, T)).
Then the following hold

(a) Up to extracted subsequences, (u") converges uniformly to a W;’&([O, T)) anti-
periodic function u®™ withu®™(T) = —u(0), and (u") pointwisely converges to
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the BV function u, and (ii") biting converges to a function (* € L:v,([O, T
which satisfy the variational inclusion

I —C¢® = Mi™ € dl,_(u™)

where 01, denotes the subdifferential of the convex lower semicontinuous inte-
gral functional 1, defined on L%‘}([O, T

T
I, () :=/ Yoo (u(t))dt, Yu € Ly ([0, T]).
0
Furthermore
lim p, (" (1)) = Yoo U™ (1)) < 00 a.e.
T T
lim/ (" (t))dt =/ Voo (U™ (t))dt < c0.
n 0 0

Subsequently, the estimated energy holds almost everywhere

1 1
oo U™ (1)) + §||u°°<r)||2 = Voo ™(0)) + §||u°°<0>||2

12 t
- M/ |16 (s)]|* ds +/ (@™ (s), f2(s))ds.
0 0
Further (ii") weakly converges to the vector measure m € M?I([O, T)) so that

the limit functions u® (.) and the limit measure m satisfy the following variational
inequality:

T T T
/ Poo(v(1)) dt z/ Poo (U™ (1)) dt +/ (=M™ (t) + 1), v(t) —u™ () dt
0 0 0
+ (=ma v = u%) (it qo,1,cp 0.7
In other words, the vector measure —m + [—Mu®™ + f*°]dt belongs to the sub-

differential 01, (u) of the convex functional integral I, defined on Cy ([0, T'])
byl, (v) = fOT Yoo (t, V(1)) dt, Yv € Cyx([0, T]).

Proof Existence of Wli;,z([O, T'])-solution u" for the approximated problem

fr@) =it @t) + Mu"(t) + Ve, " (1)) 1 €[0,T],
u,(T) = —u,(0)

follows from Haraux [17]. Now we can finish the proof by repeating mutatis mutandis
the machinery developed in Proposition 3.3. Therefore our W};"} ([0, T']) anti-periodic
limit u* of (#") and biting limit (*° of (") satisfies the inclusion
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Fr) — (1) — Mi™ (1) € Opos (u™(1))

and the energy estimate holds

1 iee) o0 1 iee)
Poo (U™ (1)) + 5 |l DI = oo ) + S g IS

t t
- M/ 1% ()11 ds +/ (@>(s), f>(s))ds
0 0
almost everywhere. u
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