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Abstract
Nucleosome, the fundamental unit of chromatin, is histone octamer composed of 
dimers of each histone H2A, H2B, H3, and H4. Histones are the key epigenetic 
players and regulate chromatin architecture. During later stages of spermatogen-
esis, extensive remodeling of chromatin takes place in which somatic histones 
get replaced by testis-specific histones, which in turn get replaced by transition 
proteins and finally by protamines. Disturbances that impair this highly orches-
trated process may result in loose DNA packing, endangering its integrity. This 
reflects on sperm morphology and motility, resulting in teratozoospermia and 
asthenozoospermia and consequently infertility. These sperm are unable to reach 
the oocyte and, if they do, fail to fertilize. Assisted fertilization in the form of 
IVF or ICSI may help overcome this hindrance; however, the risk of failure at 
early embryonic developmental stages or preimplantation loss increases dramati-
cally. This review provides an update on our current understanding of the role of 
sperm chromatin compaction in sperm function and the impact of its failure on 
male fertility.
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Key Points
• Chromatin packaging is an integral part of spermatogenesis, and sperm DNA is 

packed into almost crystalline status that is at least six times more condensed in 
comparison to mitotic chromosomes.

• During spermiogenesis, somatic histones in the haploid spermatid are replaced 
by testis-specific histones, which in turn are replaced by transition proteins and 
finally by protamines, leading to dense chromatin compaction in sperm.

• Sperm histones undergo several posttranslational modifications, predominantly 
methylation and acetylation, to repress the transcriptional activity in sperm.

• Compaction or proper packaging of chromatin is essential for shutting down the 
transcription activity in sperm and also for protecting its DNA from damage dur-
ing its transit from testis through epididymis into the female reproductive tract.

• Defects in chromatin packaging affect the morphology of sperm and its tran-
scriptional activity and are associated with infertility or the outcome of ARTs.

• Significantly higher histone-protamine ratios are observed in sperm from infer-
tile men; a direct correlation exists between sperm protamine levels, DNA integ-
rity, and sperm quality.

17.1  Introduction

WHO estimates as reported in 2012 indicate that about 50 million couples worldwide 
suffer from infertility (Mascarenhas et al. 2012). Male infertility accounts for almost 
50% of the infertility. Asthenozoospermia, oligoasthenozoospermia, oligozoosper-
mia, teratozoospermia, globozoospermia, azoospermia, and aspermia are the observed 
manifestations in male infertility. There is a considerable population of infertile indi-
viduals where none of these manifestations are observed and thus are referred to as 
idiopathic. Although research world over has been overwhelming with respect to 
female infertility, with respect to male infertility, it is limited probably because of the 
general perception that all problems of male infertility can be bypassed using assisted 
reproductive technologies (ARTs) such as IVF and ICSI. Increasing evidence is now 
available on the problems associated with ICSI (Wennerholm et al. 2000; Belva et al. 
2007; Bonduelle et al. 2004; Morris et al. 2002). One of the biggest drawbacks of ICSI 
is that the genetic quality of sperm is overlooked leading to embryonic loss despite 
successful fertilization following ICSI. Genetic quality of sperm is determined by the 
integrity of its DNA and its compaction during spermiogenesis. A positive correlation 
has been observed between chromatin condensation and successful pregnancy in IUI 
and ICSI couples (Ioannou et al. 2016; Irez et al. 2015; Morris et al. 2002). In order to 
understand the impact of chromatin compaction on male fertility, it is imperative to 
understand the process of chromatin condensation.

17.2  DNA Packaging and Chromatin Compaction 
During Spermatogenesis

Spermatogenesis is a well-synchronized and tightly regulated process by which hap-
loid male germ cells are formed. In the third and final stage of spermatogenesis, i.e., 
spermiogenesis, the haploid round spermatids undergo extensive morphological 
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changes and nuclear remodeling to give rise to structurally distinct cell, the sperma-
tozoa. Mature spermatozoon contains nucleus carrying haploid male genome, which 
is sixfold more compact as compared to any somatic cell of the body. Two major 
nucleoproteins involved in DNA compaction are nucleosomes and protamines. 
Nucleosome is the histone octamer composed of dimer of each histone H2A, H2B, 
H3, and H4. Histone H1 binds to the DNA in between two nucleosomes and is 
thought to be involved in higher-order chromatin structure formation. Each histone 
of nucleosome core particle (NCP) is divided into two parts: structured region made 
up of core and C-terminal region of histone and N-terminal unstructured tail which 
protrudes out of the nucleosome and interacts with DNA. Approximately 146 bp 
DNA is wrapped around each nucleosome. Posttranslational modifications (PTMs) 
like acetylation, phosphorylation, and ubiquitination occurring especially on 
N-terminus can influence chromatin structure either directly by adding negative or 
positive charge and altering histone-DNA interaction or indirectly by recruiting mod-
ification-specific chromatin remodeling factor (Pivot-Pajot et al. 2003).

Protamines are arginine-rich, small, basic, major nucleoproteins in sperm. They 
are synthesized in late-stage spermatid. Around 80–85% sperm DNA is compact 
due to protamination. In case of mammals, protamines are of two types protamine 1 
(P1) and protamine 2 (P2). The presence of P1 in association with sperm DNA can 
be observed in nearly all vertebrates, whereas P2 is present only in primates, many 
rodents, and a subset of other placental mammals (Balhorn 2007). The number of 
protamine genes and copies present per haploid genome varies from species to spe-
cies. Mammals have single-copy genes of P1 and P2, located on chromosome 16 
(Reeves et al. 1989). P1and P2 are products of gene Prm1 and Prm2, respectively. 
The precursor protein of Prm2 undergoes proteolytic processing at its N-terminus to 
give rise to p2, p3, and p4. P2 family proteins, p2, p3, and p4, differ in 3–4 residues 
at N-terminus. The arginine-rich DNA-anchoring domains by which protamines 
bind with the negatively charged DNA and the multiple serine and threonine resi-
dues that can be used as phosphorylation sites form the structural elements of prot-
amines (Balhorn 2007). The cysteine residues allow disulfide bond formation and 
thus link two adjacent protamines, which leads to further compaction of DNA.

During the process of spermiogenesis, nucleohistone to nucleoprotamine tran-
sition occurs. This transition is not direct but a gradual process, comprising of 
well- defined events, which involves first replacement of somatic histone by tes-
tis-specific histone variants and subsequently by transition proteins and then 
protamines.

At the round spermatid stage, the DNA compaction is the same as that of any 
somatic cell of the body. After the completion of second meiotic division, there is a 
surge of transcription observed characterized by two features not observed in 
somatic cells, namely, (a) the use of specialized transcriptional machinery and (b) 
the expression of large numbers of spermatogenic-specific genes which includes 
transcription of proteins like transition proteins, protamine, etc. required for sper-
miogenesis. At the same time, hyperacetylation of somatic histone H4 is observed. 
In vitro studies have indicated the role of hyperacetylated histones in nucleosome 
disassembly and replacement of histone by protamines (Oliva et al. 1987; Awe and 
Renkawitz-Pohl 2010). It has also been shown that bromodomain-containing pro-
tein (BRDT) binds with the hyperacetylated H4 and initiates nuclear remodeling 
(Pivot-Pajot et al. 2003; Moriniere et al. 2009).
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Hyperacetylated histones then get replaced by testis-specific histone variants. 
Excepting histone H4, testis variants have been reported till date for core histones 
H2A, H2B, H3, and linker histone H1. During spermiogenesis, testis-specific histones 
get replaced by transition proteins (TP). Mammals, including mouse, rat, human, ram, 
and boar, predominantly have two types of transition proteins, viz., transition protein 
1 (TP1) and transition protein 2 (TP2) (Akama et al. 1996; Chevaillier et al. 1998; 
Steger et al. 1998). Both TP1 and TP2 are encoded by single- copy genes, Tnp1 and 
Tnp2, respectively (Rathke et al. 2014). TP1 is a 6200 Da protein with about 20% 
arginine and 20% lysine, distributed uniformly, and no cysteine (Kistler et al. 1975). 
TP2 is a 13,000 Da protein with about 10% arginine, 10% lysine, and 5% cysteine 
(Grimes et al. 1975). It has a highly basic C-terminal domain and an N-terminal 
domain that forms zinc fingers (Meetei et al. 2000). TP1 is abundantly expressed 
(Heidaran et al. 1988), and its sequence is highly conserved in various mammals as 
compared to TP2 (Kremling et al. 1989). The role of TPs is not extensively studied. 
TP1−/− and TP2−/− knockout mice have been shown to be less fertile than normal mice 
and show abnormal chromatin condensation (Zhao et al. 2001). TP1 and TP2 double-
knockout mice are sterile, and spermatogenesis is severely impaired suggesting their 
important role in spermiogenesis (Zhao et al. 2004).

Transition proteins remain associated with DNA for a short period of time and 
rapidly get replaced by protamines. Immediately after their synthesis, protamines 
get phosphorylated. Phosphorylation is thought to be essential for their nuclear 
transport as protamines can bind to their nuclear receptor and get transported only 
when phosphorylated (Mylonis et al. 2004). After binding of protamine to DNA, 
dephosphorylation takes place, and the disulfide bond formed between protamine 
further compacts the DNA. Chromodomain helicase DNA-binding protein 5 (Chd5) 
has a key role in the DNA compaction. It is involved in H4 hyperacetylation, histone 
variant expression, and removal and replacement of the histones with nucleoprot-
amines, and Chd5 deficiency in mice leads to defective sperm chromatin compac-
tion and infertility (Li et al. 2014). Low expression of Chd5 has also been observed 
in the testis of infertile men by the same group.

17.3  Testis-Specific Histones

Replacement of histone by protamine is not 100%, and about 5–15% histones are 
still retained in mature human spermatozoa (Tanphaichitr et al. 1978; Gatewood 
et al. 1987; Zalensky et al. 2002). Retained histones have been found to be specifi-
cally enriched in the regulatory region of genes that are important for the earliest 
development stages postfertilization (Hammoud et al. 2009). Later it was shown by 
MNase sequencing that infertile males have random distribution of retained his-
tones in spermatozoa (Hammoud et al. 2011). Testis-specific histone variants are 
thought to have specific biological function during spermiogenesis, as demonstrated 
by knockout studies with different variants. Table 17.1 summarizes the testis- 
specific histone variants known to date and their localization and influences on 
fertility.

A. Patankar and P. Parte



299

Ta
b

le
 1

7
.1

 
Te

st
is

-s
pe

ci
fic

 h
is

to
ne

 v
ar

ia
nt

s 
an

d 
th

ei
r 

lo
ca

liz
at

io
n 

an
d 

in
flu

en
ce

s 
on

 f
er

til
ity

H
is

to
ne

 v
ar

ia
nt

s
C

hr
om

os
om

e 
lo

ca
tio

n 
(h

um
an

)
C

ha
ra

ct
er

is
tic

s/
lo

ca
liz

at
io

n

K
no

ck
ou

t p
he

no
ty

pe

R
ef

er
en

ce
s

M
al

e
Fe

m
al

e

H
1

H
1T

2 
(t

es
tis

-
sp

ec
ifi

c 
H

1 
hi

st
on

e 
)/

H
A

N
P1

12
q1

3.
11

In
 h

ap
lo

id
 m

al
e 

ge
rm

 
ce

lls
 u

nt
il 

th
e 

hi
st

on
e-

to
-p

ro
ta

m
in

e 
tr

an
si

tio
n;

 
in

 s
pe

rm
at

id
 n

uc
le

i a
t 

th
e 

ap
ic

al
 p

ol
e 

un
de

r 
th

e 
ac

ro
so

m
e

M
al

es
, i

nf
er

til
e;

 s
pe

rm
 m

or
ph

ol
og

y,
 

ab
no

rm
al

; s
pe

rm
 n

uc
le

i, 
pr

ot
am

in
e 

1 
an

d 
2 

w
ea

kl
y 

de
te

ct
ab

le
; s

pe
rm

 m
ot

ili
ty

, a
lte

re
d;

 
fe

rt
ili

zi
ng

 a
bi

lit
y,

 n
eg

at
iv

e 
w

ith
 IV

F,
 b

ut
 

po
si

tiv
e 

w
ith

 IC
SI

; s
pe

rm
io

ge
ne

si
s,

 
de

la
ye

d 
nu

cl
ea

r c
on

de
ns

at
io

n 
an

d 
ab

er
ra

nt
 

el
on

ga
tio

n,
 a

cr
os

om
e 

de
ta

ch
m

en
t, 

an
d 

fr
ag

m
en

te
d 

D
N

A

Fe
m

al
es

, f
er

til
e

Ta
na

ka
 e

t a
l. 

(2
00

5)
, 

M
ar

tia
no

v 
et

 a
l. 

(2
00

5)
, C

at
en

a 
et

 a
l. 

(2
00

6)

H
is

to
ne

 H
1t

6p
22

.1
In

 p
ac

hy
te

ne
 

sp
er

m
at

oc
yt

es
 a

nd
 

pe
rs

is
ts

 u
nt

il 
ch

ro
m

at
in

 
re

or
ga

ni
za

tio
n 

in
 

po
st

m
ei

ot
ic

 s
ta

ge
s

Fe
rt

ile
, e

xh
ib

it 
no

 s
pe

rm
at

og
en

es
is

 
ab

no
rm

al
iti

es
, s

ho
w

 e
nh

an
ce

d 
ge

ne
 

ex
pr

es
si

on
 o

f 
th

e 
ca

no
ni

ca
l s

ub
ty

pe
s 

H
1.

1,
 H

1.
2,

 a
nd

 H
1.

4

N
ot

 k
no

w
n

D
ra

be
nt

 e
t a

l. 
(1

99
6,

 2
00

3)

H
IL

S1
17

q2
1.

33
St

ro
ng

ly
 e

xp
re

ss
ed

 in
 

nu
cl

ei
 o

f 
el

on
ga

tin
g 

an
d 

el
on

ga
te

d 
sp

er
m

at
id

s

N
ot

 k
no

w
n

N
ot

 k
no

w
n

Ig
uc

hi
 e

t a
l. 

(2
00

3,
 2

00
4)

, 
Y

an
 e

t a
l. 

(2
00

3)

H
2A

H
is

to
ne

 H
2A

 
ty

pe
 1

-A
 

(T
H

2A
)

6p
22

.2
Pa

ch
yt

en
e 

sp
er

m
at

oc
yt

es
D

ou
bl

e 
kn

oc
ko

ut
 f

or
 T

H
2A

/T
H

2B
, 

st
er

ile
; t

es
tis

 a
nd

 e
pi

di
dy

m
is

 w
ei

gh
t 

re
du

ce
d;

 s
pe

rm
 c

ou
nt

, r
ed

uc
ed

; 
se

co
nd

ar
y 

sp
er

m
at

oc
yt

es
 a

t i
nt

er
ki

ne
si

s,
 

m
or

e 
ab

un
da

nt
 in

 m
ut

an
t t

es
tis

D
ou

bl
e 

kn
oc

ko
ut

 f
or

 
T

H
2A

/T
H

2B
, e

ff
ec

t s
ee

n 
on

 e
ar

ly
 e

m
br

yo
ni

c 
de

ve
lo

pm
en

t; 
oo

ge
ne

si
s 

an
d 

fo
lli

cu
lo

ge
ne

si
s,

 
no

rm
al

; m
at

er
na

l T
H

2A
/

T
H

2B
 in

vo
lv

ed
 in

 
ac

tiv
at

io
n 

of
 p

at
er

na
l 

ge
no

m
e 

po
st

fe
rt

ili
za

tio
n

T
ro

st
le

-W
ei

ge
 

et
 a

l. 
(1

98
2)

, 
Sh

in
ag

aw
a 

et
 a

l. 
(2

01
4,

 2
01

5)

(c
on

tin
ue

d)

17 Sperm Chromatin Compaction and Male Infertility



300

H
is

to
ne

 
H

2A
-B

bd
 ty

pe
 1

X
q2

8
M

ou
se

 h
om

ol
og

 H
2A

.
L

ap
1i

s 
ta

rg
et

ed
 to

 th
e 

tr
an

sc
ri

pt
io

n 
st

ar
t s

ite
 o

f 
ac

tiv
e 

ge
ne

s 
ex

pr
es

se
d 

du
ri

ng
 s

pe
ci

fic
 s

ta
ge

s 
of

 
sp

er
m

at
og

en
es

is
; 

de
pl

et
ed

 c
el

ls
 

de
m

on
st

ra
te

 w
id

es
pr

ea
d 

ch
an

ge
s 

in
 g

en
e 

ex
pr

es
si

on
, a

 n
et

 
do

w
nr

eg
ul

at
io

n 
of

 
tr

an
sc

ri
pt

io
n,

 a
nd

 
di

sr
up

tio
n 

of
 n

or
m

al
 

m
R

N
A

 s
pl

ic
in

g 
pa

tte
rn

s

N
ot

 k
no

w
n

N
ot

 k
no

w
n

N
ek

ra
so

v 
et

 a
l. 

(2
01

3)

H
is

to
ne

 H
2A

.X
11

q2
3.

3
γH

2A
X

 a
cc

um
ul

at
es

 o
n 

un
sy

na
ps

ed
 s

ex
 

ch
ro

m
os

om
es

 d
ur

in
g 

th
e 

zy
go

te
ne

 s
ta

ge
; 

H
2A

x−
/−

 m
ic

e 
la

ck
 

γH
2A

X
 a

cc
um

ul
at

io
n 

as
 w

el
l a

s 
m

ei
ot

ic
 s

ex
 

ch
ro

m
os

om
e 

in
ac

tiv
at

io
n 

(M
SC

I)
 

in
iti

at
io

n

M
al

es
, g

ro
w

th
 r

et
ar

de
d,

 im
m

un
e 

de
fic

ie
nt

, a
nd

 in
fe

rt
ile

 w
ith

 
hy

po
go

na
di

sm
, s

pe
rm

at
og

en
es

is
 a

rr
es

te
d 

at
 p

ac
hy

te
ne

 s
ta

ge

Fe
m

al
es

, f
er

til
e 

bu
t l

itt
er

 
si

ze
 s

m
al

le
r 

th
an

 
he

te
ro

zy
go

us
 o

r 
w

ild
 

ty
pe

C
el

es
te

 e
t a

l. 
(2

00
2)

, 
Fe

rn
an

de
z-

 
C

ap
et

ill
o 

et
 a

l. 
(2

00
3)

, I
ch

iji
m

a 
et

 a
l. 

(2
01

2)

H
is

to
ne

 H
2A

.Z
4q

24
N

ot
 k

no
w

n
R

eq
ui

re
d 

fo
r 

ea
rl

y 
em

br
yo

ni
c 

de
ve

lo
pm

en
t; 

la
ck

 o
f 

fu
nc

tio
na

l H
2A

.Z
 

le
ad

s 
to

 e
m

br
yo

ni
c 

le
th

al
ity

N
ot

 k
no

w
n

Fa
as

t e
t a

l. 
(2

00
1)

Ta
b

le
 1

7
.1

 
(c

on
tin

ue
d)

H
is

to
ne

 v
ar

ia
nt

s
C

hr
om

os
om

e 
lo

ca
tio

n 
(h

um
an

)
C

ha
ra

ct
er

is
tic

s/
lo

ca
liz

at
io

n

K
no

ck
ou

t p
he

no
ty

pe

R
ef

er
en

ce
s

M
al

e
Fe

m
al

e

A. Patankar and P. Parte



301

H
2B

H
is

to
ne

 H
2B

 
ty

pe
 1

-A
 

(T
H

2B
)

6p
22

.2
E

xp
re

ss
io

n 
st

ar
ts

 in
 

le
pt

ot
en

e 
sp

er
m

at
oc

yt
es

 
an

d 
th

en
 r

ea
ch

es
 a

n 
in

te
ns

e 
si

gn
al

 in
 r

ou
nd

 
sp

er
m

at
id

s

T
H

2B
 k

no
ck

ou
t m

al
e 

m
ic

e 
ar

e 
fe

rt
ile

; 
T

h2
b+

/ta
g  m

ic
e 

sh
ow

 a
rr

es
t a

t c
on

de
ns

in
g 

sp
er

m
at

id
 s

ta
ge

 le
ad

in
g 

to
 la

ck
 o

f 
sp

er
m

 
in

 e
pi

di
dy

m
is

 a
nd

 c
on

se
qu

en
tly

 
in

fe
rt

ili
ty

; d
ou

bl
e 

kn
oc

ko
ut

 f
or

 T
H

2A
/

T
H

2B
, s

te
ri

le
; t

es
tis

 a
nd

 e
pi

di
dy

m
is

 
w

ei
gh

t r
ed

uc
ed

; s
pe

rm
 c

ou
nt

, r
ed

uc
ed

; 
se

co
nd

ar
y 

sp
er

m
at

oc
yt

es
 a

t i
nt

er
ki

ne
si

s,
 

m
or

e 
ab

un
da

nt
 in

 m
ut

an
t t

es
tis

D
ou

bl
e 

kn
oc

ko
ut

 f
or

 
T

H
2A

/T
H

2B
 in

 f
em

al
e 

af
fe

ct
s 

ea
rl

y 
em

br
yo

ni
c 

de
ve

lo
pm

en
t; 

oo
ge

ne
si

s 
an

d 
fo

lli
cu

lo
ge

ne
si

s 
w

er
e 

no
rm

al
 in

 m
ut

an
t f

em
al

e 
m

ic
e

Sh
in

ag
aw

a 
et

 a
l. 

(2
01

4,
 2

01
5)

, 
M

on
te

lli
er

 e
t a

l. 
(2

01
3)

, v
an

 
R

oi
je

n 
et

 a
l. 

(1
99

8)

H
is

to
ne

 H
2B

 
ty

pe
 W

-T
X

q2
2.

2
N

ot
 k

no
w

n
N

o 
in

fo
rm

at
io

n 
on

 k
no

ck
 o

ut
s;

 
po

ly
m

or
ph

is
m

s 
(−

9C
>

T
 a

nd
 3

68
A

>
G

) 
in

 th
e 

5′
 U

T
R

 a
ss

oc
ia

te
d 

w
ith

 m
al

e 
in

fe
rt

ili
ty

 in
 C

hi
ne

se
 a

nd
 K

or
ea

n 
po

pu
la

tio
n

N
ot

 k
no

w
n

L
ee

 e
t a

l. 
(2

00
9)

, 
Y

in
g 

et
 a

l. 
(2

01
2)

Sp
er

m
at

id
-

sp
ec

ifi
c 

H
2B

 
ss

H
2B

N
ot

 k
no

w
n

Sp
ec

ifi
ca

lly
 s

yn
th

es
iz

ed
 

an
d 

ex
pr

es
se

d 
in

 r
ou

nd
 

sp
er

m
at

id
s 

an
d 

de
cr

ea
se

 
be

fo
re

 th
e 

bu
lk

 o
f 

hi
st

on
es

 b
ec

om
es

 
de

gr
ad

ed

N
ot

 k
no

w
n

N
ot

 k
no

w
n

U
nn

i e
t a

l. 
(1

99
5)

H
3

H
is

to
ne

 H
3.

1t
1q

42
.1

3
H

3t
 s

yn
th

es
iz

ed
 in

 
sp

er
m

at
og

on
ia

 a
nd

 
re

m
ai

ns
 d

et
ec

ta
bl

e 
in

 
sp

er
m

at
oc

yt
es

 a
nd

 e
ar

ly
 

sp
er

m
at

id
s

N
ot

 k
no

w
n

N
ot

 k
no

w
n

T
ro

st
le

-W
ei

ge
 

et
 a

l. 
(1

98
4)

(c
on

tin
ue

d)

17 Sperm Chromatin Compaction and Male Infertility



302

H
3.

3
H

3F
3A

 
(1

q4
2.

12
),

 
H

3F
3B

 
(1

7q
25

.1
)

H
3.

3 
pr

ot
ei

n 
se

en
 in

 th
e 

nu
cl

ei
 o

f 
sp

er
m

at
og

on
ia

 
an

d 
le

pt
ot

en
e 

sp
er

m
at

oc
yt

es
; H

3.
3 

le
ve

ls
 p

ea
k 

du
ri

ng
 

m
id

-s
ta

ge
 in

 p
ac

hy
te

ne
 

sp
er

m
at

oc
yt

es
 a

nd
 

pe
rs

is
t t

hr
ou

gh
ou

t 
m

ei
os

is
 a

nd
 m

os
t o

f 
sp

er
m

io
ge

ne
si

s

H
3f

3b
 K

O
 m

al
e,

 in
fe

rt
ile

; t
es

tis
 a

nd
 

sp
er

m
 m

or
ph

ol
og

y,
 a

bn
or

m
al

; h
is

to
ne

 
PT

M
s 

an
d 

ge
ne

 e
xp

re
ss

io
n 

in
 te

st
es

 
af

fe
ct

ed
; m

os
t p

ro
m

in
en

t c
ha

ng
es

 
oc

cu
rr

in
g 

at
 g

en
es

 in
vo

lv
ed

 in
 

sp
er

m
at

og
en

es
is

; d
ef

ec
tiv

e 
ch

ro
m

at
in

 
re

or
ga

ni
za

tio
n 

an
d 

re
du

ce
d 

pr
ot

am
in

e 
in

co
rp

or
at

io
n 

se
en

N
ot

 k
no

w
n

Y
ue

n 
et

 a
l. 

(2
01

4)

H
3.

5/
H

3F
3C

12
p1

1.
21

C
hI

P-
se

q 
an

al
ys

is
 

re
ve

al
ed

 th
at

 H
3.

5 
ac

cu
m

ul
at

ed
 a

ro
un

d 
tr

an
sc

ri
pt

io
n 

st
ar

t s
ite

s 
(T

SS
s)

 in
 te

st
ic

ul
ar

 
ce

lls
; H

3.
5 

m
R

N
A

 
sp

ec
ifi

ca
lly

 e
xp

re
ss

ed
 in

 
se

m
in

if
er

ou
s 

tu
bu

le
s 

(h
um

an
 te

st
is

)

N
ot

 k
no

w
n

N
ot

 k
no

w
n

Sc
he

nk
 e

t a
l. 

(2
01

1)
, U

ra
ha

m
a 

et
 a

l. 
(2

01
6)

Ta
b

le
 1

7
.1

 
(c

on
tin

ue
d)

H
is

to
ne

 v
ar

ia
nt

s
C

hr
om

os
om

e 
lo

ca
tio

n 
(h

um
an

)
C

ha
ra

ct
er

is
tic

s/
lo

ca
liz

at
io

n

K
no

ck
ou

t p
he

no
ty

pe

R
ef

er
en

ce
s

M
al

e
Fe

m
al

e

A. Patankar and P. Parte



303

Among the retained histones, TH2B is the major testis-specific histone 
variant present in mature sperm. TH2B differs from H2B mainly at its 
N-terminus. N-terminus of H2B has been shown to be associated with chro-
mosome condensation in meiotic cell (de la Barre et al. 2001). N-terminus 
of TH2B has additional three potential phosphorylation sites (Ser12, Thr23, 
and Thr34) and repositioning of two others (ser5 and ser60), which are not 
seen in H2B, resulting in a different phosphorylation map of the N-terminal 
tail for TH2B (Pradeepa and Rao 2007).

Presence of TH2A/TH2B in nucleosome has been shown to induce a 
more open chromatin structure (Padavattan et al. 2015). This open chroma-
tin structure facilitates the removal of histones and their replacement by 
protamines, thus enabling further compaction of DNA (Montellier et al. 
2013). We have earlier reported reduced TH2B in asthenozoospermic indi-
viduals (Parte et al. 2012). However, TH2B knockout male mice have been 
shown to be fertile as the absence of TH2B is compensated by overexpres-
sion of somatic H2B variants and modifications on other histones. But 
Th2b+/tag mice show arrest at condensing spermatid stage leading to lack of 
sperm in epididymis and consequently infertility (Montellier et al. 2013). 
However, double knockout for TH2A/TH2B causes defect in spermatogen-
esis in males. Histone replacement during spermiogenesis is also affected. 
The mice showed reduced testis and epididymis weight and are sterile. 
Secondary spermatocytes at interkinesis (the interphase between meiosis I 
and II) are more abundant in the mutant testis than in the wild type, suggest-
ing extended interkinesis in mutant mice (Shinagawa et al. 2015). 
Interestingly, it is the TH2A and TH2B from oocyte that is involved in acti-
vation of paternal genome postfertilization (Shinagawa et al. 2014). The 
dynamic changes in chromatin structure during spermiogenesis, epididymal 
maturation, and up to early embryonic development are summarized in 
Fig. 17.1.

17.4  Histone Modifications in Sperm and Their 
Influence on Sperm Fertilizing Ability/Embryonic 
Development

Several posttranslational modifications (PTMs) have been observed in 
mouse and human sperm (Fig. 17.2). In mouse sperm, 26 PTMs have been 
reported in specific residues of core histones and linker histone and 11 
PTMs on PRM1 and PRM2 (Brunner et al. 2014). Comprehensive assess-
ment of the histone modifications in normal human sperm revealed 102 
modifications (Schon et al. 2015). Modifications are observed on the linker 
histone H1, the canonical histones, as well as their variants. While modifica-
tions on H4 are conserved, those on H3 vary between individuals. The mod-
ifications are not altered on cryopreservation of the sperm. Some PTMs of 
histones are uniquely distributed in human sperm, and this distribution 
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varies among individuals and also between the sperm of a single individual (Krejci 
et al. 2015). Variations among individuals have been observed in the levels of 
H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1 in the sperm-head 
fractions. Levels of acetylated (ac) histones H4 are relatively stable. Lower levels of 
H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1 are seen in sperm 
with P2 deficiency. H3K9me2 and levels of P2 show a strong correlation. While the 
localization of H3 lysine 4 methylation (H3K4me) or H3 lysine 27 methylation 
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(H3K27me) is highly similar in the gametes of infertile men compared with fertile 
men, a reduction in the amount of H3K4me or H3K27me retained at developmental 
transcription factors and certain imprinted genes has been noted. Also, the methyla-
tion status of certain developmental promoters and imprinted loci are altered in a 
subset of infertile men (Hammoud et al. 2011). Recently, histone PTMs and their 
relative abundance in distinct stages of mouse spermatogenesis and in human sper-
matozoa have been identified (Luense et al. 2016). They observed a strong conser-
vation of histone PTMs for histone H3 and H4 between mouse and human sperm; 
however, H1, H2A, and H2B showed very little conservation (Luense et al. 2016).

In sperm, genes relevant to spermatogenesis are marked by H3K4me2, and the 
genes involved in developmental regulation are marked by H3K27me3 (Brykczynska 
et al. 2010). While H3K4me2 is an activating mark, H3K27me3 has been shown to 
be a repressor of genes. This means that prior to fertilization, the genes involved 
in early embryonic development are repressed by H3K27me3, while those involved 
in spermatogenesis are maintained in an active state by H3K4me2. Reduction in 
H3K4me2 induced by human KDM1A histone lysine 4 demethylase transgene 
overexpression during mouse spermatogenesis has been shown to severely impair 
development and survival of the offspring, a defect which is also seen in two subse-
quent generations (Siklenka et al. 2015). H3K4me2 was reduced at the CpG islands 
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of genes involved in development. While this region is majorly marked by 
H3K27me3, work of Brykczynska has shown that some of the developmentally 
regulated genes are also marked by H3K4me2. H3K4me3 has also been demon-
strated to be important for spermatogenesis; loss of H3K4 methyltransferase MII2 
reduces H3K4me3 consequently rendering the male mice sterile (Glaser et al. 
2009). H3K9me2/1-specific demethylase JHDM2A also known as JMJD1A is 
essential for spermatogenesis, and its loss causes infertility in male mice due to 
incomplete chromatin condensation (Okada et al. 2007).

Stage-specific modifications have been identified for TH2B with acetylated 
TH2B being most abundant in spermatogonia (28.9%) compared to spermatocytes 
(8.3) and spermatids (11.2%). At the C-terminus, phosphorylation at K116 and 
methylation at K117 were observed in combination in TH2B isolated from these 
stages (Lu et al. 2009). However, its functional relevance is not known. Various 
PTMs like acetylation, methylation, and phosphorylation have been identified on 
TH2B from tetraploid spermatocyte and haploid spermatid. LC–MS/MS analysis of 
TH2B from spermatocytes identified six acetylation, three monomethylation, and 
one phosphorylation site, while that of TH2B from round spermatids identified four 
acetylation and two monomethylation sites. In silico analysis showed altered 
histone- histone as well as histone-DNA interactions in TH2B-bearing nucleosome. 
Also acetylation on N-terminal tail of TH2B has been shown to weaken its interac-
tions with the DNA (Pentakota et al. 2014). Its physiological relevance remains to 
be determined.

17.5  Protamines and Male Infertility

Protamines and histones are the two major nuclear proteins in many vertebrate spe-
cies including mice, rat, human, etc. These proteins play major roles during chroma-
tin condensation at spermiogenesis. Several reports indicate that P1 and P2 are 
expressed in nearly the same amount in fertile human sperm and alteration in P1/P2 
ratio is associated with male infertility (Aoki et al. 2005a, 2006; Zhang et al. 2006; 
Hammoud et al. 2009).

The first documented report highlighting the importance of protamines revealed 
the absence of protamines in the spermatozoa of infertile (oligozoospermic) patients 
(Silvestroni et al. 1976). This was followed by a study on 7 infertile and 17 fertile 
individuals where increased P1/P2 ratio in six of the seven patients was observed 
(Balhorn et al. 1988). Thereafter, a good number of studies have indicated that fer-
tile men express P1 and P2 in same amount, while alteration in this ratio correlates 
with male infertility; infertile men show either decreased or increased P1/P2 ratio 
(Balhorn 2007; Balhorn et al. 1988; Belokopytova et al. 1993; de Yebra et al. 1993; 
Mengual et al. 2003; Aoki et al. 2005a). Balhorn’s group has shown that the per-
centage of protamines is different in the patients with abnormal seminal parameters 
compared to patients with normal parameters. Also within the heterogeneous popu-
lation of spermatozoa, round-headed spermatozoa from patients contain less prot-
amines and more histones and intermediate proteins than normal spermatozoa. 

A. Patankar and P. Parte



307

Further, protamine levels vary between individual sperm of infertile males and cor-
relate with viability and DNA integrity (Aoki et al. 2006). Interestingly, studies 
employing Percoll separation for fractionating sperm have shown that P1/P2 ratio 
and total protamine from different Percoll fractions within the same sample were 
not significantly different. However, there were significant differences in P1/P2 
ratios in the oligozoospermic and asthenozoospermic groups as compared to nor-
mozoospermic indicating that P1/P2 and amount of protamine retention were inde-
pendent of morphology and motility of sperm cells (Mengual et al. 2003).

This alteration in P1/P2 ratio might be due to alteration in expression of either of 
two protamines or both. Several studies have indicated lower P2 and increased P2 
precursor in infertile men, indicating abnormality in the processing of precursor 
protein (de Yebra et al. 1993, 1998; Carrell and Liu 2001; Torregrosa et al. 2006). 
Aoki et al. observed a P1/P2 ratio around 1 in fertile donors; in infertile group, the 
P1/P2 ratios were either less than 0.8, between 0.8 and 1.2, or greater than 1.2 in 
13.6%, 46.7%, and 39.7% of the patients, respectively. P1 and P2 were both under- 
expressed in patients with a normal P1/P2 ratio. In patients with a high P1/P2 ratio, 
P1 was normally expressed and P2 was under-expressed. They also reported that 
patients with abnormal P1/P2 ratios displayed significantly reduced semen quality 
and sperm penetration ability (Aoki et al. 2005a).

Several studies have also reported the presence of protamine transcript in sperm. 
Significantly aberrant protamine mRNA ratio was found in infertile individuals, and 
it correlates with DNA fragmentation and IVF success (Steger et al. 2001; 
Rogenhofer et al. 2013; Ni et al. 2014a). Significantly higher PRM1 and PRM2 
mRNA copy numbers have been observed in normozoospermic versus teratozoo-
spermic samples (Savadi-Shiraz et al. 2015). In contrast, transition protein 2 (TNP2) 
transcript abundance was significantly higher in teratozoospermic samples and pos-
itively correlated with sperm-head defects.

17.6  Protamines, DNA Compaction, and Integrity

Protamines are essential for sperm-specific packing of DNA. Compaction of DNA 
shuts off transcription as the DNA is no more amenable to the transcription factors 
and RNA polymerase. It also protects the DNA from any damage thus maintaining 
its integrity. This ensures that postfertilization the paternal genome is delivered in a 
form that allows developing embryo to accurately express genetic information. 
DNA compaction during chromatin condensation changes a transcriptionally active 
chromatin into a transcriptionally silent chromatin, and all the genes that are 
required for spermatogenesis and sperm function are transcribed prior to this transi-
tion, i.e., until the round spermatid stage. Live imaging studies in Drosophila have 
shown that histone-to-protamine transition starts 50–60 h after completion of meio-
sis and lasts for 5–6 h (Awe and Renkawitz-Pohl 2010). In mice although there is no 
direct evidence such as live imaging, indirect evidences suggest that this transition 
starts approximately 156 h after completion of meiosis and it lasts for 120–126 h, 
i.e., from step 10 to step 15 of spermiogenesis (reviewed by Rathke et al. 2014). 
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This period is characterized by DNA breaks and repair which allows relief from the 
torsion stress and facilitates removal of the histones and replacement by transition 
proteins and subsequently protamines (Marcon and Boissonneault 2004). Thereafter, 
selective translation of the stored mRNA takes place as per the requirements of the 
sperm.

It is well established that about 5–15% histones are retained in normal human 
sperm. Elegant studies by Hammoud et al. have shown gene clusters important for 
embryonic development to be associated with the retained histones in sperm of 
fertile men (Hammoud et al. 2009). This implies that improper packaging due to 
higher histone retention as seen in sperm chromatin of infertile men may expose 
many more gene clusters. A subsequent study by the same group showed that in 
infertile men, histones retention was random genome-wide, unlike fertile men 
where the histone retention was seen only at specific gene clusters (Hammoud et al. 
2011). The epigenetic marks H3K4me or H3K27me were also reduced on the 
retained histones in the infertile men. They speculate that these changes may be 
responsible for the poor reproductive outcome post ICSI/IVF in infertile men.

Any defects in chromatin packaging wreaks havoc with the sperm ability to fer-
tilize or sire a viable offspring either by allowing the untimely transcription of cer-
tain genes, allowing certain modifications of histones that may switch the 
transcription on or off, or increasing the vulnerability of the DNA to drug-induced 
damage. Observations from the chromodomain helicase DNA-binding protein 5 
(CHD5) KO mice are a testimony to the effect of improper condensation on sperm 
morphology and fertility of the male offspring (Zhuang et al. 2014). H4 hyperacety-
lation, which is vital for histone replacement during spermiogenesis, is reduced in 
these mice, and the sperm show deformed nuclei and abnormal head morphology. 
However, in these mice transcription of important genes, controlling spermatogen-
esis was not affected. Several groups have shown very lucidly the correlation 
between protamine compaction, DNA integrity, and sperm quality (Franken et al. 
1999; García-Peiró et al. 2011; Manochantr et al. 2012; Utsuno et al. 2014). 
Chromatin packaging as studied by CMA3 and acidic aniline blue staining nega-
tively correlates with normal sperm morphology (Franken et al. 1999). Utsuno et al. 
observed abnormal protamination in significantly higher number of spermatozoa 
with abnormal head morphology compared to those with normal head morphology. 
DNA fragmentation was also higher in the protamine-deficient spermatozoa. Studies 
on DNA damage in men undergoing IVF treatment revealed a positive association 
between DNA damage and abnormal sperm morphology and motility and negative 
correlation with sperm concentration (Morris et al. 2002). Protamine 2-deficient 
mice sperm demonstrate a direct correlation between PRM2 haploinsufficiency and 
frequency of DNA damage as seen from comet assays and ultrastructural analysis 
(Cho et al. 2003). In studies with human sperm, a positive correlation has been 
shown between protamine deficiency and sperm DNA damage (De Iuliis et al. 2009; 
Nili et al. 2009; Tarozzi et al. 2009; Razavi et al. 2010; Manochantr et al. 2012; 
Utsuno et al. 2014). Several studies have correlated altered P1/P2 ratio with suscep-
tibility to DNA damage (Aoki et al. 2005b, 2006).

A. Patankar and P. Parte



309

17.7  DNA Integrity and ART Outcomes

DNA integrity also influences sperm penetration and fertilizing ability, IVF and 
embryo quality, and development in ICSI outcome (Khara et al. 1997; Carrell et al. 
1999; Carrell and Liu 2001; Nasr-Esfahani et al. 2004; de Mateo et al. 2009). DNA 
fragmentation and CMA3 positivity indicative of protamine deficiency negatively 
correlate with the fertilization rate in ICSI patients; DNA methylation negatively 
correlated with DNA fragmentation (Tavalaee et al. 2009). However, Tarozzi et al. 
observed a close relationship between sperm protamination and fertilization and 
pregnancy only in IVF; in ICSI there was a correlation between DNA fragmenta-
tion and pregnancy (Tarozzi et al. 2009). In men enrolled for ICSI, a positive asso-
ciation was seen between sperm damage and impairment of postfertilization 
embryo cleavage (Morris et al. 2002). In another study of individuals referred for 
ICSI, CMA3 positivity showed a significant negative correlation with fertilization 
rate post ICSI (Iranpour 2014). An isolated study using cleavage-stage frozen-
thawed embryos from cycles of IVF and ICSI has however observed no significant 
difference in the biochemical pregnancy, clinical pregnancy, and miscarriage rates 
between sperm showing DFI <30% and those >30% (Ni et al. 2014b). The group 
did find some association between DFI and blastocyst formation in the ICSI group. 
A recent study investigating the influence of sperm DNA fragmentation on the 
pregnancy outcome and pregnancy loss after ART in couples going for either autol-
ogous ICSI, ICSI using donor eggs, or IUI observed that while the pregnancy rates 
were not significantly different, pregnancy losses correlated positively with the 
DNA fragmentation which was measured as DNA fragmentation index (DFI). The 
study indicates that sperm samples showing DFI >27% are associated with an 
increased risk of early pregnancy loss (Rilcheva Violeta et al. 2016). A similar 
observation has been reported earlier (Jin et al. 2015). Additionally, this group 
observed that when the DFI exceeded 27.3%, the live birth and implantation rates 
were significantly reduced in women with reduced ovarian reserve vis-a-vis women 
with normal ovarian reserve.

 Conclusions and Future Directions
DNA integrity and its proper compaction in sperm are vital to its fertilizing 
ability as well as for early embryonic development in the preimplantation 
stage. Poor DNA compaction in sperm severely hampers its fertilizing ability 
and further development that accounts for fertility loss in natural conception 
or poor success of IVF/ICSI procedures. While literature is replete with evi-
dences on histone retention and protamine deficiency in infertile cases, our 
knowledge on impact of several histone modifications on the fertility of male 
is limited and needs attention. Further research in this direction may identify 
sperm chromatin tests that may predict the success of ARTs. At the same time, 
further studies are needed to understand the significance of the retained his-
tones in sperm maturation and their contribution toward the fertilizing ability 
of sperm.
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