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Abstract
Capacitation is defined as an ensemble of several physiological, molecular and 
cellular changes in the spermatozoa, making them fertilization competent. It is 
considered as an obligate requirement for sperm fertility, since failures in sperm 
capacitation affect the fertilization potential. This chapter discusses the hall-
marks of capacitation, including molecular changes involved in this phenome-
non. Laboratory-based studies on human spermatozoa (molecular studies and 
sperm function tests based on capacitation and its associated events: hyperactiva-
tion, acrosome reaction and tyrosine phosphorylation) have been discussed with 
a view to highlight the pressing need for translating this information into the 
clinical practice. Additionally, a requirement to develop molecular markers/
sperm function tests based on protein tyrosine phosphorylation has been empha-
sized. The latter have come to the fore with increasing incidence of infertility and 
frequent use (and need) of assisted reproductive technologies like IVF and ICSI.
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• The last six decades have seen a considerable rise in laboratory-based studies on 
human sperm capacitation and its associated phenomena: hyperactivation, acro-
some reaction and protein tyrosine phosphorylation.

• Clinical tests based on the identified molecular markers are rather scarce, with 
one test, viz. Androvia Cap-Score™ showing promising results in being able to 
discriminate fertile from infertile men.

• In the present era of assisted reproductive techniques (ARTs), especially ICSI, it 
is mandatory to develop reliable sperm function tests based on capacitation and 
other related phenomena to ensure the selection of the “healthiest” 
spermatozoa.

5.1  Introduction

In mammals, after having gone through the journey of formation in testis and matu-
ration in epididymis; spermatozoa, the male gamete, isn’t quite ready yet to marry 
the female gamete, the oocyte. It still has to undergo a whole battery of changes—
this time—in the female reproductive tract, to fertilize the oocyte (Fig. 5.1). This 
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Fig. 5.1 Life cycle of sperm: After production in testis in sufficient numbers with normal shape, 
the spermatozoa undergo maturation in epididymis, gain motility and undergo capacitation in the 
female reproductive tract, then acrosome react after oocyte binding and penetrate and activate the 
egg, resulting in successful fertilization. The blue arrows indicate the site of event 
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ensemble of post-ejaculation changes in the spermatozoa has been collectively 
called as sperm “capacitation”. Capacitation renders the spermatozoa functionally 
mature.

Origin of spermatozoa in the testis is followed by its capacitation (after ejacula-
tion) in the female reproductive tract and ultimately fertilization with oocyte in the 
fallopian tube. Sperm contribution to fertilization to assess the “male factors” is usu-
ally estimated through evaluation of semen parameters, namely, sperm count, mor-
phology and motility (World Health Organization 2010). Quite often, in spite of 
these parameters being normal and these males being termed as normozoospermic 
(normal count, motility and morphology); the infertility still exists in the male part-
ner. Such cases of idiopathic (unknown etiology) infertility have been attributed sub-
stantially to the problems in sperm capacitation (Tucker et al. 1987; Matzuk and 
Lamb 2002; Esposito et al. 2004; Hildebrand et al. 2010; Nandi and Homburg 2016).

5.2  What Is Sperm Capacitation?

Sperm capacitation has been defined as the “ensemble of all the physiological, 
molecular and cellular changes in the spermatozoa, which are necessary to make it 
fertilization competent”. It was independently discovered by Austin and Chang in 
1951 (Austin 1951; Chang 1951). Although discovered more than half a century 
ago, capacitation is still regarded as a “poorly understood” phenomenon, owing to 
the fact that each mammalian species has its unique features at the physical (time of 
capacitation) and molecular level (Chang 1984) that are difficult to monitor, since it 
takes place in the female reproductive tract (either in the oviduct or in the vicinity 
of the egg).

Sperm capacitation is a prerequisite for successful fertilization as evidenced 
from the observations that a block in capacitation causes male infertility (Tucker 
et al. 1987; Matzuk and Lamb 2002; Esposito et al. 2004; Hildebrand et al. 2010). 
Therefore, there has been a pressing need to understand sperm capacitation in all the 
individual species making it a focus of investigations of many gamete biologists 
worldwide. Most progress in understanding the phenomenon of capacitation has 
been because of in vitro methods for capacitation (Yanagimachi 1969). In the pro-
cedure, freshly ejaculated or epididymal spermatozoa are washed and incubated at 
physiological conditions in a defined medium that mimics the female oviductal fluid 
(Dow and Bavister 1989). The medium normally has the following composition: 
electrolytes, metabolic energy source and a macromolecule to allow for cholesterol 
efflux like serum albumin (Yanagimachi 1969, 1994). Several in vitro studies have 
revealed that during capacitation, spermatozoa undergo a number of biochemical 
and biophysical changes (Fig. 5.2), such as increase in membrane fluidity (Davis 
et al. 1980; Cross 1998; Buffone et al. 2009; Salvolini et al. 2013), activation of 
trans-bilayer signalling events (Go and Wolf 1985; Visconti et al. 1998; Gadella and 
Harrison 2000; Flesch et al. 2001; Sheriff and Ali 2010; Ickowicz et al. 2012), 
changes in redox status of spermatozoa leading to generation of reactive oxygen 
species (ROS) (de Lamirande and Gagnon 1992; Aitken 1995; O’Flaherty et al. 
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2006; Musset et al. 2012), removal of stabilizing proteins (Shivaji et al. 1990; 
Villemure et al. 2003; Leahy and Gadella 2011) and phosphorylation of proteins 
(Leyton and Saling 1989; Visconti et al. 1995; Mitra and Shivaji 2004; Arcelay et al. 
2008; Mitchell et al. 2008; Kota et al. 2009; Katoh et al. 2014).

5.3  Hallmarks of Capacitation

Capacitation is generally monitored by recording protein tyrosine phosphorylation 
(pY), hyperactivation (Yanagimachi 1994; Kulanand and Shivaji 2001; Baker et al. 
2006) and acrosome reaction (Ward and Storey 1984; Meizel and Turner 1991; 
Aitken 1995; Curry and Watson 1995; Mitra and Shivaji 2004; Varano et al. 2008; 
Bragado et al. 2012; Jaldety and Breitbart 2015), which are also considered as the 
“hallmarks of capacitation” (Fig. 5.2). Capacitation changes lead to the transforma-
tion in the motility pattern of spermatozoa from a progressively motile cell to a more 
vigorous, but less progressive, motile cell (Yanagimachi 1969; Suarez and Dai 1992; 
Mortimer and Swan 1995; Ho and Suarez 2001). This type of motility is termed as 
“hyperactivation”, and subsequent to this, capacitation ends with the ability of sper-
matozoa to undergo “acrosome reaction”, during which the spermatozoa releases the 
hydrolytic enzymes to facilitate its penetration and fusion with the oocyte—finally 
leading to fertilization. The increase in pY is another distinctive feature of the mam-
malian spermatozoa associated with capacitation. This molecular change is consid-
ered as an important characteristic of mammalian capacitation and has been addressed 
by various groups worldwide in varied animal models (Visconti and Kopf 1998; 
Visconti et al. 1999; Kulanand and Shivaji 2001; Lefièvre et al. 2002; Jha et al. 2003; 
Shivaji et al. 2007, 2009; Arcelay et al. 2008; Mitchell et al. 2008; Kota et al. 2009).
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Fig. 5.2 A schematic representation of capacitation and its associated hallmarks (in blue) and 
biochemical and biophysical changes 
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5.3.1  Hyperactivation

Hyperactivation, which is defined as “a distinct change in the sperm motility from a 
symmetrical to an asymmetrical pattern, is crucial for fertilization” (Yanagimachi 
1969; Suarez 2008). The mammalian spermatozoa, while in the epididymis are 
immotile. But when released in the female reproductive tract/culture media, they 
quickly begin to swim and get hyperactivated (Morton et al. 1974), which imparts 
sperm the ability to traverse through the mucus-filled, labyrinthine lumen of the 
oviduct to reach the female gamete. Hyperactivation also helps the spermatozoa in 
penetrating the cumulus oophorus and the zona pellucida (Suarez et al. 1991; Suarez 
2008). This activated spermatozoon generates a near symmetrical flagellar beat, 
which is called as a “planar motility” pattern. This planar motility propels the sper-
matozoa in an almost linear trajectory (Suarez and Dai 1992; Mortimer and Swan 
1995; Ho et al. 2002). The amplitude of the flagellar bend is usually increased only 
on one side of the hyperactivated spermatozoa. This increased uneven amplitude 
leads to a circular, wriggling and whiplash type of motility pattern of the spermato-
zoa as shown in Fig. 5.3, and these movements are assessed objectively by using the 
computer-assisted sperm analysis (CASA) system (Shivaji et al. 1995; Panneerdoss 
et al. 2012). Hyperactivation is initiated and maintained by the involvement of a 
number of physiological factors like calcium, bicarbonate, cAMP and metabolic 
substrates (Visconti et al. 1999).

Progressive Hyperactivated

Fig. 5.3 Change in sperm 
movement from 
progressive to 
hyperactivated during 
sperm capacitation
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5.3.2  Acrosome Reaction

Acrosome reaction is an absolute crucial step for successful fertilization, as it is due 
to acrosomal secretions alone that the sperm makes its progress through the invest-
ments surrounding the egg. In fact, males with spermatozoa lacking the acrosome 
are infertile (Baccetti et al. 1991). During the acrosome reaction, multiple fusions 
occur between the plasma membrane and the outer acrosomal membrane in the 
anterior region of the head. These multiple fusions lead to the formation of exten-
sive hybrid membrane vesicles and subsequent exposure of the inner acrosomal 
membrane and acrosomal contents (Cardullo and Florman 1993). These stages of 
acrosome reaction have been depicted in Fig. 5.4.

5.3.3  Protein Tyrosine Phosphorylation

Protein tyrosine phosphorylation (pY), a post-translational event, is also considered 
as hallmark of capacitation. pY is a regulatory mechanism which controls many 
processes, such as cell cycle control, cytoskeleton assembly, cellular growth, recep-
tor regulation and ionic current modulation (Hunter 2000; Pawson 2004; Vizel et al. 
2015). The first evidence of protein tyrosine phosphorylation in spermatozoa was 
provided by Leyton and Saling (1989) in mouse. Later, Visconti et al. (1995) showed 
a correlation between sperm capacitation and protein tyrosine phosphorylation in 
mouse spermatozoa, and soon this increase was demonstrated in spermatozoa of 
various other species during capacitation, including human (Leclerc et al. 1996; 
Osheroff et al. 1999), hamster (Kulanand and Shivaji 2001), cat (Pukazhenthi et al. 
1998), pig (Tardif et al. 2001), boar (Kalab et al. 1998), bovine (Galantino-Homer 
et al. 1997, 2004), equine (Pommer et al. 2003), cynomolgus monkey (Mahony and 
Gwathmey 1999), tammar wallaby and brushtail possum (Sidhu et al. 2004), guinea 
pig (Kong et al. 2008) and ram (Grasa et al. 2006).
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Fig. 5.4 Schematic representation of various stages in the progression of the sperm acrosome 
reaction (adapted from Curry and Watson 1995)
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Naz and Rajesh (2004) proposed a model for tyrosine phosphorylation pathways 
during sperm capacitation. The model suggests that sperm capacitation involves 
three main signalling pathways, namely, a cAMP/PKA-dependent pathway (path-
way I) [unique to spermatozoa], a receptor tyrosine kinase pathway (pathway II) 
and a non-receptor protein tyrosine kinase pathway (pathway III). A crosstalk 
between tyrosine kinase and cAMP-dependent kinase signalling pathways in human 
sperm motility regulation is a unique feature in spermatozoa (Bajpai and Doncel 
2003). SRC family kinases (SFKs) known to play an important role in this 
capacitation- associated increase in protein tyrosine phosphorylation (Battistone 
et al. 2013) are shown to be downstream of PKA. The target proteins for PKA could 
be protein tyrosine kinase(s) or protein tyrosine phosphatase(s) or both. These 
kinase(s) and phosphatase(s) then regulate the downstream phosphorylation of their 
substrate proteins at their tyrosine residues leading to a cascade of signalling events. 
Till date, a number of kinases have been identified (Table 5.1), which are involved 

Table 5.1 List of kinases identified in spermatozoa from several species

Kinase Species (reference)

Receptor tyrosine kinases

EGFR Human (Breitbart and Etkovitz 2011); ram (Luna et al. 2012); 
bull (Etkovitz et al. 2009); boar (Awda and Buhr 2010)

IGFR1/IGF1 Human (Wang et al. 2015)

Tyrosine kinase-32 Porcine (Tardif et al. 2003)

FGFR1 Mouse (Cotton et al. 2006)

Non-receptor tyrosine kinases

SRC Mouse (Krapf et al. 2012); human (Lawson et al. 2008; Mitchell 
et al. 2008)

LYN Mouse (Goupil et al. 2011); bovine (Lalancette et al. 2006)

FYN Human (Kumar and Meizel 2005); mouse (Luo et al. 2012); rat 
(Kierszenbaum et al. 2009)

YES Human (Cheng and Mruk 2012); porcine (Bragado et al. 2012)

HCK Mouse (Goupil et al. 2011); bovine (Bordeleau and Leclerc 
2008)

LCK Hamster (Singh DK et al. 2017)

PYK2 Human (Battistone et al. 2014); mouse (Chieffi et al.  2003; 
Roa-Espitia et al. 2016); Bovine (González-Fernández et al. 
2013); stallion (Rotfeld et al. 2012)

FER Mouse (Alvau et al. 2016)

Serine threonine kinases

Protein kinase A Human (Leclerc et al. 1996); bovine (Galantino-Homer et al. 
1997); porcine (Tardif et al. 2001); hamster (Kulanand and 
Shivaji et al. 2001)

Protein kinase B/AKT Human (Aquila et al. 2005); mouse (Feng et al. 2005); boar 
(Aparicio et al. 2007); Stallion (Gallardo Bolaños et al. 2014)

ERK 1/2 Human (Almog et al. 2008); mouse (Nixon et al. 2010); guinea 
pig (Chen et al. 2005); boar (Awda and Buhr 2010)

Phosphoinositide 3-kinase 
(PI3K)

Human (Sagare-Patil et al. 2013)
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in the process of capacitation, and the list is still expanding (Lawson et al. 2008; 
Mitchell et al. 2008; Varano et al. 2008; Goupil et al. 2011; Battistone et al. 2013; 
Wang et al. 2015). Although several kinases have been identified in the spermatozoa 
(Table 5.1), their functional relevance is seen only in vitro and mostly in animal 
models. The importance of the identified kinases and thus the regulation of tyrosine 
phosphorylation in male fertility/infertility has not yet been explored much.

5.4  Diagnosis and Prognosis of Male Infertility/Fertility: 
Importance of Capacitation-Based Sperm Function 
Tests

In humans, the prognosis and diagnosis of male fertility has been a subject of 
research worldwide. As mentioned earlier, a good percentage of human pregnancy 
failures can be attributed to decreased male fertility or male factor infertility 
(Thonneau et al. 1991; Sharlip et al. 2002; Lee and Foo 2014). To evaluate human 
sperm fertility, there has always been a consistent effort to get in place sperm func-
tion tests, owing to low predictive power of standard seminal parameters (motility, 
concentration and morphology) (Oehninger 1995; Carrell 2000; Muller 2000; 
Aitken 2006; Lefièvre et al. 2007; Vasan 2011; De Jonge and Barratt 2013; Esteves 
et al. 2014; Oehninger et al. 2014). Attempts have been made in laboratories for 
decades to design sperm function tests based on capacitation and its associated 
events/parameters for predicting male fertility.

Sperm penetration tests, including the sperm mucus penetration test and sperm 
penetration assay, are being routinely used in fertility centres. In addition, various 
biochemical and biophysical changes during capacitation (Zaneveld et al. 1991; 
Benoff 1993; Martínez and Morros 1996; Cross 1998; Travis and Kopf 2002; 
Visconti et al. 2002, 2011; Mitra and Shivaji 2005; Signorelli et al. 2012; Aitken and 
Nixon 2013) also are being utilized for designing sperm-function tests, for instance, 
determining the cholesterol efflux, examining activation of ion channels, evaluating 
protein phosphorylation changes, measuring intracellular calcium and pH and reac-
tive oxygen species, monitoring hyperactivation and acrosome reaction, etc. Three 
of these events/changes are discussed in the following sections.

5.4.1  Monitoring Hyperactivation (HA)

One of the indicators of capacitation is the display of HA by spermatozoa (Burkman 
1984). Sperm motility, hyperactivation and related motility kinematic parameters 
like average path velocity (VAP), curvilinear velocity (VCL), straight line velocity 
(VSL), linearity (LIN), amplitude of lateral head displacement (ALH), straightness 
(STR) and beat cross frequency (BCF) are assessed using CASA (Larsen et al. 
2000; Freour et al. 2009). Based on the aforesaid kinematic parameters, namely, 
VCL, LIN and ALH, the non-hyperactivated spermatozoa (exhibiting planar motil-
ity pattern) can be differentiated from the hyperactivated spermatozoa (exhibiting 
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either circular or helical motility patterns) using the SORT facility of the CASA 
(Youn et al. 2011).

Impaired sperm hyperactivation (HA) has been observed in human patients with 
infertility (Wong et al. 1993; Munier et al. 2004; Wiser et al. 2014). Wiser et al. 
evaluated spermatozoa from the normal patients who were to undergo IVF. They 
found that patients with increased hyperactivated motility had significantly higher 
fertilization rate compared to the group with no increased hyperactivated motility. 
Several groups have also found a good correlation between sperm hyperactivation, 
zona-induced acrosome reaction and zona binding (Liu et al. 2007); sperm motility, 
capacitation and tyrosine phosphorylation (Yunes et al. 2003; Buffone et al. 2005); 
and oocyte penetration (Wang et al. 1991), thus presenting HA as a good prognostic 
parameter for sperm fertility.

5.4.2  Monitoring Acrosome Reaction (AR)

Only capacitated spermatozoa are known to undergo acrosome reaction, underscor-
ing its importance in predicting sperm capacitation and fertility potential of sperma-
tozoa (Bielfeld et al. 1994). Acrosomal status in human spermatozoa is monitored 
with the fluorescent conjugated lectins (PNA, peanut agglutinin, and PSA, Pisum 
sativum agglutinin) (Cross and Meizel 1989). Additionally, several methods of 
assessing induced AR in vitro have been designed, where the ability of spermatozoa 
to acrosome react in the presence of calcium-mobilizing agents, such as calcium 
ionophore (A23187) or the physiological inducers like progesterone and zona pellu-
cida proteins, is assessed (Brucker and Lipford 1995; Bastiaan et al. 2002). There are 
other fluorescent tests to evaluate the acrosome, like chlortetracyclin (CTC) staining, 
in which staining can differentiate three different sperm populations: the uncapaci-
tated and acrosome intact (F pattern), the capacitated and acrosome intact (B pattern) 
and the capacitated and acrosome reacted (AR pattern) (Kholkute et al. 1992; 
Dasgupta et al. 1994).

The fact that in vivo, acrosome reaction is induced by progesterone and zona 
proteins, evaluation of induced acrosome reaction is routinely used as a predictor of 
sperm quality for utilization in clinics for assisted reproductive technologies (ARTs) 
(Shimizu et al. 1993; Coetzee et al. 1994; Fusi et al. 1994; Yovich et al. 1994; 
Glazier et al. 2000; Makkar et al. 2003). Quite often, spontaneous acrosome reac-
tion is also evaluated and correlated with sperm fertility (Bielsa et al. 1994; Parinaud 
et al. 1995; Tavalaee et al. 2014; Wiser et al. 2014).

5.4.3  Monitoring Tyrosine Phosphorylation (pY)

In human spermatozoa, increase in global protein tyrosine phosphorylation occurs 
during capacitation and is correlated with the fertilizing ability of the spermatozoa 
(Yunes et al. 2003; Liu et al. 2006; Barbonetti et al. 2008, 2010; Mendeluk et al. 
2010; Kwon et al. 2014; Sati et al. 2014).
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In spite of the importance of pY in human sperm capacitation, laboratory studies 
and clinic-based sperm-function tests on pY are very scarce. Such studies have to be 
in place to determine the predictive capability of pY of sperm fertility. As discussed 
for the kinases as well earlier, profiling of infertile patients’ samples with appropri-
ate controls is essential to develop sperm function tests based on this important 
molecular event during sperm capacitation.

5.5  From Bench to Clinics: Male Fertility Biomarkers 
and ARTs

There has been a steady rise in the molecular studies on the role of capacitation and 
its associated events (hyperactivation, acrosome reaction and tyrosine phosphoryla-
tion) in male fertility, in vitro (Fig. 5.5a, b). In spite of such extensive work being 
carried out at the laboratory level, these studies do not seem to have found applica-
tion in the clinics yet. There are only a handful of clinics globally which seem to 
offer basic sperm capacitation/acrosome reaction tests as a part of routine sperm 
analysis, e.g. FIVMadrid; Poma Fertility; Androvia Life Sciences; University of 
Utah Hospitals and Clinics; the Male Fertility Lab, University of Washington; and 
Genetics & IVF Institute (references for website information). This data/informa-
tion presented and discussed here is based on literature survey and searches on the 
World Wide Web, and real picture regarding the clinical usage of sperm capacitation 
tests might differ and remains to be determined.
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Fig. 5.5 (a) Relative percentages of studies in different categories (as shown) conducted over the 
last four decades worldwide (total number of studies =363). (b) Threefold increase in molecular 
studies has taken place in the last decade (2007–2016) as compared to the previous one (1996–
2006). The publications were taken from PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). The 
search was done using the following terms: [sperm capacitation, fertilization, infertility, human(s), 
infertility, infertile], [sperm, sperm capacitation, human(s), infertility, infertile, fertilization, hyper-
activation] and [sperm, sperm capacitation, human(s), infertility, infertile, fertilization, acrosome 
reaction]. Based on their content, the publications (related to humans) were assigned to six catego-
ries and then percentages calculated, as shown in the pie chart

R.K. Deshmukh and A.B. Siva

http://www.ncbi.nlm.nih.gov/pubmed/


57

There is a pressing need to evaluate the potential of the capacitation-associated 
sperm molecules/events and sperm function tests as biomarkers (or predictors) of 
sperm fertility/infertility. One promising sperm function/molecular test in this 
direction has been the “Androvia Cap-Score™ test”—a clinical test based on 
sperm surface ganglioside, GM1 (http://www.androvialifesciences.com/cap-
score-sperm- function-test/). This test is based on the work of Dr. Alex Travis and 
is based on the localization of GM1 on sperm head (Buttke et al. 2006; Selvaraj 
et al. 2007). GM1 is a sperm membrane component that regulates the opening and 
closing of specific calcium ion channels on the surface of sperm head. Androvia 
uses technology that identifies the ability of sperm to undergo capacitation. Since 
capacitation, hyperactivation and the acrosome reaction require an influx of cal-
cium ions, by identifying the presence and location of GM1 in the sperm mem-
brane across a number of sperm and identifying how many sperm are undergoing 
capacitation, a “Cap-Score™” can be generated that is predictive of the fertiliz-
ing ability of sperm in the ejaculate. The company Androvia claims that their 
preliminary research has already validated the ability of the test to discriminate 
between fertile and infertile populations of men, thus gaining clinical significance 
as a molecular marker/sperm function test.

Sperm capacitation and its associated events are the very basis of intrauterine 
insemination (IUI) and in vitro fertilization (IVF), the first line of ART management 
for couples with unexplained infertility/subfertility (Muratori et al. 2011; Wiser 
et al. 2014; Tosti and Ménézo 2016). In the cases of IUI and IVF, where cryopre-
served spermatozoa are used, knowledge of sperm capacitation is especially useful 
for extending the health and life span of the sperm (and thus success of the ART), 
since it is known that freeze-thawed spermatozoa exhibit a precocious acrosome 
reaction-like phenotype, suggesting capacitation-like event during the process of 
cryopreservation (Gomez et al. 1997). Though extensively used in domestic species 
(such as bovine, pigs and dogs), it is well known and accepted that cryopreservation 
damages sperm, with a large number of cells losing their fertility potential after 
freezing/thawing (Cormier and Bailey 2003). Knowledge about mechanisms 
involved in capacitation/acrosome reaction would help in efforts towards minimiz-
ing the cryo-damage to spermatozoa and improve the success rate in ARTs, as being 
used in the livestock industry (Singh et al. 2014; Layek et al. 2016).

The life cycle of sperm is complex and involves a series of events, which have to 
be perfect for successful fertilization—viz. production in testis in sufficient num-
bers with normal shape, maturation in epididymis, gain of motility, successful 
capacitation, hyperactivation and acrosome reaction, oocyte binding and penetra-
tion, activation of the ovum and ultimately successful fertilization. All these param-
eters ought to be looked at in defining a “healthy” spermatozoon, and defects in any 
of these complex events can cause male infertility. The use of ICSI (intracytoplas-
mic sperm injection) bypasses many of these events, increasing the risk of choosing 
the “compromised spermatozoa”. To avoid this, as already emphasized, it is impera-
tive to develop new pre-ART molecular markers/sperm-function tests, for use in the 
clinics (Muratori et al. 2011; Natali and Turek 2011). Although few efforts to define 
predictive tests for ICSI success have already begun with limited success (Vural 
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et al. 2005; Setti et al. 2012; Brown et al. 2013; Breznik et al. 2013; Meerschaut 
et al. 2013), further research in this direction is much needed.

Concluding Remarks

It is well accepted now that conventional semen analysis is unable to precisely 
predict sperm fertility potential, thus warranting search of biomarkers for fertil-
ity/infertility based on newer research (Weber et al. 2005; Lewis 2007; Lamb 
2010). Attempts to translate the molecular information about capacitation—from 
laboratories to clinic—and to develop capacitation-based molecular markers/
sperm function assays (besides other tests) is the need of the hour, especially in 
the era of assisted reproductive technologies like ICSI. The pre-ART tests would 
permit the clinicians and the infertile couples to make a more informed decision 
about the treatment/procedure and be assured of its success. It, thus, becomes 
necessary to continue improving our understanding of sperm capacitation, not 
only for the basic understanding of sperm physiology but also to understand its 
functionality, both in vivo and in vitro, ultimately translating into higher success 
rate in assisted reproductive technologies.
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