
Abstract— Gene Ontology is a hierarchical controlled vocab-

ulary for protein annotation. Its synergy with automatic classi-

fication methods, ensemble, has been widely used for the pre-

diction of protein functions. Current classification methods use

only the relation is a and a few little part of to generate predic-

tion model. In this work we formalize the GO part of, regulates;

negatively regulates and positively regulates relationships through

predicate logic. This formalization is incorporated within an en-

semble method based on graph factor called Factor Graph GO

Annotation. The proposed model is validated against four model

organisms for GO Biological Process prediction.

Keywords— Gene Ontology, Factor Graph, Automatic function

prediction

I INTRODUCTION

The high-throughput of sequencing technologies provides

huge amounts of data opening unlimited opportunities for bet-

ter understanding of biological behavior of target organisms.

The use of machine learning methods may achieve the ini-

tial approach for data analysis focalizing experiments, saving

time and money. A central point of genomic research is to

establish the biological functions of proteins, also called an-

notation. Gene Ontology (GO) provides a hierarchical archi-

tecture of biological functions [1] which may guide the auto-

matic annotation of protein function. GO is composed of three

sub-ontologies: Biological Process (BP), Molecular Function

(MF) and Cellular Component (CC). Each of them is a Di-

rected Acyclic Graph (DAG), where every node represents a

GO-term (a biological function) and every edge represents a

relationship between two GO-terms. The commonly used rela-

tionships in GO are: is a (is a subtype of); part of ; regulates;

negatively regulates and positively regulates [2]. Traditional

ensemble methods for automatic function prediction based on

GO consider the relationship is a [3], [4], [5] and a few the

relationship part of [6].

In this paper, we propose the formalization of GO relation-

ships beyond is a for GO-BP prediction. Regarding inference

process interpretability, a classification method based on fac-

tor graph [7] is considered. In particular, we use the Factor

Graph GO Annotation (FGGA) [8] which models GO relation-

ships with logical factor nodes. The formalization must con-

sider TPG constraint, “If the child GO-term describes the pro-

tein, then all its parent terms must also apply to that protein;

and if a GO-term not describes a protein, then all its descen-

dant GO-terms must not describe it”, that governs the structure

and inference within GO-DAG. The extension of logical factor

nodes within FGGA model, hereafter FGGA+, is able to infer

functional predictions of proteins by using the adapted version

of sum-product algorithm [8].

This paper is organized as follows. In Section II, GO rela-

tionships are formalized thought predicate logic to be included

to FGGA+. Section III discusses the results on A. thaliana, D.

melanogaster, D. rerio, and C. elegans in BP-GO. In the last

Section, conclusions are presented.

II METHOD

Given a GO subgraph, GO-terms GO:i are mapped to

binary-valued latent variable nodes xi of FGGA+. Relation-

ships between GO-terms are mapped to logical factor nodes fk

which describe valid GO:i configurations under the TPG con-

straint; and probabilistic factor nodes gi which model statistical

dependence between latent variable nodes (ideal) xi and vari-

able leaf nodes yi modeling observable (real), i.e., uncertain in

GO:i term predictions (see Fig. 1).

Practically, logical factor nodes fk are implemented with

truth tables of 2#child+#parents entries. At each of these entries,

the specific parent/child role and relationships of participating

variable nodes are required to check the TPG constraint. As

shown in Table 1, where 1/0 denotes positive/negative annota-

tion, respectively. The logical factor f4 in Fig. 1-b ensures that

TPG constraint over variable nodes x3, x4 and x5 is fulfilled

whenever x5 is a child node of x3 (x5 regulates x4) and x4 (x5

part of x4), i.e., multiple inheritance over x5.

Formally, logical factor nodes fk over subsets of variable

nodes xi ensure the local satisfiability of TPG constraint.

With this aim, two logical rules are repeatedly evaluated.

Specifically, if a child GO-term is annotated positive, then

its parent GO-term(s) must also be annotated positive. On

the other hand, if a parent GO-term is annotated negative,
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Fig. 1: (a) GO-DAG where GO:i nodes are GO-terms and edges are relationships (b) FGGA+ model where xi are latent variable nodes modeling actual
positive/negative GO:i annotations and fk are logical factor nodes modeling the TPG constraint over them, yi are observable variable leaf nodes modeling

real-valued GO:i predictions and gi are probabilistic factor nodes modeling their statistical dependence on latent variable nodes xi.

Table 1: The truth table of the logical factor node f4. Positive/negative
annotations of variable nodes x3, x3 and x5 are depicted as 1/0. Parent

variable nodes x3 and x4 are shown in blue.

x3 x4 x5 f4(x3,x4,x5)
[regulates] [part o f ]

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

then its children GO-term must also be annotated negative.

In addition, they must fulfill a requirement of transitive in-

ference on their grandparents. Using predicate logic [9], let

part o f (GO: j,GO:i) denotes GO:j (child) is part of GO:i

(parent) and is a(GO:i,GO:z) denotes GO:z is parent of GO:i

(child). Similarly, let annotated(·) denotes the positive anno-

tation of the target protein with a GO-term. As a result, at least

one of the following rules (Eq.1 or Eq.2) must be active and

fullfilled by any pair of GO-terms involved within a part o f

relationship:

r1 : ∀i, j,z part o f (GO: j,GO:i)∧annotated(GO:j) ∧

[is a(GO:i,GO:z)∨ part o f (GO:i,GO:z)]→ annotated(GO:i)
(1)

r2 : ∀i, j,z part o f (GO: j,GO:i)∧¬annotated(GO:i) ∧

[is a(GO:i,GO:z)∨ part o f (GO:i,GO:z)]→¬annotated(GO:j)
(2)

In the same way, we can extend the predicate logic to regulates

relationships:

r3 : ∀i, j,z reg GO(GO: j,GO:i)∧annotated(GO:j) ∧

[is a(GO:i,GO:z)∨ part o f (GO:i,GO:z)]→ annotated(GO:i)
(3)

r4 : ∀i, j,z reg GO(GO: j,GO:i)∧¬annotated(GO:i) ∧

[is a(GO:i,GO:z)∨ part o f (GO:i,GO:z)]→¬annotated(GO:j)
(4)

where reg GO(GO: j,GO:i) can be just regulates or posi-

tive/negative regulation.

When multiple inheritance exists, multiple relationships

must be considered in both, GO and FGGA+ sides. For in-

stance, Table 1 shows that “x5 is the child of x3” and “x5 is

also child of x4”, considering the regulates relation between

GO:3 and GO:4, and the part o f relation between GO:4 and

GO:5. For instance, row 1 shows the fulfillment of both rela-

tionships: part of and regulates, by rule 2 and rule 4 activation,

hence, f4 is true. On the other hand, row 4 shows for these rela-

tionships, rule 1 and rule 3 are active but only rule 1 is fulfilled,

hence, f4 is false. Note that the modeling of GO relationships

by predicate logic requires a detailed examination of cascade

GO relationships to accomplish transitiveness.

III RESULTS AND DISCUSSION

A Experimental Protocol

Four models organisms, D. rerio [10], A. thaliana [11], C.

elegans [12] and D. melanogaster [13] are considered. For
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Table 2: Datasets in the GO-BP

Organism # GO-terms # Samples

D. rerio 44 1002
A. thaliana 97 6032
C. elegants 112 3223
D. melanogaster 156 4189

each organism, GO-BP annotation datasets (see Table 2) are

generated with experimental GO evidence codes1: inferred

from mutant phenotype (IMP), inferred from genetic interac-

tion (IGI), inferred from physical interaction (IPI), inferred

from expression pattern (IEP) and inferred from direct assay

(IDA), considering GO-terms with at least 300 positively anno-

tated proteins. To balance the training dataset [14] of each GO-

term, the number of positive and negative samples must be the

same. The negative annotated samples are selected by the in-

clusive separation policy [15]. The protein characterization to

a fixed number of input features is done by 457 physicochem-

ical/secondary structure properties, Physicochemical+, 453 of

the physicochemical type [16] and 4 of the secondary structure

[17]. Practically, protein characterization is implemented with

the Bio.SeqsUtils [18] package. FGGA+ method is built from

GO-term classifiers implemented with SVM default constant

complexity C=1. The Gaussian assumption in FGGA+ is at-

tained by real valued predictions of SVM soft-margin outputs

(implemented with e-1071 R package [19]).

The FGGA+ is evaluated with 5-fold cross-validation test,

computing per GO-term the AUC average scores [20]. Tak-

ing into account that GO annotation gets harder as deeper lev-

els of the hierarchy [21], prediction performance was mea-

sured by the hierarchical precision (HP), the hierarchical re-

call (HR), and the hierarchical balanced F-score (HF) reflect-

ing their trade-off.

B Prediction performance on model organisms

Whatever the organism, FGGA+ improves the SVM base-

line classifiers. This is particularly evident in the annotation of

D. melanogaster and C. elegants, see Fig. 2.

All relationships modeled in this paper are presented in

the Fig. 3 and shows the GO-DAG the annotated sequence

“ENSDARP00000061793” of the NR1H4 gene in D. rerio.

This gene is related to the hormone nuclear receptor fam-

ily members and encodes a nuclear receptor for bile acids

ENSDARP00000061793 protein which regulates the expres-

sion of genes involved in bile acid synthesis. The is a consid-

eration in the GO-BP activate two novel and specific terms,

GO:0050794, regulation of cellular process, and GO:0044700,

single organism signaling. By including relations part of and

regulates within GO-BP (see Fig. 4) allow the annotation

1http://geneontology.org/page/guide-go-evidence-codes

Table 3: GO-BP prediction performance, Hierarchical Precision (HP),
Hierarchical Recall (HR), Hierarchical F-score (HF)

Organism HP HR HF

D. rerio 0.66 0.72 0.66
A. thaliana 0.52 0.68 0.57
C. elegants 0.56 0.76 0.63
D. melanogaster 0.59 0.75 0.64

of three new terms, the more specific term GO:0007165, sig-

nal transduction, which is part of terms GO:0007154, cellular

communication, and GO:0051716, cellular response to stimu-

lus.

Enrichment through this three new nodes indicates that

probably the NR1H4 gene is involved in the regulation of a

cellular process, in this case a bile acid synthesis. It function is

also related to the response to a stimulus, in this case the pres-

ence of bile, and to transduction signal within the cell, in this

case expression of genes involved in bile production. The new

prediction enriched of the GO term GO:0044700 results in the

biological sense acquisition.

The performance of GO-BP prediction by FGGA+ is pre-

sented in Table 3. The results show a good F-score independent

of the number of GO-terms and organism complexity.

IV CONCLUSIONS

The formalization of the GO relationships within FGGA+

allows a hierarchical and consistent prediction of GO-terms

within any of the three sub-ontology GO (BP, MF or CC)

achieving deeper, broader, and more jumping edges of pre-

dicted DAGs. This approach may be extended to another types

of no transitive relationships which are in development, such

as capable of and occurs in2.
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Fig. 2: Scatter-plot of the average AUC of base SVM vs. FGGA+ GO-BP predictions on D. melanogaster (left) and C. elegans (right) with Physicochemical+

characterization.
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