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Abstract A general stiffness modeling methodology for tripod parallel kinematic
machines (PKMs) with prismatic actuators is proposed in this paper. With the
technique of substructure synthesis, the whole system of a tripod is divided into a
platform, a base and three kinematic limb substructures. Each limb assemblage is
modeled as a spatial beam constrained by two sets of six degree-of-freedom (6-DOF)
virtual lumped springs with equivalent stiffness at their geometric centers. The
equilibrium equation of each individual limb assemblage is derived through finite
element formulation, while that of the platform is derived with the Newton’s 2nd law.
The governing stiffness matrix is synthesized by introducing the deformation com-
patibility conditions between the platform and the limbs. By extracting a 6x6 block
matrix from the inversion of the governing compliance matrix, a stiffness matrix of
the platform is formulated. Taking the Sprint Z3 Head and the A3 Head as examples,
the distributions of stiffness values of these two types of PKMmodules are predicted
and discussed. It is worth mentioning that the proposed methodology of stiffness
modeling can further be applied to other types of PKMs for evaluating the global
rigidity performance over entire workplace efficiently with minor revisions.

Keywords Parallel kinematicmachine �Tripod �Kinetostatic � Stiffness modeling �
Substructure synthesis

1 Introduction

Thanks to the merits of better accuracy and higher rigidity, the tripod parallel
kinematic machines (PKMs) with prismatic actuators have been proved as a
promising alternative solution for high speed machining (HSM) tasks on extra large
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scale components with complex geometries. As a successful example, the Sprint Z3
head has been commercially applied in the aeronautical industries [1, 2]. Another
newly invented and commercially applied tripod PKM is the Exechon, with an
over-constrained 2UPR/1SPR topological architecture [3, 4]. Herein, ‘R’ and ‘S’
denote a revolute joint and a spherical joint respectively while ‘P’ represents an
active prismatic joint. Inspired by the 3-PRS topology of the Sprint Z3 head, a
similar 3-RPS tripod-based PKM named the A3 head was proposed as a
multiple-axis spindle head to form a hybrid 5-axis high-speed machining unit [5, 6].
Other investigations on the tripod PKMs can also be traced in recent publications
[7–11].

In the early design stage for the tripod PKMs that are designed for manipulation
with high rigidity and high positioning accuracy requirements, stiffness is one of the
most overwhelming concerns. However, due to the complex kinematics and
structural features, the derivation for the stiffness matrix of such kinds of PKM
modules is nevertheless, a tough task, not mentioning the challenge of estimating
stiffness throughout the workspace with accuracy and efficiency. Therefore, the
estimation for rigidity performance of a tripod PKM still remains as a challenge
unless a computational efficient as well as accurate stiffness modeling method is
proposed.

Numerous efforts have been contributed to the stiffness modeling and estimation
for various PKMs in the past decades. Among all these efforts, the finite element
method (FEM) [12, 13], the matrix structure method (MSM) [14, 15], the virtual
joint method (VJM) [16–18] and the screw-based method (SBM) [19–22] are the
most common used approaches. For example, Pham and his co-workers [13] pro-
posed an analytical finite element model for a flexure parallel mechanism. The
analytical results were then compared with the experimental tests to validate the
computation accuracy of the proposed stiffness model. As to the matrix structure
method, a Jacobian-based stiffness model [15] was proposed by Bi and his
co-workers. By using the lumped-parameter method, Zhang et al. [16] established a
kinetostatic model for an enhanced tripod mechanism. Li and Xu [19] employed the
screw theory to develop a systematic and analytical stiffness model for a family of
3-DOF parallel mechanisms with three prismatic limbs. Wang et al. [22] presented a
semi-analytical approach to investigate the stiffness of a tripod-based robot named
the TriVariant-B.

It is worth noting that the above stiffness models were specially established for
specific PKMs. In other words, it lacks of versatility for these stiffness models being
applied to different types of tripod PKMs. Motivated by this thought, the authors
aim to present a general stiffness modelling methodology for different types of
tripod PKMs with prismatic actuators. To achieve an acceptable balance between
the computational efficiency and accuracy, a kinetostatic model that considers the
compliances of both limbs and joints is adopted in the present study. For this
purpose, the limbs are modeled as spatial beams with corresponding cross-sections
constrained by passive joints which are simplified as lumped virtual spring units
with equivalent stiffness coefficients.
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The reminder of the paper is organized as follows. In Sect. 2, a general kine-
tostatic stiffness model is established to yield an analytical formulation of the
platform’s stiffness for the tripod PKMs. In Sect. 3, a general algorithm principle of
numerical simulation is proposed to estimate the stiffness performance of two types
of tripod PKMs. The stiffness mapping of the two typical tripods are predicted and
discussed in details. Finally, some conclusions and remarks are drawn in Sect. 4.

2 Stiffness Modeling Methodology

2.1 Kinematic Definitions

Figure 1 shows the schematic diagram of a general tripod PKM consisting of a
platform, a base and three prismatic actuated kinematic limbs. Each limb connects
the platform to the base through two passive joints whose geometric centers are
denoted as Ai and Bi (i=1, 2, 3), respectively.

As depicted in Fig. 1, the following Cartesian coordinate systems are defined:
a global coordinate system B-xyz is attached to the base with its origin B being
recommended to set at the geometric center of the base; similarly, a body-fixed
coordinate system A-uvw is defined at the platform; and three body-fixed limb
reference frames Bi-xiyizi are arranged at the geometric centers of passive joints
Bi. For the convenient of formulation, let zi point in the direction of vector from
Bi to Ai.
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Fig. 1 Schematic diagram of
a general tripod PKM
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Assume the transformation matrix of A-uvw with respect to B-xyz is BTA

BTA : TransðA� uvw ! B� xyzÞ ð1Þ

Similarly, assume the transformation matrix of Bi-xiyizi with respect to B-xyz is
BTBi

BTBi : TransðBi � xiyizi ! B� xyzÞ ð2Þ

2.2 Finite Element Formulation of the Limb Assemblage

According to the kinematic motion of limbs in a tripod PKM, they can be roughly
classified into two categories, i.e., Case A and Case B.

Figure 2 shows the assembling scheme of Case A where the limb length between
the two passive joints is a constant value when the limb undergoes kinematic
motions.

In this case, the limb body is constrained by the two passive joints at Ai and Bi

through the front bearing and the rear bearing, respectively. The passive joints in
the limb assemblage are simplified into two sets of 6-DOF lumped virtual spring
units with equivalent linear/angular stiffness constants denoting as kA1i/kA2i and
kB1i/kB2i. These spring constants can be determined either by finite element com-
putation or by semi-analytical analyses. With the finite element method, the limb
can be meshed into finite elements with each node having three linear and three
angular coordinates along and about three perpendicular axes [23].

To facilitate the formulation, assume each limb body is divided into n elements
with Ai and Bi being one node of the 1st and the nth beam element, respectively. For
clarity, one may denote the element nodes in the discrete spatial beam as ei1, ei2,…,
ei(n+1) and define a set of nodal reference frame eij-xijyijzij at the center of element eij
with its three axes parallel to those in the limb frame Bi-xiyizi. With the boundary
conditions aroused from the passive joints, a set of static equilibrium equations for
the limb can be formulated in the frame of Bi-xiyizi as

kini ¼ wi ð3Þ

ijx

ijy
ije ijz

ix

iy

iz
1ie 2ie 3ie ine

Front bearing Rear bearing

6-DOF spring 6-DOF spring

iBiA

Fig. 2 Assembling scheme
and finite element model of an
individual limb in Case A
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where ki, ni and wi are the stiffness matrix, the general coordinates and the general
load vector of the ith limb body in Bi-xiyizi and can be further expressed as

wi ¼ ½f TAi;mT
Ai; . . .; f

T
Bi;m

T
Bi�T ð4Þ

where fAi/mA and fBi/mBi denote the forces/moments acting at the nodes Ai and Bi

measured in the Bi-xiyizi, respectively.
The general coordinates of an individual limb measured in the limb frame Bi-

xiyizi can thus be expressed as

ni¼½dTAi; qTAi; . . .; dTBi; qTBi�T ð5Þ

where dAi/qAi, dBi/qBi are the linear/angular nodal coordinates of nodes Ai and Bi,
respectively.

Therefore, the nodal coordinates of Ai and Bi can be referred to ni by the
following transformation matrices

dAi ¼ NA1
Bi ni; qAi ¼ NA2

Bi ni ð6Þ

dBi ¼ NB1
Bi ni; qBi ¼ NB2

Bi ni ð7Þ

NA1
Bi ¼ ½I 0 0. . .0|ffl{zffl}

6n

�; NA2
Bi ¼ ½0 I 0. . .0|ffl{zffl}

6n

� ð8Þ

NB1
Bi ¼ ½0. . .0|ffl{zffl}

6n

I 0�; NB2
Bi ¼ ½0. . .0|ffl{zffl}

6n

0 I� ð9Þ

where 0 and I denote a zero matrix and an identity matrix in 3 � 3, respectively.
Figure 3 shows the assembling scheme of Case B where the limb length between

the two passive joints is a varying value when the limb undergoes kinematic
motions.

Similar to the derivation in Case A, one may assume each limb is divided into
n elements with Ai, Bi and Ci being the 1st, the (j + 1)th and the (n + 1)th nodes of
the limb, respectively. Accordingly, a set of equilibrium equations of the ith limb in
frame Bi-xiyizi can be formulated in the matrix form as Eq. (3).

ServomotorNut

Lead-screwFront bearing Rear bearing

6-DOF spring6-DOF spring

iBiA iC

ijx

ijy
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iy
ine2ie ( 1)i je +1ie
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Fig. 3 Assembling scheme
and finite element model of an
individual limb in Case B
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In this case, wi and ni can be expressed as

wi ¼ ½f TAi;mT
Ai; . . .f

T
Bi;m

T
Bi; . . .f

T
Ci;m

T
Ci�T; ni¼ dTAi;q

T
Ai; . . .; d

T
Bi; q

T
Bi; . . .; d

T
Ci; q

T
Ci

� �T
ð10Þ

where fCi/mCi denotes the forces/moments acting on the node Ci measured in Bi-
xiyizi. dCi/qCi is the three linear/angular nodal coordinates of Ci. The nodal coor-
dinates of Ai, Bi and Ci can be related to ni by the following transformations

dAi ¼ NA1
Bi ni; qAi ¼ NA2

Bi ni ð11Þ

dBi ¼ NB1
Bi ni; qBi ¼ NB2

Bi ni ð12Þ

dCi ¼ NC1
Bi ni; qCi ¼ NC2

Bi ni ð13Þ

NA1
Bi ¼ ½I 0 0 . . . 0|fflffl{zfflffl}

6n

�; NA2
Bi ¼ ½0 I 0 . . . 0|fflffl{zfflffl}

6n

� ð14Þ

NB1
Bi ¼

0 . . . 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
6j

I 0 0 . . . 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
6ðn�jÞ

" #
;

NB2
Bi ¼

0 . . . 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
6j

0 I 0 . . . 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
6ðn�jÞ

" # ð15Þ

NC1
Bi ¼ 0 . . . 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

6n

I 0
� �

; NC2
Bi ¼ 0 . . . 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

6n

0 I
� �

ð16Þ

Equation (3) can be transformed into the global coordinate system B-xyz as

KiUi ¼ W i ð17Þ

where Ki, Ui and Wi are the stiffness matrix, the general coordinates vector and the
external loads vector of limb i measured in B-xyz. And there exist

Ki ¼ TikiTT
i ; Ui ¼ Tini; W i ¼ Tiwi ð18Þ

Ti ¼ diag½BTBi;
BTBi; . . .;

BTBi;
BTBi� ð19Þ

where BTBi is the transformation matrix of Bi-xiyizi with respect to B-xyz as defined
in Eq. (2) and can be determined by inverse kinematics.
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2.3 Equilibrium Equation of the Platform

The force diagram of the platform is depicted in Fig. 4. Herein, FAi/MAi denotes the
forces/moments provided by the passive joints Ai; FP/MP represents the external
forces/moments acting on the platform.

With the Newton’s 2nd law, the following static equations can be formulated

�
X

FAi þFP ¼ 0;�
X

rAi � FAi þ srritrmsrritrmMP �
X

MAi ¼ 0 ð20Þ

FAi ¼ BTBif Ai; MAi ¼ BTBimAi ð21Þ

where rAi is the vector pointing from A to Ai measured in B-xyz.

2.4 Deformation Compatibility Conditions

The displacement relationships between the platform/base and the limb is depicted
in Fig. 5, in which AiM and AiL denote the interface points associated with the
platform and the ith limb, while BiB and BiL denote the interface points associated
with the base and the ith limb, respectively. rAi=dAi and dBi=qBi are the
linear/angular displacements of AiM and BiL measured in the limb coordinate system
Bi-xiyizi.
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Fig. 4 Force diagram of the
platform

Fig. 5 Two types of
deformation compatibility
conditions
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Assume the elastic motion of the platform caused by the deflections of the three
flexible limb assemblages is UP, the elastic displacements of AiM (attached to the
platform) can be derived as the followings.

rAi ¼ BTT
BiD

riUP; dAi¼BTT
BiD

aiUP ð22Þ

Dri ¼
1 0 0 0 zAi �yAi
0 1 0 �zAi 0 xAi
0 0 1 yAi �xAi 0

2
4

3
5; Dai ¼ 03�3 I3�3½ � ð23Þ

where xAi, yAi and zAi, are the coordinates of point Ai measured in B-xyz.
As a result, the reaction forces and moments of the passive joints Ai and Bi

measured in Bi-xiyizi can be obtained as

f Ai¼� kA1iðNA1
Bi T

T
i Ui � BTT

BiD
riUPÞ; mAi¼� kA2iðNA2

Bi T
T
i Ui � BTT

BiD
aiUPÞ

ð24Þ

f Bi ¼ �kB1iNB1
Bi T

T
i Ui; mBi ¼ �kB2iNB2

Bi T
T
i Ui ð25Þ

2.5 Stiffness Matrix of the Platform

By assembling the equilibrium equations of the limbs and the platform, one may
derive the governing equations of a general tripod PKM in the matrix form as

KU ¼ W ð26Þ

where K, U and W are the governing stiffness matrix; coordinates vector and load
vector. And there exist

K ¼
K1;1 K1;4

K2;2 K2;4

K3;3 K3;4

K4;1 K4;2 K4;3 K4;4

2
664

3
775 ð27Þ

U ¼ UT
1 UT

2 UT
3 UT

P

� �T ð28Þ

W ¼ WT
1 WT

2 WT
3 WT

P

� �T
; WP ¼ FT

P MT
P

� �T ð29Þ

The stiffness matrix of the platform expressed in the body-fixed frame A-uvw can
be further formulated as
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Kp¼ TT
0f½K�1�

ðH�18ðnþ 1ÞÞ�ðH�18ðnþ 1ÞÞ
g�1T0; T0 ¼ diag BTA

BTA

� � ð30Þ

where H=18n + 24 is the dimension of the governing stiffness matrix.

3 Stiffness Estimation

In this section, two typical tripod PKMs, namely the Sprint Z3 head module (Case
A) and the A3 head module (Case B) are taken as examples to demonstrate the
versatility of the proposed general stiffness modeling methodology. The stiffness
mapping of the two example systems over a typical work plane is plotted and
briefly discussed.

The structures of the two example tripods are depicted in Fig. 6.
As can be observed from Fig. 6, the topological architecture behind the two

tripods are a 3-PRS parallel mechanism and a 3-RPS parallel mechanism, respec-
tively [24, 25].

Fig. 6 Structures of two typical tripods
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The major geometric parameters and stiffness coefficients of the two typical
tripods are listed in Table 1.

Based on the above parameters and the derivations described in Sect. 2, one can
obtain the stiffness mapping of the two tripods throughout the workspace. For the
sake of generality, the following illustrates the mappings of the six principle
stiffness values over a given typical work plane of pz = 570 mm. Herein, pz denotes
the central distance between the base and the platform in z direction; w and h are the
Euler angles in terms of precession and nutation; k11, k22 and k33 denote the three
linear principle stiffness values along u, v and w axes while k44, k55 and k66 rep-
resent the three angular principle stiffness values about u, v and w axes.

As shown in Figs. 7 and 8, the stiffness mapping of the two tripods is strongly
position-dependent and is coincident with the tripod’s structural features. To be
specific, the distribution of stiffness values over the work plane for the two tripods
are both symmetric with respect to h, which can be physically explained by the
structural symmetry of limb 1, limb 2 and limb 3.

Further observations show that w and h have different impacts on the stiffness
distributions of the two tripods. Taking the Sprint Z3 head for instance, the pre-
cession w has a ‘stronger’ impact on the linear principle stiffness values along u and
v axes, while has a ‘weaker’ impact on the linear principle stiffness along w axis. In
addition, for both the Sprint Z3 head and the A3 head, the stiffness value along

Table 1 Parameters of the Sprint Z3 head and A3 head

Nomenclature Z3 head A3 head

Radius of the platform rp 250 250

Radius of the base rb 250 250

Stroke of the tripod s 200 200

Elastic modulus of the limb body E 200 200

Shear modulus of the limb body G 80 80

Stiffness of short axis in u direction ksu 23 23

Stiffness of short axis in v direction ksv 23 23

Stiffness of short axis in w direction ksw 623 623

Stiffness of long axis in u direction klu 112 112

Stiffness of long axis in v direction klv 214 214

Stiffness of long axis in w direction klw 100 100

Stiffness of cross axis in u direction kcu 676 676

Stiffness of cross axis in v direction kcv 446 446

Stiffness of cross axis in w direction kcw 348 348

Stiffness of a revolute joint along x direction krx 280 380

Stiffness of a revolute joint along y direction kry 330 530

Stiffness of a revolute joint along z direction krz 330 530

Stiffness of a revolute joint about y direction krv 20 18

Stiffness of a revolute joint about z direction krw 20 18

Units mm, Gpa, N lm−1, N m rad−1
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w axis is the largest among the three linear principle stiffness values and the
stiffness value about w axis is the smallest among the three angular principle
stiffness values. This may imply that the rigidity performance about w direction
must be paid more attention when design and apply these two kinds of tripods.

By comparing Figs. 7 with 8, one can find that the A3 head claims a competitive
stiffness performance to the Sprint Z3 head along w axis. However, the rigidities of
the A3 head along and about other axes are smaller than those of the Sprint Z3
head.
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Fig. 7 Six principle stiffness values of the Sprint Z3 head over the work plane of pz = 570 mm

A General Kinetostatic Model Based Stiffness Estimation … 81



4 Conclusions

With the studies carried out in this paper, the following conclusions can be drawn:

(1) The general tripod PKMs are classified into two groups according to the motion
patterns of the kinematic limbs. With this classification, a kinetostatic model
based methodology is proposed to derive the analytical stiffness matrix of the
platform for the general tripod PKMs with prismatic actuators.

(2) The proposed kinetostatic model considers the deflections of limb structures as
well as the joint assemblages, leading to a satisfactory computation accuracy of
the stiffness property for the tripod’s platform.

(3) The stiffness mapping of two typical tripods named the Sprint Z3 head and the
A3 head are predicted numerically to show strong position-dependency and
structural symmetry.
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(4) The present study provides a general framework for the stiffness evaluation of
tripod-based PKMs with prismatic actuators. Also it is expected that the present
kinetostatic model can be further expanded to an elastodynamic model by
adding the mass and coriolis terms, with which the dynamic analyses for the
tripods can be conducted.
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