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Preface

The first workshop on “Application of Formal Methods for Safety and Security
Critical Systems (AFMSS-2016)” was organized by CSIR-National Aerospace
Laboratories, Bangalore, India, on May 25–27, 2016. This workshop presented a
platform for the discussion and representation of research and developments in the
field of formal methods, and its applications for ensuring safety and security of
safety-critical systems. A decent number of research papers from prospective
authors were submitted for this workshop. The editors have selected 12 papers after
the double-blind peer-review process by experienced subject expert reviewers
chosen from various industrial and research domains, in India and abroad. The
proceeding of AFMSS-2016 is a mix of papers from some latest findings and
research and ongoing project activities of the authors.

The workshop aimed at bringing together formal methods practitioners, engi-
neers, technologists, and academia. The aim is to create a forum for further dis-
cussions, an integrated information dissemination outlet in all aspects of formal
methods and its applications. The call for paper addressed the following broad
topics.

• Design, specification, code generation, and testing based on formal methods.
• Methods, techniques, and tools to support automated analysis, certification,

debugging, learning, optimization and transformation of complex, distributed
real-time systems and embedded systems.

• Verification and validation methods that address shortcomings of existing
methods with respect to their industrial applicability (e.g., scalability and
usability issues).

• Tools for the development of formal design descriptions.
• Case studies and experience reports on industrial applications of formal meth-

ods, focusing on lessons learned or identification of new research directions.
• Impact of the adoption of formal methods on the development process and

associated costs and time.
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• Standardization of formal methods application in industrial forums.
• Formal method-based tools analysis certification aspects toward safety-critical

applications.

All the papers are focused on the thematic presentation areas of the workshop
and they have provided ample opportunity for presentation in the sessions.
Research in the application of formal methods has its own history and importance.
This volume presents an exciting collection of contributions resulting from a suc-
cessful call for papers. The selected papers including both review and research
papers highlight the current focus of applications of formal methods on safety and
security of safety-critical systems. There is no doubt that the tips, lessons learnt,
and further advancements in formal methods and its applications in the safety and
security of safety-critical systems presented in this volume will be of use to
researchers and professionals alike.

It is been a great honor for us to edit the proceedings. We have considerably
enjoyed working in cooperation with the international advisory, and program and
technical committees to call for papers, review papers, and finalize papers for
presentation and inclusion in these proceedings. The AFMSS conference and
proceedings are a credit to a large group of people and everyone should be proud
of the outcome. First and foremost are the authors of the papers, columns, and
editorials whose works have made the workshop a great success. We had a great
time putting together this proceeding. We extend our deep sense of gratitude to all
for their warm encouragement, inspiration, and continuous support for making it
possible.

We hope the readers will appreciate the good contributions made and justify our
efforts.

Bangalore, India Manju Nanda
May 2016 Yogananda Jeppu
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Chapter 1
Formal Methods—A Need for Practical
Applications

Manju Nanda, J. Jayanthi and Yogananda Jeppu

Abstract This an introduction to the formal methods perception in the community
today. There are many incidents of software failure, and formal methods are
advocated as a sure fire solution to the problems. This is however not seen to be so by
the majority. There are barriers to the formal methods that need to be overcome by
the practicing engineer before it is accepted as a process in all the safety critical
software development projects. The first Workshop on “Application of Formal
Methods for Safety & Security Critical Systems (AFMSS-2016)” brings together the
engineers, researchers, and academia who have used these techniques in the field and
gathers their insight into the twelve selected papers. This paper connects the dots.

Keywords Formal methods � Safety critical � Software failures � Tool � Process

1.1 Introduction

Program testing can be a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence.

—Edsger Dijkstra

Formal methods are not new. They have been in existence for a very long time.
In fact it is more than half a century now since the initial publications on mathe-
matically correct programs. Many books and papers were written in the 1960s on
this subject [1–5]. The two conferences in 1968 and 1970 sponsored by NATO
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were responsible for getting together the software community and to acknowledge
that programming was error prone [6]. The word “software engineering” was
coined in these conferences. Even though the mathematics of programming was
found to be important, it failed to come into the engineering domain as such.

A search of Google scholar for the terms “formal methods” and “safety critical”
brings out the plot as shown in Fig. 1.1. This shows that the formal methods have
picked up significantly in the last decade, doubling the number of all the previous
years. The initial papers in this field are in 1984. A report from 1984 makes an
interesting read. The following (quoted verbatim) by the author Currie reflects the
thoughts in 1984, so much valid even in today’s software development scenario [7].

These scrutinizes generally have not been highly formal - the tools and languages used to
produce the programs do not lend themselves to formal methods. Note that introducing a
formalism does not in itself improve the situation; the important thing is, in some sense, the
“obviousness” of the proof of the program. For example, I would feel very dubious about a
program which could only be proved with the assistance of a sophisticated theorem-prover:
who proves the theorem-prover? On the other hand, it is clear that appropriate formalism in
the specifications, languages, tools and computers used, can make verification much easier
by preserving this “obviousness” of proof through its various transformations from spec-
ifications to code in ROMs.

A good example of formal modeling of requirements is by Patrick Doyle [8]. In
the 1970s, Dr. Patrick Doyle was asked to develop a sales commission tracking
system. He constructed a model of the system using set theory. He wanted to get
this vetted by the board who had commissioned the project. Patrick gave the board
an option of a long document that captured the requirements or a short course in set
theory. They opted for the course and he could explain the model of the system to
them using set theory and formally specify the requirements. This set of require-
ments were modified and signed off. The system worked fault-free from the very

Fig. 1.1 Literature count on formal methods in safety critical
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first time. This good example has however not been followed through. Practical
formal methods did not gain momentum. We find errors in systems today.

1.2 Error and Failures in Software Systems

In 2005, IEEE spectrum published an article “Why software fails” [9]. Today after a
decade there is an interactive Web interface to look at some of the failures in IT
[10]. This commemorates the failure in the IT industry in the last decade. The
conclusion is given as:

While it’s impossible to say whether IT failures are more frequent now than in the past, it
does seem that the aggregate consequences are worse.

Software systems have failed time and again. The 2016 list of errors makes a
good read, some of them even hilarious [11]. The Nest thermostats failed due to a
software glitch leaving the users in the cold. A software upgrade fixed this problem.
HSBC had a major software outage that lasted two whole days. In another incident,
prisoners were being left early due to a software glitch in the prison system. In the
aerospace industry and the medical field, which are safety critical, there have been
software failures. The F35 bug report released early this year lists the software
errors in the avionics system of the fighter aircraft [12]. The medical recall by the
FDA of a faulty ventilator system with a potential to cause death is an example. “If
a patient does not receive the amount of air set on the machine, they may need to be
removed from the ventilator and placed on a different system. A patient not
receiving enough oxygen, can result in possible injury or death” [13].

The reason for most of the software errors is not software alone, but it is the way
the software interacts with the environment. The faulty or unthought of require-
ments cause most of the errors in the software. Figure 1.2 shows the errors in the

Fig. 1.2 Errors—where,
what, and how much
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software, where they are found, and the cost of fixing these errors [14]. The top
three bubbles define that the maximum errors are found in requirements, design,
and lastly code. The cost of fixing, a well-known fact, is the maximum as one fixes
them later in the project lifecycle. Unfortunately, errors are found during the
system-level integration tests, operations, and lastly the unit level tests. The fact that
requirement errors are found during the integration tests or operations is the cause
for faults having a catastrophic effect on the users. There is a need to correct these
much earlier.

1.3 A Paradigm Shift in Systems Engineering

The classical system development process is the V model as shown in Fig. 1.3. The
system development starts with a concept of operation, “ConOps,” as it is popularly
known, where a prototype is developed and initial algorithms may be tried out. This
phase leads to the requirements gathering and finalization phase. The system-level
requirements, the safety analysis, and the allocation of requirements to hardware
and software are done at this phase. The requirements flow down to the high-level
software and hardware specifications. These capture the intent of the software and
the hardware. The next phase is the design where the software and hardware are
designed separately. The output of this phase is a detailed design of the software.
Today it is also a set of executable models. The next phase is coding or develop-
ment. The use of autocode is very prevalent in the software development process in
this phase.

The development proceeds upward on the V model from here. This is the test
phase with unit tests on the small functions on hardware kits or the final board. This
leads to the integration testing where all the codes are compiled together and
downloaded on the actual hardware for an end to end test. This is followed by the
system-level tests. In the case of aircraft avionics system, this phase is done on very
costly rigs that mimic the actual aircraft on ground, normally called Ironbird. This is
followed by acceptance tests and certification and deployment.

Fig. 1.3 System development V model
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In this traditional V model, we find errors in requirement during the final test
phase. The amount of effort for testing is huge. Development activity in an aircraft
project had 4 to 5 engineers doing the coding but at the peak a team of 40 engineers
was doing the testing. This scenario is very common in the aircraft industry. It is
very paradoxical that a large effort is spent on the right side to find defects of the left
side. Systems engineering needs a paradigm shift to address this issue.

The mantra to be followed is “Mathematize the Left and Automate the Right.” It
makes sense to put in more effort on the left side to find errors and correct them
before they trickle down to the right side. Formal methods is an excellent tool to
carry out this activity. There are many tools available today to enable the engineer
to design systems better. Figure 1.4 shows some of the tools that can be used in the
various phases of the system development process. At the requirements capture
phase, tools such as PVS [15] can prove the correctness of the requirement by
automated theorem proving. The tools and languages such as Event B [16] can help
the designer in building up the system from an abstract to gradual refinements and
increased complexity.

At the design level, models of the system can be checked for correctness against
the specifications and assertion using automated model checkers. NuSMV [17],
Simulink Design Verifier [18], and SCADE [19] are some of the open-source and
commercial software available today. SCADE and Simulink Design Verifier can
provide a certifiable C code automatically that can be compiled with the additional
driver for direct implementation on the onboard computer. At the C code level,
Abstract Interpreters such as Astree [20], Polyspace [21], LDRA Testbed [22], and
Parasoft [23] are some of the commercial tools that are available today. The list is
not exhaustive. These tools have been evaluated in some of the projects and are
mentioned here. There are other tools included in Fig. 1.4 [24–31].

Fig. 1.4 System V model—location of formal method tool usage
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The right side of the V model can now be completely automated with the
requirements that have been used as assertions. The test case can be automatically
generated to provide requirements coverage and model coverage. Automated test
case reviews can be done for completeness. These artifacts can be generated
overnight or on weekends. The artifacts are available for reviews and certification.
This paradigm shift would be a practical approach to our problem of defective
software. This is an ideal situation. The industry does not see this in this way. There
is a major question asked very frequently by the management. What is the return on
investment?

1.4 Return on Investment

The formal methods dilemma today (quoted verbatim) [32]

If formal methods is a best practice of software engineering, then an engineer who does not
employ it is either negligent or incompetent. But formal methods is beyond the capability of
typical software engineers (otherwise, why do we need formal methods experts and
researchers?) or is too time-intensive to employ, so it cannot be considered to be a best
practice today.

The question of return on investment was posed on the LinkedIn, and this
elicited some very useful insights and viewpoints into the use of formal meth-
ods and how it is perceived by the community and the management. These views
are presented verbatim (with minor language corrections) here

1. Formal methods as such have no ROI on themselves. They are supporting tools.
But when used wisely in the context of the whole engineering process, the ROI
can be enormous, albeit often indirectly. It starts with having correct
Requirements/Specifications. One can see that what follows as a kind of
compilation/translation process. Hence, formal methods can help in the abstract
thinking to get the Requirement/Specifications right (and complete), whereas
their use in the subsequent steps is more one of verification that it was done
correctly.
A major ROI that is often overlooked is that it can make systems a lot more
efficient: firstly because they will be less complex and will take less resources,
and secondly because the cost of correcting errors later on can be very expensive
and is a function of the complexity. We witnessed this dramatically a few years
ago when redeveloping our RTOS kernel from scratch using formal methods
(using TLA+). The code size shrank with a factor 10. Maintainability was a lot
easier too.

2. Before selling formal methods to managers and “pencil pushers,” you need to
sell them to practitioners. Not enough of them are comfortable with the theory
and logic underlying formal methods. Then, although English is prone to all the
mistakes talked about in too many papers on “How to engineer requirements the

6 M. Nanda et al.



wrong way,” it is learned by many and flexible enough to capture any thoughts
and requirements in any domain, which formal methods are often not.

3. Frequently the fact that formal methods do not solve a problem which the
industrial engineering teams believe that they have, along with lack of
tool support, which can be a show-stopper. Lack of commercial awareness and
poor cultural fit between the researchers and practitioners (is another cause).

4. From a science-philosophical point of view, you would need to carry out a lot of
systems engineering projects TWICE—always in one version with formal
methods and then simultaneously also in another version without formal
methods—such as to have a proper control group (for example, in pharma-
ceutical experiments with a placebo control group). Alas, such project dupli-
cations are never and nowhere done, because the duplication costs would be too
high—nobody would like to pay the price of such a science-philosophically
solid comparative empirical study. Alas, any “case study” without control group
is at best “anecdotal”—in the worst case completely worthless from a scientific
point of view.

5. “What are the issues in transferring researchers-driven technology to industry?”
Well, when the question was applied to formal methods, the answer was that the
methods themselves are the biggest issue. Most of the formal methods we know
today are not designed in the first place with industry-end users in mind. To the
best of my knowledge, I have seen no publication that evaluates a formal
method from the perspective of industry participants who could share insights
into why they like/dislike a method.

6. We have been very successful with using formal models in OS development.
However, every time we start a new project using formal models, we have to
face the question on how detailed the model should be. If it is too detailed on an
industrial serious software project, formal models will very soon reach its
practical limits. On the other side, with increasing abstraction levels formal
models lose their additive effect rapidly. We noticed that there is no one-fits-all
solution for that. We did not also find yet good decision criteria to help us on
finding the right abstraction level for a formal model.

7. I’d say it depends on what you are designing. If you look at it from a pro-
cess perspective, the whole software development process is like a funnel, from
vague requirements over a (hopefully) not so vague design to a concrete
implementation.
While this is usually fine for systems where there is no “right” or “wrong”
solution (the look and feel of a Web shop, for example), other systems are much
more restrictive. You do not want to be vague about alarm and shutdown criteria
in the control software of a nuclear power plant or in aircraft control.
So I think using formal methods will be worthwhile in only some scenarios,
while in others semi-formal notation (such as UML) will suffice.

8. The initial hurdle, when a formal method of some sort is suggested, is usually
ignorance. The people who are in a position to decide what methods and pro-
cesses to use will be familiar with the current fashionable techniques, but regard

1 Formal Methods—A Need for Practical Applications 7



formal methods as somehow very difficult, outdated, and impractical—and
usually that is all that they know (i.e., they have no experience, but they know it
so surely that it is enough to decide against using such methods—“everyone
knows this”).

If you get beyond that, they may accept a trial of some sort, perhaps running in
parallel with more traditional informal methods. As soon as they see the notation
and realize that it is not familiar—or heaven forbid, has some letters upside down or
reversed—they will assume that your specification is “difficult” (as “everyone knew
it would be”). If you have a notation that allows you to use the text “forall” and
“exists” instead, you may make a little headway, but then you may bang into
another difficulty where the designers who are used to writing informal specifica-
tions suddenly realize that you are suggesting that they write in a notation which
will not allow them to make hand-waving generalizations any more. This suddenly
sounds like a lot of work, and they may go off the idea, saying that it is too
expensive (as “everyone knew it would be”).

If you get beyond that, you need to convince the implementers to faithfully
implement what the formal specification describes. Your chosen method may
include the refinement of the specification into code, in which case engineer
ignorance will usually scupper you again—it will be rejected as too difficult and
expensive. If your method is more lightweight, the implementers will look at the
carefully crafted specification, wonder why you bothered, and then implement
something that *they* understand which approximates what you said—probably
based on the natural language supporting description. In other words, they will try
to do what they usually do with informal specifications, and your hard work will be
deemed a waste of time.

Luckily, if you can get past the implementation stage, the “payback” of the
formal specification in terms that the integration and system test teams need is
usually well received. You need to provide them with some sort of animated oracle
based on the specification, or a set of generated test descriptions and results which
they can use directly. But compared to their normal job of trying to figure out what
to test from vague, incomplete and often inconsistent specifications, this is a dream
come true.

Along the way, you will struggle to convince project management that the
increased up-front cost of specification (“design”) will be more than paid back
during the implementation, test, and maintenance phases. Project managers are
usually measured by delivering jam today, and kudos for bringing in the jam during
test and maintenance will usually go to another manager anyway. So this means the
managerial buy-in has to be at a level where the overall program costs matter over a
considerable timescale. Unfortunately, at that level awareness or interest in the
details of the development process is rare, and worse you will find it hard to
produce evidence to back up the cost saving claim (though there is some, it is not
“industry accepted”).

8 M. Nanda et al.



So the short answer is that there are many difficulties introducing formal
methods. But I would be very interested to hear if anyone has found effective ways
to solve them!

These in general summarize the views on the usage of formal methods in the
industry today. This is also supported by the many surveys on usage and problems
of using formal methods in the industry.

1.5 A Need for Case Studies

There are barriers to the application of formal methods in projects. This is brought
out in the survey in the aerospace industry [33]. The first barrier is education. This
is also brought out in the LinkedIn discussion on “need to sell it to practitioners.”
General education on formal methods is needed especially for the engineer. This is
a major gap that needs to be filled. The universities are working on formal method
tools and improving them. This is still a mathematical and algorithmic exercise.
The practicing engineers need to be shown the practical aspects of the use. It should
start as tool use exercise and build up the mathematical background around this
practical application to remove the “magic” of the tool. At a company level certi-
fication authorities need to be educated on how to evaluate the formal
method artifacts. A tool qualification is not the only solution. The formal tool needs
to be seen as an additional engineering tool to validate requirement. It should be
acceptable as the “bode” command or the “fft” command of the control and signal
processing tools today. This ease of usage will only come with the use of these tools
on many projects and benchmark problems.

The second most barrier is the tool themselves. The tools today do not cater to
all types of problems or the workflows. There are far too many tools in the market.
This is somewhat like the early days of the Computer Aided Control System Design
(CACSD) tools [34]. Every laboratory and university had its flavor of the control
system design tool. This is today standardized into a few commercial tools. The
commercial tools available today do a lot of practical work. They are excellent in
finding issues in mode transitions and logic. The safety critical system is however
not limited to these alone. The dynamics of a control system are so different with
time-varying entities. It is always possible to have very high values of variable
inside the compiled code even though the inputs are limited. This appears strange to
computer engineers but such odd behaviors have caused failures in flight [35].

The third barrier is the industrial barrier. Often enough we see projects are
already on their way with the Plan for Software Aspects of Certification (PSAC)
already frozen. The argument provided by the project teams is “yeah, this is good,
we wish you had approached us two years back.” In the case of new projects, the
standard reply is “we are having legacy code—which has NO errors.” At such
times, reminding the team of the Arianne 5 mishap does not win votes for the use of
formal methods in projects. We have seen interesting work being done on proof of
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concept of proving the efficacy of the tool on many projects. The results are good
but it is either too late or not budgeted for in the project plan.

These three main barriers to the implementation of formal methods require a strong
push from the formalmethods community to overcome it. The inertia is too large for an
individual or a project group to overcome. This workshop hopes to build this
ecosystem for formal methods practitioners. Some of the papers presented here indi-
cate a positive trend toward acceptance of the methods in safety critical applications.

1.6 Paper Summary

There were four invited papers which are not available as part of this compendium.
The twelve papers present different views and ongoing work on the use of formal
methods in research, industry, and academia. There is a variety in the papers from a
unified-framework architecture which integrates various formal method tools used
in the development of safety-critical systems and their underlying software to a
university paper on UTM firewalls. A paper extends the paradigm of constrained
objects with a temporal component which caters to the time-varying aspect of
vehicular systems. Another paper presents the use of AADL for safety validation of
an embedded real-time system. The usage of tools such as NuSMV, Simulink
Design Verifier, and SCADE is covered as industry experience papers. The future
of the use of formal methods is brought on in a conclusion as “increasing com-
plexity of SoC designs and the software algorithms and the distributed form they
take, combined with the short release cycles of hardware and software, it is no
surprise that formal methods will be a key technology in ensuring reliability of
future software and hardware designs.”

1.7 Final Words

An ounce of practice is worth more than tons of preaching

—Mahatma Gandhi

This is a quote that will help the formal methods community to move forward.
There is a need for a platform where even small proof of concepts are shared with
the community at large. The tool vendors, the partitioning engineer, and the aca-
demia need to get together to solve the engineering problems now after 20 or more
years being in the academic domain. The more we use the tools and apply it to the
problem at hand, the more will we be dexterous in the usage of the methods. The
finals words are not ours.

Some people don’t like change, but you need to embrace change if the alternative is disaster

—Elon Musk, founder, CEO and CTO of SpaceX
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Chapter 2
Formal Methods and Tools for Safety
of Critical Systems

K.S. Kushal, Manju Nanda and J. Jayanthi

Abstract Advances in the quality of Safety-Critical Software Systems are very
much essential in addressing the correctness, safety and security attributes of the
system. The development processes of such critical systems are imperative at
corresponding stages in accomplishing its key attributes. The use of formal methods
and tools coupled with formal verification techniques presumes explicit definition
of system and its properties which meets the specifications. A meticulous mathe-
matical notation used to represent the critical systems at early stages of their
development process is the substratum of Formal Methods. Model checking, a
formal verification technique, encompasses specification and modelling languages
that improve the overall software architecture. This paper describes various tools at
different phases of development process of Safety-Critical Systems, aiding formal
methods and verification techniques in software practices. Also we present a
unified-framework architecture which integrates various such tools used in the
development of Safety-Critical Systems and their underlying software.
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2.1 Introduction

The use and application of mathematical techniques, Formal Methods, in exploring
the systems relative behaviour is benefitted with predictive and accurate compu-
tation of properties of the system. Safety-Critical Systems are such systems which
exhibit discrete behaviour and state diversifications, with abrupt transitions
enabling the state changes successively. Formal Methods defy this distinct beha-
viour of these systems and predicts the system properties with the help of mathe-
matical models. Such models also ensure in improvising the quality attributes in
developing the system. This in turn increases the confidence in achieving highly
integrated software. The formal methods mandate the use of formal specifications
and models using formal languages during the development life cycle. The formal
specifications govern the development stages such as design, architecture, imple-
mentation, coding, verification, validation and maintenance. These provide an
accurate means of predicting and analysing the behaviour of the system.
Application of these in the early stages of design and development life cycle of the
software system provides corrective and preventive measures in their specification
for the determination of their satisfiability.

With the use of formal methods and its techniques a compelling capability of
improving the quality of the software being developed is provided, by the mathe-
matical models/theorems [1]. During recent times, with the advances in the com-
plexity of the hardware and the software counterparts of the Safety-Critical
Systems, a rigid and a robust technique is very much required during its devel-
opment phase in their entire life cycle. Various qualitative metrics are to be con-
sidered in analysing the impact of the application of formal methods from that of
the conventional methods. Quantifying the software of Safety-Critical Systems in
applications such aerospace, security applications (such as Net-Centric Warfare and
Cyber-Physical Systems), pose a great challenge in assessing their qualitative
metrics for functionality, safety and security. Safety, reliability and security are the
major concerns in engineering an integrated module for Safety-Critical application.
The consideration of these criticalities early in the development phase provides
substantial foundation and enhances the efficacy of the application of formal
methods and their supported tools. In addition to these methodologies, formal
verification techniques yield affirmative solutions in deciding the critical decisions
and theories involved in the design and development of Safety-Critical System.
These further induce a sense of confidence in the practical developmental proce-
dures of the software counterparts for Safety-Critical Systems.

In this paper, Sect. 2.1 gives an introduction about the need for Formal Methods.
Section 2.2 provides an insight into the pre-work about the formal methods and
tools for Safety-Critical Systems, while Sect. 2.3 gives an approach adopted in
presenting a unified-framework architecture for the application of formal methods in
Safety-Critical Systems. Section 2.4 deals with the conclusion and future scope of
the work presented in this paper.
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2.2 Literature Survey

2.2.1 Formal Methods-Based Database—Intelligent
Knowledge Database (IKD)

Over a decade, several processes aiding the enthusiasts, researchers and developers
in retrieving the information related to formal methods and formal verification
techniques have proven to be a major impediment. These kinds of information
retrieval systems and engines needs to be intelligent and flexible in making the
search options and the process of recovering the necessary information much
simpler and user friendly. Such systems handles humongous amount of data per-
taining to formal methods. Dr. (Ms.) Nanda et al. proposed an intelligent, inte-
grated, unified and efficient intelligent knowledge database system [2]. This system
served the purpose of retrieving the information from a single source. This is very
much essential in enabling the analysis of safety critical applications wherein the
formal methods and the formal verification techniques are applicable. The IKD tool
acts as an extensible knowledge-based tool which provides with the crucial infor-
mation pertaining to formal methods, their applicability and the tool support
comprehensively. This tool is very robust with the segregation of the information
related to these methodologies and its applications at abstract phases of the
development life cycle. This tool basically makes use of the keyword search engine
[3] as proposed by Monika Henzinger in retrieving the Web Information. Thus, this
tool is alike encyclopaedia for various formal methods and formal verification
techniques, as well as the supported tools/tool chains along with their application
differentiated under a broad classification set.

In the due course of design and development of such a knowledge database [4], it
was surveyed that there tends to be a skeptical view about the usefulness of these
methodologies and techniques. Also the need for a unified platform wherein such
methodologies and techniques alongwith their respective tool support can provide the
necessary artifacts supporting the need to consider such methodologies. This in turn
enhances the safety-critical system’s software counterpart expectations as desired.

2.2.2 Development of Tool Related and Tool Applicability
Metrics

The advancements in the software counterparts of Safety-Critical Systems are
flourishing. This has resulted in an increase in the functionalities being embed in the
software. This is as a result of a substantial increase in the number of electronic
components within avionics systems. As an impact of these there is an increase in
the automation required to address the criticality that are involved in their devel-
opment life cycle. All these factors yield a lighter-greener aircraft with state-of-art
technologies, control and functionalities. The association of formal methods and
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formal verification techniques with the adherence to the standards has found
acceptance for evolution, over a wide spectrum of methodologies, tool and tech-
niques which can formally meet the specifications as desired.

A one point solution to this problem is to use normal conventional techniques
and methodologies. These techniques which are aided by their respective tool/s for
specific phases in their developmental life cycle are utilised. The analysis of the
results at each stage in their development life cycle—i.e. requirement, architecture,
design, code and testing are performed to ensure the software safety and reliability
of certain Safety-Critical Systems. This proves to be more tedious and costly in
producing the desired quality of safety-critical software [5]. From the rigorous
analysis, it was evident that the conventional techniques were less effective and
efficient because of the below factors:

• Highly person dependent—varies from individual to individual (interpretation
of the specifications)

• More effort was required in terms of time and money

These factors are derived by the type of tools, their capabilities, operating
environments, feature-set and their engines based on the applications for which they
were used. Also the metrics generated by these tools or tool-set is also evaluated
under various scenarios in order to conclude that conventional methods or tech-
niques are not best suited for such kind of applications. Using formal methods and
techniques, associated tools were found to provide with much better quality output.
This plays a very crucial role in instigating a high level of confidence in assuring
the correctness and completeness of the software. It was also found that the com-
pliance to the specifications was formally proved. The metrics such as complete-
ness, property violations, verification of the critical specifications and its properties,
and validating the output with that of the specifications [1] with the generation of
test cases were evaluated.

2.2.3 Development of Process Related Metrics

The processes in the development life cycle for safety-critical software are the
phases relevant to their development process, as shown in Fig. 2.1. These are
broadly classified intothe following:

i. Requirements Capture and Management: The specification of the
requirements for the design and development of the software desired for the
Safety-Critical System. These specify the required functionality that is desired
for the Safety-Critical System to be embedded with.

ii. Architecture Design: The capture of the requirements and interpretation of
the entire software as blocks, with the behavioural metrics such as data flow
representation and control flow representation.
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iii. Model Design: The implementation of the software behaviour with the
specification of required attributes and necessary arguments. This also
includes the mechanisms and the objectives that conform to the actual
specifications.

iv. Auto-code/Manual Code: The annotation of the attributes, arguments with
the specifications, written usually using a high-level language (C, C++, JAVA,
Ada) in representing the desired system. This is either manually generated or
automated from the design or sometimes from the architecture design.

v. Testing (Verification and Validation): The verification of the annotation
with the inclusion of pre and post conditions in validating the system per-
formance. This can also be either automated or manually written with suitable
constraints as assertions, flagging the time consumption in the process. This is
dependent on the type of compilers used and the language in which the code is
generated (if automated) or written (if manual).

2.3 Approach

With the application of conventional Software Development Life-Cycle (SDLC),
there is zero automation and it requires manual intervention at each individual and
relevant phases. Also there is no application of formal methods and techniques in
conventional SDLC. This proves less effective with the necessity for lot of manual
effort, time and cost. The evolution of this particular methodology resulted with

Fig. 2.1 Software development life-cycle—V Model
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partial automation of the SDLC as Model-Based SDLC. This process stands ahead
with more effectiveness as the manual effort required is comparatively less (only
required at suitable phases, with application of formal methods and techniques also
at certain phases), and also cost and time effective. The complete automation of the
entire SDLC with the integration of various formal methods and techniques, tool/s
that support formal methods and techniques are included. This provides a seamless
transition from one phase to another. This also ensures the correctness and com-
pleteness of each phase. This is basically dependent on the tool or sets of tools used
while automating the entire process.

The evaluation of metrics generated from the inherent phases of SDLC and the
tool/s support at each phase of development, suggests a need for migration from no
automation process (conventional SDLC) to complete automation. This helps in
imbibing a higher confidence level at relevant phases of development of software
for a particular Safety-Critical System. The exclusive implementation of formal
methods and formal verification techniques in either of the processes will adhere to
one of the standards in their field of application such as Aerospace (RTCA
DO-178B/C [6, 7], ARP 4761 [8]), Industrial (IEC 61508 [9]), Military
(MIL-STD-254 [10]), with the assurance of a seamless integration of various tools
and techniques that are based on formal methods.

2.3.1 RTCA DO-178B/178C Software Development
Life-Cycle

The Aerospace standard RTCA DO-178B/178C SDLC includes the following set
of details at each phase, which are necessary for software to be qualified. This is
without the supplements and there is no mandate as for the application of formal
methods and techniques. There are two phases [6]:

1. System Life-Cycle Phase

i. Planning Process

a. Plan for Software Aspects of Certification
b. Software Development Plan
c. Software Configuration Management Plan
d. Software Quality Assurance Plan
e. Software Verification Plan

ii. Development Process

a. Software Requirements Data
b. Software Design Description

iii. Verification Process
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a. Hardware Software Integration Test Plan
b. Low Level Integration Test Plan
c. HIS Verification Cases and Procedures
d. Verification Results

2. Certification Phase

i. Software Accomplishment Summary
ii. Software Configuration Index
iii. Software Life-Cycle Environment Configuration Index
iv. LLI Test Report
v. HIS Test Report
vi. Traceability Matrix—Traceability of System Requirements to Software

Requirements and Software Requirements to Test Cases.

The above-mentioned phases are in coherence with the RTCA DO-178B
workflow. With the inclusion of formal methods and the process of automation, the
standards have been evolved with additional supplements being provided with
DO-178C as follows:

1. Tool Qualification (RTCA DO-330)
2. Model-Based (RTCA DO-331)
3. Object-Oriented (RTCA DO-332)
4. Formal Methods (RTCA DO-333)

The standards mentioned above mandates the use of formal methods and tech-
niques accordingly depending upon the type of the software being developed.

The work in this paper concentrates on automating the SDLC and provides a
seamless integration between various tools either developed in-house or commer-
cially off-the-shelf tools. This also aims at integrating various formal techniques
such as formulae, theorem provers, model checkers. The approach is defined based
on various tools or set of tools that are supporting formal methods and techniques,
at different phases of the development process of the software for Safety-Critical
Systems. This forms a basis for the development of a unified-framework archi-
tecture that provides a single platform to integrate various formal methods-based
tools and techniques and also handle the process of SDLC with much ease. This is
done with the development of expertise over the appropriate tools at the appropriate
phases by means of case studies. Also the metrics generated by these tools or
techniques at each phase, for the safety application, are analysed by means of case
studies. Each case study to substantiate the SDLC process is being followed with
RTCA DO-178B Level A Criticality.

At each phase of the SDLC in the unified-framework architecture, the software is
subject to extensive formal methods. The application of the formal methods and
techniques in the unified-framework architecture monitors the process at each phase
substantially supported by the analysis also based on formal methods and tech-
niques at their respective phases. The dependency of each with their subsequent
phases is addressed by this framework. This also provides a backward traceability
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and compatibility with the phases in the development life cycle, as shown in
Fig. 2.2. The safety analysis of the software is addressed in the analysis of the
software at its relevant phase. The unified framework also supports the conventional
and partially automated workflows apart from the complete integrated automation
in order to compare and evaluate the metrics. The framework also provides the
standard guidelines and also mandates the application of criticality levels at suitable
phases and applications.

For example; the safety analysis at the architecture phase is analysed with the
help of FTA (Fault-Tree Analysis) [11], and FMEA (Failure Mode and Effect
Analysis) [12], with the help of formal tools such as OpenFTA [13] and OSATE
[14] respectively. The metrics generated by these tools are evaluated to establish the
robustness and also include high-level confidence in the development of the
software.

2.4 Conclusion and Future Scope

The analysis of the metrics generated from various tools or set of tools, their eval-
uation led to the need for the development of a unified formal guidelines, metrics for
safety and security applications. This is needed in order to ensure the necessity for
such applications and at CSIR-NAL we are developing a unified-framework
architecture to seamlessly integrate tools and techniques, proving their applicability.
As a part of the future work, design and implementation of the unified-framework is
being carried out. The metrics are generated with extensive case study from the
unified-framework for benchmarking the formal methods-based tools and tech-
niques. This activity is also being carried out at CSIR-NAL. The improvisation of
these benchmarks will also be handled in future by taking case studies from various

Software Development Life-Cycle 
(SDLC) 

Unified-Framework Architecture 

Requirement 
Phase

Architecture 
Phase

Design 
Phase

Coding 
Phase

Testing 
Phase

Fig. 2.2 Unified-framework architecture
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other safety applications such as medical, military. It is also planned to integrate the
safety semi-formal method-based techniques as a part of this unified-framework.

Acknowledgements The authors would like to thank the Director, CSIR-NAL, Bengaluru for
supporting this work.
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Chapter 3
Taming the Enemy: Framework
for Comparative Analysis of Safe
String Libraries

Manupriya Srivastava, T. Rajani, S.N. Anitha Kumari,
Chitra Viswanathan and Subrata Rakshit

Abstract Strings are of special concern in secure programming because they
account for most of the data exchanged between an end user and a software system.
Weaknesses in string representation and manipulation have led to a broad range of
software vulnerabilities in C language programs. Over the years, several safe string
libraries have been written in an attempt to prevent these vulnerabilities. The
purpose of this work is to develop a framework for comparative analysis of safe
string libraries. This encompasses (a) devising metrics for comparison of safe string
libraries (b) creation and execution of testsuites for each library under consideration
with the purpose of calculating the comparative metrics. This framework can be
used as a sound basis for recommending the usage of a composition of specific safe
string libraries.
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3.1 Introduction

Strings—such as command-line arguments, environment variables, and console
inputs—are of special concern in secure programming because they account for
most of the data exchanged between an end user and a software system.

Weaknesses in string representation andmanipulation [1] have led to a broad range
of software vulnerabilities and exploits. Many of these vulnerabilities in existing C
code result from the use of potentially dangerous functions such as strcpy(), strcat().
Unfortunately, because these functions are standard, they continue to be supported,
and developers continue to use them—often resulting in disastrous consequences.

3.1.1 How Are Strings Represented in C?

A string in C is a contiguous sequence of characters terminated by and including the
first null character as shown in Fig. 3.1. The length of a string is the number of
bytes preceding the null character. The size of a string is the number of bytes
allocated to the array associated with the string. For a properly null-terminated
string of type char, length <= (size −1).

3.1.2 Common String Issues in C

Unbounded string copies

An unbounded string copy happens when data is copied from an unbounded source
to a fixed size destination string, which may result in overwriting of the adjacent
memory. Use of dangerous functions such as gets() and strcpy() leads to unbounded
string copies.

Off-by-One Errors

An off-by-one error occurs when the space allocated to the string is one less than the
size needed to hold the terminating null character.

Fig. 3.1 Representation of a string in C
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Null-Termination Errors

If a string is not properly null-terminated, string operations, such as strlen() and
strcpy() will give incorrect results.

String truncation

String truncation issues are caused, to a certain extent, by efforts to prevent buffer
overflows. It is often recommended by security experts, to use functions that limit
the number of bytes copied. Example, use strncpy() in place of strcpy() and
snprintf() in place of sprintf(). While these safer functions may be effective in
mitigating buffer overflows, they often result in truncation of strings.

3.1.3 Why Are Strings in C the Way They Are?

It has been known for a long time [2], that for safe string handling, one can use an
array and put a pointer at the beginning of the array which points to the end of the
array as shown in the Fig. 3.2.

This would solve many of the issues mentioned in Sect. 3.1.2. This would also
prevent string truncation due to inclusion of null character in the middle of the
string. Furthermore, by enforcing bounds checking, it can be made much harder to
overwrite adjacent chunks of memory.

This design was, however, never adopted, because, on early 1970 UNIX
machines, memory was a scarce commodity. A null character (ASCII 0) is one byte,
while a pointer needed at least 2 bytes. This made each null-terminated string a byte
shorter than a pointer delimited string, saving lots of memory. The null-terminated
string continues to be used even today, and we continue to suffer from the asso-
ciated problems.

3.2 Safe String Libraries

String related issues have been recognized as one of the main sources of vulner-
abilities in C language programs. Over the years, several safe string libraries have
been written in an attempt to prevent these vulnerabilities.

Fig. 3.2 Pointer delimited string representation
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Safe string libraries can be categorized as static or dynamic, depending on how
they allocate space.
Static String Libraries: These libraries allocate fixed-sized strings. This means that
once the character array associated with the string is filled, it is impossible to add
excess data. Examples of static safe libraries are Strsafe from Microsoft [3],
ISO/IEC TR 24731 Specification Part 1 for Bounds Checking Library Functions
[4]. Since, in the case of static safe string libraries, excess data is discarded, data
loss is a possiblility. Hence, the resulting string needs to be fully validated.
Dynamic String Libraries: In the dynamic approach, strings are resized as required.
The dynamic approach scales better and does not discard excess data. The major
disadvantage is that if inputs are not limited, they can exhaust memory and be used
in denial-of-service (DoS) attacks. Examples of dynamic string libraries include
Managed String Library [5] from Robert Seacord of SEI, CERT, CString Library
[6] from Microsoft, SafeStr [7] from Matt Messier and John Viega and ISO/IEC TR
24731 Specification Part 2 for dynamic allocation library functions.

3.3 Related Work

A high-level comparison of a few safe string libraries was carried out by the
creators of BString library [8]. But the study is not complete and precise in as much
as they have not used any metrics.

Our study comprises a detailed and metric-based comparative analysis of safe
string libraries. Such a study is not available in the current literature.

3.4 Purpose of Work

As described in a previous section, several safe string libraries—static and dynamic—
have been created. However, how does one determine which library to use in a given
security critical situation. In current literature, there is no metric-based approach for
selecting or recommending the usage of safe string libraries. The purpose of this work
is to develop a framework for comparative analysis of safe string libraries. This
framework can then be used as a sound basis for recommending the usage of a
composition of specific safe string libraries. This work encompasses the following
activities:

1. Selection of static/dynamic string libraries for comparison.
2. Selection of parameters of interest on which to carry out comparison of safe

string libraries.
3. Creation of a test-suite for each library under consideration.
4. Devising metrics for measuring the parameters.
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5. Creating performance test cases to measure the performance of selected string
operations.

6. Comparing the performance of each library using percentile method.
7. Executing the test cases and documenting the results.
8. Metrics calculation for each library.
9. Performing the comparative analysis of static and dynamic safe string libraries.

3.5 Selection of Libraries

From a list of about 15 safe string libraries, after detailed literature survey and
experimentation, several libraries have not been selected for analysis for one of the
following reasons:

1. Unable to download.
2. Unable to compile.
3. No longer maintained for the latest OSs.
4. Extremely poor usability.

Finally three static libraries and five dynamic libraries have been selected to
undergo the analysis process. They are listed here as follows:

Static Safe String Libraries

1. Secure CRT Library for Windows.
2. MS StrSafe for Windows.
3. LibSafeC for Linux.

Dynamic Safe String Libraries

1. Managed String Library for Windows.
2. SafeStr for Linux and Windows.
3. MFC CString for Windows.
4. Better String Library for Windows and Linux.
5. Simple Dynamic String (SDS) for Linux.

These libraries have been compiled and tested under the following:

• Windows 7 Professional OS with Visual C++ 2010 Professional edition.
• Redhat Linux OS with gcc Ver 4.7.

3.6 Selection of Parameters of Interest

The parameters selected for comparison of safe string libraries are as follows:

1. Functional coverage.
2. Bounds protection.
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3. Performance.
4. Portability.

3.7 Creation of Test Suites

A reference list of 22 basic functionalities related to strings, as listed below, has
been created. Under each functionality, there is a reference list of possible good and
bad test cases.

1. Allocation.
2. Assignment.
3. String copy.
4. String concatenation.
5. Character extraction.
6. String comparison.
7. Inserting a character in a string.
8. Replacing a character in from string with another character.
9. Deleting a character from a string.

10. String duplication.
11. String length.
12. Joining multiple strings into one.
13. String splitting.
14. Searching.
15. Reading/scanning from stdin.
16. Reading/scanning from file.
17. Writing to a file.
18. Writing to console.
19. Conversion of string to int/long (signed/unsigned).
20. Conversion of int/long (signed/unsigned) to string.
21. Conversion of string to float/double (signed/unsigned).
22. Conversion of float/double (signed/unsigned) to string.

A test-suite has been created for each library under consideration, with test cases
for whichever functionalities and their variants are available in each library.

3.8 Devising Metrics for Safe String Libraries

Metrics have been devised for the following parameters:

1. Functional coverage.
2. Bounds protection.
3. Performance.
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3.8.1 Metric for Functional Coverage

For measuring the functional coverage of a library, only the good test cases are
taken into account. The weightage Wi, given to a library for a particular func-
tionality Fi, is calculated as shown below:

Gi ¼ 1= Total No of Good Test Cases inFið Þ
Wi ¼ Gi �

PðAvailability of Good Test Case Functionality 0=1ð ÞÞ

The usage of this metric is explained through the example given in the Table 3.1.
If, for a particular functionality Fi, there are 3 reference good test cases, then Gi

works out to be 1/3. Since for the selected library, only 2 good test cases are
available, Wi for that library becomes 2/3.

The functional coverage (FC) of the library is calculated by averaging the
weights from W1 to W22.

FC ¼ 1=22ð Þ �
X

Wi

3.8.2 Metric for Bounds Protection

For calculation of bound protection metric, only the bad test cases are taken into
consideration. Scoring of the bad test cases has been done based on the rules given
in Table 3.2.

If a bad test case does not allow any harm to be done, it gets a score of 1. If a bad
test case allows harm to be done, but returns an error message, it gets a score of 0.5.
If a bad test case allows harm to be done, but does not even return an error message,
it gets a score of 0.

Table 3.1 Calculation of Gi and Wi

Reference test cases for
functionality Fi

Availability of test cases for the library under
consideration

Good test case1 1

Good test case2 1

Good test case3 0

Bad test case1 1

Table 3.2 Rule table Impact of running bad test case Score

Does not allow any harm 1

Allows but returns error message 0.5

Allows and does not return error message 0
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Based on these rules, a scoring table has been created for all the bad test cases in
the reference list of functionalities. A partial scoring table is shown in Table 3.3.

The bounds protection metric (BPM) is calculated as follows:

P ¼ P
Availability of Functionality � Score obtainedð Þ

BPM ¼ 1= No of Available Functionsð Þ � P

For example, Table 3.4 shows the scores obtained for the concatenation function
‘bconcat’ of BString library. The concatenation operation has 5 bad test cases. The
test cases have been executed and the results have been captured in a file. The
results have been analyzed and the scores have been recorded for each of the test
cases.

Table 3.3 Scorıng table

Activity Does
not
allow

Allows but
returns some
error message

Allows and does
not return error
message

Copying a fixed string to a destination string
without allocation of memory to the destination
string

1 0.5 0

Copying a fixed string to a null string 1 0.5 0

Copying input from a file to a destination string
of smaller size

1 0.5 0

Copying a fixed string to a destination string of
smaller size

1 0.5 0

Concatenating a fixed string to a destination
string without allocation of memory to the
destination string

1 0.5 0

Concatenating a fixed string to a null string 1 0.5 0

Concatenating input from a file to a destination
string of smaller size

1 0.5 0

Concatenating a fixed string to a destination
string of smaller size

1 0.5 0

Insertion of a character below lower bounds 1 0.5 0

Insertion of a character above upper bounds 1 0.5 0

Reading a string from stdin of length greater
than memory allocated to variable

1 0.5 0

Reading a string from stdin of length equal to
memory allocated to variable

1 0.5 0

Converting a NULL string pointer to int/long
(signed/unsigned)

1 0.5 0

Converting a large int/long value and storing to
a string whose size is less than the resultant
string

1 0.5 0

Converting a int/long value to NULL pointer 1 0.5 0
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3.8.3 Performance Percentile

Test cases have been created for comparing the performance of the following
operations of each selected library:

1. copy
2. concatenation
3. search.

The following steps have been carried out to calculate the performance
percentile:

1. The average speed of the above selected functionalities for each library has been
captured in number of instructions per second over 3 consecutive runs.

2. Setting the library with the fastest performance in a particular functionality as
scoring 100%, the remaining libraries have been assigned a percentile for that
functionality accordingly. The results are shown in Table 3.5. The results in
Table 3.5 are shown graphically in Fig. 3.3.

3. The performance percentile (PP) of each library has been calculated by aver-
aging out the values obtained for the 3 functionalities for each library.

Table 3.4 Bound protection metric (BPM)—Bstrlib

Activity (negative test cases) Result Avail.
of
Func.
A

Score
obtained
S

A * S

Concatenate a fixed string to a
destination string without allocation of
memory to the destination string

Automatically
extends the memory
to hold the string

1 1 1

Concatenate a fixed string to a null
string

Throws error and the
string is not altered

1 1 1

Concatenate a null string to a fixed
string

Throws error and the
string is not altered

1 1 1

Concatenate input from a file to a
destination string of smaller size

Automatically
extends the memory
to hold the string

1 1 1

Concatenate a fixed string to a
destination string of smaller size

Automatically
extends the memory
to hold the string

1 1 1
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3.9 Results

In this section, we present the actual results on the functional coverage, bounds
protection, performance and portability of a list of static as well as dynamic libraries
and compare these values with those of the standard C library.

3.9.1 Static Safe String Libraries

(1) Secure CRT Library for Windows

Secure CRT library [9] has been created by Microsoft based on the ISO/IEC TR
24731 specification, which defines less error-prone versions of C standard func-
tions. Example—strcpy_s() replaces strcpy().

Advantages

1. It provides parameter validation

(a) Checks for null values passed to the functions.
(b) Checks enumerated values for validity.
(c) Checks that integral values are in valid ranges.

2. The buffer size needs to be passed to any function that writes to a buffer.
3. It ensures that strings are properly null-terminated.
4. It provides enhanced error reporting.
5. It provides format string syntax checking.

0
10
20
30
40
50
60
70
80
90

100 copy concatenation search

Fig. 3.3 Performance percentile of selected functionalities
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Actual Results

• Bound Protection Metric = 88.89.
• Functional Coverage = 79.55.
• Performance Percentile = 70.

Disadvantages

1. This library is still based solely on char * buffers.
2. Buffer length synchronization needs to be carried out manually.
3. It does not enhance the functionality of the std. C library.

(2) StrSafe Library from Microsoft SDK

The functions in StrSafe library carry out additional processing for proper buffer
handling.

Advantages

1. The size of the destination buffer is passed as a parameter to the functions. This
helps to prevent buffer overwrites.

2. Null-termination of strings is guaranteed.

Actual Results

• Bound Protection Metric = 38.46.
• Functional Coverage = 18.18.
• Performance Percentile = 30.

Disadvantages

1. As functional coverage is very poor, this library alone cannot be used in a
program. For functionalities such as allocation of memory, character extraction,
searching, comparison, and replacing, normal std. C library functions are to be
used.

2. BPM and Performance Percentile of this library are also poor.

(3) LibSafeC for Linux

This library [10] implements a subset of the functions defined in the ISO/IEC TR
24731 specification.

Advantages

1. Null-termination of strings is guaranteed.
2. Fewer changes are needed in existing programs.
3. Compile-time checking is supported.
4. Enhanced error reporting is provided.
5. Re-entrant code is supported.
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Actual Results

• Bound Protection Metric = 88.89.
• Functional Coverage = 61.36.
• Performance Percentile = 60.

3.9.2 Dynamic Safe String Libraries

(1) Managed String Library (Windows and Linux)

Managed string library (MSL) for C has been created by Robert Seacord at CERT,
CMU. MSL introduces a new type which is called a ‘managed string’.

Advantages

1. It allows the user to define a set of ‘safe’ characters. This can be used for data
sanitization purposes.

2. The user can define the default maximum size of a string. This helps in avoiding
denial-of-service attacks, in case an attacker tries to over allocate memory.

3. It provides enhanced error reporting.
4. It succeeds/fails loudly by raising a runtime-constraint violation whenever

memory cannot be allocated.

Actual Results

• Bound Protection Metric = 89.74.
• Functional Coverage = 61.36.
• Performance Percentile = 20.

Disadvantages

1. The fprintf_m() and sprintf_m() functions currently lack functionality to print
out arguments using the double or float specifiers.

2. This library is poorly defined in multi-threading environments.

(2) SafeStr for Windows and Linux

SafeStr Library has been written by Matt Messier and John Viega.

Advantages

1. Strings are always null-terminated.
2. It provides extensive functionality. Example- split, join.
3. It provides enhanced error handling.

Actual Results

• Bound Protection Metric = 90.74.
• Functional Coverage = 81.82.
• Performance Percentile = 20.
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Disadvantages

1. The functions, which interact with stdio/file, are not working as desired.
Example- safestr_readline(), safestr_getpassword(), safestr_fprintf().

2. The function safestr_ncopy() or functions which use the flag
SAFESTR_COPY_LIMIT are not working as desired.

3. It depends on XXL library [11] for error handling and reporting.

(3) MFC CString Class of Visual C++

CString Class is provided by Microsoft to extend the functionality provided by the
C++ runtime library.

Advantages

1. CString class provides constructors and operators for constructing, assigning,
and comparing CStrings and std. C++ string data types.

2. CString objects behave like built-in primitive types and simple classes.
3. It supports unicode characters.
4. A CString object throws an exception, when it runs out of memory.

Actual Results

• Bound Protection Metric = 98.11.
• Functional Coverage = 81.82.
• Performance Percentile = 23.

Disadvantage

1. CString library is not portable and is supported only on Windows platform.

(4) Better String Library for Windows and Linux (Bstring and CBString)

Bstring library [8] has been developed by Paul Hsieh. A Btring is basically a header
which wraps a pointer to a char buffer.

Advantages

1. It uses segment arithmetic rather than just having pointer arithmetic.
2. It provides enhanced error reporting.
3. Even when a function returns an error, the underlying string is not modified in

any way.
4. It provides a mechanism which helps to enforce project safety rules.
5. A C++ wrapper has been created to enable bstring functionality for C++.

Actual Results

• Bound Protection Metric = 98.18.
• Functional Coverage = 81.82.
• Performance Percentile = 90.
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Disadvantages

1. A bstring needs to be explicitly destroyed, else it may lead to memory leak.
2. There is no unicode/wide character support in bstrlib.

(5) Simple Dynamic Strings (SDS)

Simple dynamic strings [12] was created by Salvatore Sanfilippo to augment the
limited std. C library string handling functionalities by adding heap allocated
strings.

Advantages

1. SDS strings can be directly passed to std. C library functions, Example—printf
(“%s\n”, sds_string);

2. Single allocation has better cache locality.

Actual Results

• Bound Protection Metric = 62.07.
• Functional Coverage = 61.36.
• Performance Percentile = 40.

Disadvantage

1. If an SDS string is shared in different places in the program, all the references
need to be modified when you modify the string.

3.10 Conclusion

Table 3.6 shows the comparison of string libraries based on

• Bound Protection Metric.
• Functional Coverage.
• Performance Percentile.
• Portability.
• Dependencies.
• Unicode support.
• Development status.

The results for BPM, FC, and PP are graphically captured in Fig. 3.4.

Recommendations for usage

1. As evident from Table 3.6 and Fig. 3.4, BString is the better string library, as its
name describes. BString and its C++ wrapper CBString are scoring high on
bound protection, functional coverage and performance. This library is available
as open source, it is portable, and meets almost every requirement a programmer
needs. So we recommend BString as a better choice for a string library for any
kind of usage.
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2. The libraries MFC CString, SafeStr, Managed String, LibSafeC, and
Secure CRT are also scoring high in BPM and functionality. If you are con-
sidering safety as the primary criteria and are not too concerned about perfor-
mance, these libraries also are good options. In fact, CString is used extensively
in Windows programming, but it is not portable.
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Chapter 4
Dynamic Constrained Objects
for Vehicular Network Modeling

Jinesh M. Kannimoola, Bharat Jayaraman
and Krishnashree Achuthan

Abstract We present a paradigm called dynamic constrained objects for a
declarative approach to modeling complex systems. In the basic paradigm of
constrained objects, the structure of a complex system is specified through objects
(as in object-oriented languages), while the behavior of a complex system is
specified declaratively through constraints (as in constraint languages). The emer-
gent behavior of such a complex system is deduced through a process of constraint
satisfaction. Our focus in this paper is on systems whose states change with time.
Such time-varying behaviors are fundamental in many domains, especially in
mission and safety-critical applications. We present an extension of constrained
objects with special metric temporal operators over time-series data, and we discuss
their properties. We refer to the resulting paradigm as dynamic constrained objects
and we illustrate their use for vehicular network modeling. Here, the network of
roads and the roadside infrastructure are specified through objects, and the move-
ment of vehicles and associated safety and liveness conditions are specified through
time-series variables and metric temporal operators. The paper presents a language
called DCOB, for dynamic constrained objects, and examples of its use for
vehicular network modeling.
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4.1 Introduction

The advent of the Internet of Things and autonomous vehicles has transformed
conventional Vehicular Ad hoc Networks (VANETs) into an Internet of Vehicles
(IoV). IoV integrates humans, vehicles, and roadside infrastructure in order to
provide a safe and smooth flow of traffic [1]. Formal modeling and reasoning are
critically needed in IoV due to its high complexity and requirement for safety, and
this has been a topic of considerable recent interest [2–6]. This paper introduces a
natural modeling approach for a vehicular network in which the hierarchic structure
of the system is specified in an object-oriented way and the behavior of the system
is specified in a constraint-based way. Our approach was inspired by previous work
on constrained objects [7] where a physical system is abstracted as an assembly of
objects whose attributes that are subject to behavioral laws expressed as declarative
constraints. The resultant behavior of complex systems achieved by a process of
constraint satisfaction over the attributes of objects.

This paper extends the paradigm of constrained objects with a temporal com-
ponent which caters to the time-varying aspect of vehicular systems. Time-series
variables and metric temporal operators are added to the paradigm of constrained
objects and their use is illustrated through several examples. Time-series variables
record the state changes as time progresses, while the metric temporal operators
specify the overall dynamic behavior of the system in form of temporal constraints
that should hold over the system lifetime. We present a language called DCOB (for
dynamic constrained objects) and show how it can be used to model various entities
in an IoV, including vehicles, roads. The temporal and non-temporal constraints on
objects ensure a safe and smooth flow of traffic.

The remainder of this paper is structured as follows: Sect. 4.2 briefly describes
the related work in this field; Sect. 4.3 gives the syntax of the basic constrained
object language and Sect. 4.4 provides the detailed description of ‘dynamic’
extension of COB. Finally, Sect. 4.5 gives the application of Dynamic COB in the
vehicular system modeling.

4.2 Related Work

Researchers have proposed different logical reasoning approaches to capture the
unique properties of vehicular systems with a focus on the collision-free movement
of vehicles on the road. The primary objective of California PATH project [2, 6]
was the development of a fully automated highway system (AHS). In AHS, the
highway is split into different platoons of closely spaced vehicles. It defines three
essential maneuvers, namely join, split, and change, which ascertain the safe
platooning of vehicles. The network is split into different controller layers to
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provide modularity in operation. Safety is defined for collision avoidance and the
controllers verified by the proof rules. Lygeros et al. [8] presented a safe controller
design using a hybrid automaton—a very appropriate model to handle systems with
continuous and discrete behavior. The onboard and roadside controllers keep the
vehicle platoons in a safe distance by offering maximum throughput in the highway
system. Damm et al. [9] simplified the complexity of the collision avoidance system
using a criticality function, which is a quadratic function on position and velocity.
The layered approach in the system is modeled using the parallel composition of a
hybrid automaton. Vehicle under a certain critical threshold level can perform
collision-free maneuvers.

Multilane Spatial Logic (MLSL) [10] is another effort to address safety in mul-
tilane maneuvers. Here, each vehicle maintains a local view of roads and nearby
vehicles. A vehicle always reserves some area in a lane and claims area in another
lane for a lane change. The reservation, claim, position, velocity, and acceleration
are formally combined with the notion of traffic snapshot. Linker et al. [3] presents a
formal diagrammatic language called traffic diagram along with an extended 95MLSL.
Quantified differential dynamic logic (QDL) with quantified hybrid programs
(QHP) [5] is an appropriate way to model a distributed hybrid system. QHP is a
dynamic logic program to support quantified differential equation system for dis-
tributed hybrid dynamics. The safety of control system is proved in a highly modular
way. Controllers are the combination of dynamics and controls, which support
different maneuvers. The controller’s safety is verified using a proof system, which
ensures that the vehicle is always at a safe distance from its leading vehicle. Hafner
[11] focuses on a collision avoidance at the intersection based on the capture set
calculation. A set of bad states is defined over capture set based on car dynamics. If a
vehicle hits the boundary of capture set, then the control actions are initiated by the
vehicle. Each vehicle estimates its trajectory and other vehicle trajectories using
Kalman filter. Most of this approach followed an imperative modeling method to
solve the core issues in the vehicular system. The declarative modeling approach
adopted in our work is the fundamental difference compared to existing methods. We
are combining the concepts of objects and classes together with declarative con-
straints to provide a more intuitive way of modeling vehicular systems.

Constraint satisfaction problems (CSPs) have been extensively studied in
scheduling and planning in the artificial intelligence domain [12]. Hernandez et al.
[13] show the practical use of constraint satisfaction and optimization and Kilby
et al. [14] formulate vehicle routing as a constraint satisfaction problem. The
constraints are employed to minimize the shipping cost by restricting the time of
each route and the capacity of the vehicle based on the demand of each client. The
language Kaleidoscope [15] and ThingLab [16] are early attempts at the integration
of constraint satisfaction with object orientation. Kaleidoscope has support for
constraint hierarchies, multi-methods, and constraint constructors. It accepts
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user-defined constraints, and the compiler simplifies them to primitive constraints
that can be solved by a primitive solver. ThingLab [16] provides an interactive
graphical simulation environment for physics and geometry. ThingLab is an
object-oriented language with constraints for specifying the relations between parts
of an object. A constraint is defined by a rule and a set of methods for satisfying the
constraint.

The COB language provides a systematic way to represent a complex engi-
neering system using simple, quantified, preference, and conditional constraints.
The thesis [17] highlights the expressive power of COB for modeling metabolic
pathways and systems biology. The more detailed description of COB paradigm is
given in the next section.

4.3 COB: A Constrained Object Language

The constrained object (COB) [7] program defines a sequence of classes, each of
which contains a set of attributes, constraints, predicates, and constructors. Each
constrained object is an instance of some class. The grammar below defines the
current structure of a COB program.

An attribute is a typed identifier, which supports both primitive and user-defined
types defined by a class. Constraints specify the relation between attributes. The
grammar below defines the basic structure of COB constraints.
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The COB language supports simple, conditional, quantified, and aggregate
constraints. Simple constraints can be a constraint atom or a conditional constraint.
A constraint atom relates attributes using relational operators while conditional
constraints are predicated on a conjunction of literals. Creational constraints defined
the object creation constraint and quantified constraints defined by the enumeration
of attributes.

We give a simple example of temperature diffusion in a heat plate to illustrate the
use of some of the constructs. This problem can be modeled mathematically by
using Laplace’s equations in two dimensions, but the COB program below (for a
10 � 10 heat plate) captures these equations by setting up a number of constraints:
The temperature of any of the interior points is the average of the temperature
of it’s neighboring four points. The constructor initializes the perimeter points of
the 10 � 10 plate. In the example below, we have 64 linear equations with
64 unknown variables. Solving these constraints gives the temperature of the
internal points.
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4.4 Dynamic COB with Metric Temporal Operators

The paradigm of Dynamic COB extends the basic constrained object paradigm with
constructs for specifying time-varying properties. DCOB permits the use of a
series variable which is declared as follows:

series variable [initialization]
A series variable takes on an unbounded sequence of values over time. In the

paradigm of dynamic constrained objects, the concept of time as a metric unit is
adopted, and a built-in variable Time represents the current time and this variable is
automatically incremented by one unit to record the passage of time. The user can
adopt any other discrete granularity for time by multiplying with a suitable scaling
factor, e.g., MyTime = 0.01 * Time.

The temporal constraints are defined in terms of past and future values of the
series variable. For every series variable v, the expression’v and v’ refers to the
immediate previous and next values of v, respectively. These operators can be
juxtaposed to refer to successive values of v in the past or future. The past values of
v at any point in time are referred to by ’v, ’’v, ’’’v, …, and the future values of v at
any point in time are referred to by v’, v’’, v’’’, ….

For example, the declaration below introduces a series variable Position for
the positions of a moving entity, along with a constraint that its position increases
by one at each time step:

The value of a series variable v at some specific point in time can be accessed by
v<i>. This notation is often used to give the initial values for series variables. For
example, the fibonacci series can be defined as follows:
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The informal semantics of a DCOB program is that Time is initialized to 0 and
the constraints in all objects are enforced at this time. For every series variable v, its
value at v<0> is taken as the value of v. Then Time is set to 1 and the constraints
of all objects are evaluated assuming that for every series variable v, its value at
v<1> is taken as the value of v. This computation continues indefinitely but a user
has the option to terminate the computation when Time reaches a certain limit
value or if it satisfies a certain condition.

We introduce two metric temporal operators, F and G, as follows:

1. F p states that constraint p must hold at some time point in the future;
2. F<t> p states that constraint p must hold exactly after t units of time;
3. F<t1, t2> states the constraint p must hold sometime starting after t1 units of

time but before t2 units of time.
4. G p states that constraint p must hold at all time points in the future;
5. G< t> p states that constraint p must hold at all time points after t units of time; and
6. G<t1, t2> states the constraint p must hold at all time points starting after t1

units of time but before t2 units of time.

The following example provides a simple illustration of a traffic light. The
constraints state that the traffic light starts with a red light, stays at red for 120 time
units, then changes to yellow for 20 time units, then changes to green for 180 time
units, then changes to yellow for 40 time units, and changes back to red. This
behavior is repeated indefinitely.
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The metric temporal operators with the series variable enables a concise and
clear specification of temporal constraints in a real-time setting. We explain the first
constraint in more detail:

When Time = 0 the value of c = red since this is the initial value of c as
given in the constructor. At this time, the value of ’c is undefined (hence not equal
to red), and the antecedent of the above constraint is satisfied. In the consequent of
the constraint, the condition G<0,120> c = red states that c<0> = c<1> =
c<2> = … = c<119> = red and the condition F<120> c = yellow states
that c<120> = yellow. In a similar manner, the remaining constraints determine
values for c at various time points. At Time = 320, the value of c again becomes
red and the first constraint again applies. This pattern is repeated at intervals of
320 time units.

4.5 Vehicular Network Modeling

In this section, we further illustrate the application of DCOB for Vehicular
Networking specification. The temporal constraint specifications in the DCOB
framework allow one to formulate both the quantitative and the qualitative regu-
lation of time for the safety and liveness of the transportation system. Roads and
vehicles are basic objects in the vehicular system. Objects model the structure of a
vehicular system while constraints specify the rules and desired behavior in a
declarative manner. A road object represents a piece of a road in the system with a
unique id, start, and end position and set of lane objects. Each lane has a specific
capacity and the number of vehicles at each point of time represents the traffic on
the road.
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The capacity constraints in the lane class impose the traffic rules, which
guarantees that the road traffic must be less than or equal to the capacity of the road.
We have used a count predicate to obtain the number of vehicles in a lane at any
point in time. Here, Traffic is defined as a series variable which maintains the
traffic at every point in time.

The vehicle is subject to a set of movement as well as environmental constraints.
The continuous changing properties, such as velocity, position, and acceleration are
represented discretely in our model by the series variable. A vehicle occupies
different roads over time and a vehicle’s dynamics will change with the front
vehicle. Therefore, we define road and front vehicle as the series variables in the
class vehicle.
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The safety constraints ensure the safe distance from the follow vehicle. The term
‘safe distance’ means that the following car can avoid collision with minimum
breaking when the front vehicle stops with sudden deceleration. The break con-
straints are expressed in the conditional constraint with the metric temporal oper-
ator. It ensures that vehicle will stop within the next two seconds when the full
break is applied. The flow constraints express the liveness of traffic stream without
an immediate speed change. If a lead vehicle and follow vehicle move in the same
lane with the same speed and the lead vehicle increases the speed, then the fol-
lowing vehicle must increase its speed same as the front car. The temporal con-
straints guarantee that gradual change within three seconds without sudden speed
change. The destination constraints specify that the vehicle must arrive at its
destination.
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4.6 Conclusion and Future Work

Formal modeling is an important step toward the development of provably correct
systems. In this paper, we presented a novel modeling language using the concept
of dynamic constrained objects. The dynamic operators help to define the real-time
properties of the system and make use of metric temporal operators analogous to the
‘eventually’ and ‘always’ operators of propositional temporal logics.

A prototype implementation of the DCOB language has been developed using
SWI-Prolog, which supports constraint satisfaction, and the examples presented in
this paper have been tested using this prototype implementation. Our aim is to
develop a fully fledged specification language for vehicular systems that capture the
unique dynamic and safety critical properties of these systems. In this paper, we
illustrated use of these temporal operators in the specification of safety and liveness
properties of the system.

Real vehicular systems contain hundreds of vehicular nodes and roads, and
encompass complex notions such as path finding, dynamic route selection,
maneuvers. We plan to integrate the concepts of preference and constraint hierar-
chies in DCOB in order to deal with complex safety and liveness properties of
advanced vehicular systems. In modern vehicular system, roadside and other
infrastructural units play an important role in the safe and effective movement of
vehicles. The future model must include such infrastructure objects as well.
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Chapter 5
Adoption of Formal Methods in Software
Safety Analysis

Ankita Srivastava and S.K. Goswami

Abstract Safety analysis of hardware component of computer-based system (CBS)
is very much standardized with failure mode and effects analysis (FMEA) and fault
tree analysis (FTA). However, safety analysis of software components is very
abstract. As quantitative software reliability analysis is still a subject of academics,
safety analysis is generally approached over qualitative study. Model-based system
design has eased the study which support host-based simulation to establish the
correctness of the linkage derived out of the manual effort. If the system size
increases, it becomes difficult to capture all scenarios as well as correctness of the
analysis. As completeness is very difficult to establish, this particular paper tried to
establish correctness of the analysis using formal method. The main safety analysis
is done through manual identification of software components and developing fault
tree. Subsequently safety property is designed based on system requirement derived
from system’s intended function on fault condition. These safety properties are then
subjected to formal proof engine to identify existence of any false path. If no such
path is found, the analysis is proven to be correct.

Keywords Formal methods � Safety analysis � Fault tree analysis
Fault modeling � Model based design

5.1 Introduction

In order to develop any system, the design process must be based upon a sound
model that captures important features of any system. If we design any system
traditionally, there are chances that it is inconsistent, incomplete and unambiguous.
Much depends on human expertise in traditional methods of system development.
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Use of Formal Methods requires mathematical notation to specify a system. It
should have deterministic semantics which allows building of a clear mathematical
model consisting of a set of data flow equations to build system design. While
doing safety analysis of our system, we should know which faults can occur and in
how many probable ways those particular components will fail. Hence, it is
required to understand how to describe a formal model describing both the system
behaviour and the fault behaviour.

5.2 Work

We followed a method of incorporating safety analysis techniques in a formal
model used for design of our system. For this job, the formal language is chosen as
SCADE which is based on Lustre for declarative behaviour and Esterel for
imperative behaviour. The proof engine is chosen as Design Verifier which accepts
SCADE language as input and subsequently applies model checking techniques of
formal verification. System contained various modules which in turn had sub
modules and the way these major modules are interconnected is also shown in
Fig. 5.1. We generated safety properties from specification and verified if the
properties are satisfied against the model. Formal Methods enables us to prove that
a design is safe w.r.t. its requirements. This allows finding bugs very early in design
cycle. Also, we can tell that a system is free from bugs using model checking
method provided by DV.

We did fault tree analysis to identify exactly which events will lead to an iden-
tified undesirable event and then we will evaluate behaviour of the system in the

Fig. 5.1 Top view of model of our system
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presence of those events. If those events cannot be eliminated, then we will make our
system to go into a failsafe scenario in presence of those events. FTA will also
eliminate many events from the fault tree. In this way, we will get to know behaviour
of our system in the presence of a particular event or combination of events.

When system model is combined with the fault model, formal method can be
used for automated support for behavioural safety analysis. We will get to know the
system where a particular event will lead a system and its output. Based on the
outcome, we will modify our system. Behaviour of the system and safety properties
was specified. Formal verification technique was applied to prove that model sat-
isfies all safety properties. The Fault modelling was done as it is required to apply
formal verification tools to perform safety analysis. Validation of correctness of
fault tree that was constructed was also done.

Further details are stated in steps as followed in the works.

Step 1. Formalizing derived safety requirements:
An observer operator was designed consisting of the complete system and
the desired property. It was then verified that whether property is always
valid throughout the system or is falsifiable somewhere (counterexamples
will be generated). This whole exercise guarantees exhaustiveness.

Step 2. Fault tree analysis:
While doing safety analysis of our system we should know which faults
can occur and in how many probable ways those particular components
will fail. A fault tree model enables us to understand where the system can
fail, how it can fail etc. We will list down all the possible single events or
combinations of events which will lead to the top event. An example fault
tree is shown in Fig. 5.2.

Step 3. Fault modelling and formal proof:
Various faults that we have listed out in fault tree will now be added in our
system model. We will add failures in all the possible ways in which they
can occur, i.e. all the basic events of the fault tree.
The procedure now is to consider faults which are likely to occur in the
system and then improve the model to handle these faults and compute the
result on the output(s) with each fault present. If system is behaving cor-
rectly even in the presence of the chosen set of faults, then the system is
considered to be fault free.
We did analysis of failure of individual modules too.
Each fault was injected (i.e. modelled in our model), and we validated our
safety properties once again (this time in the presence of such faults) and
found out some faults were not affecting any of the safety property and
some were. In this way, we evaluated our fault tree for correctness and
validated it. On basis of this analysis, our system was rectified and made
more fault tolerant. This shows that the system will be able to handle all
these faults, i.e. either rectify them or take the system in a failsafe direction.
One of the examples of safety property associated with a fault:
If there is ADC fault, depending on the parameter either setback relay
or trip relay will de-energize (Fig. 5.3).
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5.3 Conclusion

In the absence of quantitative method of studying software reliability, performing
safety analysis is very challenging. It becomes very difficult to demonstrate failure
of particular module lead to which direction of system failure. However, the
technique adopted here gave ample scope of identifying the system behaviour in
case any particular component is either not available or fails in unsafe direction.
Even then, when the system model increases in size it becomes extremely difficult
by manual inspection on the correctness as well as adequacy of the analysis. Formal
analysis-based safety property derived out of FTA greatly reduces the rigour of
reviewing the safety analysis. Because of model driven design using formal lan-
guage ensures very limited extra effort to assess the adequacy of the FTA. However,
selection of formal language supported by model driven design and supporting
proof engine greatly influences the outcome. In our case, SCADE and DV were
used. However, DV like many other Model Checker is constrained by size of the
design as well as use of real numbers.
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Chapter 6
Model-Based Safety Validation
for Embedded Real-Time Systems

Gracy Philip and Meenakshi D’Souza

Abstract Architecture Analysis and Design Language (AADL) is an emerging
industry standard notation for modeling architecture of embedded real-time sys-
tems. AADL has capability to model normal and faulty behavior of the system. It
can model error behavior, for all of its components, their interactions and propa-
gations. This capability makes it suitable for modeling safety critical systems,
where fault detection, isolation and re-configuration are of paramount importance.
This paper proposes using AADL to do safety validation of an embedded real-time
system. AADL is used as a basis to systematically derive requirements and
parameters specific to safety validation at both platform level and application level.
Behavior and error models corresponding to system level AADL models are used to
derive the parameters. Such parameters can then be monitored at the system inte-
gration testing level automatically using a safety monitor. We present our ideas
using a detailed case study involving safety validation of a automatic flight control
system (AFCS) from its AADL model that includes behavior and error modeling.

Keywords Safety assurance � Architecture analysis and design language
(AADL) � Error behavior � Flight control system (FCS)

6.1 Introduction

Safety assurance of embedded system is an involved task in which expertise in
many disciplines has to match seamlessly. Functional hazard analysis and system
safety analysis are safety analysis activities suggested by ARP-4761 [8] for safety
assurance process for avionics software. These analysis activities are to be
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continuously evolved throughout the system development life cycle. As per [5],
safety is not a software property alone, even when all critical functionalities are
implemented in software. System need not be safe even when it is following all its
requirements. It means there could be lot of inconsistent and incomplete require-
ments, leading to hazardous situations, which were not envisaged. So it is imper-
ative that, we should have a systematic method of generating system models, which
could be used for specifying safety requirements and to bring out safety evaluation
criteria.

AADL [3] is a popular architecture description language used for modeling
embedded software. AADL has features include both software and platform com-
ponents, ideal for modeling architectures of embedded software and systems.
EMV2 [2] and BLESS [4] are error and behavior annex, respectively, which
enhance the capability of core AADL. AADL can be used for modeling embedded
systems systematically and further, for generation of safety evaluation criteria.

There are two aspects of safety: one is as introduced by the safety critical
functionality, failure to achieve, it will impact safety. We call this application-aware
safety parameters. Second aspect is due to the vulnerabilities introduced by digital
implementation in embedded systems environment, which were not relevant in
earlier electromechanical environment. We call this platform-aware safety param-
eters. The second aspect also includes the intricacies of human–machine interface
and complications in decision making, which are error prone. So, safety require-
ments are to be derived considering above two aspects.

In [6], we introduced a software monitor at the hardware–software integration
test level, which monitors application-aware safety parameters and platform-aware
safety parameters in real time, in parallel with requirements-based testing.
Advantage of this environment is that the system under testing undergoes all normal
and failure mode testing in this environment. These tests are executed in near,
real-time environment representative of operational environment. The safety
monitor could bring out major safety critical failures as per [6]. Selection of safety
parameters is cumbersome activity and was manually done in [6].

This paper extends the safety validation method, where in safety parameters are
generated systematically using system model generated using AADL. The em-
bedded system is modeled using AADL, its error annex and behavior annex. Safety
parameters are systematically generated from the model. We illustrate our approach
using a case study involving flight control system.

The paper is organized as follows: Sect. 6.2 introduces AADL and describes a
systematic approach to system modeling using AADL and its annexes. Section 6.3
describes our case study of a flight control system, its modeling using AADL and
typical safety aspects. We recap the notion of safety monitor and the two aspects of
safety that can be monitored in Sect. 6.4. Section 6.5 describes how to generate
safety monitor parameters using AADL models and its annex models. Comparison
with related work is presented in Sects. 6.6 and 6.7 concludes the paper.
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6.2 Modeling a Safety Critical System in AADL

Avionics Architecture Description Language (AADL) [3] allows description of
hardware and software components, networks, I/O devices, communications buses,
etc. It can also model real-time requirements including scheduling, processing, and
memory management. Interactions are modeled using data and event ports, con-
ditional and unconditional flow, and binding between components. AADL has
thread, thread groups, subprogram and process components, which can be used to
model the software application. AADL can also model different modes of a system
and their transitions under different conditions. It is possible to model processors,
memories, minimal operating system, virtual processors, virtual bus, etc.

AADL models can be hierarchical, with system of systems, system component
and subcomponents. One can inherit and instantiate particular system usage for
analysis purpose. It is possible to perform various types of analysis, such as
schedulability analysis, system latency analysis, and change impact analysis, using
its plug-in annexes. Error model annex is one such analysis plug-in, which is
especially useful for system safety analysis.

6.2.1 Error Modeling Using Annex EMV2

The error model annex [2] can be used to annotate the AADL model of an
embedded system to support safety analysis. For embedded real-time systems, there
are various types of errors which, if not handled, will lead to hazardous failures and
abortion of mission. Therefore, it is essential to identify all these systematically in
the system modeling phase. EMV2 provides support for architecture fault modeling
within the AADL model environment. Error modeling can be done at component
level, interactions between components and at composite level.

Component level error behavior: A component can be any basic element in the
system such as input/output devices, user interfaces, sensors, actuators, switches,
data bus, processors, memory devices, processes, threads, subprograms, databases.
Any component participating in the hierarchical system can be an error source or an
error sink.

There are five types of errors supported by EMV2 error library for components.
They are service error, timing-related error, value-related error, replication error,
and concurrency error. Service error can be item omission, sequence omission,
service omission, transient service omission, late service start, early service ter-
mination, etc. Timing-related errors can be timing error, early delivery, late
delivery, high rate, low rate, delayed service, early service, etc. Depending on the
kind of components, we can specify the right kind category and kind of failures.
Similarly, value-related errors can be out of range, below range, above range, etc.
Out of order, stuck value, race condition, and starvation also can be modeled using
above type of errors.
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Interaction between components: Error behavior: Focus here is on error propa-
gation between system components and with the environment. When the compo-
nent becomes an error source, how it gets propagated to other systems in the
environment, and how an incoming error is handled is also addressed here.

Composite error behavior: Composite error behavior depicts how the main
system handles or absorbs errors of subsystems. Errors which cannot be handled are
sent out to the environment in terms of a failed system or a degraded system
behavior.

Error behavior state machine modeling using EMV2: After identifying the types
of errors relevant to each component, its error behavior is to be modeled. The
presence of errors can modify the behavior of the system. Some error may lead to
failure of the system, while some other failures can be handled. Error behaviors
supported by EMV2 are fail stop, degraded fail stop, fail and recover, degraded
recovery, etc.

6.2.2 Behavior Modeling Using Behavior Annex BLESS

BLESS [4] is a framework for behavioral interface specification and verification in
AADL. Its key specifications include design specification that captures both
functional and timing properties that aligns with the AADL environment. BLESS
sub-clause has sections for variables, states, and transitions. States must be one of
initial, complete, final or execute. Assertions are used in BLESS to indicate
behavior specifications. Port assertions express what is true, when an event is sent
or received on a port. State assertions express what is true while the machine is in
that state. More details on BLESS can be found in the case study section.

6.2.3 Basic System Modeling Using AADL

For model-based safety analysis, first step is generating a system model from its
functional requirements. This section introduces a novel method for generating
AADL model manually from system functionality. AADL model has to be com-
plete in terms of its functionality, error behavior, and real-time requirements. The
following are the steps identified for the same.

Identification of input elements interacting with real-time environment: At the first
level, interaction of the system with real environment in terms of its input is to be
captured. That is, all inputs (sensors, human interface, data from cooperating sys-
tems, etc.) have to be captured. A single device input can have one or more input
data.
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Identification of processing requirements for each of the components: Processing
requirements on each of the input is to be captured next. One input can have one to
many relations to a processing system, but there has to be at least one processing
element for each of the input data.
Identification of output components: Once all functional processing elements are
identified outputs are to be mapped logically. Each functionality can be a sub-
component in the model.
Identifying major subsystems: Subsequently, each functional subcomponent within
the system can be expanded to more detailed level, maintaining the consistency of
data flow and interfaces. Each functional subcomponent can further get decom-
posed to processing subcomponents. Data and event flows between subcomponents
can be identified at this level. I/O interfaces, sensor interfaces, and software pro-
cesses are to be further expanded till all inputs are mapped to output through a flow.
Identification of system modes: Modes of operation of the system associated with
functionality due to mode of computing platform (initial, normal, degraded and
failed) are identified at this level.
Identification of processor(s), thread(s), and other hardware components: Next step
is allocation of resources that is binding processors to process and then, to threads,
attaching frequency requirement of input and output, protocols, etc. This is the
phase in which computing platform details are loaded to the model components and
model becomes a true representation of actual system.
Modeling error behavior and integrating to basic model: Once AADL functional
model as per the above steps is created, next step is to model error behavior and
integrate into the system. In this data error, event malfunctions, failure modes of
each process, transition conditions, and propagation conditions are identified and
modeled using annex EMV2 [2].
In this step, all input failures and output failures are also to be considered. All input
failures will not result in output failures, if there is an error sink in between. All
input failures are sources of failures, and all output failures have a source of failure
or sources of failures. Those failures which are having error sink have to be miti-
gated or have to be proven that there are no effects of sinking the failure to the
system failure. All other failures are to be prevented. If it cannot be prevented
redundancy has to be brought into the system. Error detection and switch over
conditions are to be modeled.
Modeling system behavior using BLESS: Functional behavior of the system in
terms of initialization, real-time events, etc. are modeled in this step. Real-time
behavior of the system is captured as thread implementation using BLESS. Such a
thread implementation typically captures the variables that the thread handles,
change of values of such variables and assertions that capture some of their
properties that need to be met.
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6.3 Automatic Flight Control System: Case Study

We now present a case study of safety validation of a digital fly-by-wire automatic
flight control system (AFCS). We discuss the AFCS, its AADL models and safety
validation of AFCS using parameters generated from AADL models.

6.3.1 Overview of AFCS

The AFCS (refer to [1] for an example) is a dual channel digital automatic flight
control system, which helps to reduce the workload of the pilot when engaged. One
channel is the control channel and other channel is the monitoring channel, which
will be in standby mode. In case of failure of controlling channel, the monitoring
channel will take over the control. At any time, only one channel will drive the
output.

AFCS also does landing gear control activities, depending on the flight mode of
the aircraft for automatic landing. It takes inputs from inertial navigation system, air
data system, pilot stick, and autopilot panel. It also gives out data for pilot displays,
crash data recorder and gets U home system. All the six actuators will continue to
receive commands even in the case of failure of any one of the channels. There is
dual redundancy available for hardware but, no redundancy in case of software,
toward minimizing complexity in design and validation. So it is essential that the
software is almost 100% fault free, toward safe and reliable flight control.

Figure 6.1 depicts the high-level AADL model of AFCS. Figure 6.1 shows the
model of the top-level system in which two channels are interacting with the
redundancy management and control algorithms. We also include an error model
corresponding to this high-level AADL model. Each component subsystem in the
high-level AADL model is refined into a detailed system. Figure 6.2 depicts one
such subsystem corresponding to the controller. The various ports with which the
controller interacts including the devices for input, the output valves to which the
actuator commands are sent, the CCDL bus, etc., are depicted in the figure.

Fig. 6.1 High-level AFCS model in AADL

64 G. Philip and M. D’Souza



6.3.2 Error Modeling of AFCS

The error model for AFCS depicts various possible errors that we would like to
capture, as occurring in the original AFCS system. Such errors, when explicitly
captured, help designers to analyze potential faults in the system and devise
appropriate fault handling mechanisms. The text extract below depicts a small
fragment of the AADL error annex EMV2 model for AFCS. There are two kinds of
errors depicted here. In the first part of the figure, error propagation along the
discrete and analog channels is modeled, and the second part models composite
error behavior in the flight guidance (FG) subsystem and autopilot (AP) subsystem.

annex emv2f**
use types ErrorLibrary;
use behavior ErrorLibrary::Failstop;
error propagations

From rm dis: in propagation fbadValueg; 
From rm ana: in propagation fbadValueg; 
OutPort: out propagation fbadValueg;

end propagations; 
component error 
behavior propagations

Failstop-[]! outportfbadValueg;
Operational-[From rm disfbadValueg and From rm 
anafbadValueg] !outportfbadValueg;

end component;**g;

wheel_speed cont2_logic output valves
bv_out 01fcs_model_controller bv

wow_in

ebv_out 01 ebv

nose_cen rv_out 01 rv
sensor

nose_cen_in dv_out 01 dv

hyd_pump
edv_out edv

hyd_current_in

up_lock
sensor up_lock_in dt_out

gs
dt_in

ccdl_in
down_lock down_lock_in
sensor ccdl_out

FCS_model_ccdl

Fig. 6.2 Detailed AFCS model of one controller of AFCS in AADL
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The extract below is an error model corresponding to a composite behavior
depicting failure of one or more components. The actual ways in which the com-
ponents fail are not captured in the model below, but, it states whether the system
will continue to be operational, will degrade or will fail and stop.

composite error behavior
states
[AP1.Operational and AP2.Operational and
FG1.Operational and FG2.Operational 

and AC.operational] ! Operational;

[AC.Operational and 1 ormore (FG1.failstop, 
AP1.failstop) and FG2.Operational and AP2.Operational
or 1 ormore (FG2.failstop,AP2.failstop)
and FG1.operational and AP1.operational] ! degraded;

[AC.failstop or 1 ormore (AP1.failstop, FG1.failstop) 
and 1 ormore (AP1.Failstop,FG1.Failstop)
and 1 ormore (AP1.Failstop,FG2.Failstop)] ! failstop;

end composite;

6.3.3 Behavior Modeling of AFCS

The text extract below depicts a small fragment of behavior modeling using BLESS
annex of AADL. We have modeled implementation details of a thread corre-
sponding to a processing channel common for all triple redundant architectures.
Such an implementation indicates the variables manipulated by the thread, states
indicating the states of the channel and transitions involving change of states.
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6.4 Safety Validation of an Embedded System

As per model-based safety engineering, there are two important aspects of safety
assurance, first is modeling of system to make the requirements complete and
consistent and second is validation of the system specifically with respect to safety.
Once the safety requirements are complete, the next step is to validate the system.
As per DO-178B [7], there are many levels of testing, which are to be conducted
systematically. Each of the levels has their own criteria for generating test cases and
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expected results. An important point to note is that overall safety of a system can be
compromised in spite of each of the levels of testing being completely fulfilled.

We proposed the notion of a safety monitor in [6] to address this issue and
capture additional aspects of safety assurance during the integration testing phase.
Safety monitor design begins at the requirements phase, continues into design and
coding phases and is implemented as a part of the testing phase. Figure 6.3 depicts
the process life cycle that a safety monitor follows along with the existing safety
assurance life cycle.

Based on the requirements pertaining to safety and on the platform constraints
influencing safety, various parameters to be monitored are listed and these
parameters are monitored as a part of the testing phase. Application-aware safety
monitor (ASM) takes care of safety captured as a part of the overall system
functionality. Parameters to be monitored here include all application level data that
capture the behavior of the system as running in the system simulated environment.
Platform-aware safety monitor (PSM) takes care of safety interpreted as a
non-functional requirement. This includes parameters that are monitored with
respect to computing platform environment. Behaviors violating safety, if found,
are analyzed, traced back to appropriate life cycle phases and the required modi-
fications are made to repeat the process of safety assurance.

Existing methods for system safety analysis, including that of safety monitor
above, are manual, error prone, and disintegrated. There is chance of critical failure
modes arising out of interactions remaining dormant, till system integration testing.
This sets the context of our proposal.

Fig. 6.3 Safety validation as a part of system testing
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6.5 Derivation of Safety Parameters from AADL Models

AADL, through its capabilities, brings in model-based system engineering, where
in system hazards and failure modes can be identified earlier, in the requirements
phase itself. As mentioned earlier, it can model system of systems and their direct
and indirect interactions and interdependencies. Several parameters for safety can
be extracted automatically from detailed AADL models.

Platform-aware safety parameters are error behaviors of the computing platform
components, which are introduced for digital implementation. These components
and their modes can be easily picked up from the model. Introduced system
components could be processor, memory, databases, data bus, and data buffer. Input
and output ports of these components, their status modes and errors will constitute
the platform-aware parameters to be monitored in real time.

Application-aware safety parameters are error behaviors of the real-time system
components, which are not part of computing environment. These are system
components picked up from the environment which form input and output of the
model and all intermediate error behaviors in the transition path from input to
output. Modes and their transitions of certain components will also contribute to
such parameters.

6.6 Safety Validation of Flight Control System

The following is a list of platform-aware safety parameters that were automatically
derived from the AADL model. The components to which each of the parameters
belongs to are also depicted in the table below.

Platform-aware safety parameters AADL model components

Brake pressure_validity this_cont2_lgc, thread pressure_range_check

Brake_pressure_buildup_flag this_cont2_lgc, thread pressure_build_up

Mil_bus_link_status this_milbus, thread validate mil_data

Brake_command_presence this_cont2_lgc, thread_break_command

Brake_command_delay This_cont2_lgc, thread time_elapsed

AP_status AFCS3:AP, threadEngage_Autopilot

AP_interface_status AFCS3:AP,read_user_input

AP_switch_over_status AFC3:AP, thread channel_change_over

AP_hw_fail AFCS3:AP,thread check_bit_status

AP_sw_fail AFCS3:AP, thread check_wdm_status

AP1_exception_vector AFCS3:AP, device main_processor

AP2_exception_vector AFCS3:AP, device main_processor

Chn1_mode AFCS3:AP channel_status_change_over

Chn2_mode AFCS3:AP channel_status_change_over
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Similarly, the table below lists the application-aware safety parameters and their
corresponding components.

6.7 Conclusion

We have introduced a method for generation of safety criteria, for safety moni-
toring, used for safety assurance of embedded airborne safety-critical software.
Systematic method of generating consistent and complete system model using
AADL was also explained. Error annex EMV2 and behavior annex BLESS are
used for modeling of fault tolerant, real-time behavior of the system.
Platform-aware and application-aware parameters pertaining to safety can be
automatically generated from such AADL models. As a part of our ongoing work,
we are focussing on developing a tool base for automatic generation of such
parameters and going further, test cases for monitoring these parameters to be
integrated with the system level testing setup.
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Chapter 7
Arguing Formally About Flight Control
Laws Using SLDV and NuSMV

Natasha Jeppu and Yogananda Jeppu

Abstract Software systems have failed in the recent past. This is most often
attributed to wrong requirements often caught very late in the program or escapes
from the rigorous process leading to failures. There is a necessity to ensure that the
requirements are correct up front before the design and verification process start.
Formal methods have become popular these days and a lot of impetus is there in the
industry to apply these techniques to safety critical projects especially in flight
controls. This paper looks at two tools NuSMV, an open source model checker, and
Simulink Design Verifier, a commercial model checker. It is seen that these can be
practically applied to projects and design. These are very successful in finding
defects in design and requirements as demonstrated on a set of mutants.

Keywords Formal methods � NuSMV � Simulink design verifier
Safety critical � Aerospace

7.1 Introduction

Software has failed even as recently as 2015 in aerospace systems. The new bug list
of F35 published in 2016 indicates that we have not mastered the art of engineering
good software [1]. A preliminary study was reported on the use of Simulink Design
Verifier (SLDV) for aerospace application [2]. This paper described mode tran-
sition logic and demonstrated how easy it was for engineering students to work with
the SLDV software to describe behavior formally. Formal methods are mathe-
matical techniques for specifying, developing, and verifying software. This state-
ment is from the DO 333 aerospace standard supplement to DO 178C, which was
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released in late 2011 [3, 4]. This supplement brings out case studies on the use of
formal methods in aerospace software development process. A good study of use of
formal methods using DO 333 is also reported in the NASA report [5]. Formal
methods have picked up impetus in the last few years with Airbus using it for
reducing the test activity in their projects [6, 7]. Other aircraft companies are
looking at using formal methods in the certification process. This has however not
been very well accepted by the managers nor by the engineers [8].

The barriers to the utilization of formal methods in aerospace projects are
brought out in a survey [9]. The major barrier indicated is surprisingly education.
The engineer in the industry needs to be educated in the use of formal methods.
There is a need for highly trained experts in formal methods as mentors for the
engineers. Certification engineers need to be trained and educated in the formal
methods process. This also brings out the necessity for practical application papers
on the use of formal methods. There is a need for bringing out the ease or com-
plexity of use of formal methods. This paper is an attempt to capture the experiences
of using formal methods in form of the use of Simulink Design Verifier—a com-
mercial formal methods tool from MathWorks [10]. An open source tool NuSMV is
also used to compare the performance on mode transition logic problem [11].
Several models are available on the MathWorks Web site so that the community
can use it to experience the use of the tool [12].

7.2 Simulink Design Verifier

This is a toolbox from MathWorks which work on the Simulink design. It is
primarily a formal model checker. Model checking is defined as quote “Model
checking is a verification technique that explores all possible system states in a
brute-force manner” [13]. The design model is checked against the verification
subsystem which is a set of assertions. There is a facility to put assumptions or
constraints on the inputs and define an implication as a combination of logic blocks.
SLDV supports timed automata. It comes with a set of blocks that can help the user
set up time dependency in terms of number of frames. The newer version of SLDV
has a feature to take a legacy C code, make it into an S-Function, and use it with the
SLDV to find errors in the C code. An S-Function is a Simulink function compiled
from a C code and executing in the Simulink environment.

A simple example of an autodestruct system demonstrates the use of SLDV. In
an aerospace application, if the pitch angle ||Theta|| is >=25 degrees the autodestruct
flag is set to True. This is modeled in Simulink as shown in Fig. 7.1. The system
had an error—the absolute was missing in the code [1]. The formal assertions for
the system are defined in Fig. 7.2. If the angle (In) >=25 OR angle <=−25 implies
that (=>) the autodestruct (in1) input is True. The block (P) indicates to SLDV that
this needs to be proved using the inbuilt model checker. SLDV proves that the
model without the absolute is wrong and provides counter example with input “in”
set to −25.0 to prove it wrong. This is a simple example but all the complicated
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examples can be simplified in some form or the other and represented with the
logic, comparators, timed blocks in combination with the (P) block to prove a
specific assertion.

7.3 NuSMV

NuSMV is a software tool for the formal verification of finite state systems
developed jointly by Fondazione Bruno Kessler FBK-IRST and Carnegie Mellon
University [11]. It is a reimplementation and a reengineering of the Symbolic
Model Verifier (SMV) model checker developed by McMillan at Carnegie Mellon
University during his Ph.D. [14]. NuSMV checks finite state machines or systems
against specifications in the temporal logic. The language of NuSMV allows the
description of finite state systems. It supports both synchronous and completely
asynchronous behavior. The purpose of the language is to describe the transition
relation of a finite Kripke structure.

The above problem is implemented in the NuSMV language as shown below.
LTLSPEC G identifies the assertion as in the SLDV case.

MODULE main

VAR

Theta : -30 .. 30;

auto_dest : boolean;

Fig. 7.1 Model of the autodestruct system

Fig. 7.2 Assertions added to the autodestruct system
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ASSIGN

auto_dest := case

(Theta) >= 25 : TRUE;

TRUE : FALSE;

esac;

LTLSPEC G (((Theta >= 25) | (Theta <= -25)) ->

(auto_dest = TRUE));

-- specification G ((Theta >= 25 | Theta <= -25) ->

auto_dest = TRUE) is false

-- as demonstrated by the following execution se–

quence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

Theta = -15

auto_dest = FALSE

-> State: 1.2 <-

Theta = -28

-- Loop starts here

NuSMV and SLDV, both behave the same way by generating test cases as
counter examples that falsify the assertion if the absolute is missing in the design.
This is the power of formal methods that can easily validate control systems, and
safety properties in aerospace applications. The rest of the paper brings out
examples of the use of NuSMV and SLDV in proving the correctness of the system.

7.4 Autopilot Mode Transition

An autopilot is a system that ensures the aircraft flies a specific course reducing the
pilot’s workload on long flights. The innermost component of an autopilot is a
mode transition logic that changes the autopilot behavior based on pilot inputs or
internal software flags. A typical mode transition design and test method were
described earlier as an example of using assertions in validation of the design [15].
A simplified model of the mode transition is available on the MathWorks file
exchange that models only the vertical modes of an autopilot [16].

Typical vertical modes of an autopilot are the Pitch Attitude Hold (PAH) mode,
the Altitude Hold (ALT HOLD) mode, the Speed Hold (SPD HOLD) mode, the
Vertical Speed Hold (VS HOLD) mode, and the Altitude Select mode (ALT SEL)
as shown in Fig. 7.3. The PAH mode maintains the aircraft’s pitch angle fixed
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constant at the value when the mode is selected. The ALT HOLD mode holds the
aircraft’s height or altitude at a value when the mode is selected. In this mode, the
pitch angle is free to change. The SPD HOLD mode ensures that the aircraft
maintains its speed at a value when it is selected but the pitch angle and altitude can
change. Similarly, VS mode holds a constant climb rate. The ALT SEL mode is a
special mode where the aircraft climbs toward a selected altitude and on reaching it
transfers to ALT HOLD mode automatically. All these modes and the transitions
are based on pilot selection or internal triggers. These are described in the design as
a set of two tables—the mode transition table and the condition table.

Figure 7.4 shows the transition table as given in the example [16]. There are
three distinct independent major modes—Vertical, AP, and Alt Sel. Vertical has 6

Fig. 7.3 The autopilot modes

Fig. 7.4 Transition table
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submodes which starts with disconnect (DIS) and the 5 other modes defined earlier.
The Vertical major mode can exist in only one submode in a frame. At start (when
switched on), the autopilot is in Vertical ! DIS, AP ! AP OFF, and
ALTSEL ! ALTSOFF. The (!) indicates the major ! submode pair. The
autopilot transits from these modes based on the table. The number in the 4th
column indicates the modes that it can transit to. There are 4 buttons that the pilot
can press—AP, SPD, VS, and ALT. There are 4 software triggers that the system
can generate—ALTS (altitude select), ALTCAP (altitude capture), ALTCAPDN
(Altitude Capture Done), and APFAIL (Autopilot has failed).

The table is read as follows. These are the system behavior requirements.

The autopilot can transit from Vertical ! DIS (01) (Sl No 1) to 02 (read in column under
AP, same row) if AP button is triggered.

The autopilot can transit from AP ! AP OFF to AP ! AP ON (01) if AP button is
triggered.

The autopilot can transit from Vertical ! SPD HOLD (03) to Vertical ! VS (04) if the
button VS is triggered.

Normally, the transition happens if certain conditions are true. This is captured in
the condition table (Fig. 7.5). Thus, the transition table is read in conjunction with
the condition table. The requirements are actually modified in conjunction with the
condition table as

The autopilot transits from Vertical ! DIS (01) (Sl No 1) to 02 (read in column under AP)
if AP button is triggered AND condition number 01 is true.

The autopilot transits from AP ! AP OFF to AP ! AP ON (01) if AP button is triggered
AND condition number 01 is true.

The autopilot transits from Vertical ! SPD HOLD (03) to Vertical ! VS (04) if the
button VS is triggered AND condition number 01 is true.

Fig. 7.5 Condition table
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The condition number 01 could be a set of parameters that set it to True indi-
cating that the autopilot can come on. A typical set of condition would be
C01 = (100 kts < Speed < 300 kts) AND (−5 deg < Pitch Angle Theta < 15 deg)
AND (−20 deg < Roll Angle < 20 deg). Condition 04 could be a bound on the
current vertical speed.

7.5 Automated Validation

A set of Matlab scripts are available on the MathWorks file exchange Web site.
These help in validating a mode transition design given in the above form [16, 17].
This method has been tried with different mode transitions like a Radar application
or the famous Therac-25 modes and found to work well. One of the scripts gen-
erates an English text output that defines the modes. A typical output generated
automatically given the design looks like below. This can be read and verified for
correctness.

(1) If in State DIS (Vertical) AND Trigger AP occurs THEN transition to PAH if
condition C1 Is TRUE

(2) If in State PAH AND Trigger AP occurs THEN transition to DIS (Vertical) if
condition C2 Is TRUE

Two additional scripts generate a Matlab code and a NuSMV code from the
same two tables. These can be used for the validation of the mode transition using
assertions in SLDV or in NuSMV, respectively. The assertions are defined based on
the behavioral truth about the system. Four assertions are identified.

1. If Vertical mode = ALTCAP then ALTSEL mode = ALTSEL CAP
2. If Vertical mode = ALT HOLD then ALTSEL mode = ALTS OFF
3. If Vertical mode = DIS then AP = AP OFF
4. If Vertical mode = DIS then ALTSEL = ALTS OFF

The SLDV assertion of (2) and (3) above is shown in Fig. 7.6. The first input
“in” is the Vertical mode. If this is equal to 5, i.e., ALT HOLD, it “implies that” the
third input “in2”, i.e., ALT SEL mode is equal to 1 (ALTS OFF). Similarly, if the
second input “in1” AP is equal to 2, i.e., AP OFF “implies that” Vertical mode
equals 1 (DIS). The ease of putting in assertions is very clear from the figure.

A similar assertion in NuSMV would look like this

LTLSPECG Vm ¼ ALT HOLDð Þ ! ASm ¼ ALTSOFFð Þð Þ
LTLSPECG Vm ¼ DISð Þ ! APm ¼ APOFFð Þð Þ

Executing the SLDV and the NuSMV indicates that the assertions are true and
therefore we are confident that the design is good. This does not show the capability
of NuSMV or SLDV to find design errors. A set of 9 errors or mutation were
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introduced into the Simulink model and the NuSMV to identify if the tools bring
out the error. Eight mutants are caught by the formal methods. One mutant is a
“dud” as the later blocks correct this error, and therefore the model behaves cor-
rectly even with the mutation present. These mutants are available in file exchange
[16].

7.6 Formal Method Versus Random Tests

There is always an argument when one discusses formal methods—how does it
compare against testing. This aspect is addressed here. NuSMV model cannot be
tested with a test vector whereas the Simulink models can be tested. Simulink has
both a simulation platform and a formal methods platform. The Autopilot mode
transition was modeled in Simulink and the assertions added as above. Very
specific errors were injected into the model to create 9 mutant files. The mutant files
are the actual model copy with a very specific error introduced deliberately into it.
Random test case vectors are injected into the test harness and the test stops as soon
as the assertion is falsified. The same exercise is repeated with the SLDV and the
time takes for falsification of the assertion is captured. The test and SLDV proof are
repeated 5 times, and a mean and standard deviation are computed from the trials
and tabulated in Table 7.1.

The overall mean times for SLDV and random tests are similar at about 20 s.
The mean times for individual mutants are, however, very different. The overall
minimum time for SLDV is 12.2 s, and for random this is 1.31 s. The overall
maximum time of SLDV is 23.6 s, and for random 91.05 s. There is a large
disparity in the time to falsify the assertion in the random tests. This is also seen in
the mean standard deviation across all tests being small for SLDV at 1.3 s, and the

Fig. 7.6 SLDV assertions for (2) and (3)
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random tests have 17.3 s. The large standard deviation for the last mutant at 94.7 s
indicates that random tests can take a very long time before they find an error. This
is also seen in an earlier study on test cases for control system models [18]. SLDV
finds the deliberately injected errors in the models very easily. Can it find errors in
safety critical flight code and models?

7.7 Up Down Counter

Several examples of SLDV finding bugs found during testing in flight control
models are available [1]. These errors were found during the extensive software test
activity. SLDV finds all these errors very easily. A very recent error found in a
flight code for an Up/Down counter is described here as an example. Up/Down
counters are blocks that count up with a fixed amount if there is an error in the
signal, and count down at a slower rate if the error does not exist. Thus, these
blocks can penalize a more frequent error than an intermittent fault that could be
attributed to noise. The schematic of an Up/Down counter is shown in Fig. 7.7.

Table 7.1 Summary of mutants and test timing

S. No. Mutant SLDV
mean (s)

SLDV
std (s)

Random
mean (s)

Random
std (s)

1 DIS replaced by code 2 instead of 1 16.8 0.45 1.31 0.79

2 VS_HOLD replaced by code 1 instead of 4 21.4 0.55 64.61 15.17

3 APOFF made APON in AP mode 21.4 0.55 4.56 2.74

4 ALTS trigger connected directly without
checking for ALTHOLD

23.6 2.30 7.24 6.52

5 Condition C2 for ALTCAP trigger removed 12.2 0.45 5.17 5.46

6 ATLCAP connected directly without checking
for ATLSARM state

18.4 2.41 25.74 12.11

7 Condition C2 changed to APOFF true instead
of APON true

21.6 5.18 1.35 1.08

8 ALTCPDN connected directly without
checking for ALTCAP state

– – – –

9 Switching transition conditions for
ALTSARM and ALTSCAP in ALTSEL mode

19.2 0.45 91.05 94.76

Fig. 7.7 Schematic of
up/down counter
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The input to the counter is INP. This is set to true or 1 when the error (what we
are monitoring) is greater than a threshold “Threshold 1”. INP equal to adds the up
count +U to the counter W. W is initially 0. INP equals 0 adds “−D” the down
count to the count W. The lower limit for W is LB which is normally 0. The upper
limit for W is UB. The value of W is clipped at UB. If W is greater than or equal to
a trigger threshold “Th2”, the output of the Up/Down counter is set to True.

In an aircraft flight control law, this was modeled in Simulink and coded in C
language for implementation on board. The variable W was defined as an unsigned
integer. During testing, a very specific combination led to W becoming negative
which caused a wraparound, and it triggered a fault even though the error was less
than threshold. This was tested using SLDV to see if it could catch the error. In the
Simulink model, the data type for the adder block internal variable was defined as
UINT16. The model is shown in Fig. 7.8.

There are two behavior properties that define the truth about the system or are
the assertion

1. If the output is True previously and the input is True in the current frame implies
the output is True in the current frame

2. If the output is False previously and the Input is False in the current frame
implies the output is False in the current frame

These are modeled in SLDV as shown in Fig. 7.9. If Not first frame AND
previous output (out1) is NOT True AND Input (F2) is NOT True AND U > D
Implies Output is Not True. Similar assertions are made for the other properties.
SLDV brings out a counter example to prove the assertion wrong replicating the
condition observed during the test activity.

SLDV has new feature in the newer version of Matlab where a C code can be
compiled into the Simulink environment. This compiled code is made compatible
for SLDV analysis using options provided in the software. The actual code can be
tested against the assertion. This is done for the Up/Down counter C code, and this
error is easily caught by the formal methods analysis. The ease with which an
assertion using the blocks can find errors in the C code is a very useful workflow.
Legacy code from earlier projects, code libraries can now be validated in the
Simulink environment.

Fig. 7.8 Model of the up/down counter

82 N. Jeppu and Y. Jeppu



7.8 Conclusion

SLDV and NuSMV, two model checking tools can be easily deployed in project
and find errors in design very easily. The only constraint is that the requirements
should be clear. It is very important that the system engineers clearly define the
intent of their design as requirements rather than the design itself. It is very
important that the requirements specify the “what” rather than “how”. The use of
formal methods drives home this discipline in defining requirements. The assertions
are easily implemented by novice engineers with help from systems experts spec-
ifying the correct intent. Automation is brought in very easily to write NuSMV code
from specification. It would be worthwhile, a exercise to specify requirements and
automatically convert them into NuSMV or SLDV assertions. This will reduce the
burden of the engineers trying to learn a new language or modeling paradigm.

The title uses the term “argue”. The use of formal methods in a project brings out
the argument between the engineers that is very important. We need to argue
technically on the correctness of the design. The message and argument “is this
what you want?” going all the way to the system designers by using these methods
will lead to a better system design and safer world.

Fig. 7.9 Assertions of the up/down counter
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Chapter 8
Formal Methods: Techniques,
Applications, Thrust Areas and Future
Prospects

Krishnamani Kalyan

Abstract Formal methods are one of the oldest techniques of proving correctness
of programs. Along with its contemporaries like Boolean Satisfiability and
Theorem Proving it is also one of the areas which is still being actively researched.
This in itself is a manifestation of the potential of the underlying techniques and the
wide spectrum of applications it can positively impact. In this survey, we shall
explore the most popular techniques, with an emphasis on industrial application of
such techniques, and the various applications for which they are employed. We will
then see some of the current and rapidly developing areas where formal methods
could be invaluable, and we shall speculate some the future prospects of research
and advancement in this field.

Keywords Formal methods � Safety critical � Model checking
Abstraction � Autonomous

8.1 Introduction

Formal methods refer to the set of techniques based on mathematics for the spec-
ification and verification of software and hardware systems. As it is grounded on
well established mathematical techniques, it leads to unambiguous description of
the designs and verified robust designs. Over the past several years, researchers
have developed several techniques and tools for both specification and verification
of the design implementations against such a specification. Some of the well-known
formal specification languages include Esterel [1], Lustre [2], B-Method [3], ACSL
[4], TLA+ [5], Why3 [6], which are also supported by formal verification tools. By
making the specification of the functionality of a system (hardware or software)
unambiguous, the verification process becomes more robust as one exactly knows
what design functionality is being verified.
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Lately, both hardware and software vendors have been increasingly adopting the
use of formal methods to ensure reliability of their products. Although such
methods are not adopted across all the products or all the features of a product, they
are frequently employed to verify the most critical features of a product. With the
increased interest in mobile and cloud applications, Internet of Things (IoT), arti-
ficial intelligence (AI)-powered robotics and self-driving vehicles, the need for
formal methods is more apparent than ever before.

In this article, we will explore the widely used formal verification techniques,
mention the popular use cases of formal methods in industry. We then talk about the
important technical advancements that are making formal methods popular and
more effective in an industrial setting. We conclude with some and some use cases,
and speculate the prospects in years to come.

8.2 Formal Methods

Formal methods have two main components to it—Formal Specification and
Formal Verification. Although we have heard more about the latter, it is just
because of the metrics we attach to product reliability results—such as the number
of bugs that were found by a particular verification tool, or the time needed by one
verification tool compared to another. The former is equally important in coming up
with an unambiguous description of the functionality of the designs we intend to
develop. In fact, it is the first step in our development process. In the following
sections, we will mention a few (formal) specification languages and also mention
the verification tools that support these specification mechanisms.

8.2.1 Formal Specification

Formal specification is the first step in any system design process. One has to specify
what the intended goals of the system are before getting down to build a hardware or
a software system. Traditionally, specification has remained in voluminous docu-
ments, written in a natural language, like English, for example. Since design spec-
ification documents are the medium of communication between the architects (who
make the blueprint of the design) and the designers (who code the design), it is
imperative that we do not introduce ambiguity. By describing the intended func-
tionality of the design in a natural language, we are doing exactly that—introducing
more ambiguity and leaving essential details to the designer’s interpretation.

Over the years, many system designers have realized the importance of unam-
biguous specification languages. First order logic is one of the simplest and most
powerful specification languages with sound and complete deduction systems.
There are many formal specification languages in the literature that are based on this
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simple logic. Further Temporal Logic, Temporal Logic of Actions, Separation
Logic, etc., aided formal methods to a great extent.

There are several formal specification tools that are being widely researched and
used in industry. The B-Method [3] is based on Abstract Machine which is just a set
of states and operations that transform states from one to another. The specification
language also allows us to specify the initial values of state variables as well as
invariants. The B methodology encourages to specify the system at a very high
level of abstraction and progressively refine it by adding more details to the abstract
machine. Alloy language [7] is based on the notion of relations (Set Theory), that
allows us to describe all desired configurations of a system as a set of constraints.
ACSL [4] is ANSI C Specification Language that allows us to annotate C programs
with a rich variety of properties such as assertions, loop invariants, variants, and
quantified invariants. It is very similar to Java Modeling Language (JML). TLA+
[5] specification language is again a variant of state transition system and one can
attach temporal properties to the specification. These specification languages are not
just academic research tools, but are also applied in industry. The B-Method is used
in several subway system specifications [8] by Alstom and Siemens, while TLA+
has been recently used by Amazon in some of its Web services [9], and ACSL is
used in specification and verification of safety-critical avionics software.

8.2.2 Formal Verification

Formal verification corresponds to the set of tasks involved in establishing a
mathematical proof that the designed system behaves according to its (formal or
informal) specification. Even when the specification resides in a document written
in a natural language, it is possible, though cumbersome, to understand and extract
some crucial properties that could be verified of the system. There are various
techniques developed over the past several years that cater to different kinds of
hardware and software systems, as well as techniques that address certain specific
kinds of problems. Most of the formal specification languages used in industry are
also supported by well-developed formal verification tools. For example, B-Method
is supported by Atelier-B, Alloy by Alloy Analyzer, TLA+ by TLA+ model
checker, and ACSL by Frama-C. Formal specification is as important as the veri-
fication process itself, but we will focus more on formal verification for the rest of
the article, beginning with the most popular formal verification techniques in the
following section.

8.2.3 Formal Verification Techniques

There are several formal verification techniques addressing different kinds of ver-
ification problems and providing different degrees of automation. For industrial size
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problems, application of formal verification ranges from highly automated
push-button tools such as Equivalence Checkers and Static Analyzers, tools such as
model checkers that need some user intervention to abstract the models, and also
those that require a lot of user interaction like Theorem Provers. They find their use
in different applications of verification in hardware and software industries. Let us
look into the main techniques used by popular formal verification tools that are
employed in industry.

Model checking: It is one of the most popular formal verification techniques
employed by industrial scale verification tools. This technique relies heavily on
Satisfiability (SAT) solvers [10, 11] and Binary Decision Diagrams (BDDs) [12].
More recently, there are also techniques that combine BDDs and Satisfiability
Modulo Theory (SMT) solvers [13]. SMT solvers intelligently combine solvers for
different theories [14] to solve a propositional formula over variables involving
several theories such as integers, Booleans, reals, and bit-vectors. Software pro-
grams are typical examples of such combinations. In contrast, SAT solvers solve a
propositional formula over Boolean variables. Hardware designs are typical
examples of such formulas. Model checkers proceed by constructing a model of the
hardware or software program under verification. The model is essentially a state
transition system or more generally a graph (or a BDD which is a canonical rep-
resentation of a Boolean formula). Along with the model, we also provide the
properties that we want to verify in our program. The property is specified as a
logical formula. The solvers employ BDD-based techniques to traverse the con-
structed graph, checking if the logical formula holds in all reachable states. Model
checkers employing SAT solvers boil down the graph representation into a Boolean
formula and check for satisfiability of the formula. Most often, in order to overcome
the combinatorial blow up of the state space resulting from the graph construction,
most model checkers employ a technique called Bounded Model Checking (BMC)
[15] that works with Boolean expressions of the corresponding finite state machine.
BMC starts with an initial counterexample length, say k, and generates a propo-
sitional formula that is satisfiable if and only if such a counterexample exists. The
procedure can be iteratively repeated for larger values of k. This technique finds
minimal length counterexamples really fast and is most commonly used as a
bug-hunting technique, rather than a proof technique. Some of the well-known
model checkers include NuSMV [16], SPIN [17], and CBMC [18].

Equivalence checking: Software and hardware designs frequently change from
one generation or one version to the next with the addition of several new features.
One of the desired goals in industry is to make sure that the old functionality of the
design is not altered (altered functionally, there might always be performance
improvements) by the introduction of new features. Most often, this is achieved by
checking the equivalence between the old and new designs with respect to certain
behaviors (coded as properties) of interest. For example, the design itself might
change but the properties of the protocol may still have to remain unaltered.
Another use case is when we have an executable specification (say a C program of
the design that can be executed and simulated) and when we need to verify this
against a hardware implementation, equivalence checking is used. Formal
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equivalence checking techniques typically proceed by constructing a canonical
representation (like a BDD) of the specification and the implementation and check
for equivalence between the structures. With the increasing popularity of
High-Level Synthesis (HLS) tools, equivalence checking is gaining more
importance.

Theorem proving: This is one of the oldest formal verification techniques but
still of immense interest to computer science researchers. Theorem proving is used
in software and hardware designs where absolutely high confidence in the design is
required whatever the scale of the design is. Theorem proving proceeds with the
user providing axioms and producing new inference steps using rules of inference
in an underlying theory. Essentially, the user guides the prover in searching for the
proof by providing intermediate lemmas and hence it requires a proficient user in
order to be able to use the theorem prover efficiently. In industry, floating point
arithmetic, avionics software, etc., are some of the places where theorem proving is
used to establish the correctness of the designs. Some of the well-known theorem
provers include Coq, Isabelle, ACL2, HOL, to name a few. Deductive verification
techniques are more commonly referred to as Automated Theorem Proving.

8.3 Applications

Formal verification is widely used in software as well as hardware industries. The
underlying techniques in the tools fall under one of the categories that we discussed,
but the tools and techniques themselves are specialized to solve a specific problem.
In the following sections, we cite examples of such specific verification use cases
and map them to the techniques discussed earlier.

8.3.1 Software Formal Verification

One of the most common techniques used in software formal verification is Static
(code) Analysis. There are several analyses that fall under the umbrella of static
code analysis. Essentially the code is analyzed for all possible executions, without
explicitly executing them. In an industrial setting, abstraction-based static analysis
(abstract interpretation [19]) is used. This usually involves generating an abstract
program in a different domain (say Boolean domain) and reason about the cor-
rectness of the properties of the abstract program. Commonly used abstraction
techniques (like predicate abstraction) are conservative and it has been shown [20]
that if the property holds in the abstract program, it entails the correctness of the
concrete program. One of the earliest success stories of static analysis in industrial
size software came from Astrée Static Analyzer [21] used in the formal verification
of safety-critical avionics software at Airbus Industrie. It was soon followed by
Microsoft Research in their SLAM [22] project for using Static Analysis to verify
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Windows device drivers. Coverity [23] is one of the companies (acquired by
Synopsys) whose static analysis tools are widely used by software companies for
verification purposes.

Deductive program verification is another technique that is widely employed in
the verification of safety-critical software. This technique works by translating the
program and its specification into an intermediate representation. The specification
corresponds to the properties (assumptions, assertions, loop invariants, variants,
etc.) that are usually annotated within the program itself. The technique generates a
set of verification conditions which when proven establishes the correctness of the
behavior of the original program. The verification conditions themselves are gen-
erated using predicate abstraction or other lattice-based techniques. Frama-C [24],
KeY [25], ESC Java [26] etc., use this approach. Frama-C which is inspired from
Krakatoa [27], combines deductive verification with several program analysis
techniques.

Bounded model checking is another technique that is used for software verifi-
cation purposes. CBMC [18] is one of the tools that does bounded model checking
of C programs. There are techniques that combine the precision of model checking
with the efficiency of static analyzers. CPA checker [28] is one such tool that
combines the techniques and allows the user to configure the system during
verification.

8.3.2 Hardware Formal Verification

In hardware, formal verification is most widely used in equivalence checking and
verification of floating point arithmetic. Typically, a reference model is written in C
or System Verilog or some other high-level programming language and the
behavior is tested using simulation. Once the behavior is satisfactory, an RTL
(Register Transfer Level) design is coded in one of the hardware description lan-
guages (HDL) that uses the high-level description as a reference. Since high-level
descriptions (such as a C program) would consume inputs and produce outputs
instantaneously, simulation is easy and takes no time. On the other hand, HDL
implementations are more close to hardware and take several clock cycles to
compute an output from an input. It is therefore imperative to establish the
equivalence between the C model (or any high-level description) against the HDL
implementation. The tools [29] that enable this typically use Binary Decision
Diagrams (BDDs) with several optimizations and bit-vector reasoning engines to
accomplish the task. Another common use case is to verify power optimizations in
hardware designs, clock gating, for example. Copies of the design, with power
optimizations turned on and off are subject to equivalence checking to ensure that
the optimizations do not introduce any bugs. Equivalence checking is also used to
establish the equivalence between the RTL logic and the generated netlist.

Verification of floating point arithmetic is another area where there is a lot of
interest in formal verification tools. Designs of such units are typically too
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complicated for simulation to cover interesting corner case scenarios and formal
verification tools are invaluable in establishing the correctness of such designs.
Theorem proving is one of the techniques that is widely used in the verification of
floating point arithmetic [30].

Assertion-based verification is another area that is gaining popularity due to the
expressive power of System Verilog Assertion language (SVA) and with major
hardware formal verification tool vendors supporting a large subset of SVA.
Ultimately, it boils down to the understanding of the design and requires a skilled
verification engineer to write effective assertions to identify the bugs. The verifi-
cation results in this case are only as good as the quality of the assertions. Here is
where formal specification languages can be of immense help as most of the
important properties can be harvested from the specification which is already a
formal description of the functionality of the design.

There are many other light-weight formal techniques that are used in both
hardware and software industries—such as checking for null pointers, and memory
leaks, but due to space constraints we cover only the major techniques. In the
following section, we shall identify some upcoming areas where formal verification
can make a huge impact—the “thrust” areas for formal methods.

8.4 Thrust Areas

The advancement in technologies like parallel computing has made formal verifi-
cation techniques more scalable in trying to address the needs of today’s scale and
complexity. In this section, we will see some of the recent areas where formal
methods are already making an impact and is expected to make a positive impact in
the coming years.

Data center software: With most of our software moving to the cloud which is
just a distributed network of machines, verification of such distributed software is
becoming highly important. More critical pieces of software like medical data, or
data coming from self-driving cars or air traffic, are expected to reside in the cloud
and the reliability of such distributed software is becoming a primary concern.
Toward this end, Amazon [9] is using TLA+ to verify the fault-tolerance properties
of its DynamoDB which is a replicated “no SQL” data store, distributed over
several data centers. A formal specification of the fault-tolerance algorithm was
detailed in TLA+ specification language and a distributed version of TLA+ model
checker was used to verify the properties.

Mobile applications: A new area of interest would be formal verification of
mobile applications. Infer [31] developed by Monoidics (acquired by Facebook) is
one of the examples in this space. Infer is a static analysis tool based on Separation
Logic [32] and is used to verify mobile apps for null pointer exceptions and
memory leaks before being shipped to the app store.

Internet of Things: Another emerging area is Internet of Things (IoT) which is
just a network of sensors and microprocessors to process sensor data (previously
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called “sensor networks”). With IoT expected to be a ubiquitous network especially
in healthcare applications, formal verification is seen as a key technology [33] to
ensure their reliability. Since IoT networks will have the challenges of distributed
computing, SoCs and power efficiency optimizations, it would be an interesting
area for researchers of formal methods.

Robotics and intelligent autonomous systems: The recent interest in new
applications like intelligent autonomous robots (self-driving cars, drones and rescue
robots) has made formal methods an indispensible part of the verification chain.
Since most of these devices will have embedded software, the challenges are similar
to software verification. Some of the theoretical underpinnings and tool prototypes
that employ formal techniques already exist [34, 35] and with the advances in
recent parallel computation methods, these techniques could scale to autonomous
systems. This could also help in the dual problem of Program Synthesis where a
program could be synthesized that does not have any of the behaviors corre-
sponding to faulty scenarios.

Computational biology and drug research: The immense computational power
provided by systems today and the advances in big data analytics have renewed
research interest in areas such as computational biology. Formal specification
analysis techniques and tools help model the behavior of biological systems and
analyze them using algorithms [36] rather than in a wet lab, thereby speeding up our
understanding and accelerating processes involved in drug research, for example.
Some of the examples that have already been researched include study of bacterial
growth and study of reactions of enzymes in our physiological systems to chemicals
in the drugs. Some recent research in this area [37] is an encouragement that such
techniques will be a useful complement to experiments conducted in a biology
laboratory.

In the following section, we try and speculate the areas where formal methods
are improving and the challenging areas of for future research.

8.5 Future Prospects

The development of formal tools over the last decade can be attributed to the
development of several key technologies besides novel verification algorithms
themselves. Some of the key recent technologies that have improved formal
methods are discussed in this section.

Improved scalability: One of the key ways scalability of formal verification tools
is being addressed is by exploiting the use of multi-core processors and distributed
computer networks. New data structures like Bdd Array and algorithms for
traversing component BDDs in a BDD array in parallel [38] or even a complete
parallel BDD library [39] have helped in improving the scalability of the tools that
employ such techniques. Further, distributed model checkers like TLA+ [9], model
checkers for parameterized systems like Cubicle [40] that make use of libraries like
Functory [41] that help in distributing tasks over multiple cores or over multiple
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machines in a network, handling network fault-tolerance in a seamless manner,
demonstrate the efficiency and scalability improvements for application of formal
methods in industry.

Machine learning and assertion harvesting: Efficient machine learning imple-
mentations have helped analyze large data sets to infer useful information. Since
most of the software and hardware would be built from smaller building blocks
combined in different configurations (such as number of instances of a memory
module or number of objects of a certain class), machine learning techniques could
be used to harvest properties to be checked from the historical data of bugs at the
interfaces. This would save some manual effort of writing assertions and help
identify bugs at an early stage. The design itself would become more modular and
easy to maintain.

New applications and newer challenges: Some of the applications like autono-
mous vehicles might demand fault diagnosis and repair and recovery from the fault
in real time, which would in turn require a light-weight formal verification algo-
rithm running on the device or on the cloud and communicating with the device to
identify a faulty (or in the case of autonomous vehicles) a dangerous behavior and
enable performing course correction. This problem is the same challenge as the
verification of autopilot software. Applications like Computational Biology
involves big data analytics combined with formal analysis techniques. These new
applications pose new challenges and opens up an array of interesting problems for
researchers of formal methods.

With several new applications and improved scalability, formal methods could
very soon become a predominant verification technique in the coming decade. This
requires a lot of effort from the engineering community in being able to change the
status-quo of verification. The advantages of formal methods clearly out-weigh the
comfort of staying with the status-quo and there is a strong belief among the formal
methods community that it will indeed be an invaluable complement, if not a
replacement, for existing techniques very soon.

8.6 Conclusions

The increasing complexity of SoC designs and the software algorithms and the
distributed form they take, combined with the short release cycles of hardware and
software, it is no surprise that formal methods will be a key technology in ensuring
reliability of future software and hardware designs. Today’s formal tools can handle
designs of a very large scale and offer the users several ways to abstract the designs,
combine a variety of techniques and more importantly offer a useful graphical user
interface so that basic formal techniques, for bug-hunting in the early stages of the
design process, can be readily adopted by most engineers, even when not exten-
sively trained in advanced formal methods.

Yet, as outlined in the previous section, there are many interesting problems to
be solved by researchers of formal methods. The thrust areas are also some of the
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areas where technology is changing at a rapid pace and new technical advancements
(like machine learning) are some of the areas that formal methods could take a cue
or two from, and in turn help make some of these algorithms more robust. Formal
methods are well poised to become a dominant verification technique in the years to
come.

References

1. Berry G, Gonthier G (1992) The Esterel synchronous programming language: design,
semantics, implementation. Sci Comput Programm 19(2):87–152

2. Caspi P, Pilaud D, Halbwachs N, Plaice JA (1987) LUSTRE: a declarative language for
real-time programming. In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
principles of programming languages, POPL ’87, pp 178–188

3. Abrial J-R, Lee MKO, Neilson DS, Scharbach PN, Ib Holm Sørensen (1991) The B-method.
In VDM ’91 formal software development methods, pp 398–405. Springer, Berlin

4. Baudin P, Filliâtre JC, Hubert T, Marche C, Monate B, Moy Y, Prevosto V (2012) ACSL:
ANSI/ISO C specification language

5. Lamport L (2002) Specifying systems: The TLA+ language and tools for hardware and
software engineers. Addison-Wesley Inc, Longman Publishing Co., Boston, MA

6. Filliatre J-C (2013) One logic to use them all. In: Proceedings of the 24th international
conference on automated deduction, CADE ’13, pp 1–20

7. Jackson D (2002) Alloy: a new technology for software modelling. In: Tools and algorithms
for the construction and analysis of systems, pp 20–20. Springer

8. Behm P, Benoit P, Faivre A, Meynadier J-M (1999) Météor: a successful application of B in a
large project. In: Proceedings of the wold congress on formal methods in the development of
computing systems—Volume I–Volume I, FM ’99, pp 369–387

9. Newcombe C, Rath T, Zhang F, Munteanu B, Brooker M, Deardeuff M (2015) How amazon
web services uses formal methods. Commun ACM 58(4):66–73

10. Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving.
Commun ACM 5(7)

11. Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7(3)
12. Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE Trans

Comput 100(8):677–691
13. Cavada R, Cimatti A, Franzén A, Kalyanasundaram K, Roveri M, Shyamasundar RK (2007)

Computing predicate abstractions by integrating BDDs and SMT solvers. In: Formal methods
in computer-aided design, 7th international conference, FMCAD 2007, Austin, Texas, pp 69–
76, 11–14 Nov 2007

14. Manna Z, Zarba CG (2002) Combining decision procedures. In: Formal methods at the
crossroads. From Panacea to Foundational Support, 10th anniversary colloquium of
UNU/IIST, the international institute for software technology of The United Nations
University, Lisbon, Portugal, 18–20 March 2002, Revised Papers, pp 381–422

15. Biere A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic model checking without BDDs. In:
Tools and algorithms for construction and analysis of systems TACAS ’99, pp 193–207

16. Cimatti A, Clarke EM, Giunchiglia F, Roveri M (1999) NuSMV: a new symbolic model
verifier. In: Computer aided verification, 11th international conference, CAV ’99, Trento,
Italy, pp 495–499, 6–10 July 1999

17. Holzmann GJ, Peled D (1996) The state of SPIN. In: Computer Aided Verification, pp 383–
389. Springer

18. Clarke E, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: Tools and
algorithms for the construction and analysis of systems, pp 168–176. Springer

94 K. Kalyan



19. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp 238–252

20. Graf S, Hassen Saidi S (1997) Construction of abstract state graphs with PVS. In: CAV,
pp 72–83

21. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2002)
Design and implementation of a special-purpose static program analyzer for safety-critical
real-time embedded software. In: Mogensen T, Schmidt DA, Sudborough IH (eds) The
essence of computation: complexity, analysis, transformation. Essays dedicated to Neil D.
Jones, vol 2566. LNCS, pp 85–108. Springer-Verlag

22. Ball T, Rajamani SK (2002) The SLAM project: debugging system software via static
analysis. SIGPLAN Not 37(1):1–3

23. Bessey Al, Block K, Chelf B, Chou A, Fulton B, Hallem S, Henri-Gros C, Kamsky A,
McPeak S, Engler D (2010) A few billion lines of code later: using static analysis to find bugs
in the real World. Commun ACM 53(2):66–75

24. Kirchner F, Kosmatov N, Prevosto V, Signoles J, Yakobowski B, Frama-C: a software
analysis perspective, vol 27, pp 573–609. Springer

25. Weiß B (2009) Predicate abstraction in a program logic calculus. In Leuschel M, Wehrheim H
(eds) Proceedings, 7th international conference on integrated formal methods (iFM 2009), vol
5423 of LNCS, pp 136–150. Springer

26. Flanagan C, Qadeer S (2002) Predicate abstraction for software verification. In: POPL ’02:
proceedings of the 29th ACM SIGPLAN-SIGACT symposium on principles of programming
languages, pp 191–202

27. Filliâtre J-C, Claude Marché (2007) The Why/Krakatoa/caduceus platform for deductive
program verification. In: Computer aided verification, pp 173–177. Springer

28. Beyer D, Henzinger TA, Théoduloz G (2007) Configurable software verification: concretizing
the convergence of model checking and program analysis. In: Proceedings of the 19th
international conference on computer aided verification, CAV ’07. Springer-Verlag, Berlin,
pp 504–518

29. Koelbl A, Jacoby R, Jain H, Pixley C (2009) Solver technology for system-level to rtl
equivalence checking. In: Design, automation & test in Europe conference and exhibition.
DATE ’09., pp 196–201. IEEE

30. Harrison J (1995) Floating point verification in HOL. In: Higher order logic theorem proving
and its applications, pp 186–199. Springer

31. Calcagno C, Distefano D, Dubreil J, Gabi D, Hooimeijer P, Luca M, OHearn P,
Papakonstantinou I, Purbrick J, Rodriguez D (2015) Moving fast with software verification.
In: NASA formal methods. Springer, pp 3–11

32. O’Hearn PW (2012) A primer on separation logic (and automatic program verification and
analysis)

33. How to Cut Verification Costs for IoT. http://semiengineering.com/how-to-cut-verification-
costs-for-iot/. 2014

34. Bertoli P, Cimatti A, Roveri M, Traverso P (2006) Strong planning under partial
observability. Artif Intell 170(4):337–384

35. Cimatti A, Roveri M (1999) Conformant planning via model checking. In: Biundo S, Fox M
(eds) Recent advances in AI planning, 5th european conference on planning, ECP ’99,
Durham, Springer, pp 21–34, 8–10 Sept 1999

36. Bartocci E, Lío P (2016) Computational modeling, formal analysis, and tools for systems
biology. PLoS Comput Biol 12(1)

37. Wang Q, Miskov-Zivanov N, Telmer C, Clarke EM (2015) Formal analysis provides
parameters for guiding hyperoxidation in Bacteria using phototoxic proteins. In: Proceedings
of the 25th edition on Great Lakes symposium on VLSI, GLSVLSI ’15, pp 315–320

38. Cimatti A, Franzen A, Griggio A, Kalyanasundaram K, Roveri M (2010) Tighter integration
of BDDs and SMT for predicate abstraction. In: Proceedings of the conference on design,
automation and test in Europe, DATE ’10, pp 1707–1712

8 Formal Methods: Techniques, Applications, Thrust … 95

http://semiengineering.com/how-to-cut-verification-costs-for-iot/
http://semiengineering.com/how-to-cut-verification-costs-for-iot/


39. Van Dijk T, Laarman A, Van De Pol J (2013) Multi-core BDD operations for symbolic
reachability, electron. Notes Theor Comput Sci 296:127–143

40. Conchon S, Goel A, Krstić S, Mebsout A, Zaïdi F (2012) Cubicle: a parallel SMT-based
model checker for parameterized systems. In: Computer aided verification, pp 718–724.
Springer

41. Filliatre J-C, Kalyanasundaram K (2011) Functory: a distributed computing library for
objective Caml. In: Trends in functional programming, pp 65–81. Springer

96 K. Kalyan



Chapter 9
Design Fault Identification in MBD
for Safety Critical Systems

Benkmann Ruben, Gourish Kumbar and S. Mouneshwar

Abstract This paper provides a novel method of identifying a set of design faults
in Simulink\TargetLink models and production code generation well before gen-
erating the test cases. These models can be used for development of safety critical
systems. We have developed stand-alone application which transforms TargetLink
model to EA compatible UML (Unified Modeling Language) model represented as
packages and composite structure diagrams. The entire process makes use of
dSPACE and MathWorks tools.

Keywords Design Fault � UML � Model Based Development � Simulink
V model

9.1 Introduction

Industries such as aerospace and automotive applications are developing more
products using MBD (model-based development) because of its demands on
high-quality products, critical safety requirements, and reduced time to market.
Virtual model of many systems can be conveniently created using MDB, and it can
be simulated to arrive at right design space before production.
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MBD allows us in many ways to have better development life cycle through the
following:

1. Better product quality,
2. Achieve development of functions that represents complex system design
3. Reduce the development time.

The Unified Modeling Language (UML, [1]) offers an unprecedented opportu-
nity for high-quality critical systems development that is feasible in an industrial
context.

UML can be used as a formal design technique for the development of critical
systems [2].

In our approach, we try to combine MBD and UML representations with some
kind of transformation between the two.

From the requirement, we create the architecture in UML using EA. The UML
created is used as reference architecture to create Simulink model. We perform
transformation of Simulink model to UML internally to verify the consistency with
reference UML (architecture). We find the faults of the created Simulink model.
This is depicted in Fig. 9.1.

“TargetLink-To-EA” is the tool that performs all the transformations, and it is a
windows-based application to visualize the model into UML diagram. All the UML
representations can be opened in the EA or can be stored as image (for docu-
mentation purpose).

9.2 Workflow

Figure 9.2 shows the typical V-model for applications that use MBD. We con-
centrate basically on the modeling (develop models) and the auto-code generation.
All the requirements are transformed into UML. Design team develops the behavior
of each model according to the requirement but retaining the structure of the UML
(golden reference) architecture. All processes are accomplished without making use
of any test cases. Considering 1 and 2 paths in the V-model, these are only for

Requirement
Specifications

UML

Model

Code

Fig. 9.1 Overview of fault identification process
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validation stages to uncover certain faults and not the violation of the V-model
principles itself.

Design faults are identified at two stages, and only specific set of faults can be
uncovered. Test case generation is still necessary to uncover many design and
requirement mismatches.

We classify all the faults based on the severity and position of the faults in the
model. For example, they are classified as L1 and L2 faults, implying L1 is the fault
in first-level hierarchy of the model and the severity is minor. We try to restrict the
design based on the thumb rule that the hierarchy does not go beyond three levels.

Under certain scenarios, architectural design in UML needs some changes.
These changes are done only after rigorous analysis.

Stage I: As depicted in the data flow diagram in Fig. 9.3, requirement specifi-
cation is maintained in SCM tool such as DOORS to better capture,
trace, analyze, and manage changes to requirements and helps you to
demonstrate compliance to regulations and standards.

Stage II: Next level of implementation is done using UML modeling where
required functionality is described at abstract level.

Stage III: From the UML modeling, the model-level functionality is simulated, and
validation and verification are done against the expected\desired results.

Stage IV: Once simulation results are validated and verified, then next level is the c
code generation in Generic ANSI C\AUTOSAR standard.

Fig. 9.2 V-model
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9.3 Validation Against Model and C Code Generation

The simulated model is transformed into XML which is compatible to EA using
TargetLink-To-EA. Table 9.1 shows the structural mapping from model to UML.
During the transformation from model to UML diagram, the root element of the
subsystem is represented as follows:

• Blackbox view—depicting inputs and outputs and
• Internal dependency diagram—depicted the data flow from input to output and

its subsystems.

Requirement 
Specification

Simulink Models Production code

UML Architecture Diagrams
EA 

Customizations UML representation

MATLAB/TargetLink

Artifacts

Target link to EA, C 
to EA

Architectural Artifacts
Design Faults

Dependency Graph

Model Validation Code Validation

Fig. 9.3 Data flow

Table 9.1 Structural
mapping

TargetLink representation EA representation

Inport\outport Port

Subsystem at top level Composite structure diagram

Line Dependency

Subsystem function Customized stereotypes

Annotation block Notes

Outport argument properties Invariants
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• Subsystems which are called from main subsystem are represented as ports with
different stereotypes with unique representation as class in the composite
structure diagram:

– Calling subsystem on the left-hand side of the diagram and
– Called subsystem on the right-hand side of the diagram.

An example of transforming TargetLink model to UML diagram by our
“TargetLink-To-EA” application is shown in Fig. 9.4. We have applied our tool
to a number of TargetLink models such as a fault-tolerant fuel control system,
“Voice_Coil_Flexible_Positioner” provided by the dSPACE [3].

Design faults that can be uncovered using the approach are classified as hier-
archical mismatch, false paths, false interfaces (data path defects), control logic
defects, and many more.

9.4 Results

This concept is applied in implementation of fault-tolerant fuel control system.
Results show consistency in architectural design from requirement till code gen-
eration and do not impact the development time. We were able to find faults such as
unused interfaces and flow paths.

The methodology also allows us to categorize the faults and improve the error
handling. Figure 9.4 shows the blackbox representation, and Fig. 9.5 shows the
internal dependency diagram of the fault-tolerant fuel control system transformed
using TargetLink-To-EA.

TargetLink Model Black Box diagram in EA

Fig. 9.4 Blackbox representation of fault-tolerant fuel control system

9 Design Fault Identification in MBD for Safety Critical Systems 101



9.5 Conclusion

Our approach finds the design flaws at early stages such asmodel development and
code generation. It identifies various defects at design stage that are generally
visible only after testing through rigorous test cases.

It provides the consistency in design architecture from UML design to code
generation and testing. There is a need of connected tool chain of specific tools for
UML and modeling\code generation to accomplish this concept.
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Fig. 9.5 Internal dependency diagram of fault-tolerant fuel control system Subsystem
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Chapter 10
Formal Methods Workflow
for Model-Based Development

Gaurav Dubey and Manoj G. Dixit

Abstract To manage the rapid growth and complexity of software, model-based
development workflow is being increasingly adapted in industry. This paper pro-
vides a brief overview of some of the important verification and validation steps in
this workflow and illustrates them using Simulink Design Verifier tool of
MathWorks.

Keywords Model-based development � Verification and validation (V&V)
Functional verification � Structural coverage analysis � Simulink Design Verifier
(SlDV)

10.1 Introduction

Modern automotive and aerospace-embedded control applications consist of large
number of interacting software components often in a distributed environment. The
software components are mapped onto a network of computational nodes, and they
interact by exchanging messages. The applications span multiple domains: from
event based to continuous control. The safety critical applications are given extra
attention during verification and validation phase to ensure that desired intent of
functionality and timing is met. This makes the development cycles usually long
and iterative. To manage the complexity, emphasis is given to follow a systematic
methodology based on component-based development (CBD).

CBD methodology often advocates decomposition of system into a set of reu-
sable components by identifying their interfaces. The integration problem is then
reduced to interface compatibility. Autosar [1] is an example of standardization
effort in automotive domain for CBD. It provides a specification language to
document components, their interactions, and mapping to underlying distributed
architecture. Standards such as ISO 26262 [2] and DO-178B [3] have given a

G. Dubey (&) � M.G. Dixit
MathWorks India Pvt. Ltd., Bangalore, India
e-mail: Gaurav.Dubey@mathworks.in

© Springer Nature Singapore Pte Ltd. 2018
M. Nanda and Y. Jeppu (eds.), Formal Methods for Safety and Security,
https://doi.org/10.1007/978-981-10-4121-1_10

103



special emphasis on verification and validation requirements through classification
of applications based on safety critical level. There is also a significant drive toward
identifying issues much earlier in the development phase. A big thrust in this
direction is toward model-based development (MBD). MBD advocates iterative
development through the construction of executable specifications of different
levels of granularity. MBD also has an additional advantage in V&V step, and it
helps in detecting issues early enough which would have otherwise taken a long
time. Simulation is a widely used method to check whether the implemented design
is able to meet the requirements intent or not. However, with ever-increasing feature
complexity and feature interactions, there is push toward using more rigorous
methods based on formal verification [4] to give better guarantees of feature
functionality.

Simulink-/Stateflow-based [5] toolchain from MathWorks provides an ideal
platform for MBD of embedded controllers. Simulink/Stateflow language provides
a modeling framework for control design using a set of predefined library of
graphical blocks. The control design can be done at various levels of abstraction:
from closed-loop continuous control models to discrete control algorithm ready to
be deployed in microcontrollers. User can verify correctness of their designs using
software in loop or processor in loop simulation mode. Simulink Design Verifier
(SLDV) [6] tool from MathWorks supports multiple advanced V&V features for
MBD. The tool contains a formal verification engine to efficiently analyze design
models in Simulink/Stateflow. This paper presents an early stage V&V workflow
suitable for MBD and demonstrates it using SLDV.

The rest of the paper is organized as follows: Sect. 10.2 gives an overview of
MBD workflow for V&V, Sect. 10.3 gives an overview of SLDV analysis engine
and describes how various steps in the above workflow can be achieved using the
tool.

10.2 V&V Workflow for MBD

In the well-accepted and widely used V-cycle [7] approach of feature development,
the requirement elicitation, functional decomposition, and unit-level component
development are important steps. The functional decomposition step involves
identifying different functional units and their requirements to achieve system-level
intent, whereas component development involves implementing functional units as
separate components. In MBD workflow, all these steps are iterative and
Simulink/Stateflow is a widely used tool in coming up with various design choices
at each stage before selecting a suitable one. V&V activities are carried out at each
substep to catch defects as early as possible. These defects vary from functional
issues to modeling error. Figure 10.1 shows some of the important V&V steps and
the cost associated with them. This document focuses on the latter four steps and
describes them below in detail:
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1. Detecting early design errors: There are two main classes here: logic errors
and run-time errors. The former class is about identifying whether there are any
logical inconsistencies in the design that makes some part of the design dead;
i.e., it can never execute under any input combination. This often may involve
complex dependencies between various control conditions in the design model.
The errors in the latter class can be encountered during some simulation run of
the design. For example, certain evolution of controller renders a denominator in
a division operation to have value 0. Thus, model involves division-by-zero
error. We argue that it is often useful to remove these errors before moving
ahead with rigorous steps of functional testing.

2. Functional verification: This step checks whether the design model is meeting
the desired intent specified in the requirements. Writing functional test cases
based on requirements documents is often the standard way of achieving this
step. To ensure better quality and improved guarantees from critical applica-
tions, there is a big push toward using rigorous methods such as formal veri-
fication to verify whether design meets given intent under all situations.
Formally capturing design intent is a big challenge in this problem.

3. Structural coverage analysis: This step checks, among other things, whether
all branching decisions in the design model are exercised or not. More rigorous
checks involve whether each condition in the decision separately affects the
decision or not. This check is called modified condition decision coverage
(MCDC) [8] check. Often this gives high confidence about the design. For
MBD, this step is recommended by standards such as ISO26262.

4. Defect localization: As the design complexity increases, localizing defects to
specific part of the design is difficult. Often there are indirect dependencies that

Fig. 10.1 Important steps in V&V and cost metric
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are difficult to figure out through manual inspection. Another related problem is
of model comprehension. As model complexity increases, it is becoming very
essential to build tools and methods that slice the design model to show the part
of the design model relevant for a particular scenario.

10.3 V&V Workflow Using SLDV

Figure 10.2 is a high-level overview of architecture of SLDV analysis engine. The
tool takes a design model in Simulink/Stateflow as input and verification conditions
as input and performs analysis using various formal method-based tools. The
verification conditions can be user given, e.g., proof objective or they can auto-
matically detected by tool, e.g., check whether control input of switch block is
toggled in both ways. SLDV supports primarily four types of analysis workflows:
automatic test generation, design error detection, property proving, and defect
localization. Intuitively, test generation analysis is used for structural coverage of
design models, design error detection involves identifying dead logic and run-time
errors, property proving involves formal verification of functional requirements, and
defect localization involves slicing the design model to compute a subpart of the
design that affects specific output. We will cover each of these workflows in detail
in the subsequent sections.

As shown in Fig. 10.1, the tool accepts control designs consisting of various
blocksets from Simulink library, Stateflow, MATLAB, and even C/C++.

Fig. 10.2 SLDV analysis engine architecture
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The first step involves constructing an equivalent internal representation of the
input design model which is suitable for analysis. This step also involves insertion
of verification conditions to be analyzed on the design model. Often this is based on
the modeling elements used in the given design. For example, if the design contains
an arithmetic computation involving division, the tool automatically inserts veri-
fication condition to check for division-by-zero. The internal representation with
verification conditions is given as input to formal engines for analysis. The tool uses
variety of formal engines for analysis. Each engine processes the input represen-
tation based on the method they implement. Below, we give overview of some of
these techniques.

Abstract interpretation engine is used to check run-time errors. Abstract inter-
pretation [9] is a well-known methodology where input programs which contain
complex arithmetic/computations and verification conditions are transformed into
programs and verification conditions in another abstract domain for analysis. The
abstract domains are often simpler and scalable to analyze, and the transformation is
sound. For example, if there is no design error for division-by-zero in abstract
domain, then so is true in concrete domain.

SAT solvers implement methods to find a solution to satisfy predicate defined in
appropriate theory. For example, SAT solving for a Boolean formula involves
finding a valuation that makes the formula satisfiable. The more general theories,
e.g., SMT [10], for rational/real arithmetic define proof system to find a solution for
a predicate in that domain. Symbolic execution [11] is another well-known tech-
nique to study multiple behaviors of program simultaneously. Symbolic execution
engine computes a symbolic formula representing a set of behavior in the given
input model. This symbolic formula combined with the desired verification con-
dition can be given as an input to a SAT solver to find a system behavior that
satisfies given condition.

Model checkers take given representation and error property to be checked as
input and formally prove absence of errors: If the property is valid, then there is NO
behavior of the input design that can negate the property. Another strong feature of
model checkers is to demonstrate property violation, if any using a counterexample
trace. SLDV uses model checking engine to formally analyse safety properties for
the given design.

Program slicing [12] is a well-accepted method to reduce the program com-
plexity by removing the part of the program that does not affect certain criteria, e.g.,
output variable. SLDV dependency analysis engine achieves this at model level.
Specifically, given a signal/block under consideration, it finds out all part of the
design that affects the value of the signal during some time step.

Below, we describe how SLDV analysis engine can be used in achieving some
of the steps in V&V workflow given in Sect. 10.2.
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10.3.1 V&V Workflow Details

10.3.1.1 Detecting Early Design Errors

SLDV can be used for statically detect run-time errors and dead logic and can
derive design ranges. Design errors detected include dead logic, integer overflow,
division-by-zero, and violations of design properties and assertions. The tool
additionally highlights blocks in a model containing design errors and blocks
proven to be without them. For each block with an error, it also computes
signal-range boundaries and generates a test vector that reproduces the error in
simulation. Figure 10.3 shows snapshot of the results produced by tool for design
error check.

10.3.1.2 Functional Verification

Functional verification involves authoring functional test cases and proving prop-
erties on design model. Simulink Test is a tool from MathWorks that provides
blocksets for authoring functional test cases. It includes a test sequence block that
lets you construct complex test sequences based on functional scenarios and include
assessments for them. The assessment criteria include absolute/relative tolerances,
limits, logical checks, and temporal conditions. The tool additionally helps in
managing and executing tests in various environments. Figure 10.4 shows snapshot
of a simulation testing workflow using Simulink Test tool.

SLDV includes a model checker using which functional properties authored
using Simulink blocksets can be formally verified on the design model. For this tool
includes special temporal blocks such as detector, extender to model properties. If
the property is falsified, the tool generates a counterexample to demonstrate the
violation scenario.

Fig. 10.3 Design error detection using SLDV
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10.3.1.3 Structural Coverage Analysis

Simulink verification and validation tool from MathWorks measures model cov-
erage to indicate untested elements in the given design. For example, it checks for
status of various logical conditions and switch positions during simulation. The tool
highlights the elements that are not covered by given set of simulation runs. Based
on this, users may modify the requirements, test cases, or design to meet your
coverage goals. Figure 10.5 shows snapshot of workflow using coverage mea-
surement. Automatic test generation engine of SLDV can be used to generate test
cases to compute missing coverage.

Fig. 10.4 Simulation testing using Simulink Test

Fig. 10.5 Coverage measurement using Simulink verification and validation tool
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10.3.1.4 Defect Localization

Large models often contain many levels of hierarchy, complicated signals, and
complex mode logic. Model slicer tool within SLDV implements a dependency
analysis engine to determine the interdependencies of blocks, signals, and model
components throughout a model. The slicer can be used for better understand
functional dependencies in large or complex models, where determining depen-
dencies can be a lengthy process (Fig. 10.6).

10.4 Conclusion

In this paper, we presented a formal method-based workflow for MBD. The
workflow was described using SLDV tool of MathWorks. The tool implements
advanced analysis engine based on formal methods techniques. The paper focused
on four key steps in V&V analysis workflow and gave overview of how these steps
can be carried out using SLDV tool.

Fig. 10.6 Slicer tool workflow
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Chapter 11
Race That Never Ends!

B.M. Parinitha, Manupriya Srivastava and Chitra Viswanathan

Abstract In modern computer systems, “concurrent programming” is a
never-ending necessity to boost processing speed, thereby achieving the best pos-
sible performance. The major drawback of concurrent programming is that it
introduces more errors (that are difficult to be identified) than sequential pro-
gramming, and for this purpose, it is very essential to have tools that can discover
such errors. In order to decide the appropriate tool, one must learn about the
strengths and weaknesses of the available dynamic analysis tools and then choose
the most appropriate. A study has been carried out to assess which among the
current dynamic analysis tools cater to detecting these race conditions. However,
the study reveals poor detection capability by the tools; hence, prevention by coding
standards is imperative. As the saying goes, there are “No silver bullets,” to race
condition issues. They have been and continue to be around us. The only law that
must be followed is: “Proper ordering maintained between operating system and
program order.”
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11.1 Introduction

Usually, C and C++ programs read and write to files as part of their normal
operations. Irregularities in how these programs interact with the file system
operations, which are defined by the underlying operating system, lead to race
conditions. Concurrent programming is difficult and the quality of programmers is
growing increasingly suspect, specifically in languages like C and C++ that are
low-level and offer little defense against general programming errors. As both
software and hardware systems grow gradually more complex, programmers need
additional help, and for this reason, it is very essential to have tools that can identify
such errors. These tools can also be used to improve program quality, particularly
correctness and speed. Many such tools use some type of program analysis to
determine remarkable information regarding programs. To achieve insight about
optimizing, debugging, extending, and refactoring large systems, programmers
frequently rely on dynamic program analysis tools, which monitors a program
under execution and report properties of that execution.

11.1.1 Terminology

Weakness: Software weaknesses [1] are flaws, faults, bugs, and other errors in
software implementation/design, and if unaddressed, it could effect the systems and
networks being vulnerable to attack, e.g., buffer overflows.

Vulnerability: A software vulnerability [1] is defined by National Institute of
Science and Technology (NIST) as the property of system security requirements,
design, implementation, or operation that might be accidentally triggered or
intentionally exploited leading to security failure. A vulnerability is an error in
software that could be used by a hacker to gain access to a system or network.

Exposure: An exposure is a system configuration issue or a error in software that
allows access to information or capabilities that can be used by a hacker as a first
step to gain access into a system or network.

Overview of CWE: Common Weakness Enumeration (CWE) [1] is a formal list or
dictionary of general software weaknesses that can occur in software’s architecture,
design, or implementation that can lead to exploitable security vulnerabilities. CWE
was generated to serve as a common language for describing software security
weaknesses; serve as a standard measuring stick for software security tools tar-
geting these weaknesses; and offer a common baseline standard for identifying,
mitigating, and preventing weaknesses.
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11.1.2 Literature Survey

In 2005, “Seven Pernicious Kingdoms” [2] taxonomy was presented by Tsipenyuk
et al. They classify vulnerabilities into seven categories, which they call kingdoms.
Among the seven kingdoms is “Time and State.” Programmers would like to
assume that their code is being executed in an orderly, uninterrupted, and linear
fashion. Multitasking OSs running on multicore, multi-CPU machines do not play
by these rules—they juggle between multiple users and threads of control. This
results in TOCTOU vulnerabilities. Under this category, the following vulnerabil-
ities are included:

1. Race condition within a thread,
2. Signal handler race condition, and
3. Time-Of-Check-Time-Of-Use (TOCTOU).

It is hard to understand and debugmultithreaded programs. There are several static
and dynamic techniques and tools that have been developed to automatically find
data races in multithreaded programs. Due to the complexity of model checking
techniques, their analyses are not scalable, but they are capable of handling syn-
chronization issues. Dynamic data race analysis techniques are either lockset based or
happens-before based or a combination of both. In the technical report by Harrington
and Freund [3], they improve the performance of dynamic race detectors by skipping
the access checks made on thread-local objects that are ensured to be race free using
dynamic escape analysis with RoadRunner, FastTrack dynamic race detector, and
WALA static analysis framework. A dynamic data race detector—ThreadSanitizer—
is presented in the paper [4]; by creating dynamic annotations, performance evalu-
ation of tool is carried out using chromium (open-source browser project) and is
compared with Helgrind and Memcheck 3.5.0 of Valgrind tool suite performance.
A policy to declare and enforce thread safety in C/C++ programs using annotations is
described in the paper [5], implemented as a compiler warning currently. In paper [6],
Kahlon et al. have present a new shared variable detection technique in concurrent
programs (mainly focused on Linux device drivers) for static data race detection.
Savage et al. [7] have described a tool—Eraser with binary rewriting techniques—to
examine every shared-memory reference and confirm that consistent locking
behavior is observed. The combination of happens-before and lockset approaches is
covered in the paper [8], a hybrid dynamic data race detector for Java programs. Data
races are detected by lightweight detector called LiteRace [9] that samples and
analyzes only selected portions of a program’s execution by using an effective
sampling algorithm and reducing the dynamic data race detection runtime overhead.
In paper [10], Pozniansky and Schuster have presented MultiRace, a novel testing
tool, which combines two very powerful techniques for on-the-fly detection of
apparent data races. FastTrack [11], race detection algorithm, achieves better per-
formance in comparison with other existing algorithms by less information tracking.
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There is no literature on assessment of dynamic analysis tools in C and C++
languages, whereas a report by Spathoulas [12] contains assessment of tools on
concurrent programming in Java.

11.1.3 Purpose of This Study

In order to analyze software defects, numerous commercial, open-source, and
research tools are developed and deployed in the field of dynamic program analysis.
It is unfortunate that there is less public information about the experimental
assessment of these tools in terms of accuracy and seriousness of the warnings they
report. Furthermore, commercial tools are not only expensive, but also come with
license agreements that forbid the publication of any experimental or evaluative
data. The central idea behind the study is to evaluate and compare available
dynamic analysis tools with respect to their capabilities in detecting software
weaknesses by using appropriate metrics. Moreover, a theoretical and experimental
analysis has been performed on two dynamic analysis tools that are used for
detecting a variety of C/C++ bugs. The tools are evaluated based on their ability to
detect specific CWEs related to race conditions. For the evaluation, a test suite
(Juliet test suite) is used, containing C/C++ programs with concurrency bugs, and
the reports are analyzed. In current literature, no assessment of dynamic analysis
tools with respect to detection of race condition issues is available. A tool may be
strong in finding some vulnerabilities, while it may be weak in others. This study is
aimed at determining the detection capabilities of dynamic analysis tools with
respect to dynamic race detection. This knowledge will enable us, in the long run, to
establish a Dynamic Analysis Framework (DAF) which will combine multiple
dynamic analysis tools with complementary strengths to give better results.

11.2 Dynamic Race Detection

11.2.1 What Is Concurrency?

Concurrency is the idea of managing access to shared resources correctly and
efficiently. Figure 11.1 depicts multiple tasks accessing a shared resource. In real
life, several things such as bank transactions, traffic movements, and office tasks are
happening concurrently. Concurrency happens when two or more separate execu-
tion flows are able to run simultaneously. Examples of independent execution flows
include the following:

1. Threads: A process may contain multiple threads of execution. Threads are
lightweight processes that exist within a process and are usually managed by the
operating system.
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2. Processes: A process is an instance of a computer program that is being exe-
cuted in their own address space. It contains the program’s execution
environment.

3. Tasks: Tasks are lightweight and are usually provided by the language runtime.

Race condition (RC) can be caused due to the following flow variants:

1. Trusted flow: This involves interaction of threads within a multithreaded
process.

2. Untrusted flow: This involves either “vulnerable software” or exists “outside of
trusted software.”

Example: File-related vulnerabilities, Symlink vulnerabilities, and Temporary
files.

11.2.2 Properties for Race Conditions

Race conditions result due to runtime environments, including operating systems
that must control access to shared resources, especially through process scheduling.

Three properties are essential for a race condition to exist:

1. Concurrency property: There should be at least two control flows executing
concurrently.

2. Shared object property: A common race object must be accessed by both of the
concurrent flows.

3. Change state property: At least one of the control flows must modify the state of
the race object.

Race window: This is a code segment that accesses the race object in a manner
that opens a window of opportunity for race condition. Race conditions from

Fig. 11.1 Concurrency

11 Race That Never Ends! 117



independent processes cannot be resolved by synchronization primitives. These
kinds of concurrent control flows can be synchronized using a file as a lock.

Lock: This is a synchronization object that is either accessible or owned by a
thread. There are two types of lock operations: lock() and unlock(). A lock can only
be unlocked by its current owner. The lock() operation is blocking if the lock is
owned by another thread. A lock file is used as a proxy for the lock. If the file exists,
the lock is captured or else the lock is released. For windows, mutexes are used for
synchronization. The operations defined on mutexes are create mutex() and release
mutex().

11.2.3 Time-Of-Check-Time-Of-Use (TOCTOU)

TOCTOU race condition happens when, between the time a given resource is
checked, and the time that resource is used, a change occurs in the resource to
invalidate the results of the check. TOCTOU race conditions can happen during file
I/O operations. In a preemptively multitasked environment, anything could happen
in between the execution of two assembly code operations. Conditions may change
in between, and the check becomes invalid.

Consequences:

• Access control: Access to unauthorized resources.
• Integrity: Change in undesirable ways.
• Non-repudiation: Possibility of deleting files by a malicious user without fool-

proof attribution.

In a file-related race condition, the file’s directory is the race object. The time
between which the file is checked and time it is opened, the vulnerability window is
set for an attacker to replace a file that is being opened. It may sound impossible,
but an attacker carries out a trick to slow down the program. If the vulnerable
program is running with elevated privileges, a file not normally accessible may be
opened and written to. For example, in the sample code, shown in Fig. 11.2, when
an attacker replaces some_file with a link during the race window, this code can be
exploited by writing into any file of the attacker’s choice.

11.2.4 What Is Dynamic Detection?

Dynamic detection [7, 13] involves checking of a program during its execution and
searching for problems.

• The program may be “instrumented” with extra instructions.
• The additions do not change program functionality and are used only to monitor

conditions of interest.
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Many tools have been developed for locating race condition either statically or
dynamically. Most of the tools have serious deficiencies and cannot accurately
identify all the race conditions.

11.2.5 Dynamic Race Detection Techniques

1. Lamport’s happens-before: Happens-before is one of the earliest dynamic
detection techniques. It defines a partial order for events in a set of concurrent
threads. In a single thread, happens-before reflects the temporal order of event
occurrence between threads: A happens before B if A is a lock access in one
thread, and the next access to that lock (event B) is in a different thread and if the
accesses obey the semantics of the lock (cannot have two successive locks, or
two successive unlocks, or a lock in one thread and an unlock in a different
thread). Figure 11.3 shows the usage of Lamport’s Happens-before.

Data races between threads are possible if access to shared variables is not
ordered by happens-before.

2. Lockset analysis: In this analysis, a consistent locking discipline is maintained.
A locking discipline is a programming rule which ensures the absence of data
races. For example, a mutual exclusion lock is protecting every variable shared

For example following shell commands  can be used 
during read-write operation:

rm /some_file
ln /myfile /some_file

#include <stdio.h>
#include <unistd.h>
int main (int argc, char *argv[]) {
FILE *fd;
if (access(“/some_file”,w_ok)==0) {
Printf(“ACCESS GRANTED.\n”);                    
fd=fopen(“/some_file”, “wb+”);/*write to file*/
fclose(fd);
}    ......
return
}

The access() function is 
called to check if the 
file exists and has write 
permission

File opened for 
writing

Race 
Window

Fig. 11.2 Sample program
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between threads. Every data structure is confined by a single lock. All accesses
to the data structure are made while capturing the lock. The first and simplest
edition of the Lockset algorithm enforces a simple locking discipline by pro-
tecting every shared variable by some lock. A lock is held by any thread,
whenever it accesses a variable.

There are two kinds of locksets. Candidate locksets C(v) is shared per variable. It
contains all locks that may be protecting the variable. Locks_held(t) contains the
locks currently held by a thread. Eraser is a dynamic data race detector for multi-
threaded programs which uses this technique by intercepting operations held on
runtime locks. Figure 11.4 shows the usage of Lockset analysis.

3. Hybrids of happen-before and lockset: It is a combination of lockset-based
detection with a limited form of happens-before detection. RaceTrack is a dy-
namic analysis tool which uses this technique by providing proficient detection
of data race conditions through adaptive tracking.

11.2.6 Dynamic Race Detection—Disadvantages

1. It can check only actual executed paths.
2. It incurs runtime overhead.

Let event a be in thread 1 and event b be in thread 2.
If
a = unlock(μ)
b = lock(μ)
a  b (a happens-before b)

Fig. 11.3 Lamport’s
happens-before

In this analysis two data structures are used:
LocksHeld( t ) = set of locks currently held by thread t.
[Initially set to Empty]
LockSet( x ) = set of locks that could potentially be protecting x.
[Initially set to the universal set]

When thread t acquires lock l
LocksHeld( t ) = LocksHeld( t ) U {l}
When thread t releases lock l
LocksHeld( t ) = LocksHeld( t ) - {l}
When thread t accesses location x
LockSet( x ) = LockSet( x ) ∩ LocksHeld( t )

Report “data race” when LockSet( x ) becomes empty.

Fig. 11.4 Lockset analysis
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11.3 Assessment Methodology

In order to evaluate and compare available dynamic analysis tools with respect to
their capabilities in detecting race conditions, the following steps were carried out.

11.3.1 Overview of Benchmark Frameworks

A benchmark framework is a repository of code with known bugs. Dynamic
analysis tools can be tested, analyzed, and evaluated (to measure the detection, false
alarm, and confusion rates) in an effective and affordable way with the help of
benchmarks.
Juliet Test Suite: This test suite [14, 16] is provided by NSA Centre for Assured
Software and published on NIST Web site. It is a collection of C or C++ and Java
programs with well-known flaws. This test suite helps to understand the capabilities
of software assurance tools.

• Based on Mitre’s CWE classification system, Juliet version 1.2 for C/C++
contains 61,387 test cases for 118 CWEs.

• These test cases are small pieces of buildable code. Each test case contains
exactly one flaw.

• In addition to the target flaw, there are one or more non-flawed constructs also.
• OMITGOOD and OMITBAD Macros can be used to detect the amount of true

positives and false positives raised by an dynamic analysis tool.

In the context of the Juliet Test Suite:

• True positive (TP): A flaw of target type reported in flawed code.
• False positive (FP): A flaw of target type reported in non-flawed code.
• False negative (FN): If the tool does not report a flaw of the target type in flawed

code, then it could be considered as a false negative.

Selection of Benchmark: In this study, Juliet Test Suite was selected in order to
assess the tools for the following reasons:

• It follows the CWE structure. It properly classifies vulnerabilities, so it is very
easy to know which types of vulnerabilities are found.

• It consists of test cases with a variety of lines of codes.
• It comprises of synthetic test cases for both C and C++ languages.
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11.3.2 Mapping CWEs to Rules (Bug Patterns) in Dynamic
Analysis Tools

Mapping of CWEs (C/C++) to rules/bug patterns has been carried out for the
following tools—Parasoft Insure++ and Valgrind. The closest rules/tool suite in
each tool has been mapped to corresponding CWEs as shown in Table 11.1.

11.3.3 Analysis of Tools

The test cases for the selected CWEs from the Juliet Testsuite have been run
through the tools—Parasoft Insure++ and Valgrind. Three metrics [15], i.e., pre-
cision, recall, and F-score, have been calculated for the selected CWEs. The details
of each metric have been explained in Sect. 11.3.4.

11.3.4 Metrics and Metrics Calculation

Precision

• Fraction of results from tool that were “correct,”
• Same as “true positive rate,” and
• Complement of “false positive rate.”

Precision is the ratio of weaknesses reported by a tool to the set of actual
weaknesses in the code analyzed.

PRECISION ¼ #TP= #TPþ#FPð Þ

Table 11.1 CWE mapping

Name CWE
ID

Test
cases in
Juliet

Available
Toolsuite in
Valgrind

Rule availability
in Parasoft Insure
++

Time-Of-Check-Time-Of-Use 367 Yes No No

Signal handler race condition 364 Yes No No

Race condition within a
thread

366 Yes Yes (Helgrind
and DRD)

No

Race condition 362 No Yes (Helgrind
and DRD)

No
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Recall

• Recall signifies the fraction of real flaws that were reported by a tool.
• Recall is also known as “sensitivity” or “soundness.”

RECALL ¼ #TP= #TPþ#FNð Þ

F-score

An F-score is calculated using the following formula:

F-SCORE ¼ 2 � PRECISION � RECALLð Þ= PRECISIONþRECALLð Þ:
Precision ¼ No. of TP= No. of TPþNo. of FPð Þ:

Recall ¼ No. of TP= No. of TPþNo. of FNð Þ
Recall ¼ No. of TP= No. of test casesð Þ

Methods of executing Juliet Test suite in the dynamic analysis tools are as
follows:

1. Ran each test case with OMITGOOD and OMITBAD configuration and
obtained the reports.

2. Considered OMITGOOD configuration reports to find number of true positives.
3. Verified whether reported flaw is a true positive or incidental flaw as follows. If

the flaw reported exactly where the Juliet test case has a comment like this
“/* POTENTIAL FLAW: <flaw of target type> */”, then that flaw is treated as a
true positive; otherwise, it is a incidental flaw.

4. Considered OMITBAD configuration to find out number of false positives.

11.3.5 Description of Dynamic Analysis Tools Used

Valgrind [17] is a “program-execution monitoring framework.” Helgrind is a tool
in the Valgrind suite for detecting synchronization errors in multithreaded pro-
grams. It supports C, C++, and Fortran programs that use the POSIX (Portable
Operating System Interface) threading primitives.

It can detect 3 types of errors:

1. POSIX pthreads API misuses.
2. Potential deadlocks.
3. Data races.

Helgrind detects deadlocks arising from lock ordering problems. It observes the
order in which threads obtain locks. Helgrind detects Heap races as well as Stack
races.
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DRD is a Valgrind tool used for detecting errors in multithreaded C and C++
programs. The tool works on all programs which use POSIX threading primitives or
that use threading concepts built on top of the POSIX threading primitives.
Figure 11.5 gives details on POSIX threads.

Parasoft Insure++ [18] is an automated runtime application testing tool that
detects errors—memory-related errors, variable initialization and definition conflict
errors, library errors, pointer errors, I/O errors, and logic errors. The tool uses
source code instrumentation technology.

11.3.6 Experimental Setup

The experimental setup consists of two tools, Valgrind which is an open-source
tool, present default in Linux OS, and Parasoft Insure++ which is a commercial tool
with the following platforms supported:

Microsoft Windows (32-bit and 64-bit):

• Visual C++.

Linux 32 and 64 bit:

• GNU gcc/g++.
• Intel ICC.

Steps for executing Juliet Test suite in Valgrind—Helgrind and DRD are as
follows:

1. Editing the makefile for executing the program set in Valgrind—Helgrind and
DRD.

POSIX threads, also recognized as Pthreads, is the most extensively accessi-
ble threading library on Unix systems. The POSIX threads programming model is 
based on the following abstractions:
• A shared address space : All the threads running inside the same process

share the same address space. All data, whether shared or not, is known by 
its address.

• Regular load and store operations, which permit to read values from or to 
write values to the memory shared by all threads running in the same pro-
cess.

• Atomic store and load-modify-store operations.
• Threads. Each thread represents a concurrent activity.
• The types of synchronization objects have been defined in the POSIX 

threads standard are: mutexes, condition variables, semaphores, reader-
writer synchronization objects, barriers and spinlocks.

Fig. 11.5 POSIX threads

124 B.M. Parinitha et al.



2. Executing the edited makefile to generate an executable file for the complete set
of program in the given CWE by enabling appropriate Valgrind–Helgrind and
DRD tool options.

3. Collection and analysis of results in XML files.

Steps for executing Juliet Test suite in Parasoft Insure++ are as follows:

1. Set the path for executing programs in Parasoft Insure++ tool.
2. Editing the makefile for executing the program set in Parasoft Insure++.
3. Executing the edited makefile to generate an executable file for the complete

program set.
4. Collection and analysis of results.

11.4 Analysis of Tool Results

Within each section, the results of Valgrind as well as Parasoft Insure++ with
respect to CWEs are shown with the help of graphs. There are varying levels of
performance as described in Table 11.2.

Time and State:

1. CWE-364: signal handler race condition

Description: Race conditions occur frequently in signal handlers, as signal handlers
support asynchronous actions. Race conditions have a variety of root causes and
symptoms. A malicious user may exploit this signal handler race condition to
corrupt the software state, probably leading to a denial of service or even code
execution.

Time of Introduction

• Architecture and design.
• Implementation.

Results for CWE-364 are shown above in Table 11.3. No results in Valgrind. No
rules in Parasoft Insure++.

Table 11.2 Performance
levels

S. No F-score Level of performance

1 <0.4 Poor

2 � 0.4 and <0.6 Satisfactory

3 � 0.6 and <0.8 Good

4 � 0.8 Excellent
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2. CWE-366: race condition within a thread

Description: If two threads of execution utilize a resource at the same time, there
exists the possibility that resources may be used while invalid, in turn leading to
undefined state of execution.

Time of Introduction

• Architecture and design.
• Implementation.

Results for CWE-366 are shown in Table 11.4 and captured graphically in
Fig. 11.6.

Valgrind performance is excellent and no rules in Parasoft Insure++.

3. CWE-367: Time-Of-Check-Time-Of-Use (TOCTOU)

Description: The software verifies the status of a resource before using that
resource, but the resource’s state can change between the check and the use in a
way that invalidates the results of previous check. As a result, the software is made
to perform invalid actions when the resource is in an unexpected state. It can
happen with shared resources such as files, memory, or even variables in multi-
threaded programs.

Time of Introduction

• Implementation.

Results for CWE-367 are shown in Table 11.5.

Table 11.3 CWE-364:
signal handler race condition

Tool Precision Recall F-score #TP #FP

Valgrind 0 0 0 0 0

Parasoft
Insure++

0 0 0 0 0

Table 11.4 CWE-366: race
condition within thread

Tool Precision Recall F-score #TP #FP

Valgrind 1 0.972222 0.985915 35 0

Parasoft
Insure++

0 0 0 0 0

0

0.2

0.4

0.6

0.8

1

Precision Recall F Score

Valgrind

Parasoft 
Insure++

Fig. 11.6 CWE-366 race
condition within thread
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No results in Valgrind, and there are no rules in Parasoft Insure++.
Results of Static Analysis tools: Results of a previous study of assessing static

analysis tools have been taken for comparing results of static and dynamic analysis
tools with respect to their capability to detect race conditions and are shown in
Table 11.6. In spite of rule availability for these CWEs in static code analysis tools,
there were no results.

Table 11.7 depicts the assessment results of dynamic analysis tools.
Valgrind gives better results than Parasoft Insure++.

11.5 Comparisons of Tool Assessment Results—Dynamic
Analysis and Static Analysis

Table 11.8 displays the comparison of tool assessment results of dynamic and static
analysis tools with respect to the selected CWEs.

From this table, it is evident that dynamic analysis gives slightly better perfor-
mance with respect to race conditions.

Table 11.5 CWE-367: Time-Of-Check-Time-Of-Use (TOCTOU)

Tool Precision Recall F-score #TP #FP

Valgrind 0 0 0 0 0

Parasoft Insure++ 0 0 0 0 0

Table 11.6 Results of static analysis tools

Name CWE
ID

Test
cases
in
Juliet

Rule
availability
in Parasoft

Rule
availability
in Klocwork

Rule
availability
in LDRA

Results from
Parasoft C++ test,
Klocwork and
LDRA

TOCTOU 367 Yes Yes Yes Yes 0

Race
condition

362 No Yes Yes Yes 0

Table 11.7 Results of dynamic analysis tools

Name CWE
ID

Test cases in
Juliet

Valgrind results
(errors)

Parasoft Insure++
results (errors)

Signal handler race
condition

364 18 0 0

Race condition
within a thread

366 36 35 0

TOCTOU 367 36 0 0
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11.6 Secure Design and Coding Guidelines

Program analysis tools assessed so far are not showing very promising results as is
evident from the tables above. It becomes imperative to go by the adage
“Prevention is better than cure” and tackle the race issues earlier in the Secure
Software Development Life Cycle (SSDLC) using secure design and coding
guidelines [19, 20]. The pitfalls when working with shared data, whether in the
form of files, database, network connections, or shared memory, are leading to
security compromise, and these are easily made mistakes.

In the section below, a few of the prevention measures that could be considered
at the design and coding level are described:

1. Secure file operations.

• Ensure file was opened successfully.
• Set proper permissions on created files.
• Use file descriptors not filenames.
• Use fchow, fstat, fchmod, mkstemp functions.
• Never reuse file names.
• Use random file names for temporary files.
• Use routines that operate on file descriptors—O_CREAT and O_EXCL flags

to open system call.
• Unlink the temporary files as soon as possible.
• Use mkdir, rmdir, link, etc. carefully.
• Use temporary file event logger.

2. Avoiding race conditions.

• Make sure race windows does not overlap.
• Make race windows as mutually exclusive.

Table 11.8 Comparison table

S. No CWE ID Dynamic analysis tools Static analysis tools

Open-source
Valgrind tool

Parasoft
Insure++

Parasoft
C++ test

Klocwork
insight

LDRA

1 CWE-364: signal
handler race
condition

No result No rule Poor
performance

No rule No result

2 CWE-366; race
condition within a
thread

Excellent
performance

No rule No result No rule No result

3 CWE-367:
Time-Of-Check-
Time-Of-Use
(TOCTOU)

No result No rule No result No rule No result
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• Make use of language facilities—synchronization primitives (SP) such as
mutex variable, semaphores, pipes, condition variable, critical section
objects, and lock variables.

• System security patches should be installed regularly.
• Avoid using ptrace.

3. Securing signal handlers.

• Use safe signal handlers.
• Signal handlers should not make any system calls and should terminate as

quickly as possible.

4. Principle of least privilege.

• Use of access control—protect the resources from unauthorized access.
• Properly handle privilege elevation—minimize the time a program runs with

privileges.

11.7 Conclusion

Performance of Valgrind is better than other available commercial tools for
detecting race conditions. Vulnerability detection capabilities of Valgrind are
inadequate in certain areas such as signal handlers. Analysis of the results in
Valgrind is difficult as the results are verbose. The results from the study of dy-
namic analysis tools show that current vulnerability detection capabilities are
inadequate in the area of dynamic race detection. In order to establish a Dynamic
Analysis Framework (DAF) that performs substantially better, dynamic analysis
tools showing good results in this area must be explored.
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