
123

Jian Cao
Jianxun Liu (Eds.)

Third International Workshop, MiPAC 2016
Hangzhou, China, September 23, 2016
Revised Selected Papers

Management of Information,
Process and Cooperation

Communications in Computer and Information Science 686

Communications
in Computer and Information Science 686

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Jian Cao • Jianxun Liu (Eds.)

Management of Information,
Process and Cooperation
Third International Workshop, MiPAC 2016
Hangzhou, China, September 23, 2016
Revised Selected Papers

123

Editors
Jian Cao
Department of Computer Science
and Engineering

Shanghai Jiao Tong University
Shanghai
China

Jianxun Liu
School of Computer Science
and Engineering

Hunan University of Science
and Technology

Xiangtan
China

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-981-10-3995-9 ISBN 978-981-10-3996-6 (eBook)
DOI 10.1007/978-981-10-3996-6

Library of Congress Control Number: 2017932643

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

This volume collects the proceedings of the International Workshop on Management of
Information, Processes, and Cooperation (MiPAC 2016, formally Process-Aware
Systems) held in Hangzhou, China, on September 23, 2016, co-located with the 6th
China Conference on Business Process Management (China BPM 2016). Following
the success of PAS 2014 and PAS 2015, MiPAC 2016 provided an international forum
for exploring challenging research issues in the areas of data/information management,
services computing, business processes and workflows, and software engineering,
aiming at developing techniques for effective software development to support enter-
prise applications.

As the third edition in this workshop series, MiPAC 2016 accepted eight qualified
papers from 14 submissions. These submissions reported on up-to-date research
findings and application case studies.

We would like to thank the Program Committee members for their reviews of the
submitted papers. We express our gratitude to the other conference committees,
especially to the Program Committee chairs, Jie Wang and Jianxun Liu, and the
Steering Committee for their valuable guidance, and to the publicity chair, Cheng
Zhang, for his efforts in publishing workshop updates and promoting the workshop in
the region. Special thanks to the publication chair, Xiao Liu, for his great efforts, and to
the organization chair, Shuiguang Deng, and other staff at Zhejiang University for their
attentive preparations for this workshop.

We would also like to take this opportunity to thank the staff at Springer for their
efficient work on the publication of the workshop proceedings. Last but not least, we
are thankful to the authors of the submissions, the presenters, and all the other
workshop participants — the workshop could not be held without their contributions
and interest.

February 2017 Jian Cao

Organization

MiPAC 2016 was organized in Hangzhou, China, by Zhejiang University.

Steering Committee

Jianwen Su UC Santa Barbara, USA
Yun Yang Swinburne University of Technology, Australia
Jianming Wang Tsinghua University, China
Liang Zhang Fudan University, China

General Chair

Jian Cao Shanghai Jiao Tong University, China

Program Chairs

Jie Wang Stanford University, USA
Jianxun Liu Hunan University of Science and Technology, China

Organization Chair

Shuiguang Deng Zhejiang University, China

Publicity Chair

Cheng Zhang Anhui University, China

Publication Chairs

Xiao Liu Deakin University, Australia

Program Committee

Jidong Ge Nanjing University, China
Jinjun Chen University of Technology Sydney, Australia
Xiao Liu Deakin University, Australia
Jie Wang Stanford University, USA
Cheng Zhang Anhui University, China
Zhiming Zhao University of Amsterdam, The Netherlands
Chun Ouyang Queensland University of Technology, Australia
Jianwei Yin Zhejiang University, China
Liang Zhang Fudan University, China

Contents

Process Modeling

Flexible Manufacturing Chain: A SCM for Electronic Commerce Enterprise
in Clothing Industry Based on Activiti. 3

Hengheng Wei, Jidong Ge, Chuanyi Li, Zhongjin Li, Miaomiao Lei,
and Haiyang Hu

Process Enactment

Crowdsourcing Complex Task Automatically by Workflow Technology 17
Qiang Zheng, Wenyan Wang, Yang Yu, Maolin Pan, and Xiaohui Shi

An Adaptive Scheduling Mechanism for Analytical Workflow Model 31
Yan Yao and Jian Cao

Data Driven Service Computing

Monitoring as a Service Based on Pub/Sub System over a Cloud
Environment. 49

Dingyu Yang and Chunlei Ji

The Fault Tolerance of Big Data Systems . 65
Xing Wu, Zhikang Du, Shuji Dai, and Yazhou Liu

A Market-Based Analysis of Bidding Strategy Between Web Service
Providers and Users. 75

Bing Shi, Zhaowei Wang, and Guangyi Hu

A Lightweight Hash-Based Mutual Authentication Protocol for RFID 87
Zhangbing Li, Xiaoyong Zhong, Xiaochun Chen, and Jianxun Liu

Photovoltaic Power Prediction Model Based on Parallel Neural Network
and Genetic Algorithms . 99

Gaowei Xu and Min Liu

Author Index . 111

http://dx.doi.org/10.1007/978-981-10-3996-6_1
http://dx.doi.org/10.1007/978-981-10-3996-6_1
http://dx.doi.org/10.1007/978-981-10-3996-6_2
http://dx.doi.org/10.1007/978-981-10-3996-6_3
http://dx.doi.org/10.1007/978-981-10-3996-6_4
http://dx.doi.org/10.1007/978-981-10-3996-6_4
http://dx.doi.org/10.1007/978-981-10-3996-6_5
http://dx.doi.org/10.1007/978-981-10-3996-6_6
http://dx.doi.org/10.1007/978-981-10-3996-6_6
http://dx.doi.org/10.1007/978-981-10-3996-6_7
http://dx.doi.org/10.1007/978-981-10-3996-6_8
http://dx.doi.org/10.1007/978-981-10-3996-6_8

Process Modeling

Flexible Manufacturing Chain: A SCM for Electronic
Commerce Enterprise in Clothing Industry

Based on Activiti

Hengheng Wei1,2, Jidong Ge1,2(✉), Chuanyi Li1,2, Zhongjin Li1,2,
Miaomiao Lei1,2, and Haiyang Hu1,2,3

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210093, China

gjdnju@163.com
2 Software Institute, Nanjing University, Nanjing 210093, China

3 School of Computer, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract. With the business development of the process, the manager needs to
improve the automation, efficiency and reliability of the business process manage‐
ment, especially in manufacturing area. To solve this problem, we have designed
and implemented a supply chain management system, FMC (Flexible Manufac‐
turing Chain), which integrates different aspects of the BPM lifecycle in a unified
platform based on Activiti workflow engine. FMC is an effective system to model
and execute flexible, data-driven, and user-centric business processes. It enables
users to create process models graphically and flexibly, execute process more
automatically, monitor the real-time process execution information and improve
the process according to the deviations from conformance checking. The FMC
system is used as a demo in this article, which is a supply chain system that
provides a whole complex product line service including many departments and
tasks.

Keywords: Supply chain management · Process modeling · Process execution ·
Process improvement · Process monitor

1 Introduction

Business Process Management (BPM) is an approach to systematically model, manage
and improve business operations inner or among organizations. In BPM, sequences or
relationships of business operations are usually described by means of process models
that consist of partially ordered control and data flow nodes and can be executed auto‐
matically by business process management systems. Process-aware information systems
(PAISs) provide support for business processes at the operational level [1, 2] and sepa‐
rate process logic from application code, relying on explicit process models. Partici‐
pating in the BPM lifecycle requires that each user role is able to create, evolve or execute
such process models [3].

FMC (Flexible Manufacturing Chain) is a supply chain management system, which
integrates numerous functions and provides an intuitive user interface for the end users

© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 3–14, 2017.
DOI: 10.1007/978-981-10-3996-6_1

to participate in the entire BPM lifecycle. The system is implemented by the industry
standard BPMN [4], the Business Process Model and Notation. Usually, users can
execute and control the business process through workflow process engine such as JBPM
[5] and Activiti [6], the workflow engine is the core component of FMC system and
supply parse, execution and management for BPMN process definitions, FMC chooses
Activiti as workflow engine because of its good services, nice integration features with
spring framework and its rich log information. However, process execution may deviate
from process models due to unexpected happenings or because some employee found
a more suitable way achieving the same goal in actual situation. Generally, there are two
ways to find deviations between original designed process model and actual running
process model, one is process mining and the other is conformance checking.

The basic idea of process mining is to diagnose processes by mining event logs for
knowledge [7]. Event logs are the starting point for process mining. The data of the event
log can be mined and different aspects about the underlying process can be analyzed.
Business process mining, or process mining for short, aims at the automatic construction
of models explaining the behavior observed in the event log. Common process mining
algorithms discover actual process through the extraction of order relations from event
logs, and we can discover deviations from comparison between discovered process and
original process.

Conformance checking is applied to measure alignment between designed model and
behavior logs, it replays the log event traces on the designed process to evaluate the process
in different aspects such as fitness, generalization and precision to find the deviations. FMC
workflow system develops and uses process mining and conformance checking plugin on
ProM [8] platform, ProM is an open source process mining suit, which can be used for
studying process mining cases, and it also integrates a log import tool named XEsame, it can
receive different data sources such as database and generate the XLog or XES file which can
be used as inputs of conformance checking plugins. We use the BPMN Analysis plugin as
conformance checking plugin and develop a χ-algorithm [9] with post-task events plugin
on ProM to help improve business process.

With the improve suggestions from process improve module, process designers can
modify the process model to a more reliable and efficient version, on the other hand, the
accurate and real-time process execution information should also be achieved from
process monitor to help users. This system can improve order execution efficiency and
reliability as well as save human power.

Section 2 introduces the application scenario used for the demonstration. Section 3
presents the FMC supply chain process management system architecture. Fundamental
techniques are described in Sect. 4. Section 5 then describes how the application scenario
can be supported with the FMC system. Finally, Sect. 6 concludes the paper.

2 Application Scenario

The case in this article is derived from a China clothes manufacturing company that
provides a whole product line service which is very complex and consists of many
departments and tasks. Concretely speaking, the services consist of clothes design,

4 H. Wei et al.

material purchase, sample make, volume production, mass customization, storage,
delivery etc. Each part of these services includes a lot of task nodes conducted by
different departments. FMC utilizes BPMN as process modeling language, we give a
description of sample make segment of the whole process model in Fig. 1, we can see
there are multiple nodes and different structures in the segment, for example, the veri‐
fication tasks make concurrent structures respectively, and there is also choice structure,
loop structure and sequence structure. These structures compose the whole process and
form the process execution logic with the variables in the process model.

Receive
Sample

Prepare
Verification

verifyDesign

verifyProduce

verifyPurchase

Judge
VerificationResult

modifyOrder

mergeQuote

Fig. 1. Sample make BPMN segment.

In the past, the process flow and business logic of the clothes manufacturing process
are combined together, designers must spend lots of time and effort to update the process,
the process cannot adapt to the change requirement, and sometimes the execution and
notification of tasks need to be finished by human power, which is inefficient and unre‐
liable. The clothes manufacturing process execution has a high demand for efficiency,
conciseness and reliability.

There should be a graphical interface for designers to create and edit business process
easily. The process management and business logic should be separated and the process
model should be modified flexibly and better not to restart the process instance. Through
structural modeling of business process, the execution of tasks should be judged and
executed by process management system automatically to improve process efficiency
and reliability, and then the new tasks will be accurately notified to the related users.
Multiple process models should be able to be deployed and managed by the system. The
users can involve in several workflows at the same time and manage their customized
process instances and tasks in a unified manner. Real-time process execution information
and statistical information of business processes should be monitored in a respective
dashboard, for example, how many process instances are in production status and which
is the slowest task in the finished process instances, the execution state of every process
instance should be displayed to related users. As well as we know, the deviations will
occur compared to the reference model, so the process model should be improved by
providing these deviations to model designers and the process instances should be
executed more accurately and efficiently.

Flexible Manufacturing Chain 5

3 System Architecture

Figure 2 illustrates the major components of the system architecture. In particular, FMC
is implemented as a Java EE application utilizing the Activiti BPM engine for process
execution, the architecture of FMC consists of three main components including Web
User Interface, process management and information management which are respec‐
tively discussed in the following sections.

Fig. 2. A SCM system architecture

3.1 Web User Interfaces

Web User Interfaces are based on J2EE web framework. It provides functions for users
to execute process operation as well as business operation, receive feedback information
graphically. It also enables users to participate in different workflow processes concur‐
rently, so the workflow processes can be shareable between different users after authen‐
tication. It interacts with the process management component to deploy, execute,
monitor, analyze and improve the workflow processes. We separate the user operations
from process operation module and business execution module. The functions of each
component are as follows:

• Process operation module: it allows users to create and edit the BPMN 2.0 process
model, deploy the process model to the workflow engine in the process management
component through web interface, and then the process model can be executed. Users
can join the workflow process through authentication, a workflow process can be
executed by different users and a user can join different processes. The process oper‐
ation module also includes process modification to improve the efficiency and
simplicity of process model through interaction with the process improve module in
the process management component.

6 H. Wei et al.

• Business execution module: when new tasks are notified to users, users finish the
tasks and submit user execution results and process variables to the process control
module of the process management component through web interface, and process
control module will execute the task and change the process information database.

3.2 Process Management Component

Process Management Component is the core component of the workflow management
system architecture, which receives the process inputs from web user interface, and deals
with the inputs. Firstly, it can parse process model file definitions and save BPMN model
files to database. Secondly, it can receive the execution choices from users, then the
workflow engine will analyze the choices with the workflow process information data
and update process instances and produce new tasks, then new tasks can be notified to
users as well as the monitoring information. Finally, the process can be improved
through conformance checking between the logs and the current process models in use,
the logs can give expression to the behavior habits of users, then, the improvement
suggestions will be provided to model designers to update the process model and make
the execution of process more efficient and reliable, the use of BPMN designer makes
the modification of process model easily and friendly. The process version management
module is used to manage different versions of process definitions with the same process
name. The process rollback module is used to roll back the database to previous state
when business exceptions or process exceptions are occurred. Through the process
management component, the execution and management for business processes can be
more automatic, effective, efficient and reliable. This component includes process
control module, process monitoring module, process improvement module and process
deploy module. The functions of each component are as follows:

• Process control module: it provides the execution, analysis and process version
management mechanism to realize the automation and flexibility of business process
control. We use Activiti workflow engine to execute the process, and we realize the
process analysis sub-module based on different service interfaces such as runtime
service interface, history service interface, identify service interface and so on to
interact with the core engine to receive user execution results, invoke the core engine
to execute and get the information such as new tasks to notify users. Generally, the
process management module interacts with the information management component
to read and update the process data and is the core module of the workflow manage‐
ment system.

• Process deploy module: it receives the process model definition file from users, then
it sends the model files to the workflow engine to check and parse. The parsed process
data will be saved to database and the process model definition will be saved in
workflow process definition files repository. Then the process can be started to
execute.

• Process monitor module: the function of this module is to monitor the process execu‐
tion in real time. With the execution of the process, users usually want to know
statistical information of the process involved in, in the clothes manufacturing

Flexible Manufacturing Chain 7

scenario, for example, which orders have finished, aborted, pending or running, and
the progress and execution time of related processes. The monitor module needs to
interact with the process information in database and return the monitoring informa‐
tion described in graph or table format.

• Process improve module: the module is used to provide improvement suggestions to
the model designer. The process models are designed according to the experience of
obtained via expert interviews to initially configure a process. During execution
however the operational process typically starts deviating from this reference model,
for example, due to new regulations that have not been incorporated into the reference
model yet, or simply because the reference model is not accurate enough. It imple‐
ments through process mining plugins or checking conformance between the log
recorded in the log information database and the original process model stored in the
workflow process definition files repository, and then the deviations are presented to
model designer to improve the process model.

3.3 Information Management Component

Information Management Component interacts with process management component,
it is designed to store the process-related and business-related data, which includes two
main modules, one is workflow process definition file repository which saves the process
model definition files deployed to the workflow engine, and another is data persistence
management module, this module includes log information sub-module, process infor‐
mation sub-module and business information sub-module. The log information sub-
module saves the historic process instances and tasks execution records automatically
and these historic process-related tables are applied to find valuable information for
process monitoring function. The process information sub-module mainly includes
process-related runtime tables such as process instance table, activity instance table, task
instance table and variable instance table. The business information sub-module includes
business operation data which includes many business entity tables designed by business
developers.

4 Fundamental Techniques

4.1 Business Process Modeling Language

The Business Process Model and Notation (BPMN) is an OMG specification that not
only defines a standard on how to graphically represent a business process, but now also
includes execution semantics for the elements defined, and an XML format on how to
store and share process definitions. Process modeling language should contain several
key model elements to compose a common process definition. Some key model elements
usually used in manufacturing scenario are described as follows:

1. Events: They are used to model the occurrence of a particular event. We use the start
event to indicate the start of the process and end events to define the end of the
process.

8 H. Wei et al.

2. Activities: These define the different actions that need to be performed during the
execution of the process. Different types of tasks usually are used to describe the
model execution such as user tasks, and service tasks. The user tasks are used to
represent the business operations, and many related attributes, such as user task id,
executor id, variables and judge conditions. The service tasks are used to execute
automated operations such as sending emails to customers.

3. Gateways: gateways are used to define multiple paths in the process. Depending on
the type of gateway, these might indicate parallel execution, choice. Parallel execu‐
tions are represented by an inclusive gateway node and converging strategy while
choice structures are described by an exclusive gateway node and diverging strategy.

4. Process variables: variable elements define input and output data in the workflow
process and they will be used in task nodes and sequence flows which define the
different connect relations to judge and confirm execution paths.

We integrate Activiti Modeler to FMC system as open-source web-based editor to
create and edit the process models for users. The process models will be saved into
workflow process definition file repository so that they can be executed. Figure 1 shows
the sample make BPMN segment.

4.2 Process Monitoring Mechanism

When the process is executed, the system is supposed to monitor the status of the process.
The system provides monitoring module to gather process status and statistics informa‐
tion according to the customized monitor requirement of different users. For example,
the produce managers want to know all running, aborted and finished produce tasks of
different process instances in one period time. The structure of process monitor module
is described in Fig. 3. Firstly, different users send monitor request through web interface,
when servers get requests, they will invoke different service interfaces of process anal‐
ysis module to compute statistic and real-time process information to users. Finally, the
monitoring web page will be updated.

4.3 Process Improvement Mechanism

Process models are used to abstract and structure the business process. With the usage
and development of the process model, some deviations will occur compared to the
reference model, for example, due to new regulations that have not been incorporated
into the reference model yet, or simply because the reference model is not accurate
enough [10]. So the users have the demands to improve and update the process models
accurately. There are two ways to find deviations between designed process and actual
executions. The one way is process mining technique. We implement a process mining
algorithm with post-task event trace log as input on ProM, and generate the discovered
process model in Petri net formats, then the deviations can be found through the compar‐
ison between discovered Petri net and designed model. Another way is conformance
checking plugin which takes event logs and designed process model as input and
generate the evaluation result in different aspects such as fitness, generalization and

Flexible Manufacturing Chain 9

precision. With the system running for a period, the task and event log recorded in the
database are able to react the actual execution situation, then we use the log format
converter to transform the original log files with SQL format to XLog or XES log format
that the plugins on ProM [8] can use, then we use the converted log file and process
model from repository as inputs to invoke the conformance checker or process mining
plugin on ProM. As a result, discovered deviations will be provided to model designers.
The structure of the improve module is described in Fig. 4. If model designers modify
original process model, the running process instances will be deployed on different
versions according to if they can be updated to the new process model.

Fig. 3. Process monitor mechanism

XEsame
Conformance

Checker

ProM Platform

Process Deploy Process Update

Task Operations
Log Database

Workflow Process
Files Repository

Data management

.XLog File
B

PM
N

Suggestions

Business Process
Miner

Workflow Engine

Fig. 4. Process improvement mechanism

10 H. Wei et al.

5 System Demo

5.1 Environment Setting Up

The FMC system is implemented as a J2EE application. The web system integrates
spring framework business system, BPMN Designer, MySQL database and Activiti
workflow engine. The process management component is developed based on BPMN
Designer and Activiti workflow engine. The business execution component is developed
as a web system and process and business logs are persisted in MySQL database. And
an easy-to-use web interface is designed for process users to interact with server.

5.2 Demonstration Steps

The FMC supply chain management system has been used in a clothes manufacturing
company in china. In the manufacturing industry, the technologies and environment are
developed and changed very often, to improve efficiency and enhance the market
competitiveness. The business processes in use of the manufacturing company often
needs re-engineering and improvement. In the past, when the business processes are
remodeled, the employees need to understand and learn new rules for a long time. During
the time, the running orders have to be executed offline. This problem is solved using
the FMC supply chain management system. When the business processes are need to
improved, process designers can use process improve module to help provide optimi‐
zation suggestions and then modify the process models on BPMN designer graphically.
With the help of the graphically process designer, process control module and process
improvement module, the efficiency and competitiveness of the manufacturing company
are improved.

Currently, the system has been applied to manage business processes of clothes
manufacturing company. The whole business process functions are shown as follows in
Fig. 7. We design the following steps to show the function and the general operating
procedures:

1. If a business process will be managed by FMC system, users firstly need to create
process models in BPMN2 format with graphical web BPMN process designer. The
process will be deployed on workflow engine on server. When the workflow process
definition files are received by workflow engine, the engine will parse the files firstly.
The nodes with different types will be structured and persisted in the process data‐
base.

2. Processes in FMC system are shareable and users can join different processes. When
the processes are started, process instances will be created and executed. After users
execute business tasks, the execution result will be send to workflow flow engine.
The engine analyses and executes related process instances according to the result
variables, current process instance state and the relations between task nodes. Then
the new tasks will be created through process definition and sent to related users.

3. The process instance has several process states which are Started, Running, Aborted
and Finished. Real-time state information of process instances will be collected by
process monitor module. this information will be presented to users according to

Flexible Manufacturing Chain 11

users’ customization with graphs or tables. Figures 5 and 6 show the monitor of
running process instances and tasks, which describe the monitoring of process
instances and activity instances respectively. Figure 5 shows a list of historic process
instances that the user has joined in. The process instances are described from
different aspects such as id, time, states so on. Through the process progress button,
the Fig. 6 shows the process activities. The yellow boards represent the finished route
composed of user tasks and finish time when user tasks are operated. The red boards
represent the current tasks for execution. The process monitoring function helps
users to get real and important information of executions.

Fig. 5. Process instance monitor

Fig. 6. Activity instance monitor in BPMN graph (Color figure online)

4. When the business process system has running for a period of time, process improve‐
ment module allows the business process adaptable to unpredictable changes and
can find deviations between logs and models which can provided to process engine
as suggestions. We use XEsame on ProM platform to convert process operation
records in MySQL database into standard log format which can be used by the
conformance checking and process mining plugins on ProM platform. Then the

12 H. Wei et al.

process engine will invoke the process mining or conformance checking plugins to
find deviations and present it to related users. Finally, the process model can be
updated to adapt the actual scenario.

5. The system also adopts Spring-Hibernate transaction manager to manage process
and business transactions, so the business data and process instance state can roll
back to the previous state when the exceptions or the errors happened during the
current task execution.

Figure 7 shows the whole supply chain process model. FMC uses BPMN modeling
language, the process model contains many complex order relations consist of exclusive
gateway, parallel gateway and sequential flows. There are only one start event and many
end events in the process. BPMN model language provides a convenient way to create,
modify processes for users graphically.

Receive
Sample

Verify
Produce

Verify
Design

Verify
Purchase

Modify
Order

Merge
Quote

Verify
Quote

Confirm
Quote

Modify
Quote

Confirm
SampleMoney

Confirm
Purchase

Upload
Degisn

Produce
Sample

Send
Sample

Confirm
SampleMoney

Design
Confirm

Purchase
Confirm

Modify
Order

Sign
Contract

Confirm
Deposit

Purchase
Material

Product
Confirm

Volume
Production

Quality
TestStorage

Confirm
FinalDeposit

Delivery
Goods

Fig. 7. The whole supply chain process model

6 Conclusion

This paper introduces the FMC supply chain management system from architecture and
fundamental techniques aspects, and uses a clothes manufacturing scenario to

Flexible Manufacturing Chain 13

demonstrate the functions of the system. Through the management of the business
process, the users are able to create the structured process models graphically through
web interface, to deploy them on server to execute semi-automatically, to monitor the
customized real-time process or business execution information, and improve the
process according to the deviations from conformance checking and process mining.
This system improves the efficiency and reliability of the process execution and manage‐
ment, and allows the process model to adapt to the actual situation accurately and
flexibly. A web-based user interface offers an intuitive way to manage process models.
The management effect of the clothes manufacturing scenario proves the availability of
FMC system.

Acknowledgments. This work was supported by the The National Key Research and
Development Program of China (No. 2016YFC0800803), the National Natural Science
Foundation, China (No. 61572162, 61572251), and the Fundamental Research Funds for the
Central Universities. Jidong Ge is the corresponding author.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Heidelberg (2012)

2. Manfred, R., Weber, B.: Enabling Flexibility in Process-aware Information Systems:
Challenges, Methods, Technologies. Springer, Heidelberg (2012)

3. Ingo, W., Paik, H.-Y., Benatallah, B.: Form-based web service composition for domain
experts. ACM Trans. Web 8(1), 2 (2013)

4. Object Management Group: A standard Business Process Model and Notation (BPMN). http://
www.bpmn.org/

5. A flexible Java Business Process Management (BPM) Suite. http://www.jbpm.org/
6. A light-weight workflow and Business Process Management (BPM) Platform. http://

www.activiti.org/
7. van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining and security: detecting

anomalous process executions and checking process conformance. Electron. Notes Theore.
Comput. Sci. 121, 3–21 (2005)

8. Process Mining Group: An Open Source framework for process mining algorithms (2016).
http://www.processmining.org/prom

9. Wang, D., Ge, J., Hu, H., et al.: A new process mining algorithm based on event type. In:
Proceedings of International Conference on Dependable, Autonomic and Secure Computing,
pp. 1144–1151. IEEE (2011)

10. Buijs, J.C.A.M., Rosa, M., Reijers, H.A., Dongen, B.F., van der Aalst, W.M.P.: Improving
business process models using observed behavior. In: Cudre-Mauroux, P., Ceravolo, P.,
Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 44–59. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40919-6_3

14 H. Wei et al.

http://www.bpmn.org/
http://www.bpmn.org/
http://www.jbpm.org/
http://www.activiti.org/
http://www.activiti.org/
http://www.processmining.org/prom
http://dx.doi.org/10.1007/978-3-642-40919-6_3

Process Enactment

Crowdsourcing Complex Task Automatically by Workflow
Technology

Qiang Zheng, Wenyan Wang, Yang Yu(✉), Maolin Pan, and Xiaohui Shi

School of Data and Computer Science,
Sun Yat-Sen University, Guangzhou, China

{zhengq27,wangwy9,shixhui}@mail2.sysu.edu.cn,
{yuy,panml}@mail.sysu.edu.cn

Abstract. Micro-task Crowdsourcing market has become a new trend that
convenes a large population of workers to solve the task proposed by a requester
online. But these micro-tasks in the market are always simple and independent.
To solve complex tasks in real world, some recursive decomposition approaches
were proposed and some tools were developed. However, the process of solving
complex tasks still involve lots of manual work. How to make this process more
automatic? In this paper, we present a new crowdsourcing process model which
includes a state machine model of a task and a relation model of tasks. Based on
this process model, we design a crowdsourcing platform with the help of state
machine workflow technology. With the support of this platform, we can define
and execute a crowdsourcing process. In the process of the execution, the platform
can manage dependencies between tasks. By means of this platform, one can
develop many kinds of crowdsourcing applications with less programming,
higher speed and quality. At the end of this paper, a case study is given to demon‐
strate the practicability of our model and platform.

Keywords: Crowdsourcing · Workflow · State machine · Automation

1 Introduction

Crowdsourcing is a powerful mechanism to complete tasks on the Internet. Recently,
crowdsourcing is widely applied in real world. It adopts crowd intelligence and creativity
in solving problem. By crowdsourcing, various tasks that are difficult to complete by
machine, such as labeling the images, discovering new galaxies (galaxyzoo.org) [1, 2],
can be accomplished. These tasks do not acquire any specialized skill. Yet a great deal
of tasks demand on specific groups, ranging from crowdsourcing t-shirt designs (Thread‐
less) to software testing (UTest) [3, 4]. Crowdsourcing is also applied in the labor and
commercial market to find proper buyers and sellers from different countries (Odesk
and Elance) [5].

One of the most popular general-purpose crowdsourcing markets for diverse tasks
is Amazon Mechanical Turk (MTurk) and it has been used to research crowdsourcing
problems. Tasks on it can vary from images annotation to audio transcription. These
tasks, called micro-tasks, are simple, repetitive, independent and cost less time.

© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 17–30, 2017.
DOI: 10.1007/978-981-10-3996-6_2

http://galaxyzoo.org

Compared with typical micro-tasks on the Mechanical Turk, tasks in life are very
complex and take a lot of time. They need technicians from different field to work
collaboratively. To make this happen in crowdsourcing market, these complex tasks are
often decomposed into subtasks. The process of decomposition is very complex. When
should it be decomposed and how to break down it are fully decided and executed by
crowd workers. This is a completely recursive process with artificial participation.

To automatically solve complex tasks, we propose a crowdsourcing process model
on the foundation of state machine workflow technology. In addition to, we illustrate
how to design a crowdsourcing platform which supports this model. A variety of crowd‐
sourcing applications can be built quickly by this platform.

2 Related Work

Early, crowdsourcing was used to process large datasets like tagging and classification
that were outside the reach of autonomous algorithms. Using crowdsourcing, these tasks
can be solved more efficiently, quickly and accurately. But, these tasks don’t have any
creativity.

Later, more and more problems can be solved via distributed human computation.
Soylant provides a word processing interface that uses crowd workers to help with
proofreading, document shortening, editing and commenting tasks [6]. VizWiz, an
iPhone app which enables blind user to recruit remote sighted workers to help them with
visual problems in nearly real-time [7]. Legion is a system that allows end users to easily
capture existing GUIs and outsource them for collaborative, real-time control by the
crowd [8]. More and more problems of particular type can be solved through crowd‐
sourcing.

Previously, there are three ways to solve complex tasks. TurKit, a toolkit for deploying
iterative tasks to MTurk [9]. Its crash-and-rerun programming model that makes TurKit
possible, along with a variety of applications for human computation algorithms [10]. The
requester must decide how to divide task by hard code before it is posted on MTurk. Crowd‐
Forge uses the framework of map-reduce to divide complex work into smaller steps [11]. It
cannot support iteration or recursion and require the task designer to specify the sequence
of activities. The third method is a combination of Price-Divide-Solve algorithm and Turbo‐
matic tool. The PDS algorithm guides workers through the process of converting large and
complex tasks into micro-tasks appropriate for crowd markets [12]. The Turkomatic is a tool
for iteration. It can post each step in the best decomposition schemas on Amazon Mechan‐
ical Turk [13]. It does not provide crowd workers with the ability to edit workflow. In those
toolkits, they rely on MTurk to complete micro-tasks. As a result, they lack the control
ability of the whole process. They describe the process of accomplishing complex tasks as
workflow, but they do not give business process definition for workflow.

At present, there are two business process modeling standards. One is XPDL defined by
WfMC (Workflow Management Coalition). Another is BPMN defined by OMG (Object
Management Group). Because the decomposition process of complex task is dynamic, both
traditional standard cannot be used for modeling the process of crowdsourcing. Therefore,
we use state machine workflow technology to solve this problem.

18 Q. Zheng et al.

3 Preliminaries

3.1 State Machine

A finite-state machine (FSM) is a mathematical model of finite computation used to
design both computer programs and sequential logic circuits. It is conceived as an
abstract machine that has a finite number of states. The machine only stays in one state
at a given time. It can transfer from one state to another by a triggering event and condi‐
tion. This is called a transition. A FSM contains a list of its states, and the triggering
condition for each transition. It’s a mathematical model can be described as follows. A
deterministic finite state machine is a quintuple (𝛴, S, s0, 𝛿, F), where Σ is the
input alphabet (a finite, non-empty set of symbols); S is a finite, non-empty set of states;
s0 is an initial state; an element of S ⋅ 𝛿 is the state-transition function 𝛿:S × Σ → S ⋅ F

is the set of final states.
Faced with state explosion problems and the lack of ability to describe concurrency,

David Harel proposed Statechart diagram [14]. Statechart puts forward concurrent,
hierarchy, communication concepts base on FSM and has a better description ability.
Later, Object Management Group (OMG) adopted Statechart model to establish UML
state machine specification, and World Wide Web Consortium (W3C) published State
Chart XML (SCXML) base on Statechart [15, 16]. They have some common concepts,
for example State, Composite State, Event, Condition, Action and Transition. The state
refers to a situation of object in its life cycle. That an object stay in some particular state
is bound to meet certain conditions and wait for some events. Transition is a kind of
relationship between two states, when a certain event occurs and satisfies specific guard
condition, source state will transfer to the target state with a certain action. A transition
in diagram often expressed like this: Event [Condition]/Action.

3.2 State Machine and Workflow

The state machine is widely used in many fields. In software design field, UML state
machine diagram are used to model lifecycle and dynamic behaviors of an object or
system. In the course of business process, state diagram as a modeling approach are used
to build workflow model. There are many scholars introduce how to use Statechart
modeling workflow. Yang Dong couples state with activity and expand the types of
events in Statechart [17]. Wai Yin Mok make an analogy between four common work‐
flow patterns and some concepts in Statechart and point out three properties model
should satisfy: Termination, Confluence, Observable Determinism [18]. Kushnareva use
Statechart to model Crisis Management and solve the problem of the process of dynamic
change [19]. Guy Redding adds region and gateway to expand the state machine to
support flexible process model [20]. State machine diagram is also used to model the
lifecycle of business artifact in Artifact-Centric process model [21]. More than others,
wendy dwell on the possibility of Statechart as workflow Specification [22]. Again, in
a engineering application, windows workflow foundation framework and OSWorkflow
engine support using state machine to establish workflow model [23, 24]. Here, using

Crowdsourcing Complex Task Automatically by Workflow Technology 19

state machines diagrams modeling workflow model is called state machine workflow
technology.

4 Modeling

In order to solve complex task automatically on single platform without the support of
other third-party tools, the following modelling method which combines the PDS algo‐
rithm and state machine workflow technology is proposed.

4.1 Conceptual Meta-model of Crowdsourcing

To define and introduce the model, some basic concepts are defined as following:
Task: task is the question posted by requester. It can be classified into simple task

and complex task.
Simple task (STask): These tasks can be solved by worker directly and don’t need

to be divided. It is also equivalent to the micro-task.
Complex task (CTask): Tasks should be decomposed into several parallel subtasks.

These subtasks are CTask or STask.
Figure 1 is conceptual meta-model of crowdsourcing which shows the relationship

between CTask and STask. Round box represents CTask and ellipse represents STask.
A directed edge ea,b implies that task B is one of subtasks of task A. The solution of task
A is composed of B and C’s solution.

Fig. 1. Conceptual meta-model

4.2 Modeling Life Cycle of Crowdsourcing Task Object

According to object-oriented thinking, a task can be regard as an object. The task will
experience a series of steps until it gets solution. Each step can be considered as what
needs to be done in a particular state. These states can be expressed by object lifecycle.
The life cycle of task object can be varied. Figure 2 presents a kind of lifecycle of task
by State Machine Diagram. It contains the following basic state S = {Initial, Judging,
Decomposing, DecomposeVoting, Waiting, Solving, SolveVoting, Merging, Final}.
The Initial and Final state are pseudo-states. Waiting state is a flag state. Each of the
remaining state corresponds to a certain number of work items, which are performed by
workers or service. Relevant states in our model are explained as following.

20 Q. Zheng et al.

Fig. 2. The lifecycle of crowdsourcing task

Judging state: The current task is undergoing artificial judge phase. It requires a
certain number of people to judge whether current task is complex. The definition of
complex task should be determined by crowd experts.

Decomposing state: The current task is complex and it requires some workers to
decompose it into smaller tasks.

DecomposeVoting state: The current task already has several decomposition schemas.
It needs some workers to vote on which is the most reasonable and reliable one.

Solving state: The current task is simple and it requires a certain number of workers
to solve it.

SolveVoting state: The current task has been solved by several workers. It is time to
vote for the best solution.

Waiting state: It is a flag state and the only function is to wait on those events that
are delivered when subtasks get their solution.

Merging state: The current task is complex and its all subtasks have gotten their
solution. All the subtasks’ solutions are assembled into solution of the current task by
crowd workers or service task.

4.3 Crowdsourcing Process Modelling

During task execution, crowdsourcing process model is generated automatically
according to meta-model and task’s lifecycle model. In state machine workflow, state
machine diagram is process definition of workflow instance. If a requester issues a task
A, a new workflow instance corresponding to task A will be started. This instance will
go through such a process.

1. Determine whether or not task associated with this instance is complex in Judging
state, if the task is a CTask go to 2, otherwise go to 6.

2. Each of workers in this step gives a decomposition strategy of task associated with
this instance. The decomposition strategy is made up of several small steps. Then
go to 3.

3. Several decomposition solutions were produced. They will be voted by several workers
to obtain the best decomposition solution. Each step in the best decomposition scheme
will be released to the platform as a subtask of current task. Each subtask has its own
workflow instance. For each subtask, go to 1. For current task, go to 4.

4. Wait for each subtask generated in 3 to send an event. The event means current
subtask has been done. Thereafter, go to 5.

Crowdsourcing Complex Task Automatically by Workflow Technology 21

5. Now, each subtask of task has been completed. According to their solution and order,
platform assembles the solution of the current task and send an event signifying the
completion of current task to its parent task. Then go to 8.

6. Current task is regarded as a STask and solved by some workers. Then go to 7.
7. At this point, the task already has several solutions and the best solution will be

selected by several workers. Finally, send an event signifying the completion of
current task to its parent task. Then go to 8.

8. Now, current task is accomplished.

Among these steps, the tasks which experience a step sequence including 1, 2, 3, 4,
5, 8 have a process of decomposing and merging. The Relationships between tasks and
subtasks are recorded during decomposition. Finally, it is used to complete merging
process.

Figure 3 shows the lifecycle of task A. The dotted line connects the task and its
lifecycle. The red state indicates workflow instance have gone through, while green state
means workflow instance stays in it. Task A has gone through Judging, Decomposing,
DecomposeVoting state. The best decomposition strategy has been found in Decomo‐
seVoting state.

Fig. 3. Lifecycle of task A (Color figure online)

When workflow instance exits DecomposeVoting state, the exit action regards each
step of the decomposition strategy as a subtask and launch a corresponding workflow
instance. In this case, if the best decomposition policy of task A are B, C and D, then
task A enters Waiting state to wait task B, C, D to be solved. Figure 4 express the status
after exiting the DecomposeVoting.

Once subtasks B, C, D begin their life cycles, they also need to be judged whether or not
it is a complex task. When C is judged to be a complex task and B, D are judged to be
simple tasks. B and D are solved by workers directly. Then C experiences the same life
cycle as A and generates two subtasks E, F. According to the concept of meta-model and
decomposition process, it gradually forms a tree structure. The left side in Fig. 5 is a tree
generated in decomposition process.

22 Q. Zheng et al.

Fig. 5. A tree generated in decomposition process

As can be seen from the decomposition process, the tree generated by it has the
following characteristics.

1. Leaf nodes correspond to simple tasks and all non-leaf nodes are complex tasks.
2. Node with one degree doesn’t exist.
3. The height and degree of the tree are completely determined by the decomposition

process with artificial participation.

Each state machine instance in tree must hold same reference to this tree. When current
task is divided into a series of subtasks, the state machine instance of each subtask is inserted
into the tree as a child of current node. Each subtask judged to be Complex task repeats the
above process, then decomposition tree is built. This tree records the decomposition rela‐
tionship between tasks. With the tree, the merging process begin to perform.

Once the task is broken down, it will wait for its subtasks to be solved and send event to
it. Finally, STask is solved by workers directly and CTask is solved by merging algorithm

Fig. 4. A recursive process of task A

Crowdsourcing Complex Task Automatically by Workflow Technology 23

or workers depending your definition. As shown in Fig. 6, E and F are STask and have gone
through Solving and SolveVoting state.

Fig. 6. The process of merging

When E and F exit SolveVoting state, their state machines send an event to its parent
node C, which means E and F are solved. Then E and F all arrive at their Final state and C
enters Merging state. In Merging state, C’s state machine gets solutions of E and F to calcu‐
late its own solution using specified algorithm. When C exits the Merging state, C’s state
machine sends an event to its parent node A, which means the solution of C have been
obtained. Other task B and D will experience same procedure of E. Finally, the original
request task A arrives at its own Final state and its solution is merged out.

The key of this process model is effective use of event-driven nature of the state machine
and establishing links between the current task and its subtasks. Any demand to a crowd task
can be regarded as an event that need to be sent to current state machine instance or another
state machine instance in the tree.

5 Model Implementation

This section focuses on how to make crowdsourcing process Model into reality. As
mentioned in the previous section, state change process of object can be described by a state
machine, so a state machine standard and its implementation are needed. SCXML is a W3C
recommendation standard of state machine. Its transition is certain. Apache Commons
SCXML is an implementation of SCXML standard by java language. We develop a tool
called BOWorkflow based on Commons SCXML [25, 26]. It supports crowdsourcing
process model mentioned above.

5.1 Commons SCXML Introduction

Commons SCXML is an implementation aimed at creating and maintaining a Java SCXML
engine capable of executing a state machine defined using a SCXML document, while

24 Q. Zheng et al.

abstracting out the environment interfaces. As shown in Fig. 7, Commons SCXML provides
abilities of the following.

1. SCXML Parser: parse scxml document.
2. SCXML Data Mode: support some script language.
3. Content and Evaluators: provides expression evaluation and application context

environment.
4. SCXML Executor: The switch of state machine.
5. Triggering Event: An abstract about events.
6. Custom Actions: support custom action in program.
7. Custom Semantics: support custom execution semantics of state machine.

Fig. 7. The architecture of Commons SCXML

Obviously, the Commons SCXML only provides the runtime environment and
executive capability of single state machine. It cannot effectively handle communica‐
tions between multiple state machines. To support crowdsourcing process model,
Commons SCXML need to be extended.

5.2 Total Design of BOWorkflow

Here introduce how to integrate these features mentioned above with Commons
SCXML. The Runtime Environment of BOWorkflow as shown in Fig. 8.

Entire runtime environment is composed of workflow engine and all state machine
instances. The workflow engine is made up of SCXML parser, task dispatcher, instance
manager, multi state machine event dispatcher and custom semantic components.
SCXML parser is in charge of parsing state machine definition. Task dispatcher is
responsible for assigning work items which is defined in a state. Instance manager
provides the runtime information of all workflow instances. Multi State Machines Event
Dispatcher delivers events from inside or outside to other state machine instances. A
state machine instance can directly respond to external events through SCXML Exec‐
utor. Sending process for internal events is that current state machine instance call event
dispatcher to deliver event to target. The dispatcher gets the identifier of target state
machines by parsing the tree of source state machine instance, then get the reference of
target state machine instances by Instance Manager. At last, dispatcher forward this

Crowdsourcing Complex Task Automatically by Workflow Technology 25

event to target. A transition of every target state machine is triggered. In this transition,
some action can be executed. These actions can be varied.

6 Case Study

We developed a crowdsourcing platform based on BOWorkflow engine. On this plat‐
form, the crowdsourcing developer only need to focus on developing human-machine
interface, designing good state machine diagram and writing proper merging algorithm.
Some basic state machine diagrams are built-in. Finally, we made a case study based on
this Platform to demonstrate the feasibility of the model. The case study is to write an
article about crowdsourcing.

Firstly, crowdsourcing platform defines a state machine diagram as shown in Fig. 9.
It represents crowdsourcing task object’s lifecycle. The action defined on entry will be
executed when instance entered a state. The “do” is inner transition. A transition in
diagram often expressed as: Event [Condition]/Action. In some states, engine needs to
execute UserTask action to assign a work item to a group of workers. For simplicity,
some strategies and explanations are specified as follows.

1. In Decomposing state, engine will insert a work item into two workers’ work list
for decomposing current task.

2. In DecomposeVoting and SolveVoting state, engine will insert a work item task
into three workers’ work list for voting current task.

3. UserTask: An action to assign work item to workers or an individual one.
4. Count: it is an action to count the number of workers who deem current task as a

simple task.
5. GetBestDec: An action to get best decomposition schema based on the vote.
6. GetBestSol: An action to get best solution based on the vote.
7. Merge: A merging algorithm which is used to merge into the solution of the current

task on the basis of the solutions of subtasks. The algorithms for merging different
types of tasks are different. For example, to write an article, the merging algorithm.

Fig. 8. The runtime of BOWorkflow

26 Q. Zheng et al.

8. NewStateMachine: An action to create a sub-state-machine which corresponding
a step in best decomposition schema and insert its identifier into the decomposition
tree as child node of current state machine.

9. SendToSelf: Send an event to the internal event queue of current state machine.
10. SendToParent: Send an event to the external event queue of parent state machine.

Fig. 9. The lifecycle of crowdsourcing task

In the end, this task was decomposed into a set of subtasks as shown in Fig. 10. All
solutions of simple tasks are merged into the solution of original request task as shown
in Fig. 11. In this case, the merging algorithm use a ‘</br>’ which is a line separator in
webpage to splice subtasks’ solutions.

Fig. 10. Decomposition result of this case study

As shown in Fig. 12. Requester posts a task, then engine create a new crowdsourcing
task workflow instance. After initialization, this instance enters a state. In this state,
engine dispatches a work item to worker. When worker complete it, worker send an
event to tell engine work item has been finished. After received this event, engine

Crowdsourcing Complex Task Automatically by Workflow Technology 27

forward it to the corresponding workflow instance. Then workflow instance executes a
transition as response. In this transition, some predefined actions are executed, such as
SendToParent, NewStateMachine and so on. It is with these actions; the task can
communicate with other tasks in its process of completing. So workers can work together
to complete a certain goal.

Fig. 12. Interaction diagram of user and the platform

Fig. 11. The result of the original request task

28 Q. Zheng et al.

7 Conclusion and Future

This article discusses how to build a general-purpose crowdsourcing platform which
support complex tasks based on state machine workflow technology. This platform
makes the process of decomposition, resolving, and merging of complex task more
automated. It mainly links task object and state machine together. At the same time, give
more responsibility to Action, enable it not only record the relationships between tasks
and subtasks in the process of decomposition, but also send events to any state machine
based on previous records. Based on crowdsourcing platform that implements this
model, crowdsourcing application can be built quickly. Crowdsourcing application
developers only need to focus on developing human-machine interface, designing good
state machine diagram and writing proper merging algorithm. In future work, we plan
to concentrate on improving workflow engine and developing visual modeling tools
which support this model, and integrate scientific workflow in the process of merging.

Acknowledgements. This work is Supported by the National Natural Science Foundation of
China under Grant No. 61572539; the Research Foundation of Science and Technology Major
Project in Guangdong Province under Grant Nos. 2015B010106007, 2016B010110003; the
Cooperation Project in Industry, Education and Research of Guangdong Province & Ministry of
Education of China under Grant No. 2013B090500103; the Research Foundation of Science and
Technology Plan Project in Guangdong Province under Grant No. 2016B050502006; the Research
Foundation of Science and Technology Plan Project in Guangzhou City under Grant No.
2016201604030001.

References

1. Yuen, M.C., King, I., Leung, K.S.: A survey of crowdsourcing systems. In: Privacy, Security,
Risk and Trust (PASSAT) and 3rd IEEE International Conference on Social Computing
(SocialCom), pp. 766–773. IEEE Press, Boston (2011). doi:10.1109/PASSAT/SocialCom.
2011.203

2. Kittur, A.: Crowdsourcing, collaboration and creativity. J. ACM Crossroads 17, 22–26 (2010).
doi:10.1145/1869086.1869096

3. Brabham, D.C.: Moving the crowd at threadless: motivations for participation in a crowdsourcing
application. J. Inform. Commun. Soc. 13, 1122–1145 (2010). doi:10.1080/13691181003624090

4. Vukovic, M.: Crowdsourcing for enterprises. In: Congress on Services-I, Los Angeles, pp.
686–692 (2009). doi:10.1109/SERVICES-I.2009.56

5. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web.
J. Commun. ACM 54, 86–96 (2011). doi:10.1145/1924421.1924442

6. Bernstein, M.S., Little, G., Miller, R.C., et al.: Soylent: a word processor with a crowd inside.
J. Commun. ACM 58, 85–94 (2015). doi:10.1145/2791285

7. Bigham, J.P., Jayant, C., Ji, H., et al.: VizWiz: nearly real-time answers to visual questions.
In: Proceeding of the 23rd Annual ACM Symposium on User Interface Software and
Technology, pp. 333–342. ACM Press, New York (2010). doi:10.1145/1866029.1866080

8. Lasecki, W.S., Murray, K.I., White, S., et al.: Real-time crowd control of existing interfaces.
In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology, pp. 23–32. ACM Press, Santa Barbara (2011). doi:10.1145/2047196.2047200

Crowdsourcing Complex Task Automatically by Workflow Technology 29

http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.203
http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.203
http://dx.doi.org/10.1145/1869086.1869096
http://dx.doi.org/10.1080/13691181003624090
http://dx.doi.org/10.1109/SERVICES-I.2009.56
http://dx.doi.org/10.1145/1924421.1924442
http://dx.doi.org/10.1145/2791285
http://dx.doi.org/10.1145/1866029.1866080
http://dx.doi.org/10.1145/2047196.2047200

9. Little, G., Chilton, L.B., Goldman, M., et al.: Turkit: tools for iterative tasks on mechanical
turk. In: Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 29–30.
ACM Press, Washington (2010). doi:10.1145/1600150.1600159

10. Little, G., Chilton, L.B., Goldman, M., et al.: Turkit: human computation algorithms on
mechanical turk. In: Proceeding of the 23rd Annual ACM Symposium on User Interface Software
and Technology, pp. 57–66. ACM Press, New York (2010). doi:10.1145/1866029.1866040

11. Kittur, A., Smus, B., Khamkar, S., et al.: Crowdforge: crowdsourcing complex work. In:
Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology, pp. 43–52. ACM Press, Santa Barbara (2011). doi:10.1145/2047196.2047202

12. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows with turkomatic.
In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp.
1003–1012. ACM Press, Seattle (2012). doi:10.1145/2145204.2145354

13. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow
design for mechanical turk. In: CHI 2011 Extended Abstracts on Human Factors in Computing
Systems, pp. 2053–2058. ACM Press, Vancouver (2011). doi:10.1145/1979742.1979865

14. Harel, D.: Statecharts: a visual formalism for complex systems. J. Sci. Comput. Program. 8,
231–274 (1987). doi:10.1016/0167-6423(87)90035-9

15. UML State Machine. http://www.omg.org/spec/UML/2.5/
16. SCXML. https://www.w3.org/TR/scxml/
17. Dong, Y., Shensheng, Z.: Modeling workflow process models with statechart. In: Proceedings

of 10th IEEE International Conference and Workshop on the Engineering of Computer-Based
Systems, pp. 55–61. IEEE Press, Huntsville (2003). doi:10.1109/ECBS.2003.1194783

18. Mok, W.Y.: Revisiting Workflow modeling with statecharts. J. Adv. Top. Database Res. 3,
237–256 (2003). doi:10.4018/978-1-59140-255-8.ch012

19. Kushnareva, E., Rychkova, I., Grand, B.: Modeling and animation of crisis management
process with statecharts. In: Matulevičius, R., Dumas, M. (eds.) BIR 2015. LNBIP, vol. 229,
pp. 145–160. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21915-8_10

20. Redding, G., Dumas, M., Hofstede, A.H.M., et al.: Generating business process models from
object behavior models. J. Inform. Syst. Manage. 25, 319–331 (2008). doi:
10.1080/10580530802384324

21. Gerede, C.E., Bhattacharya, K., Su, J.: Static analysis of business artifact-centric operational
models. In: IEEE International Conference on Service-Oriented Computing and Applications
(SOCA 2007), pp. 133–140. IEEE Press. Newport Beach (2007). doi:10.1109/SOCA.2007.42

22. Zhang, W.W., Beaubouef, T., Ye, H.: Statechart: a visual language for workflow specification.
Int. J. Comput. Theor. Eng. 4, 921 (2012). doi:10.7763/IJCTE.2012.V4.607

23. State Machine Workflow in Windows Workflow Foundation. https://msdn.microsoft.com/
enus/library/ee264171(v=vs.110).aspx

24. OSworkflow. https://java.net/projects/osworkflow
25. BOWorkflow. https://github.com/ThinerZQ/BOWorkflow
26. Apache Commons SCXML. http://commons.apache.org/proper/commons-scxml/

30 Q. Zheng et al.

http://dx.doi.org/10.1145/1600150.1600159
http://dx.doi.org/10.1145/1866029.1866040
http://dx.doi.org/10.1145/2047196.2047202
http://dx.doi.org/10.1145/2145204.2145354
http://dx.doi.org/10.1145/1979742.1979865
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://www.omg.org/spec/UML/2.5/
https://www.w3.org/TR/scxml/
http://dx.doi.org/10.1109/ECBS.2003.1194783
http://dx.doi.org/10.4018/978-1-59140-255-8.ch012
http://dx.doi.org/10.1007/978-3-319-21915-8_10
http://dx.doi.org/10.1080/10580530802384324
http://dx.doi.org/10.1109/SOCA.2007.42
http://dx.doi.org/10.7763/IJCTE.2012.V4.607
https://msdn.microsoft.com/enus/library/ee264171(v%3dvs.110).aspx
https://msdn.microsoft.com/enus/library/ee264171(v%3dvs.110).aspx
https://java.net/projects/osworkflow
https://github.com/ThinerZQ/BOWorkflow
http://commons.apache.org/proper/commons-scxml/

An Adaptive Scheduling Mechanism
for Analytical Workflow Model

Yan Yao and Jian Cao(&)

Shanghai Jiao Tong University, Shanghai, China
{yaoyan,cao-jian}@sjtu.edu.cn

Abstract. With the recent development of big data and cloud computing, more
and more applications of data analytics emerged. Cloud workflow is a good tool
to orchestrate analytical tasks, which is called analytical workflow. In this paper,
we focus on the resource scheduling for analytical workflow. As there exist
multiple instance for each task when executing, the execution time of workflow
is dynamical change with the resource. First of all, we model the performance of
analytical workflows executed in cloud and formulate the scheduling problem
that minimizing the execution time with budget constraint. Then, we propose an
adaptive scheduling algorithm and take machine learning algorithm as case
study to illustrate the performance of our algorithm.

Keywords: Big data analytic � Analytical workflow � Adaptive scheduling �
Cloud computing

1 Introduction

Today, more and more organizations are collecting, storing, and analyzing massive
amounts of data, which is generated from many sources (web sites, social media,
sensors, etc.). This data is commonly referred to as “big data” because of its ‘4 V’
feature, which is volume, velocity, variety and value [1]. People are realizing the
potential value of this data and using it to identify new opportunities. A key to deriving
value from big data is the use of analytics – big data analytic, which will convert data
into information for decision-making by users.

Big data analytic allows users to make better and faster decisions. Typical process
of data analysis can be divided into several phases. Data are assessed and selected,
cleaned and filtered, visualized and analyzed, and the analysis results are finally
interpreted and evaluated [2]. A way to realize the big data analysis is constructing and
orchestrating the analytical tasks using workflow, which can make data analysis agile.
We call the workflow for big data analysis as analytical workflow. Analytical work-
flows composed of atomic analytic components for data selection, feature extraction,
modeling, and scoring.

The cloud is now in the mainstream of computing. With the cloud computing,
resources are virtualized and offered as a service over the Internet. The potential benefits
of the cloud include access to specialized resources, quick deployment, easily expanded
capacity, the ability to discontinue a cloud service when it is no longer needed and
cost savings. These same benefits make the cloud attractive for analytical workflows.

© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 31–45, 2017.
DOI: 10.1007/978-981-10-3996-6_3

The current cloud services are available as Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS) [3]. IaaS clouds provide virtualized
hardware and storage for users to deploy their own applications, and therefore are most
suitable for executing analytical workflows.

Real-world IaaS cloud services such as Amazon EC2 [4], provide resources in the
form of virtual machine (VM for short) instances to meet different demands of various
applications. Virtual machines are usually charged by the provisioned time units, such
as minutes or hours. Within the same cloud, VMs work in a structure as a virtual cluster
and data transfers are typically performed through a shared storage system without
financial charge; while across different clouds, users generally need to pay for
inter-cloud data transfers.

Due to the nature of cloud computing that makes computing a utility, one major
objective of resource provisioning in clouds is to allocate thus pay for only those cloud
resources that are truly needed. Because that individual components may have multiple
instances when processed by workflow engine, which will result in the dynamical
execution time. Because that the execution time of the components will depended on
the number of virtual machines. That is, the execution time of each component is
uncertain before executed and thus the resource scheduling for analytical workflows
will be much more complex. In this paper, we construct mathematical models to
quantify the performance of analytical workflows in IaaS cloud, and formulate a task
scheduling problem to minimize the workflow execution time under budget cost
constraint. We then design an adaptive scheduling mechanism to this problem. And we
take KNN (K Nearest Neighborhood algorithm) as a case study to illustrate the per-
formance of our algorithm.

The rest of the paper is organized as follows. Section 2 conducts a survey o related
workflow on workflow optimization especially in cloud environments. Section 3
models the performance of analytical workflows executed in cloud and formulated the
scheduling problem that minimizing the execution time with budget constraint. An
adaptive scheduling algorithm is given in Sect. 4. Section 5 presents simulation result.
Finally, the conclusion is given in Sect. 6.

2 Related Work

We conduct a simple survey of related work on workflow scheduling in cloud envi-
ronments [5–7]. To schedule workflow in cloud computing environment, application
schedulers may have different objectives, including minimizing total execution time,
minimizing total monetary cost, balancing the load among resources, and achieving
stable performance, etc. We classify the workflow scheduling in cloud into two cate-
gories: The best-effort scheduling and QoS-constrained workflow scheduling.

The best-effort scheduling attempts to optimize one objective while ignoring other
factors such as various QoS requirements (e.g., time, cost, and reliability) [7, 10, 11, 14].
In contrast to best-effort scheduling, QoS-constrained workflow scheduling is more close
to real-world applications. A QoS-constrained schedule tries to optimize some objective
with constraints on other objectives. Among all the QoS-constrained workflow

32 Y. Yao and J. Cao

scheduling problems for cloud system, deadline-constrained and budget-constrained
workflow scheduling are two primary categories that are widely studied in the literature.

In this paper, we focus on the budget constrained scheduling for analytical work-
flow. The intuition of this problem is to finish a workflow as fast as possible at given
budget. Existing algorithms on budget-constrained workflow scheduling have two
categories: One-time heuristic algorithm [8–10] and back-tracking-based heuristic
algorithm [12–14]. In general, most of one-time heuristic algorithm are extended from
HEFT [11], which is a typical scheduling algorithm in grid computing. Thus, they have
high time complexity. The basic idea of back-tracking heuristic is to start from an
assignment which has good performance under one of the two optimization criteria
considered (that is, makespan and budget) and swap tasks between resources trying to
optimize as much as possible for the other criterion.

The most distinct feature that makes the scheduling for analytical workflow dif-
ferent from other general workflows in cloud is multiple-instances. For analytical
workflows, some components may generate multiple instances (can be view bag of
tasks) when interpreted by workflow engine. This will result in dynamical execution
time depending on the resources. Hence, new workflow scheduling methods should be
developed for analytical workflow.

3 Mathematical Models and Problem Formulation

As illustrated in Fig. 1, there are three layers in the analytical workflow scheduling
problem in cloud environments: the workflow graph layer comprises of interdependent
workflow tasks, the virtual machine layer representing a network of virtual machines,
and IaaS cloud layer which hosting virtual machines. We consider a one-to-one
mapping scheme such that each task in the workflow is assigned to a different virtual
machine for execution. However, in practice, once the scheduling is obtained, we can
always reuse the virtual machines to reduce the actual number of virtual machines
being created and used.

Fig. 1. Workflow execution in IaaS cloud

An Adaptive Scheduling Mechanism for Analytical Workflow Model 33

3.1 Analytical Workflow Model

Generally, a analytical workflow is modeled as a weighted directed acyclic graph
(DAG) AcðVc;EcÞ; Vc means components and edge eij representing the data dependency
between component ci and cj. The weight on node ti is the execution time of the com-
ponent. More formally, we denote its earliest start time and earliest finish time as EST cið Þ
and EFT cið Þ respectively, and denote its latest start time and latest finish time as LST cið Þ
and LFT cið Þ, respectively, ci 2 Vc. The buffer time of component ci defined as LST cið Þ �
EST cið Þ or LFT cið Þ � EFT cið Þ, is the amount of processing time that component ci can be
delayed without affecting the overall execution time of the entire workflow [12].

EST cið Þ ¼ 0 if ci is entry node
maxcp2Pi EST cp

� �þ ti
� �

otherwise

�
ð1Þ

EFT cið Þ ¼ EST cið Þþ ti ð2Þ

LST cið Þ ¼ LFT cið Þ � ti ð3Þ

LFT cið Þ ¼ EFT cið Þ if ci is exit node
mincp2Pi LST cp

� �� �
otherwise

�
ð4Þ

For some components of an analytical workflow, multiple instances (tasks) may be
generated when the workflow model is executed by workflow engines. We assume the
instance execution time of the components are either known or can be obtained using
profiling and performance estimation techniques.

3.2 Cloud Resource Model

Resources are offered in the form of virtual machines by cloud providers, such as
Amazon EC2 [15], Microsoft Azure [16] and Google Compute Engine [17]. In prac-
tice, a cloud platform may provide various type virtual machines, each with different
capacity and price. For simplicity, we consider only one type of virtual machine, which
means the virtual machines are homogenous.

There exist several different pricing models for virtual machines, consumption-
based pricing model, subscription-based pricing model and market-dependent pricing
model. The most common model employed in cloud environment is the consumption-
based pricing model, which charges users according to their overall resource con-
sumption. The price usually is Qprice per quantum time Qt. The quantum can be one hour
or one minute, for example, Amazon Web Services charge hourly, Google App Engine
and Windows Azure charge every minute.

3.3 Cost Model

In this paper, we consider two type cost: time cost and monetary cost. The time cost
means the time for processing the analytical workflow and monetary cost means the
cost for renting virtual machines in cloud.

34 Y. Yao and J. Cao

We consider a set of m components to be executed and each component with ki
instance ei;j; j 2 ½1; ki�. For a component ci, the execution time of all its instances are
same, denoted as ti. The execution time Ti of component ei on a virtual machine is
calculated as:

Ti ¼ T Ið Þþ T Eið Þþ T Rið Þ ð5Þ

where TðIÞ denotes the star up time of a virtual machine, T Eið Þ ¼ ceil ki=nið Þ � ti
denotes the time for running component ci (ni is the number of allocated virtual
machines, ceil() is a rounded up function), and T Rið Þ denotes the time of downloading
and uploading data from cloud storage system to the virtual machine. The upper bound
of T Eið Þ is ki � ti and lower bound is ti. The time duration Ti spans from the star up of
the virtual machine to the end of output data transfer from ci.

Similarly, the monetary cost Ci of executing a specific component ai; i 2
f1; 2; . . .;mg for a duration of Ti is the sum of three cost parts:

Ci ¼ C computeð ÞþC transferð ÞþC storageð Þ ð6Þ

where C computeð Þ denotes the cost of renting a virtual machine, C transferð Þ denotes
the cost of transferring the data required and produced by the component, and
CðstorageÞ denotes the data storage cost of ai. In most of cloud providers, e.g. Amazon
S3, Google and Azure, the data transfer in the same cloud are free, and storage are
monthly charged. Therefore, we only consider compute cost C computeð Þ.

Ci ¼ ni � T Eið Þ0�Qprice if ui ¼ 0
ðni � T Eið Þ0 þ ðni � uiÞ � t0iÞ � Qprice if ui 6¼ 0

�
ð7Þ

where T Eið Þ0¼ ceil T Eið Þð Þ is the time rounded toward positive infinity of T Eið Þ; t0i ¼
roundðtÞ is the time rounded toward nearest integer, and ui ¼ modðki=niÞ is the
remainder after division.

3.4 Problem Formulation

Based on the mathematical models constructed above, we formally formulate the
analytical workflow scheduling problem for minimum execution time under a
used-specified cost constraint in cloud environments.

Given an analytical workflow graph GcðVc;EcÞ, we first provide the definition of
critical path (CP) of a workflow graph.

Definition. Critical Path (CP): the longest path in the workflow graph weighted with
time cost, which consists of all the components with zero buffer time.

In addition, we consider several constraints on the mapping between workflow and
cloud resource as follows.

(1) Each virtual machine can execute only one component at a time.
(2) An analytical component cannot start execution until all its required data arrived.
(3) A dependency edge cannot start data transfer until its proceedings finished.

An Adaptive Scheduling Mechanism for Analytical Workflow Model 35

Given a fixed financial budget B, we wish to find how many that the virtual
machines need to be rented and the task schedule ‘ : ci ! VM such that the minimum
execution time of the analytical workflow is achieved:

min
all possibe ‘

Ttotalð Þ ¼ min
all possibe ‘

X
all ci2CP

T Eið Þ
 !

subject to the financial constraint:

Ctotal ¼
Xm
i¼1

Ci �B

Ttotal and Ctotal denote the total execution time and the total monetary cost of a
mapped analytical workflow, respectively, and Ci denotes the execution cost of com-
ponent ci. Both T Eið Þ and Ci are the function of ni, see Eqs. (6) and (7) respectively.
Since this work targets a single cloud, we do not consider the data transfer cost, i.e.
Ctr ¼ 0.

4 Adaptive Scheduling Algorithm

As most of tasks in analytical workflows are compute-intensive, of which the time of
data transfer is much less than the execution time of the entire workflow, we assume
that the data transfer time can be negligible.

The adaptive scheduling mechanism we proposed is performed in two stages: initial
schedule for the analytical workflow based on heuristic strategy and VM adjustment
stage.

4.1 Initial Schedule Algorithm

The pseudo code of initial schedule algorithm is provided in Algorithm 1. Starting with
the least-tie schedule, we calculate the current critical path of the mapped workflow and
only consider critical components for rescheduling. Because that each component may
have multiple instances when executing, the execution time of the component is
dynamical. Thus, different virtual machine numbers allocated for a component will
resulted in different critical path for the overall workflow. The critical path calculation
is repeatedly executed during the rescheduling process, and the number of iterations
depends on the number of virtual machines and the budget.

We define the difference DCostðciÞ and DTðciÞ in monetary cost and execution
time, respectively.

DCost cið Þ ¼ Costcur � Costold ð8Þ

DCost cið Þ ¼ Told � Tcur ð9Þ

36 Y. Yao and J. Cao

The reschedule is allocated new number of virtual machine for the component with
largest monetary cost difference DCostðciÞ and minimal execution time difference
DTðciÞ. During the rescheduling process, the critical path may change, and in this case,
we reschedule a new set of critical components and repeat the process until no
rescheduling is feasible with the left budget.

Algorithm 1: InitialSchedule (, K, ,B)

Input:
: A workflow graph with m nodes

K: Instance matrix of components

: execution time matrix

B: Budget

Output:

N: VM numbers

 : the time of optimal schedule

1:

2:

3:

4:

Find the least-cost schedule , which allocate one virtual

machines to each component.

Calculate total cost as , which is the lower bound cost, and

time .

Find the least-time schedule , which allocate virtual

machines to component , and each component with minimal execu-

tion .

Calculate total time as , and total cost .

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

if B <

return error (‘no feasible solution for B’).

else

if
return and .

else
.

 while

 Calculate the critical path under the current schedule.

foreach component in critical path.

Decrease the allocated VMs until .

Calculate the VM number difference .

Calculate the cost difference .

end

 Sort

Reschedule the component with maximal

end

.

return and .
end

An Adaptive Scheduling Mechanism for Analytical Workflow Model 37

4.2 VM Consolidation Algorithm

Provisioning and booting a new server with all required operating system packages and
software applications will take some times. For example, it has been shown that AWS
cloud servers require in average about 5 min to start a cloud server of small size (m1.
small) and about 2 min to start high-CPU medium server (c1.medium) [20]. Thus, if we
consolidate some virtual machines will reduce the star up and data transfer time. In our
VM consolidation algorithm, we consolidate the virtual machines, in which are the
critical components and has parent-child relationship (Algorithm 2). The main idea of
the algorithm is very simple: for the instance task graph, we found out all of the
sub-graphs and merge the virtual machines in the same sub-graph.

5 Case Study

We take KNN machine learning algorithm as example to illustrate the analytical
workflow and evaluate the performance of our algorithm.

5.1 KNN-Based Classifier Workflow

In science, from bioinformatics to astrophysics to chemistry, the workflow for data
mining algorithms are common. For illustration purposes, we use example of classi-
fication tasks, where a model is used to classify a set of test data. There are several
widely-used approaches to building a model from a set of training data, such as

38 Y. Yao and J. Cao

decision trees (DT) and k-nearest neighbor (KNN). Within each approach several
algorithms are possible. For example, decision tree algorithms include a classic divide
and conquer algorithm (ID3) and a logistic model tree builder (LMT).

We will use KNN algorithm in our examples, which is a simple machine learning
algorithm. Whenever we have a new point to classify, we find its K nearest neighbors
from the training data. The choice of K will significantly influence the result of KNN
algorithm. In general, the optimal K is given by scientist based on experience. We
design a workflow model to automatic get the optimal K of KNN algorithm for a given
dataset. Workflow model OA-KNN (Obtaining Accuracy of KNN) in Fig. 2 shows a
dataflow structure where the maximum accuracy of KNN model is obtained for a set of
test data [18]. This workflow model consists of three sequence components, which are
data processing, parameter tuning and KNN classifier. The data processing component
is responsible for loading dataset (read digitals and labels) and formatting the data.
Parameter tuning component is to find the optimal k of the KNN model and the task of
KNN classifier component is classification. When interpreted by workflow engine, the
parameter component will generate multiple instances. The execution time of each
component depends on the dataset, and the analysis task usually is time consuming in
bid data area.

5.2 Simulation Setting

The dataset is MINIST, which was developed by Yann LeCun, Corinna Cortes and
Christopher Burges for evaluating machine learning models on the handwritten digit
classification problem [19]. The dataset was constructed from a number of scanned
document dataset available from the National Institute of Standards and Technology
(NIST). Each image is a 28 by 28 pixel square (784 pixels total). A standard spit of the
dataset is used to evaluate and compare models, where 60,000 images are used to train
a model and a separate set of 10,000 images are used to test it. It is a digit recognition
task. As such there are 10 classes (10 digits) to predict. Results are reported using
prediction error, which is nothing more than the inverted classification accuracy.

By using the KNN-based classifier workflow, the optimal K can be found and
10000 images will be recognized with high prediction accuracy. We statics that the
average execution time of three components, see Table 1. The price of the virtual
machines is set to $3.837 per hour and the average start up and cool down time is set to
5 min and 3 min, respectively.

Fig. 2. KNN-based classifier workflow

An Adaptive Scheduling Mechanism for Analytical Workflow Model 39

5.3 Simulation Results

First of all, for illustration purposes, we consider a number of parameter k = 12 and a
budget equals to 70 dollars (Fig. 3). Then we compute the schedule results with Ini-
tialSchedule (Algorithm 1) and with VM consolidation algorithm, respectively.
Figure 3 shows the schedule time of the virtual machines. The rectangular bars rep-
resent the renting time of the virtual machines and slashes areas of the bars denote the
factorial utilizing time. Clearly, the schedule with virtual machine consolidation can
reduce the number of the rented virtual machines and improve the virtual machine
utilization.

Give the value of the parameter, we can get the valid range of the budget. We list in
Table 2 all schedules found by the algorithm as the budget varies within all real
numbers. We can get that a valid budget should bigger than $57.555. The execution
time of the workflow are further plotted in Fig. 4, which shows that the time decreases
as the budget increase.

In Figs. 5 and 6, we observe the relationship between monetary cost (workflow
execution time) and the number of virtual machines. Obviously, the more virtual
machines the less execution time. However, the monetary cost is not monotonic
increase with the number of virtual machines because of the pricing mechanism partial
instance-hour consumed will be billed as a full hour.

For a more comprehensive analysis of the algorithm, we observe the schedule
results with different budgets and parameter values.

Table 1. Average execution time of digit classification workflow

Component Instance number Average processing time (hour)

Data processing 1 0.113
Parameter tuning k [1.027, k*1.027]
KNN classification 1 0.418

1 2 3 40 hour

vm1

vm2

vm3

vm4

vm5

vm6

vm1

vm2

vm3

vm4

Without VM
consiloadation

With VM
consiloadation

c2 c2 c2

c2 c2 c2

c2 c2 c2

c2 c2 c2

c2 c2 c2

c2 c2 c2

c2 c2 c2

c2 c2 c2

Fig. 3. VM schedule time (k = 12, budget = $70)

40 Y. Yao and J. Cao

Figures 7 and 8 show that the allocated number of virtual machines and the execution
time under different budgets, respectively with parameter value k = 30. Clearly, the
more budget, the more virtual machines can be rented as well as lower execution time.

Table 2. Schedule result with different Budgets

Budget InitalSchedule With VM
consolidation

VMs Time (h) VMs Time (h)

ð1; 57:555Þ null null null null
[57.555, 61.392) 3 12.775 1 12.549
[61.392,65.229) 4 6.613 2 6.387
[65.229,69.066) 5 4.559 3 4.333
½69:066; 76:740Þ 6 3.532 4 3.306
½76:740; 99:762Þ 8 2.505 6 2.279
½99:762;1Þ 14 1.478 12 1.252

58 62 66 70 74 78 82 86 90 94 98 102
Budget Increment ($)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Ex
ec

ut
io

n
Ti

m
e

(h
ou

r)

Fig. 4. Time measurements with different budgets (k = 12)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of VMs

0
40
80

120
160
200
240
280
320
360
400
440
480

M
on

st
ar

y
co

st
 ($

)

Fig. 5. The cost of parameter tuning component under different number of VMs (k = 30)

An Adaptive Scheduling Mechanism for Analytical Workflow Model 41

And the algorithm with virtual machine consolidation has better result than only initial
scheduling.

Next, we change the parameter values. The left plots are the results that changing
budgets according to the lower-bound of the budgets with individual k. And the right

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
N mber of VMs

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

Ex
ec

ut
io

n
tim

e
(h

ou
r)

Fig. 6. The time of parameter tuning component under different number of VMs (k = 30)

127 135 143 151 159 167 175 183 191 199 215 223 231 239 247
Budget Increament ($)

0

2

4

6

8

10

12

14

16

18

20

Al
lo

ca
te

d
nu

m
be

r o
f V

M
s

Initial Schedule
with VM consolidation

Fig. 7. The allocated VM numbers under different budgets (k = 30)

127 137 147 157 167 177 187 197 207 217 227 237 247
Budget Increament ($)

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
Ti

m
e

(h
ou

r)

Inistial Schedule
with VM consolidation

Fig. 8. The execution time under different budgets (k = 30)

42 Y. Yao and J. Cao

plots are the results with budget equals to $226.5. We can see that for all results, the
algorithm with VM consolidation algorithm is better (Figs. 9, 10 and 11).

6 Conclusion

In this paper, we investigated how to allocate virtual machines for analytical work
flows, with the goal of minimizing the execution time as well as meeting budget con-
straints at the same time. We formulated the budget-constrained scheduling problem

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Parameter Increament

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

A
llo

ca
te

d
V

M
 n

um
be

rs

Initial Schedule
with VM Consolidation

32 34 36 38 40 42 44 46 48 50
Parameter Number Increment

0

5

10

15

20

25
V

M
 n

um
be

rs

Initial Schedule
with VM consolidation

Fig. 9. VM numbers with different number of parameters

32 34 36 38 40 42 44 46 48 50
Parameter Number Increament

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

T
im

e
($

)

Inistial Schedule with VM consolidation

32 34 36 38 40 42 44 46 48 50
Parameter Number Increment

2

3

4

5

6

7

8

9

10

11

E
xe

cu
tio

n
 T

im
e

 (
H

o
u

r)

data1
with VM consolidation

Fig. 10. Execution time with different number of parameters

32 34 36 38 40 42 44 46 48 50
Parameter Number Increment

50

80

110

140

170

200

230

260

290
310

M
on

et
ar

y
C

os
t (

$)

Initial Schedule
with VM consolidation
Budget

32 34 36 38 40 42 44 46 48 50
Parameter Number Increment

60

80

100

120

140

160

180

200

220

240

M
on

et
ar

y
C

os
t (

$)

Initial Schedule
with VM consolidation
Budget

Fig. 11. Monetary cost with different number of parameters

An Adaptive Scheduling Mechanism for Analytical Workflow Model 43

for analytical workflow. We proposed a two stages heuristic algorithm and take KNN (K
nearest neighbor algorithm) as a case study to demonstrate the performance of the
algorithm.

Acknowledgement. This work is partially supported by China National Science Foundation
(Granted Number 61272438, 61472253), Research Funds of Science and Technology Com-
mission of Shanghai Municipality (Granted Number 15411952502, 14511107702) and Cross
Research Fund of Biomedical Engineering of Shanghai Jiaotong University (YG2015MS61).

References

1. Watson, H.J.: Tutorial: big data analytics: concepts, technologies, and applications.
Communications of The Ais 34.1 (2014)

2. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel
Distrib. Comput. 74(7), 2561–2573 (2014)

3. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In:
Networked Computing and Advanced Information Management (2009)

4. Amazon EC2. http://aws.amazon.com/ec2/
5. Wu, F., Wu, Q., Tan, Y.: Workflow scheduling in cloud: a survey. J. Supercomputing 71(9),

3373–3418 (2015)
6. Fakhfakh, F., Kacem, H.H., Kacem, A.H.: Workflow scheduling in cloud computing: a

survey. In: Enterprise Distributed Object Computing (2014)
7. Singh, L., Singh, S.: A survey of workflow scheduling algorithms and research issues. Int.

J. Comput. Appl. 74(15), 21–28 (2013)
8. Yu, J., Ramamohanarao, K., Buyya, R.: Deadline/budget-based scheduling of workflows on

utility grids. In: Proceedings of Market-Oriented Grid and Utility Computing, pp. 427–450
9. Zheng, W., Sakellariou, R.: Budget-deadline constrained workflow planning for admission

control in market-oriented environments. In: Vanmechelen, K., Altmann, J., Rana, Omer, F.
(eds.) GECON 2011. LNCS, vol. 7150, pp. 105–119. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28675-9_8

10. Arabnejad, H., Barbosa, J.G.: A budget constrained scheduling algorithm for workflow
applications. J. Grid Comput. 12, 1–15 (2014)

11. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274
(2002)

12. Lin, X., Wu, C.Q.: On scientific workflow scheduling in clouds under budget constraint. In:
Proceedings of 42nd International Conference in Parallel Processing (ICPP), pp. 90–99.
IEEE (2013)

13. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with
budget constraints. Proceedings of Integrated Research in GRID Computing, pp. 189–202.
Springer, New York (2007)

14. Zeng, L., Veeravalli, B., Li, X.: Scalestar: Budget conscious scheduling precedence-
constrained many-task workflow applications in cloud. In: Proceedings of IEEE 26th
International Conference on Advanced Information Networking and Applications (AINA),
pp. 534–541. IEEE (2012)

15. Amazon AWS. http://aws.amazon.com/ec2/instance-types/. Accessed 25 April 2015

44 Y. Yao and J. Cao

http://aws.amazon.com/ec2/
http://dx.doi.org/10.1007/978-3-642-28675-9_8
http://dx.doi.org/10.1007/978-3-642-28675-9_8
http://aws.amazon.com/ec2/instance-types/

16. Microsoft Azure. http://azure.microsoft.com/en-us/services/virtual-machines/. Accessed 25
April 2015

17. Google Compute Engine. https://cloud.google.com/compute/. Accessed 25 April 2015
18. Gil, Y., Groth, P., Ratnakar, V., Fritz, C.: Expressive reusable workflow templates. In:

Proceedings of Fifth IEEE International Conference on e-Science, pp. 344–351 (2009)
19. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

index.html
20. Suleiman, B., Sakr, S., Venugopal, S., Sadiq, W.: Trade-off analysis of elasticity approaches

for cloud-based business applications. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.)
WISE 2012. LNCS, vol. 7651, pp. 468–482. Springer, Heidelberg (2012). doi:10.1007/978-
3-642-35063-4_34

An Adaptive Scheduling Mechanism for Analytical Workflow Model 45

http://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
http://yann.lecun.com/exdb/mnist/index.html
http://yann.lecun.com/exdb/mnist/index.html
http://dx.doi.org/10.1007/978-3-642-35063-4_34
http://dx.doi.org/10.1007/978-3-642-35063-4_34

Data Driven Service Computing

Monitoring as a Service Based on Pub/Sub
System over a Cloud Environment

Dingyu Yang(B) and Chunlei Ji

Shanghai Dian Ji University, Shanghai, China
{yangdy,jicl}@sdju.edu.cn

Abstract. A cloud environment always includes multiple cloud
providers, which have their own resources and can access each other with
specified methods. However, it is challenging to monitor an application
deployed in such a environment due to their heterogeneous metadata
and interfaces. In this paper, we develop a pub/sub monitoring system
over a cloud environment. Several probes are designed to collect data
and we apply complex event processing to reduce network traffic. We
propose an adaptive method to adjust the monitoring frequency, which
can save communication cost and not loss the most feature of monitoring
data. Moreover, we develop a new method NBS to balance the workload
of our cluster and it can improve the performance of our system. We
deploy our system in three clouds and the results show that our methods
can improve the throughput of the monitoring system.

Keywords: Distributed monitoring · Pub/Sub system · Cloud comput-
ing · Adaptive frequency

1 Introduction

The emergence of cloud computing, which offers computing infrastructure, plat-
form, and applications as services [1,5] to one or more tenant organizations.
They provide infrastructure service to tenants by virtualized resource. The design
model eliminates the upfront capital costs and in-house operation costs for the
tenants. In order to abstract more and more tenants, cloud providers buy lots
of infrastructure to ensure the sufficient resources. To manage these resources
effectively, a monitoring system which can collect and report on the behavior of
these resources is needed.

There are several available cloud providers, such as Amazon Elastic Compute
Cloud [5] and Aliyun [1]. However, different cloud solutions are rarely compati-
ble with each other and this creates a kind of vendor lock-in, which is not only
limiting to the customer, but also limits the potential of cloud as a whole. A
federated cloud [6] is one where competing infrastructure providers can reach
cross-site agreements of cooperation regarding the deployment of service com-
ponents in a way similar to how electrical power provides provision capacity
from each other to cope with variations in demand. As [19] says, a federated
c© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 49–64, 2017.
DOI: 10.1007/978-981-10-3996-6 4

50 D. Yang and C. Ji

cloud should be technological capabilities to federate disparate data centers,
including those owned by separate organizations. Only through federation and
interoperability can infrastructure providers take advantage of their aggregated
capabilities to provide a seemingly infinite service computing utility [6].

The federation gives monitoring new challenges for its heterogeneous meta-
data and interfaces. First one is that it is difficult to control and manage the
cloud resource. The design paradigm (Iaas, PaaS, SaaS) [2,9] separates hard-
ware provider and software provider. Software is run by the SaaS provider, and
customers do have less control over the application. Resource management is
also limited by IaaS providers. Secondly, there is no choice to monitor some key
resources or to subscribe a service personally. The given monitoring information
is insufficient and cannot fulfill user’s requirement. Thirdly, the uniform moni-
toring objects and schemas are static and difficult to be extended. For example,
the monitor frequency is an importance parameter and always fixed in current
cloud platforms [1,5].

We adopt a pub/sub monitoring system in a cloud computing environment.
Pub/Sub system is widely used in distributed system and distributed informa-
tion dissemination [3,8]. It has high scalability and elastic to quickly adapt to
workload changes. Pub/sub mechanism makes the monitoring more flexible as
follows:

When an application is deployed in heterogeneous cloud environment, the
monitoring is more critical for the various interfaces. The federation of physical
and virtualized resources is making the monitoring more complex. A pub/sub
middleware can integrate different data sources and interfaces to generate a uni-
form data schema. For example, a service may rely on hardware and software
distributed over many sites, we can aggregate monitoring data from these sites
on demand. The middleware is convenient to adapt the change of certain cloud
and scalable for the new customers or providers. Pub/Sub system can provide
an asynchronous communication pattern. It can be automatically notified when
new data becomes available. It can filter some unnecessary data or transform
the status of the data. Compared to a traditional centralized client/server com-
munication model, pub/sub can reduce the network traffic and computational
overhead. Data events are published and disseminated to interested recipients.
In a cloud data center, the network delay is small and the packet loss rate is
low. When loss of Internet connectivity or data is inaccessible, the middleware
can create a temporal storage of the sub-data.

Therefore, this paper designs a pub/sub system to monitoring cloud environ-
ment. It provides a monitoring service on demand. Pub/sub system is a process-
ing and transmitting layer. Sensors are deployed in cluster or federated clouds,
which are responsible for collecting and publishing data to the network. The
monitoring data are wrapped into events with some attributes. Complex event
processing (CEP) engine are also designed to filter or aggregate data events.
Users submit their requirements as subscriptions to pub/sub system. The sys-
tem partitions the subscriptions in multiple segments and deploys them in a
cluster. When data events are delivered in the network, pub/sub system firstly

Monitoring as a Service Based on Pub/Sub System 51

Fig. 1. The structure of Pub/Sub network

matches the subscriptions and then diverts the events to interested subscribers.
The following Fig. 1 is a simple structure of Pub/Sub network.

In summary, the contributions of this paper are as follows:

1. We develop a pub/sub monitoring system to monitor the status of cloud envi-
ronment. It provides an asynchronous mechanism to transfer events. Com-
plex event processing is adopted to filters and aggregates atom events, which
reduces network events and improves the performance of our system.

2. We propose an adaptive method to adjust the monitoring frequency. The
adjustment is based on data-driven model and decided by the data distribu-
tion. The frequency is auto-changed if current configure is not suitable. The
adaptive frequency can eliminate the network traffic and not loss the most
feature of monitoring data.

3. We design a neighbor-balance strategy to adjust the deployment of subscrip-
tion. The strategy modifies the subscriptions based on the statistic of through-
put and runtime. It is handled automatically without manual configuration.
The loads of overloaded nodes are alleviated and less-loaded ones are given
more tasks. It can balance the load of processing nodes and improve the
throughput of our system.

4. We develop the monitoring system, and deploy it in three clouds. Extensive
experiments have been conducted to show the efficiency of the system. Our
results show that Balance method NBS performs better than existing method
Random method.

This paper is organized as follows. Existing related work is reviewed in Sect. 2.
In Sect. 3, we design the pub/sub monitoring system. The system improvement
is presented in details in Sect. 4. Extensive experiment results are reported in
Sect. 5. Finally, in Sect. 6, we conclude the whole paper.

2 Related Work

Ganglia [14] uses a hierarchical system where the attributes are replicated within
clusters using multicast and then cluster aggregates are further aggregated along
a single tree. It is based on a design targeted at federations of clusters. The
system has widely technologies and algorithms to achieve low overhead. There
are some aspects needed to be regarded, such as load balance.

52 D. Yang and C. Ji

Nagios [15] is a system that focuses in the collection of information regarding
the status of resources. It is designed to run checks on hosts and services using
several external plugins and return status information to administrative contacts.
While it includes valuable features and capabilities, it is destined for Local Area
Networks (LAN), and it does not provide a generic API and is not designed to
operate under very small time interval. It only provides basic information but
cannot support users exact requirements.

Clayman et al. [4] create a monitoring framework Lattice for service clouds
which succeeds in the scalability of the monitoring. The framework is spread in
different layers (service, virtual environment, physical resources, etc.). It offers
probes to collect data on physical infrastructures, virtual resources and service
applications. The federation of VEEs (virtual execution environments) for mul-
tiple services is also presented. However, the probe is not considered the rate
of collection. And they do not provide the details in processing the data and
network transfer.

Monalytics [10] is an online monitoring system integrated monitoring and
analytics to effectively manage large scale data centers. The system has multi-
ple levels to monitoring target systems. Data Capture Agents collect data and
Brokers aggregate and analysis outputs from multiple agents. Zone level is a col-
lection of nodes associated with the brokers on each physical node. It proposes
an interesting architecture and many novel ideas. Nevertheless, the system does
not take the users demand into account because different people need different
data.

Chukwa [18] was built on top of Hadoop and proposed log collection frame-
work and network management system. It stored the log data using HDFS. The
collection tasks are executed from a larger number of agents. A MapReduce job
periodically compacts and merges the files. On the other hand, the system is
based on collecting the log generated by Hadoop system. The federated cluster
is unconsidered and there not exist a global cloud log system.

Amazon Simple Notification Service (SNS [5]) is a web service that offers
a pub/sub model to meet the customers needs. It only provides an API based
on Amazon cloud and is hard to spread to other data centers. Facebook Scribe
[20] is a server for aggregating streaming log data. It is designed to scale to a
very large number of nodes and be robust to network and node failures. There
is a scribe server running on every node in the system, configured to aggregate
messages and send them to a central scribe server (or servers) in larger groups.
However, the system is based on a central server to send messages. If the server
is not available, the message would be lost. And the central server has high
throughput and busy traffic.

Previous efforts focus on data collection and aggregation. The probes are
predefined and deployed as a rigid schema. The data is transferred to users in
a uniform template. The current system is difficult to extend when users want
different data or some other interesting data. Moreover, collecting data frequency
is often solid or periodical. This is not proper if the data sequence is stable and
some data is repeatedly collected. The dispatch task is always executed in a

Monitoring as a Service Based on Pub/Sub System 53

centralize server. It leads to high network traffic and overhead. If the server is
broken down, the monitoring messages would be lost.

3 System Design

In order to provide a scalable, elastic, autonomic and federate system, we design
the monitoring system with multiple components: Probe and Event, Pub/Sub
System, Subscriptions Storage, Monitoring Service and Application. The pub-
lish/subscribe framework shown in Fig. 2 is motivated by BlueDove [11], which
is a scalable and elastic publish/subscribe service.

Fig. 2. The framework of Pub/Sub monitoring system

3.1 Probe and Event

Probes are designed and deployed in the cloud and data center. The probes
capture the states of the target system (e.g., OS, virtual machine, cloud plat-
form and application) and collect required data. Some probes also collect data
information from log files in hadoop cluster. The data includes the executing
behaviors of hadoop (e.g., task execution time, job waiting time and available
disk space). The event is very simple and is the atom element of our system.
It is wrapped in desired format, which is convenient to filter some unnecessary
data and aggregate data. For example, if we are interested in the CPU load data
with more than 80, some data such as CPU < 80 would be discarded and not
stored in our system.

An event consists of header, attributes and open contents. As we see in
Fig. 3, each element has specific definition and information. The header con-
sists of meta-information about the event, such as the occurrence time. The
attribute part contains specific information about the occurrence itself (e.g. CPU
load/float/common attribute). An event can also contain free-format open con-
tent information. An event definition may contain references to other events
when there is semantic relationship between them. There are four types of rela-
tionships: membership, generalization, specialization and retraction [7].

54 D. Yang and C. Ji

Fig. 3. The format of event element

3.2 Pub/Sub Monitoring System

Our system monitors the resource from public cloud and private cloud. We have
written probes for these monitoring objects. There are physical resources, virtual
resources, applications and log files.

The physical information in a host includes basic information and dynam-
ical resources. Basic information has fixed value and generally do not changes
frequently, such as host name, IP, operation system, CPU type and capacity,
memory type and capacity, disk type and capacity, network bandwidth, and so
on. The probes monitoring basic information collect data periodically. Dynamical
resources are always changing and hard to be forecasted. The probes regarding
dynamical resources needs to collect data frequently or in real time. Dynamical
resources includes CPU usage, memory usage, free memory, disk usage, network
usage.

Virtual resources are similar to physical monitoring. The probes get the data
not from interior virtual system, but interact with VM hypervisor. The probes
collect data (e.g., CPU usage, memory usage, free memory, disk usage, network
usage) via the interface of VM hypervisor.

Since all services or applications are executed in virtual machines, we deploy
our probes running in virtual machines. We publish some probes to collect data
from log files. Logs provide a glimpse into the states of a running system. For
example, the runtime of tasks and jobs in hadoop can be extracted from the
logs. Our probes can monitor the logs in federated clouds and get the interested
data.

Customers always deploy their application on federated clouds. For example,
in order to get some stock data in other countries in real-time, financial devel-
opers create a Amazon EC2 instance and publish their program to crawler data.
Meanwhile, they use a domestic cloud service for their analysis application. At
this time, if customers want to know the status of all instances in the federated
clouds. Our probes can be deployed crossing cloud to monitor the resources and
send data events to pub/sub system. The communication mechanism provides
an asynchronous paradigm to improve the efficiency.

Monitoring as a Service Based on Pub/Sub System 55

Fig. 4. An example of monitoring federated cloud

Figure 4 describes an example of monitoring federated cloud. There are two
cloud providers (Cloud 1 and Cloud 2). Every host has multiple virtual machines,
which are established according to customers requirements. Federated clouds can
efficiently meet load peaks for limited resources. Pub/Sub monitoring system
can provide an interested point of view of detecting the changes or anomaly.
Customers deploy services to another collaborator cloud when the resources are
insufficient. The managers of a cloud provider subscribe their interested data to
estimate the resource utilization.

3.3 Subscriptions Storage

In order to provide high output, the system uses a multi-dimensional subscrip-
tion space partitioning approach to organize subscriptions. Each dimension is
divided into many continuous subset spaces. Each subset space is assigned to
one matcher, which is responsible for searching in this space. For example, CPU
load is between 0 and 100 and there are five matchers in the network. Then in
the initial process program, CPU subscription is divided into five ranges (e.g.,
[0, 20), [20, 40), [40, 60), [60, 80), [80, 100)). The detail of initialing subscriptions
is shown in Algorithm 1.

Given a subscription S = S1 × · · ·Sk, a dispatcher assigns S to matchers k
times, each time along a different dimension. When the matcher is suitable for
the subscription, the copy of the subscription S would be sent to the matcher.
Each subscription has at least copies stored on different matchers, which provides
a natural means of fault-tolerance.

56 D. Yang and C. Ji

Each matcher receives a subscription along all dimensions. Each matcher
is responsible for a predicate range of one dimension in this subscription. The
matcher has a subscription queue for each dimension (e.g., CPU, memory, Task
Runtime). Each queue builds an index for searching related subscriptions.

Algorithm 1. Initial Subscription Algorithm
1: M= MatcherNumber;
2: D=DimensionNumber;
3: for i ∈ (1, D) do
4: Dimensions[i].Space=Dimensions[i].split(M);
5: for j ∈ (1,M) do
6: Matcher[j].Subscription[i]=Dimensions[i].Space[j];
7: end for
8: end for

3.4 Monitoring Service and Application

Our system provides multiple metrics, such as physical metrics (e.g., CPU, mem-
ory, I/O, and network bandwidth), virtual metrics (e.g., virtual machines, vir-
tual CPU, memory, storage, network utilization), and application metrics (e.g.,
OS, hypervisor, database, workload, service, task runtime, job runtime). The
resources in the cloud environment are diversity. Cloud users subscribe their
interested metrics and submit the subscriptions to the pub/sub system. The
system provides a service to integrate the subscriptions and sends the matching
result to the user automatically.

From the monitoring service, we can provide interested data, such as the
status of hardware and software, to users to estimate their infrastructure. Fur-
thermore, we can give some advice to cloud managers for their serving quality.
For example, some statistic of resource usage can be analyzed to determine the
cloud price. Quality of service is a factor to evaluate a system. The runtime,
buffer size, communication policies and loss rate are related to quality of service
and should be monitored in real-time.

4 System Improvement

4.1 Complex Event Processing

In real environment there are primitive events transferred to the network, espe-
cially in a heterogeneous environment. We use primitive events to integrate var-
ious monitoring data from multiple cloud providers. It is useful for heteroge-
neous data integration. From the history monitoring data, we find that there
exists some events having similar header or metadata. In order to maximize the
network throughput, we introduce complex event processing engine (CEP) to
improve the performance.

Monitoring as a Service Based on Pub/Sub System 57

Complex Event Processing is a defined set of tools and techniques for ana-
lyzing and controlling the complex series of interrelated events [13]. There are
several functions of CEP (e.g., Filtering, Transformation). Filtering is selecting
which of the input events participate in the processing via the logical condition.
Matching is also done to find interested events using some kind of matching cri-
terions. Transformation is taking input events and creating output events that
are function of these input events. Transformation has several different types,
such as Translate, Enrich, Project, Aggregate, Split and Compose.

Figure 5 shows the detail of these operations [13]. Translate takes a single
event as its input, and generates a single derived event which is a function of
the input event. Enrich creates a derived event which includes the attributes
from the original event, possibly with modified values, and can include addi-
tional attributes. Project creates a single derived event containing a subset of
the attributes of the input event. Aggregate takes as input a collection of events
and creates a single derived event by applying an aggregation function over the
input events. Split performs a single event in, multiple events out. Compose takes
groups of events and creates derived events using a criterion.

Fig. 5. Event transformation

In traditional monitoring system, it is difficult to get some high level infor-
mation on demand (e.g., aggregated data). It is always done offline and sent to
interested users. CEP provides a convenient method to online aggregate data.
For example, when a user wants to know the average CPU load or temperature
of a certain computer room, CEP collects data events of each host in this room
and calculates the average value. The result will be sent to the interested user
by pub/sub network.

In federated cloud environment, applications are always deployed in several
providers. Monitoring services have to integrate the heterogeneous data from

58 D. Yang and C. Ji

Fig. 6. An example of event compose service

other cloud platforms. There are thousands of atom events collected and some
events have similar header contents and structures. We can compose these events
using mutual header and adding extra attributes. If a subscriber needs the mon-
itoring data (runtime, CPU load, memory usage, network usage) of a service,
we can compose all related events into a global event containing these contents.
Figure 6 shows an example of event transformation: Monitoring metrics of a
service contain runtime, memory usage, CPU load and network usage. These
events need four event collecting data in general. In each event, it has several
similar attributes and values (e.g., EventID, ServiceID, EventType and Occur-
rence Time). Our operation composes these four event entity into a service event
which contains the mutual attributes and additional attributes (Runtime, CPU,
Memory and Network). The wrapped event is smaller than four events but con-
tains all needed information. Therefore, the composition of events can reduce
some network communication cost.

4.2 Adaptive Monitoring Frequency

A monitoring system has its own cost, such as data generation, collection, store
or processing cost. It should be low overhead, and not affect the performance of
other applications. Otherwise, it will lose its monitoring value. Monitoring fre-
quency is an important aspect that impact the tracing overhead. The monitoring
with high frequency can provide an efficient schema to capture the interested
data, but it has the potential to greatly reduce the workload on the servers [20].
However, lower traffic workloads may miss important events and cannot trace
the status of cloud environment. How to determine the monitoring frequency is
challenging.

Monitoring as a Service Based on Pub/Sub System 59

We propose an adaptive solution to adjust the frequency. It modifies the fre-
quency according the distribution of the data. That means the model is dynam-
ically adjusted by identifying whether the collection rate is proper. When the
rate is lower than expectation, the frequency would be increased. Otherwise, the
rate would be cut down.

We provide an error range [Min Error,Max Error] to estimate the collec-
tion rate in a time window. We calculate the error by mean relative error (MRE).
If the average error is more than Max Error, the frequency is auto-adjusted to
increase the value. Otherwise, if the average error is less than Min Error, the
frequency will be reduced. Support n is the data number in a time windows and
we can estimate the MRE by Formula 1. The details of our method is described
in Algorithm 2.

MRE =
1
n

n∑

i=1

|x̂i − xi|
xi

(1)

Algorithm 2. Adaptive Frequency Algorithm
1: Rate= OriginalValue;
2: D=IncrementValue;
3: Max Error=max;
4: Min Error=min;
5: while waitinganinterval do
6: OriginalValues=CollectSequence();
7: EstimationValues=EstimatedSequence();
8: n=OriginalValues.length

9: mre = 1
n

∑n
i=1

| ˆEstimationV aluesi−OriginalV aluesi|
OriginalV aluesi

10: if mre > Max Error then
11: Rate=Rate+D;
12: else if mre < Min Error then
13: Rate=Rate-D;
14: end if
15: end while

4.3 Subscription Load Balance

The data distribution in real world is often skewed. The Pareto principle states
that, for many events, roughly 80% of the effects come from 20% of the causes
[17]. CPU load also follows this rule. It always centralizes a certain range. For
example, we analyze the data from CMUs clusters collected by Dinda [12]. More
than 80% CPU loads in host apx0 and apx7 are between 0 and 4%. Since our
subscriptions are deployed by the range of dimensions, it makes the nodes con-
taining the subscriptions between 0 and 4% very busy and other nodes are idle.

60 D. Yang and C. Ji

It also leads to the matching tasks very slow in busy nodes and degrades the
performance of the whole system.

We present a neighbor-balance strategy (NBS) to adaptively adjust the seg-
ments of dimensions. The idea of this approach is that two adjacent hosts
exchange the subscriptions if they have greater load differences. For example,
host As load is 20% more or less than its neighbor Bs load, then we can balance
them using exchanging their subscriptions. The target is to move some subscrip-
tions from overloaded nodes to less-loaded ones and balance the overload of all
the matching servers. The dispatchers record the numbers of dispatching mes-
sages in every matching server. NBS is adaptive adjusting the distribution of
subscriptions. When detecting the great difference between a host and its neigh-
bor, it would reassign the segments by analyzing the distribution of dimensions.
The segments are calculated by averaging the overload of both hosts.

The adjacent-segment hosts exchanging information have some advantages.
The neighbor segments can be split or merged facilely. The continuous sub-
scriptions can be merged into an entire subscription. For example, an original
CPU subscription (15 < CPU < 25) has been divided into two subscriptions
(15 < CPU < 20, 20 < CPU < 25) because the CPU subscription is divided
into five equal segments: [0, 20), [20, 40), [40, 60), [60, 80), [80, 100). After the load
of host ([0, 20)) is much more than that of host [20, 40), NBS will be triggered
to split or combine subscriptions. After combining the segments: [0, 10),[10, 40),
[30, 60),[60, 80),[80, 100), the subscription can be merged as its original form
(15 < CPU < 25). Split and merge subscriptions between neighbor segments
makes relative segments join together. It reduces transferring subscriptions and
makes the operation effectively. The detail of the method is shown in Algorithm3.

5 Experiment Evaluation

We have implemented the monitoring system and deployed our probes in mul-
tiple cloud providers, such as Aliyun [1], NewTouch Cloud [16] and our private
cluster. Our private cluster is applied for our private files and data. Our web
client is deployed in Aliyun, which has enough network bandwidth to support
the workload. Hadoop system is deployed in NewTouch Cloud and our analysis
system is also in this cloud.

We developed some probes, such as CPU Load, Memory Usage, Disk Usage,
operation system, database and logs of Hadoop. The probes can be remotely
configured in back-end machines. We can dynamically modify the configuration
and control the probes on demand.

5.1 Adaptive Monitoring Frequency

Since the monitoring task has its own overhead, how to reduce the overhead is
an issue of current monitoring system. As we know, the frequency is the rate of
collecting and transmitting monitoring data. It affects the number of network
messages and performance of our system. If the frequency is controlled in a

Monitoring as a Service Based on Pub/Sub System 61

Algorithm 3. NBS Algorithm
1: Input:Host A, Host B

2: HighLoad=A.load;
3: LowLoad=B.load;

4: HighStartIndex=A.StartIndex;
5: HighEndIndex=A.EndIndex;

6: LowStartIndex=B.StartIndex;

7: LowEndIndex=B.EndIndex;
8: if HighStartIndex = LowEndIndex then

9: HighLength=(HighEndIndex-HighStartIndex)*(HighLoad+LowLoad)/(2* HighLoad);

10: HighStartIndex= HighEndIndex- HighLength;
11: LowEndIndex= HighStartIndex;

12: else if HighEndIndex = LowStartIndex then
13: HighLength=(HighEndIndex- HighStartIndex)* (HighLoad+LowLoad)/(2* HighLoad);

14: HighEndIndex= HighStartIndex+ HighLength;

15: LowStartIndex= HighEndIndex;
16: end if
17: A.StartIndex=HighStartIndex;

18: A.EndIndex=HighEndIndex;
19: B.StartIndex=LowStartIndex;

20: B.EndIndex=LowEndIndex;

reasonable rate, then we can fulfill our requirement of subscriptions and reduce
the overhead as possible.

Every probe has a frequency attribute and it has a default value (e.g., 1 s).
It means every second, the probe collects the data and wraps the data into an
event with some information. In order to dynamic adjust the frequency, we set an
estimated range [Min Error,Max Error], which denotes that if the estimated
error is less than Min Error, or more that Max Error, the frequency will be
readjusted. In our experiment, we set the range as [0.5%, 5%]. We monitor the
two metrics: CpuLoad and DiskUsage. We can find that in Fig. 7, from the
original data of one node, cpu load is more fluctuant than disk usage.

After we adopt the adaptive monitoring frequency mechanism, the probe can
self-adjust the frequency based on the distribution. We calculate the message
number and compare with the original data sequence. We find that our method
can reduce the message number in a reasonable error range. The result in Fig. 8
shows that CpuLoad can save 26% communication cost and DiskUsage is more
efficient and can save 53% cost. That is because DiskUsage is more stable that
CpuLoad and the frequency is smaller.

5.2 Subscription Load Balance

The matching task in pub/sub monitoring system is based on the subscriptions.
That means when one node receive a event, it iterates the subscription list to
find the subscribers. The overhead of this node is also sensitive with the number
of the subscriptions. If the number is very large, the task matches very slowly.

62 D. Yang and C. Ji

Fig. 7. Cpu load and disk usage of one node

Fig. 8. Improvement of adaptive monitoring frequency

In our experiment, we randomly generate 10000 subscriptions and deploy
them in five nodes. Each of them are initially located based on the default
dimension range. For example, for Cpu Load, the range is splinted into five equal
ranges. After a while, we find that the cpu load in five nodes are different, and
node 2 is overloaded, and node 3 is relative idle. Our method will be triggered
to balance the range based on the data and the result shows that the load of five
nodes are more uniform in Fig. 9.

Monitoring as a Service Based on Pub/Sub System 63

Fig. 9. The result of NBS

6 Conclusion

In this paper, we studied the problem of monitoring a cloud environment and
implemented the system based on pub/sub mechanism. We designed multiple
probes and deployed them in three clouds. Two mechanisms are proposed to
improve the performance of our system. Extensive results show the efficiency of
the system. Specifically, our methods can reduce 20%−50% network traffic and
balance the workload of our processing nodes by dynamically exchanging the
subscriptions.

Acknowledgment. Supported by Academic Discipline Project of Shanghai Dianji
University, Project Number: 16YSXK04.

References

1. Aliyun (2012). https://www.aliyun.com/
2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,

Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

3. Baldoni, R., Virgillito, A.: Distributed event routing in publish/subscribe commu-
nication systems: a survey. DIS, Universita di Roma La Sapienza. Technical report,
5 (2005)

4. Clayman, S., Galis, A., Chapman, C., Toffetti, G., Rodero-Merino, L., Vaquero,
L.M., Nagin, K., Rochwerger, B.: Monitoring service clouds in the future internet.
In: Future Internet Assembly, pp. 115–126 (2010)

5. Amazon EC2 (2010). http://aws.amazon.com/ec2
6. Elmroth, E., Larsson, L.: Interfaces for placement, migration, and monitoring of

virtual machines in federated clouds. In: Eighth International Conference on Grid
and Cooperative Computing, pp. 253–260. IEEE (2009)

7. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.,
Greenwich (2010)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

https://www.aliyun.com/
http://aws.amazon.com/ec2

64 D. Yang and C. Ji

9. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I.: Above the clouds: a berkeley view of cloud computing.
Department Electrical Engineering and Computer Sciences, University of Califor-
nia, Berkeley, Report UCB/EECS, 28(13):2009 (2009)

10. Kutare, M., Eisenhauer, G., Wang, C., Schwan, K., Talwar, V., Wolf, M.: Mona-
lytics: online monitoring and analytics for managing large scale data centers. In:
Proceedings of the 7th International Conference on Autonomic Computing, pp.
141–150. ACM (2010)

11. Li, M., Ye, F., Kim, M., Chen, H., Lei, H.: A scalable and elastic publish/subscribe
service. In: IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 1254–1265. IEEE (2011)

12. C. Load (2003). http://www.cs.northwestern.edu/pdinda/loadtraces/
13. Luckham, D.: The power of events: an introduction to complex event processing

in distributed enterprise systems. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2008. LNCS, vol. 5321, p. 3. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88808-6 2

14. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)

15. Nagios (2010). http://www.nagios.org/
16. Newtouch (2015). http://www.newtouch.com/
17. Pareto (2000). http://en.wikipedia.org/wiki/pareto principle
18. Rabkin, A., Katz, R.H. :Chukwa: a system for reliable large-scale log collection.

In: USENIX Conference on Large Installation System Administration (LISA), vol.
10, pp. 1–15 (2010)

19. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M.,
Montero, R., Wolfsthal, Y., Elmroth, E., Caceres, J., et al.: The reservoir model
and architecture for open federated cloud computing. IBM J. Res. Dev. 53(4),
535–545 (2009)

20. Zhu, Y., Hu, H., Ahn, G.-J., Yau, S.S.: Efficient audit service outsourcing for data
integrity in clouds. J. Syst. Softw. 85(5), 1083–1095 (2012)

http://www.cs.northwestern.edu/pdinda/loadtraces/
http://dx.doi.org/10.1007/978-3-540-88808-6_2
http://dx.doi.org/10.1007/978-3-540-88808-6_2
http://www.nagios.org/
http://www.newtouch.com/
http://en.wikipedia.org/wiki/pareto_principle

The Fault Tolerance of Big Data Systems

Xing Wu1,2(✉), Zhikang Du1, Shuji Dai1, and Yazhou Liu2

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
{xingwu,duzhikang,daishuji}@shu.edu.cn

2 Key Laboratory of Image and Video Understanding for Social Safety,
Nanjing University of Science and Technology, Nanjing, China

yazhouliu@njust.edu.cn

Abstract. When the size of the data itself becomes part of the problem, big data
era is approaching. Big data technologies describe a new generation of technol‐
ogies and architectures, designed to economically extract value from very large
volumes of a wide variety of data, by enabling high-velocity capture, discovery,
and/or analysis. Fault tolerance is of great importance for big data systems, which
have potential software and hardware faults after their development. This paper
introduces some popular applications and case studies of big data mining. The
architecture of big data’s individual components has parallel and distributed
features, including distributed data processing, distributed storage and distributed
memory, this paper briefly introduces Hadoop architecture of big data systems.
Then presents some fault tolerance work recently in the big data systems such as
batch computing, stream computing, Spark and Software defined networks, which
shows great efforts to the capability of massive big data systems, and makes some
comparison with each other.

Keywords: Fault tolerance · Big data · Hadoop · Spark · SDN

1 Introduction

Recently, big data becomes a highlighted buzzword in industry. Moreover, big data
mining has almost immediately followed up as an emerging, interrelated research area.
Databases, data warehouses, data marts and other information management technologies
were about to solve the problem of large scale data.

However, “Big data” has become hot as an exclusive noun due to the rapid devel‐
opment of Internet, cloud computing, mobile and Internet of Things in recent years.
Ubiquitous mobile devices, RFID, wireless sensors generate data all the time; hundreds
of millions of users of Internet services always generate a huge amount of interactive
data. The amount of data to be processed is too large, thus the business needs and
competitive pressures require a real-time and effective data processing.

The traditional techniques cannot deal with such a large scale of data to satisfy the
real business needs. Thus a number of new technologies have been developed and
adopted, which includes distributed cache, distributed database, distributed file system,
distributed storage scheme, no-SQL databases and so on. Among all these new tech‐
nologies, fault tolerance is an inevitable part for big data systems.

© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 65–74, 2017.
DOI: 10.1007/978-981-10-3996-6_5

All big data systems need tolerate software and hardware faults remaining in the
system after its development, which will benefit the systems in different ways including
failure recovery, lower cost, improved performance and etc. A fault tolerance is a setup
or configuration that prevents a computer or network device from failing in the event of
an unexpected problem or error [1], as illustrated in Fig. 1. To make a computer or
network fault tolerant requires users or companies to think how a computer or network
device may fail and take steps that helps prevent that type of failure [2].

Fig. 1. Fault, error and failure

The paper is group by the following sections. Section 2 describes some popular
applications of big data, including the applications in engineering, science, transporta‐
tion and other fields. Section 3 discusses the technical architectures of big data systems,
and uses Hadoop as an intuitive example. Section 4 summarizes the fault tolerant mech‐
anisms and methods of some popular architectures of big data systems. Section 5 draws
the conclusion of this paper.

2 Applications of Big Data

2.1 General Applications

Development of large data industry will promote the development of the world economy
which has far-reaching significance from extensive to intensive changes to enhance the
competitiveness of enterprises and the impact of the government’s management
capacity. Gathering the mass original data together, by the intelligent analysis and data
mining technology, we analysis the potential of the data to forecast the development
trend of the future things, helping people to make correct decisions to improve the oper‐
ation efficiency of various areas and get greater benefits. Usually, the application of big
data is the largest commercial areas, especially in electronic commerce. Its large market
and its huge amount data from the market are particularly applicable to large data anal‐
ysis techniques to predict and analysis to reduce costs, improve efficiency. In addition,
the transportation, energy, electronics and other fields have conducted extensive
research and application.

2.2 Case Studies of Big Data

There are some famous case studies listed in this paper.

Science Research. The data flow of the Large Hadron Collider (LHC) in experiments
consists of 25 petabytes before replication and reaches up to 200 petabytes after replication.

66 X. Wu et al.

Public Administration. The Obama administration project is a big initiative where a
government is trying to find the uses of the big data which eases their tasks somehow
and thus reducing the problems faced. It includes 84 different Big data programs which
are a part of 6 different departments.

Business. Amazon uses data storage and processing 500,000 third-party electricity
supplier sales data, optimizing the sales process and reduces costs.

Energy. With the analysis technology of big data, electrified wire net connects GPS
and GIS and detects the fault of power transmission lines made by lightning and elec‐
trical traveling waves to make sure the reliability of electrical energy supply.

Traffic. Using of large data storage and analysis of the state of technology in aviation
engine sensor data acquired thousands, such as Oil temperature, vibration frequency
data, monitoring and forecasting the engine health condition, to ensure its reliable oper‐
ation of the route running. Similar technology is also used in the automotive and motor‐
cycle.

Health. The use of technology to monitor CT scanners and other large medical equip‐
ment status data, data processing a large number of sensors to ensure that services are
available [2].

3 The Architecture of Big Data

Big data systems, have a basic part of the storage, processing, memory, network, etc.
But based on the “4V” features of big Data technology, architecture of big data individual
components has parallel and distributed features, including distributed data processing,
distributed storage and distributed memory.

The big data platform Hadoop [3] utilizes MapReduce architecture to achieve a
distributed data processing, in conjunction with HDFS distributed file system to achieve
efficient, fault-tolerant and stable large data solution, as shown in Fig. 2. HDFS is a fault-
tolerant and self-healing, distributed file system, the purpose of the standard server
clustering into a large-scale expansion of the data pool. HDFS is the working load of
large-scale data processing, engage in scalability, flexibility and throughput and speci‐
alized development. It accepts any data format for high bandwidth flow is optimized,
can be extended to the environment in the 100 PB data over the deployment.

In HDFS, data replication in multi nodes will protect and maintain the computing
performance. MapReduce is a highly scalable, parallel processing architecture, which
is connected with HDFS and works together. The MapReduce and Hadoop, the calcu‐
lation is executed in a data storage place, instead of moving the data to calculate the
execution. The same physical data storage and computing nodes in the cluster on coexist.
MapReduce can handle very large amounts of data, through the advantages of the nearest
data, which is not the bottleneck bandwidth traditional limitation. The MapReduce will
work load, divided into several parts and can be executed in parallel.

The Fault Tolerance of Big Data Systems 67

The traditional big data processing system use the disk to store the data. In recent
years, with a substantial decline in the price of the hardware memory and real-time data
processing based on WEB. In the face of big data processing needs more large-scale
software vendors have introduced the database system based on their memory, such as
HANA from and TimesTen from Oracle.

The same Spark big data platforms based on distributed memory also emerge as the
times require. Big data platform Hadoop Spark and traditional distributed computing
based on MapReduce is realized, but not for Hadoop Spark is to establish a set of
distributed memory system, the task can be intermediate results stored in memory
instead of distributed file system, and the need for iterative operation for distributed
computing can achieve more efficient calculation. The core of Spark is to establish a
flexible distributed data set RDD (Resilient Distributed Dataset). RDD is for distributed
memory abstraction, RDD represents has been partitioned and can be operated in parallel
data collection, RDD can be stored in memory, eliminating the need for large amounts
of disk MapReduce operation. While its level of abstraction to avoid the direct operation
of the memory, which can achieve the underlying hardware failures overshadowed by
automatic reconfiguration for fault tolerance mechanisms.

4 Fault Tolerance in Big Data

The calculating pattern of big data is divided into batch computing and stream computing
[4]. We first calculate the mass data storage, and then the static data of stored centralized
computing. Hadoop is a typical batch of big data computing architecture, static data is

Fig. 2. The architecture of Hadoop

68 X. Wu et al.

responsible for the HDFS distributed file system storage, and is assigned by MapReduce
computational logic to each data node for data calculation and value discovery. In stream
computing, we cannot determine the arrival time and the arrival of the order of the data,
all the data cannot be stored. Therefore, no streaming data storage, but when the flow
of data in real-time arrival data is calculated directly in memory. Therefore, streaming
data is no longer saved, but immediate real-time data is calculated in the memory when
data of the flow arrival directly.

Such as Storm of Twitter [5], S4 of Yahoo, they are typical of the streaming data
computing architecture, the data was calculated in the topology in task, and outputs the
valuable information. Flow calculation and batch calculation are respectively applicable
to different big data application scenarios: For some application scenarios, such as
storage before computation, real-time demand not high, at the same time, the accuracy
and completeness of the data being more important, batch computing mode is more
suitable. For some application scenarios, such as without first storage, directly data
calculation, real time being very strict, but the accuracy of the data requiring a little
loose. Due to the application of the memory database, memory database fault tolerance
has become a hot issue. Spark etc. are based on the calculation of distributed memory,
using abstract RDD technique to realize fault tolerance mechanism to deal with memory
fault of distributed memory in the system. In addition to the above two models of fault
tolerance, a new method of fault tolerance appears recently, namely SDN (Software
Defined Networking) fault-tolerant technology [6]. A level of abstraction will be estab‐
lished in the network hardware, such as routers, switches, gateway and other infrastruc‐
ture, a virtual grid structure given software, namely SDN. All big data platforms run on
SDN, while SDN is to deal with failure on the network. Thus the big data can be free
from network fault tolerance, and we will focus on software failure.

4.1 Fault Tolerance in Batch Computing

In Hadoop batch calculation model, the applications of two main fault tolerant mecha‐
nisms to deal with failure are the data replication and the rollback mechanism [7].

The Data Replication. In data replication mechanism, a copy of the data will be in
several different data nodes. When it needs data replication, any data node, that its
communication is not the busy can copy data. The main advantage of this technology is
that it can instantly recover from failure. But in order to achieve this kind of fault toler‐
ance, storing data in different nodes will consume large amounts of resources, such as
a waste of large amounts of memory and resources. When copying across different
nodes, there is the possibility of data inconsistency. But the technology provides instan‐
taneous fault recovery fast. Compared with the rollback method, this method is used
more frequently.

Rollback Mechanism. The copy report will be saved in a fixed time interval. If failure
occurs, the system is just to back up a save point, then starts the operation again from
that point. The method adopts the rollback concept, that is, the system will return to the
previous work. But this method increased the execution time of the whole system,

The Fault Tolerance of Big Data Systems 69

because the rollback need to back up and to check on a save a consistent state, thus
increasing the time. Compared with the first method, defects of the method is too time
consuming, but needs less resources.

4.2 Fault Tolerance in Stream Computing

In stream computing system, there are four kinds of strategy to realize fault tolerance
mechanism. Those are passive standby, active standby, upstream backup and a recent
study of operator state management [8].

Passive Standby. System will be regular to back up the latest state on the master node
to a copy of the replica node. When fault occurs, the system state will be restored from
the backup data. Passive replication strategy support the case with data load higher,
throughput larger, But the recovery time is longer, backup data can be saved in the
distributed storage to reduce recovery time. This way is more suitable for precise data
recovery, uncertainty computing applications. In the current, it is widely used in the
calculation of streaming data.

Active Standby. When system transmits data for the master node, it also transmits a
copy of the data for a copy of the node at the same time. When the master node failed,
a copy of the node completely takes over the work, and the deputy nodes need to assign
the same system resources. Fault recovery time is shortest in this way, but smaller data
throughput.it also wastes more system resources.

Upstream Backup. Every master node is recording its own state and the output data
to a log file. When a master node failed, the master node of upstream will replay a copy
of the data in a log file to the corresponding node, for recalculating the data. They need
longer time to reconstruct the state of the recovery, so that fault recovery time tends to
be long. As system resources are scarce, upstream backup strategy is a better option in
a state of the circumstances of fewer operators.

Operator State Management. This method will display the state operator to stream
processing system through state management main types, And according to the time
interval, it will back up its state to the upstream nodes. In any malfunction, the system
will spread laterally to replace the fault node, and recover from the upstream node state.
This method does not need longer reconstruction time, but also take up less computing
resource.

4.3 Fault Tolerance in Spark

Compared with the parallel file system, the big data system using memory access speed,
based on distributed memory, has more efficient data processing ability. Its face fault-
tolerant mechanism will be different due to different ideas of this. For example, the RDD
memory abstraction technique was used to realize fault tolerance mechanism for Spark
framework [9].

70 X. Wu et al.

RDD (Resilient Distributed Dataset) stored all calculation data in a Distributed
memory. RDD stored data in the cluster of memory by partition way. There are two
kinds of operation: The Transformation and The Action. Transform is the operation that
a kind of RDD is converted to another RDD, similar to Hadoop Map operation, whose
operator definition is rich, including map, join, filter, groupByKey operations and so on.
Action is similar to Reduce in Hadoop. The output is an aggregation function values
such as the count, or a collection [10].

The Spark uses two methods to realize fault tolerance. One method is traditional
checkpoint, which is to restore the backup RDD data set. This method will store RDD
in file system on a regular basis, similar to Hadoop. Another method is to use lineage to
realize fault tolerance mechanism. This method is used to establish the Transformation
operation of a data set, used for data recovery. It is similar to the upstream backup
strategy in the loss calculation system, its application range depending on the dependent
type. As shown in Fig. 3, the Spark of the two types of dependence, Narrow dependence
and upstream and downstream RDD is saved in the same node. So the node downtime
cannot continue to back up. In wide dependence, upstream and downstream RDD is
saved on different nodes. When the downstream is down, it can be recovery through the
upstream. Different operations (union, map, join, etc.) will produce different depend on
the type. There are two kinds of fault tolerance mechanism in the Spark. It depends on
the case. The both kinds of recovery methods used in distributed memory system need
to consume a lot of time Due to the attention of the computational efficiency, there is
the corresponding loss on the efficiency of the fault recovery.

Fig. 3. Two types of dependencies in Spark

The Fault Tolerance of Big Data Systems 71

4.4 Fault Tolerance in SDN

Software Defined network (Software Defined Networking, SDN) is a revolutionary
change in the field of network architecture in recent years. The core idea of SDN is that
the data layer and the control layer of traditional network equipment should be separated,
and the function of the control layer focuses on controllers. We can manage and
configure a variety of network devices via Standardized interfaces in a centralized
controller. That will provide more possibilities for the design, management and use of
network resources, which are more likely to promote the innovation and development
of the network [11] (Fig. 4).

Fig. 4. The big data applications based on SDN

From a virtual data center level, SDN centralized master data center network
topology information of control surface, and that the virtual machine’s MAC/IP/location
attribution can realize flexible programmable ability, and can keep fault in physical layer
away from the application layer. That will provide a more flexible and more stable and
reliable virtual network for network virtualization, automation, all sorts of network
services and big data.

Big Data applications are no longer connected through the traditional network hard‐
ware and provide services, but by SDN control operation in the virtual network. When
network hardware has the failure, big data applications should keep away from hardware
fault by SDN controller. SDN is responsible to maintain the availability of virtual
network by calling the backup hardware. So that big data applications don’t have to
focus on network level fault, and only focus on the software failure.

72 X. Wu et al.

5 Conclusion

Throughout the past 20 years, development of IT technology and IT industry, based not
only on the progress and development of the technology itself, contains more business
model and application of the success of the marketing mode. Big data has been deeply
rooted in every area of life and technology, and it has made a great contribution for
business, engineering, health care, public administration. With commonly used Hadoop
platform as an example, this paper discussed the basic architecture of big data tech‐
nology, and provides big data applications in various industries. While fault tolerance
is an important issue in big data applications, fault-tolerant mechanism ensures that large
data software and applications can run stably and reliably, and continue to provide
service for various industries. This paper summarizes the technology of data in a variety
of fault tolerant mechanism, and provides the comparison. It also provides reference of
high availability and high reliability for big data applications.

Acknowledgements. This paper is supported by the project 61303094 supported by National
Natural Science Foundation of China, by the Science and Technology Commission of Shanghai
Municipality (16511102400), by Innovation Program of Shanghai Municipal Education
Commission (14YZ024).

References

1. Jhawar, R., Piuri, V., Santambrogio, M.: A comprehensive conceptual system-level approach
to fault tolerance in cloud computing. In: 2012 IEEE International Systems Conference
(SysCon), pp. 1–5. IEEE (2012)

2. Dyavanur, M., Kori, K.: Fault tolerance techniques in big data tools: a survey. Int. J. Innovative
Res. Comput. Commun. Eng. 2(2), 95–101 (2014)

3. Parker, P.A.: Discussion of “reliability meets big data: opportunities and challenges”. Qual.
Eng. 26(1), 117–120 (2014)

4. Shvachko, K., Kuang, H., Radia, S., et al.: The hadoop distributed file system. In: 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE (2010)

5. Neumeyer, L., Robbins, B., Nair, A., et al.: S4: distributed stream computing platform. In:
2010 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 170–177.
IEEE (2010)

6. Jones, M.T.: Process real-time big data with Twitter Storm. IBM Tech. Libr. 14(2), 1–5 (2013)
7. Reitblatt, M., Canini, M., Guha, A., et al.: Fattire: declarative fault tolerance for software-

defined networks. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking, pp. 109–114. ACM (2013)

8. Antoniu, G., Costan, A., Bigot, J., et al.: Scalable data management for map-reduce-based
data-intensive applications: a view for cloud and hybrid infrastructures. Int. J. Cloud Comput.
2(2), 150–170 (2013)

9. Hwang, J.H., Balazinska, M., Rasin, A., et al.: High-availability algorithms for distributed
stream processing. In: Proceedings of 21st International Conference on Data Engineering
2005, ICDE 2005, pp. 779–790. IEEE (2005)

10. Zaharia, M., Chowdhury, M., Das, T., et al.: Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, p. 2. USENIX Association (2012)

The Fault Tolerance of Big Data Systems 73

11. Zaharia, M., Chowdhury, M., Franklin, M.J., et al.: Spark: cluster computing with working sets. In:
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, p. 10 (2010)

12. Kim, H., Santos, J.R., Turner, Y., et al.: Coronet: fault tolerance for software defined networks.
In: 2012 20th IEEE International Conference on Network Protocols (ICNP), pp. 1–2. IEEE (2012)

74 X. Wu et al.

A Market-Based Analysis of Bidding Strategy
Between Web Service Providers and Users

Bing Shi(&), Zhaowei Wang, and Guangyi Hu

School of Computer Science and Technology,
Wuhan University of Technology, Wuhan, China

bingshi@whut.edu.cn

Abstract. In the cloud environment, there exist multiple providers offering the
same or similar web service, and multiple users requiring the same web service.
There exist competition among web service providers and users. In this paper,
we investigate the interacting strategy between web service providers and users
based on the double auction mechanism. In this setting, web service is traded as
commodity between service providers (sellers) and users (buyers). Web service
providers and users interact with each other, and they need to submit effective
offers for the traded web service. We then use game theory to analyze how web
service providers and users bid in different trading environments with different
budget constraints. We find that if one-unit service is allowed in the market-
place, service users shade (i.e. bid less than their types) their bids less and
service providers shade (i.e. ask more than their types) their asks more when the
budget increases. If multi-unit services are allowed in the marketplace, when the
service providers’ budgets increase, service providers shade their asks less and
service users shade more. In addition, more service users are willing choose to
enter the market. When the service users’ budget increases, more and more users
offer two-units services to obtain more profits. Our results will provide guidance
for the efficient design of bidding algorithms between web service providers and
users.

Keywords: Web service providers and users � Double auction mechanism �
Game theory � Bidding strategies

1 Introduction

Now various types of web service exist in the Internet. As the development of web
technology, a number of web service providers provide the same or similar web service
while a number of service users seek the same or similar web service. Therefore an
efficient interaction mechanism is required to deal with the interaction between service
providers and users. The web service providers and users in the Internet usually belong
to different self-interested organization, and they intend to maximize their own profits.
Web service users can use the service only after paying to providers. Furthermore, the
service quantity which the service providers can provide is limited while the budget
that the service users can use to pay is also limited. Web service providers and users
should consider this constraint during the interaction. Therefore, we will analyze how

© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 75–86, 2017.
DOI: 10.1007/978-981-10-3996-6_6

the service providers and users interact with each other to allocate web services
between them under the budget-constraint.

Actually, we can see that the exchange of web service between service providers
and users is similar to the commodity exchange between buyers and sellers in the
market. Therefore, in this paper, we assume that web service users are buyers, web
service providers are sellers, and web services are commodities. The interaction
between web service providers and users can be considered as the matching between
sellers and buyers in the market. Since in this setting, we have multiple service pro-
viders and users for the same web service, the double auction mechanism, which allows
multiple buyers and sellers to trade simultaneously, is a suitable model [1]. In such a
mechanism, the traders can submit offers at any time, and the market matches the
buyers and sellers at a specific time. The market determines the actual transaction price
for the matched buyers and sellers based on the pricing policy. In this situation, traders
need effective bidding strategies to decide how much to offer for the commodity to
maximize their profits.

There exist a lot of works on the interaction about web services. Perry notes the
impact of cognitive level on Web service interaction [2]. Lehman considers web ser-
vices interaction as phenomena and actions, extracts several laws and gives the relevant
model [3]. Simon has put forward a new point of view and believes that the web
services interaction can be seen as a combination point of internal and external envi-
ronment [4]. However, these works have not considered that service providers and
users are selfish and they intend to maximize their profits during the interaction. Since
this paper will analyze how service users and providers interact by bidding effectively,
we also need to discuss the existing trading strategies in the double auction market. In
1994, Rustichini studied the equilibrium quotes of traders in the double auction market
and their deviations from the actual valuation of the goods [5]. They proved that the
largest deviations in a large market were also small. This conclusion fully demonstrates
the validity of this mechanism in the double auction market and the feasibility of using
it as a theoretical model to analyze the problem. The researchers also studied how to
bid in the double auction market and designed various algorithms such as GD [6], ZIP
[7]. However, these works are heuristic-based and there is no theoretical answer how
traders bid in the market. In addition, these algorithms do not take into account the
budget constraints of the traders.

In this paper, we will analyze the bidding strategy of web service providers and users
with budget-constraint based on the double auction mechanism. We regard service
providers as sellers, service users as buyers, web services as commodities. Intuitively,
the bidding strategies of web service providers and users are affected by each other.
Therefore, we will use game theory to analyze their strategies. Specifically, we use
fictitious play algorithm to compute the Nash equilibrium bidding strategy of service
providers and users under different budget constraints. Our results will provide guidance
for the efficient design of bidding algorithms between web service providers and users.

The structure of the rest of the paper is as follows. In Sect. 2, we introduce the
market model which service providers and users interact with each other. In Sect. 3, we
describe the fictitious play algorithm which will be used to compute the Nash equi-
librium. In Sect. 4, we analyze the equilibrium strategy in different trading environ-
ments under different budget constraints. Finally, we conclude in Sect. 5.

76 B. Shi et al.

2 Market Model

In this section, we introduce the market model for the web service providers and users.

2.1 Basic Setting

We assume that there is a set of users B ¼ 1; 2; 3. . .Bf g, and a set of providers
S ¼ 1; 2; 3. . .Sf g. Each web service provider or user has a reserved price which is
defined as a type h; h 2 ½0; 1�. For service users, the type can be considered as the
highest price that a service user is willing to pay for a web service; for service pro-
viders, the type can be regarded as the lowest price that a service provider agrees to
sells a web service [8]. In the Internet environment, the types of web service providers
and users usually are private knowledge, which means others do not know this
information. However, the type probability distribution function is public. We assume
that the distribution functions of the users and the providers are FB and FS respectively,
and the corresponding probability density functions are f b and f s respectively.

In the web service market, a service user’s offer is called a bid, a service provider’s
offer is called an ask. The bidding action is a tuple r ¼ n; dð Þ where n is the quantity of
web services traded and d is the offer that the service providers or users submit. This
tuple action means that the service provider or user is willing to sell or buy n web
service instances at price d. n is drawn from a discrete set N ¼ 1; 2. . .Nf g. d is drawn

from a discrete set D ¼ 0; 1D ;
2
D . . .

D�1
D ,1

n o
[;f g (means not choosing the market-

place). The action space is C ¼ N� D. In addition, the service users have the limi-
tation on the budget, and service providers have the limitation on the number of service
instances. We assumed that service users’ budget is BL and service providers’ budget is
SL, so service users’ action space is Cb ¼ rb ¼ ðn; dÞ 2 C : n� d � BL

� �
and ser-

vice provider’s action space is C s ¼ rs ¼ ðn; dÞ 2 C : n � SLf g. We use Xb ¼

xb
1;x

b
2;x

b
3. . .x

b
C bj j

� �
to denote the probability of each action being chosen by the

service users under the budget BL. xb
i is the probability that service user adopts action.

Similarly, for the service providers, we use probability distribution Xs to represent the
probability of each action selected.

In this paper, we assume that the service market adopts the equilibrium matching
rule and the k pricing-policy. Equilibrium matching rule is to match the highest bid of
the service user with the lowest ask of the service provider [9]. The pricing policy is
that the transaction price of the service user and the service provider is determined by
the pricing parameters k, within the matched bid and ask [10].

2.2 The Expected Utility

In this section, we introduce how to compute a service user’s expected utility when
adopting a specific action. The expected utility of service provider can be calculated

A Market-Based Analysis of Bidding Strategy 77

similarly. We set a service user’s action is r and the type is h, then its expected utility is
denoted by U Xb;Xs; h; r

� �
. Suppose that xi is the number of remaining users using

action rbi and yi is the number of providers using action rsi . We use x ¼

x1; x2; x3. . .xjCbj
D E

;
PjCbj

i¼1
xi ¼ B� 1 and y ¼ y1; y2; y3. . .yjCsj

� 	
;
PjCsj

i¼1
yi ¼ S to represent the

number of each action being chosen by users and providers respectively. Tuples x,
y belongs to sets X, Y respectively. X, Y are the sets of all such possible tuples. The
expected utility function can be expressed as:

U Xb;Xs; h; r
� � ¼ X

x2X;y2Y
p xð Þ � p yð Þ � U h; r; x; yð Þ ð1Þ

where p(x) and p(y) represent the probability of occurrence of tuple x and y respectively
and U h; r; x; yð Þ represents the expected utility of the service user under tuple
x and y. Furthermore, we have:

p xð Þ ¼ B� 1
x1; x2; x3; . . .xjC bj

 �
�
YjCbj

i¼1

xb
i

� �xi ð2Þ

p yð Þ ¼ S
y1; y2; y3. . .yjC sj

 �
�
YjCsj

i¼1

xs
i

� �yi ð3Þ

The expected utility of the service user is also related to the position of the action’s
bid in the service market. Therefore, we also discuss the ranking of the action’s bid in
the service market. For convenience, we first define the following two functions.

h x; d rð Þð Þ ¼
X

rb
i
2Cb:dðrbi Þ[dðrÞ

xi � nðriÞ ð4Þ

where h x; dðrÞð Þ indicates the number of action’s bids that are higher than the bid d of
action s when other users’ actions are satisfied for tuple x.

e x; dðrÞð Þ ¼
X

rb
i
2C b:dðrb

i
Þ¼dðrÞ

xi � nðrbi Þ ð5Þ

where e x; dðrÞð Þ indicates the number of action’s bids that are same as the bid d of
action r when other users’ actions are satisfied for tuple x.

Assuming that x bids are the same as the bid d of action r, and the probability that
each bid appears in the x-th position is equal when the service market matches the
x bids.

78 B. Shi et al.

U h; r; x; yð Þ ¼ nðrÞ
e x; dðrÞð Þþ n(rÞ �

Xh x;dðrÞð Þþ e x;dðrÞð Þþ nðr Þ

v¼h x;dðrÞð Þþ 1

U h; dðrÞ; v; yð Þ ð6Þ

where U h; dðaÞ; v; yð Þ represents the expected utility when the action’ bid of the service
user are ranked v in the service market. Let vth(y,v) be the vth ask when the service
provider’s action is satisfied with tuple y. Eventually, we have:

U h; d rð Þ; v; yð Þ ¼ h� vth y; vð Þ � k � d � 1� kð Þ � k; d rð Þ� vth y; vð Þ
�k no transactionð Þ; d rð Þ\vth y; vð Þ

�
ð7Þ

where k is a small fee to be paid when service users and providers enter the service
marketplace.

3 The Fictitious Play Algorithm

Fictitious Play algorithm is a computational learning algorithm, and can be used to
calculate the Nash equilibrium. In the standard FP algorithm, the participants are
assumed to use a mixed strategy. The participants observe the using frequency of each
strategy in the offer space, and estimate the mixed strategy. In the FP algorithm, the
observed frequency of each strategy is called the FP belief. In each round, each par-
ticipant evaluates the mixed strategy of the remaining participants by observing the
history of the game, and then calculates the best response strategy, and finally updates
the FP beliefs. All participants iterate the process until the algorithm converges.
However the standard FP algorithm is not suitable for our setting where the type of web
services users and providers is private knowledge since we do not know which type
perform which action, and thus cannot estimate the mixed strategy. In [11], a gener-
alized fictitious play algorithm was proposed to analyze the games with continuous
types and incomplete information. Based on this algorithm, if the players’ action space
is finite, the FP beliefs will converge to a e-Bayes−Nash equilibrium.

3.1 Computing the Best Response

In Sect. 2.1, we use Xb and Xs to denote the probability distributions of users’ and
providers’ action respectively. In this section, we use them to represent FP beliefs about
users’ and providers’ action respectively. Given the FP beliefs, the best response action
should maximize the utility of the web service users and providers. We compute the
users’ best response function as follows:

rb� Xb
s ;X

s
s; h

b� � ¼ argmaxr2Cb Ub Xb
s ;X

s
s; h

b; r
� � ð8Þ

Where rb� Xb
s ;X

s
s; h

b� �
represents the best response function for service users of

type hb with probability distributions Xb
s ;X

s
s for other service users and services

providers.

A Market-Based Analysis of Bidding Strategy 79

With the best response function, we can calculate the optimal expected utility
function. We note that the users’ expected utility function is linear in its type for a
given action. In this paper, since the number of action is finite, the optimal expected
utility function is the upper envelop of a finite set of linear function, and thus is
piecewise linear. An example with 4 action (r1; r2;r3; ;) is shown in Fig. 1. The
optimal utility function is a piecewise linear function and each line segment rið;Þ
corresponds to a type interval /ið;Þ on the x-axis.

3.2 Updating the FP Beliefs

With the type intervals corresponding to the best response, we can compute the
probability distributions of each action under the current FP beliefs, and then update the
FP beliefs of the next round. We denote -b

i as the probability that service users choose
the best response action rbi corresponding to type interval /b

i , so -b
i ¼

R
/b
i

f b hð Þdh. In

the sth round, the best response distribution of service users is represented by

Xb ¼ -b
1
;-b

2
;-b

3
. . .-b

n

n o
. Given the FP beliefs of current iteration round Xb

s
, we

updated the FP belief: Xb
sþ 1 ¼ s

sþ 1 � Xb
s þ 1

sþ 1 � Xb, where Xb
sþ 1 is the updated FP

belief for the next iteration round sþ 1. The computation of the providers’ best
response function and the belief updates is analogous.

3.3 Measuring Convergence

In our model, we intend to analyze service providers and users’ e−Nash equilibrium
bidding strategies. This means that, if the absolute value of difference of estimated

Fig. 1. Piecewise linear optimal utility function

80 B. Shi et al.

utility in two rounds is less than a small value e, the algorithm convergence. The
measure of convergence is as follows:

~UbðXb
s ;X

s
sÞ � ~UbðXb

s�1;X
s
s�1Þ

�� ��� e and ~UsðXb
s ;X

s
s�1Þ � ~UsðXb

s ;X
s
s�1Þ

�� ��� e ð9Þ

where ~UbðXb
s ;X

s
sÞ is the expected utility of users adopting the best response action

against the current iteration rounds’ FP beliefs:

~UbðXb
s ;X

s
sÞ ¼

Z 1

0
U Xb

s ;X
s
s; h; r

b� �� f b hð Þdh ð10Þ

where rb is the best response action of the users with type h given FP beliefs Xb
s and

Xs
s. ~U

bðXb
s�1;X

s
s�1Þ is the expected utility of users adopting the best response action

against the last iteration rounds’ FP beliefs. The equations for providers are analogous.

3.4 Algorithm Overview

Based on the above description, an overview of FP algorithm is shown in Fig. 2.

Initial:

Set the initial FP belief τΩb
, τΩs

, set the iteration count =0τ .

do

1. Calculate best response function: ()* , ,τ τσ θΩ Ωb b s b and ()* , ,τ τσ θΩ Ωs b s s .

Generate the type intervalφ b
i corresponding to the best response actionσ b.

Generate the type intervalφ s
i corresponding to the best response actionσ s

2. Compute inherent action distribution ,Ω Ωb s of users and providers.

3. Update FP belief s
1 1andτ τ+ +Ω Ωb ,

4. Measure the convergence, If convergence, return 1τ +Ωb , 1τ +Ωs

5. Set 1τ τ= +
while (!converged)

Fig. 2. The fictitious play algorithm

A Market-Based Analysis of Bidding Strategy 81

4 Equilibrium Analysis

In this section, we analyze the Nash equilibrium bidding strategies of web service users
and providers. In Nash equilibrium, no one can gain more profits by individually
deviating its current strategy. In the following analysis, for illustrative purpose, we
consider 10 service providers and 10 service users, and set D ¼ f0; 0:1; 0:2; 0:3; 0:
4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0gUf;g. We consider the uniform distribution for types and
initial FP beliefs of web service providers and users. We set the pricing parameters
k = 0.5. In addition, we set e ¼ 0:00001 in the e-Bayes-Nash equilibrium. We also
assume that the small cost for users and providers to enter the marketplace is
k ¼ 0:0001. In the following analysis, we will consider different budget constraints
which allow web service users and providers to trade one-unit services or multi-unit
services.

4.1 For One-Unit Service Marketplaces

In the one-unit service marketplace, each service provider and user can only trade
one-unit web service instance. We first analyze this simple case, which can guide the
following analysis of trading multi-unit service. Figure 3 shows the equilibrium
strategies for service users and providers when service users’ budget is 0.4, 0.6, 0.7 and
1 respectively. When users’ budget is less than or equal to 0.7, we find that service
users intend to shade (i.e. bid less than their types) their bids less and service providers
intend to shade (i.e. ask more than their types) their asks more when the service users’
budget increases. As shown in Fig. 3(a), when the users’ budget is 0.4, service users
with the type 0.6 bid 0.4 and service providers with the type 0.4 ask 0.4, but when the
users’ budget is increased to 0.6 (Fig. 3(b)) service users and service providers’ offer
are changed to 0.5. Since when users’ budget increases, the service users will raise their
bids to raise the matching probability in the service market in order to improve their
expected income, and service providers raise their asks can improve their own trans-
action price, and thus improve their expected earnings. In addition, the largest type of
service providers entering the market is always equal to the budget. This is because
when service providers’ type is larger than the users’ budget, service providers cannot
gain positive revenue, and will not enter the marketplace. As the budget increases, the
range of types of service providers entering the market increases. As shown in Fig. 3
(a), when the users’ budget is 0.4, service providers within the range of type [0, 0.4]
chooses to enter the market, and as shown in Fig. 3(b)), when users’ budget is 0.6, the
type’s range of service providers entering the market increases to [0, 0.6]. This is
because when users’ budget increases, high-type service users improve their bids in
order to reach a deal and thus high-type service providers can get the benefits and
intend to enter the market. After the budget is greater than or equal to 0.7, the action
choice of the service users and providers is not changed, because the service users will
also shade bids in order to guarantee their expected income. Since service users and
service provider’s offers are affected by each other, the service user’s bid does not
change, and the corresponding service provider’s asks will no longer change as well.

82 B. Shi et al.

4.2 For Multi-unit Service Marketplaces

We now extend the above analyze to the case with multi-unit services where web
service providers and users are allowed to trade multi-unit service instance. This is
more closely to the realistic setting. Here we set the maximum number N of allowed
as 2. In the multi-unit service marketplaces, there are two types of budgets constraint:
limited budgets for the service users and limited allowable number of service instance
for the service providers. Figure 4 shows equilibrium bidding strategy when service
user’s budget is limited by 0.5, 1.0, 1.5 and 2.0 respectively and service providers’
allowable number is limited 1 and 2 respectively. Note that when service users or
service providers’ budget is 0, users and providers do not enter the market because of
the small cost k.

We first analyze the change of the trading strategy when service users’ budget is
same and service providers’ budget is different. When the service provider’s budget is
from 1 to 2, the service providers intend to shade their asks less, service users intend to
shade more. As shown in Fig. 4(a), service users with type 0.4 and service providers
with type 0.4 bid 0.4, whereas service providers and the users’ offer has changed to 0.3
in Fig. 4(b). In addition, the range of type that the service users choose to enter the
market increases. In Fig. 4(c), the range of type of service users entering the market is
[0.5–1], and in Fig. 4(d) this is changed to [0.4–1]. This is because the number of
services instance that the service provider can provide increases as the service provi-
ders’ budget is 2. This results in severe competition among service providers. Service
provider will reduce their asks in order to increase the probability of successful
matching. The corresponding competition between services users reduces, and they
intend to lower their bids to increase the expected income. In this case, low-type service
providers can also get benefits, and they are willing to enter the market.

Next, we analyze the change of the trading strategy when service providers’ budget
is same and service users’ budget is different. We find that, as well as one-unit service

Fig. 3. Equilibrium strategies in one-unit service marketplaces

A Market-Based Analysis of Bidding Strategy 83

marketplace, the servers’ strategy does not change when the users’ budget is greater
than a value in the multi-unit service marketplace. The value is 1.6 when the service
providers’ budget is 1, and decreases to 1.4 when the service providers’ budget is 2.
This is because the value is also related to the competition between users and providers.
When the service providers’ budget is 2, there would be more available service in the
market and service users could successful match service with higher probability. In this
situation, service users intend to shade their bids more, and thus the budget’ influence is
more quickly lost and the value is decreased. When users’ budget is less than the value,
the changes of users and providers’ offers can be divided into three stages. We
introduce the case that providers’ budget is 1, and the case that providers’ budget is 2 is
similar. The first stage is [0, 0.7], the service users’ actions only have one-unit service,
and they shade their bids less with budget increase. [0.7, 1] is the second stage. When
users’ budget increases, high-type service users shade their bids more, low-type users
shade their bids less, and more and more users offer two-units services. And the type’s

Fig. 4. Equilibrium strategies in multi-unit service marketplaces

84 B. Shi et al.

range of users entering the marketplace also becomes smaller. Providers shade their
asks less and their maximum ask becomes smaller. [1.0, 1.6] is the third stage, all
service users offer two-units services, but users shade their bids less with the users’
budget increases. In addition when the service provider’s budget is changed to 2, all
three stages are advanced [0, 0.5], [0.5, 0.8], and [0.8, 1.4]. This is because when
service providers’ budget increases, the competition among service providers becomes
larger, and thus the competition among service users becomes smaller, which led to the
advance of the three stages.

5 Conclusion

In this paper, we analyze how web service providers and users bid for the web service
in different marketplace situations. We use a market-based mechanism to model this
problem, and use the Fictitious Play algorithm to analyze the equilibrium bidding
strategy of web service providers and users. We obtained a number of useful insights.
We found that if one-unit service is allowed in the marketplace, service users shade
their bids less and service providers shade their asks more when the service users’
budget increases. If multi-unit services are allowed in the marketplace, when the ser-
vice provider’s budget increases, the service providers shade their asks less, and service
users shade more. In addition, the range of type that the service users choose to enter
the market increases. When the service users’ budget increases, more and more users
offer two-units services to obtain more profits.

Acknowledgments. This paper was funded by the National Natural Science Foundation of
China (No. 61402344), Scientific Research Foundation for the Returned Overseas Chinese
Scholars, Ministry of Education of China.

References

1. Friedman, D., Rust, J.: The Double Auction Market: Institutions, Theories and Evidence.
Santa Fe Institute Studies in the Science of Complexity, vol. XIV. Perseus Publishing,
Cambridge (1993)

2. Perry, D.E.: Dimensions of software evolution. In: Proceedings of International Conference
on Software Maintenance 1994, pp. 296–303. IEEE, September 1994

3. Lehman, M.M., Ramil, J.F., Kahen, G.: Evolution as a noun and evolution as a verb. In:
SOCE 2000 Workshop on Software and Organisation Co-evolution, vol. 9, p. 31, July 2000

4. Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1969)
5. Rustichini, A., Satterthwaite, M.A., Williams, S.R.: Convergence to efficiency in a simple

market with incomplete information. Econometrica: J. Econometric Soc. 62, 1041–1063
(1994)

6. Cliff, D., Bruten, J.: Minimal-intelligence agents for bargaining behaviors in market-based
environments. Hewlett-Packard Labs Technical Reports (1997)

7. Gode, D.K., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders:
market as a partial substitute for individual rationality. J. Polit. Econ. 101, 119–137 (1993)

8. Mas-Collel, A.: Microeconomic Theory. Oxford University Press, Oxford (1995)

A Market-Based Analysis of Bidding Strategy 85

9. McAfee, R.P.: A dominant strategy double auction. J. Econ. Theor. 56(2), 434–450 (1992)
10. Niu, J., Cai, K., Gerding, E.H., McBurney, P., Parsons, S.: Characterizing effective auction

mechanisms: insights from the 2007 TAC market design competition. In: Proceedings of the
7th International Conference on Autonomous Agents and Multi-agent Systems, pp. 1079–
1086 (2008)

11. Rabinovich, Z., Gerding, E.H., Polukarov, M., Jennings, N.R.: Generalised fictitious play for
a continuum of anonymous players. In: 21st International Joint Conference on Artificial
Intelligence (IJCAI), pp. 245–250 (2009)

86 B. Shi et al.

A Lightweight Hash-Based Mutual
Authentication Protocol for RFID

Zhangbing Li1,2(&), Xiaoyong Zhong1,
Xiaochun Chen1, and Jianxun Liu1,2

1 School of Computer Science and Engineering,
Hunan University of Science and Technology, Xiangtan, Hunan, China

lzb_xt@126.com, chen_xiaochuns@126.com,

zxyhnust@163.com, jx529@gmail.com
2 Key Lab of Knowledge Processing and Networked Manufacturing,

College of Hunan Province, Xiangtan, Hunan, China

Abstract. For the RFID authentication protocols based on Hash functions,
there are some shortcomings, such as imperfect defense on the attacks, intensive
calculation, time-consuming authentication process, and so on. By using of the
dynamic-shared key and one-way feature of Hash function, a lightweight
Hash-based mutual authentication protocol has been proposed and proved by
SVO logic in this paper. It avoids an exhaustive search in the back-end database,
and supports the transfer of ownership of the tag and the scalability of RFID
system. Besides resisting the common attacks, the protocol is suitable for the
RFID system that needs to be low-cost, lightweight computing and large
numbers of tags, which is of significant merit for RFID application.

Keywords: RFID � Mutual authentication � Hash function � SVO logic �
Security protocol

1 Introduction

In recent years, radio frequency identification (RFID) technology has been widely used
in supply chain management, target detection and tracking, electronic payment, envi-
ronmental monitoring and so on, but the information leakage and other security issues
are also increasingly highlighted [1]. A complete RFID system is composed of three
parts: a reader, tags and back-end database. It may suffer from the main attacks as
follows: message replay, denial of service, tag clone camouflage, reader fake, unau-
thorized access and track, desynchronization etc. Therefore a RFID system needs a
strong security protocol that can withstand the above attacks to meet the security
demands and protect the data privacy. RFID authentication is designed to make mutual
authentication between the reader and tag, but does not allow any attacker to recover
the intimate information in the course of authentication process. Thus, to design a
secure authentication protocol is becoming a research hotspot [2].

Authentication protocols need to encrypt the sensitive data for preventing infor-
mation leakage or tampering with hackers. Encryption function should be able to
ensure the data integrity and guarantee the confidentiality and factuality of RFID

© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 87–98, 2017.
DOI: 10.1007/978-981-10-3996-6_7

system. In view of the limited resources and storage space in RFID tag, the RFID
authentication process will become very difficult since some encryption algorithm has a
complicated computation in the practical application. Hash function is a frequently
used algorithm for the RFID protocol with reliable safety and acceptable computing
cost [1, 2]. Some typical authentication protocols based on hash function are: random
Hash-Lock protocol, Hash-Chain protocol, RFID Library protocol, LCAP (Low-cost
RFID Authentication Protocol) [3–9], and some improved protocols based on them
[1, 2, 10–20]. These protocols all assume that the channel between the back-end
database and the reader is secure but insecure between the reader and Tags, and
requires authentication.

In 2002 Sarma [3] proposed Hash-Lock protocol which uses metaID(equal to hash
(key)) to replace the true ID of the tag to protect the data privacy. But it will easily
suffer from replaying and spoofing attack since the metaID value is unchanged during
each communication, and the protocol also does not prevent tracking. Then Weis [4]
mended the Hash-Lock protocol using the unpredictability of the random number. This
protocol is called RHL protocol which ensures the indistinguishability of the session
data and resists the position tracking, but the plaintext transmission for the tag ID still
does not resist the counterfeiting and replay attacks. The Hash-Chain protocol proposed
by Ohkubo [5] uses two different Hash functions to refresh the ID dynamically, and is
also with strong ability of anti tracking. But it can only achieve a one-way authenti-
cation, and is vulnerable to the man-in-the-middle and replay attacks. Henrici [6]
proposed a protocol based on hash ID-changed, which introduces the identification
information to prevent man-in-the-middle attack, but there are some risks of desyn-
chronization between the tag and database. The LCAP protocol based on distributed
inquiry-response mode is proposed by Rhee et al. [7], which imports the random
number in both the reader and tag. But there exists of the problem for forward security
if the attacker gets the tag ID, and also the risk of losing synchronization between the
tag and database. Molnar et al. [8] proposed David digital library protocol, which is a
mutual authentication protocol and different from the hash ID-changed protocol. It
makes use of a static ID and the shared secret value S to achieve the authentication
between the server and tag, but the authentication is time-consuming and has of
intensive calculation and high cost. In 2006, Tsudik [9] proposed the YA-TRAP’s
authentication protocol which introduces the time stamp, but it is vulnerable to denial
of service attacks (unable to distinguish from illegal and legal tags).

Some domestic scholars have also made the design and improvement of RFID
security protocols [10–17]. Li [10] introduces the random number to prevent replay
attacks in the improved Hash-Chain protocol, but it will appear Dos attack when the
number of illegal tags is more than of (M + T – 1). Hash-Chain protocol based on
two-dimensional interval are proposed by Xiong [11], which increases the index (Ai,
Bi) for each tag, but there are threats of replay attack and impersonation attack. Yuan
improved protocol [12] hides the tag’s ID for transmission, but needs the traversal
calculation to find the destination tag with hash function, and doesn’t resist the
asynchronous attack. The location index of the tags uses a plaintext in the Chen
Shaowei’s protocol, which is vulnerable to the tracking attack and denial of service
attack. Zhou [14] introduces the pseudo random number based on Hash-chain, and the
update cost of the key is large. Liu Peng et al. make use of the random numbers

88 Z. Li et al.

produced by the reader and tag, and assemble them with ID of tags as the input of hash
function, and transmit the values to the back-end database for calculation and com-
parison by exhaustive search, but it may lead to poor performance of the system and
does not resist DOS attack. The RP and RSP authentication protocols are proposed by
Zheng [1]. RSP utilizes the random number generator, the exclusive OR function, the
same OR function and hash function respectively to enshroud the interaction infor-
mation between the tag and reader, and the security is formally proved by using BAN
logic, but the transmission of hash value for single ID of the tag will lead to replay
attack. The HSASILC protocol for RFID authentication is proposed by Si [17] with
GNY logic proving, which introduces the time stamp in each certification step, but it
does not resist man-in-the-middle attack.

In short, there are still some problems in the existing RFID authentication protocols
based on Hash function, and it is of great practical significance to design efficient,
secure and reliable RFID Hash-based protocol with limited cost. So, in this paper a
lightweight mutual authentication protocol based on dynamic shared keys is proposed,
which is suitable for the RFID system with low cost, low computational cost, and large
numbers of Tags.

2 Lightweight RFID Mutual Authentication Protocol Based
on Dynamic Shared-Key

In this protocol, the query-and-response mechanism is used and the mutual authenti-
cation process is based on the improvement of the storage information in the RFID
tags.

2.1 Initial Condition

Initially, the parameters including the location index as ki, identification as tagID and a
dynamic shared-key as key are stored in the tag, which is embedded with a Hash
function (SHA-1, MD4) and a random number generator. The reader has a random
number generator, and the back-end database stores all the records for all tags and
readers. A record of a tag should fully include following parameters such as Ki, IDT,
keyold and keynew, and the backend system can carry out a variety of complex com-
puting. Assume as follows:

H(x) is a one-way Hash function; RR is a random number generated by the reader,
RTi is a random number generated by the tag; Rot(A, B) realizes circularly the left shift
of binary number A with n bit, and n is the binary 1 number of B (Hamming weight).
The variables keyold and keynew own the same value as key by initialization.

2.2 Authentication Steps

The authentication process of this protocol is shown in Fig. 1. The process is specially
described as follows:

A Lightweight Hash-Based Mutual Authentication Protocol for RFID 89

(1) The reader, together with the random number RR generated by itself, sends a
Query to the tag as an authentication request.

(2) Within the range of effective communication, there may be more than one tag to
respond the reader at the same time, which may lead to the collision of the Radio
frequency signal, and cause the failure for tag identification. So the anti-collision
protocol will be lunched to ensure that the suitable tag is selected for the response.

(3) The authentication process starts between the selected tag and the reader. The tag
generates the random number RT, and calculates as follows:

A ¼ HðRotðRT � RR; RRÞÞ � ki ð2:1Þ

B ¼ RotðHðID� keyÞ; RTiÞ ð2:2Þ

where, A is used for encrypting the Ki value to transmit the tag’s location index in
back-end database, B is used for transmitting the dynamic shared-key secretly.
Then the variables A, B and RTi are sent to the reader by the tag.

(4) The reader will transmit the received variables like A, B and RTi to the back-end
database, as well as the random number RR generated by its own self. The
transport way may be through the serial port with wired way or other net way.

(5) The back-end database system receives the information from the reader, and
calculates the location index of the record for the response tag in the database.

ki ¼ A� HðRot(RTi � RR; RRÞÞ ð2:3Þ

According to the ki value the system locates the record of the tag in the database
and read the corresponding variables such as IDi, fi, keyold and keynew. If the
record search fails or the variable fi equals to 5 (over 5 times failure), the tag
verification is failed and have to turn to (7).

(6) The calculations as following will be done in the back-end database system:

B1 ¼ RotðHðIDi � keynewÞ; RTiÞ ð2:4Þ

B2 ¼ RotðHðIDi � keyoldÞ; RTiÞ ð2:5Þ

If B1 = B then makes keyi = keynew and fi = 0, where, it is to say that both the
previous and this authentication are successful;

Database

(IDi,ki,keyold,keynew)

Tag

(ID,ki,key)
Reader

Query, RR

A, B, RT1

C

A, B, RR, RT1

C

Fig. 1. Certification process of the protocol

90 Z. Li et al.

If B2 = B then makes keyi = keyold and fi = 0, which explains this authentication is
successful but the previous is failed;

Otherwise set keyi = keyold and fi = fi + 1, and what is illustrated that both the
variables keynew and keyold in the back-end database is different from the key value
in the tag, and both the previous and this authentication are failed. The current tag
is considered as illegal.

The calculation will be done as follows:

keyold ¼ keyi ð2:6Þ

keynew ¼ RotðIDi � keyold ; RR � RTiÞ ð2:7Þ

C ¼ HðRot(IDi � keyold ; RTiÞÞ ð2:8Þ

The system updates the ki-th record of database with parameters fi, keyold and
keynew.

If B = B1 or B = B2 then turn to (8).
(7) Set

C ¼ HðIDi � RTi � RRÞ � fi ð2:9Þ

(8) The back-end database transfers the C value to the reader, which forwards it to the
tag.

(9) The tag receives the C value from the reader and then calculates:

C1 ¼ HðRot(ID� key; RTiÞÞ ð2:10Þ

If C1 = C then the reader and tag are legitimate, and the key value will be
calculated and updated in the tag:

key ¼ RotðID� key; RR � RTiÞ ð2:11Þ

Otherwise the authentication fails, the agreement is terminated.

2.3 Protocol Characteristics

This protocol has the following characteristics:

(1) Hide the location index the tag ID in the database to avoid the exhaustive search
for each tag ID and comparison;

(2) Hide the authentication key through the transformation of the hash value of the
communication;

(3) Record the last two certified keys in the database, and the keyold is the final key;
(4) Record the number of failures to prevent unrestricted attacks for authentication;
(5) Support the ownership transfer of tags. After the tag and reader finish the mutual

authentication, the key value shared by the tag and back-end database is updated
dynamically, and can be normally used after the tag ownership is transferred;

A Lightweight Hash-Based Mutual Authentication Protocol for RFID 91

(6) Support the system scalability. Increase or decrease in the number of tags will not
significantly affect the system performance.

3 Safety and Performance Analysis

3.1 Security Analysis

(1) Confidentiality. Since the tag interior is safe, it is difficult to obtain the internal
key and the identifier of tag unless the attacker makes the reverse engineering
analysis of the tag’s internal circuit. Even though the current session information
of the tag Ti is known, the attacker can not obtain the tag ID because the com-
munication information only includes A, B, C, RR and RTi between reader and tag,
which are packed by using the unidirectional Hash function except the random
numbers, so the protocol can guarantee the anonymity of the tag. After each
successful authentication, the shared key in the tag and database is synchronously
updated. For each authentication request, the tag responses include the A and
B values are calculated by using the shared key and random numbers of a new
round, as well as the Hash function. So each response from the tag to reader is not
the same, i.e. the tag has the indistinguishability.

(2) Integrity. All the received datum will be calculated and verified by use of the
one-way characteristic of Hash function, any modification on the data will lead to
the failure of the authentication, which can guarantee the integrity of the data.

(3) Forward security. Each authentication request makes use of a random number of
new round to calculate the A and B values. The tag ID only can be used by the tag
own, thus an attacker is unable to figure out the tag ID from the hash value, and
cannot work out the last key to decrypt the last message from this key value yet.
So the attacker does not recognize the last session of the Ti tag, and it’s past
behavior cannot be traced.

(4) Backward security. The each response of A and B values from the tag are worked
out of the random number RR and RTi by hash function and Rot-function in tag.
The shared-key between the tag and back-end database is calculated with the key
(keyold) of current session and hash function for update, and the attacker is unable
to get the update parameters of the key only by eavesdropping. In the case of RR

and RTi, the attacker cannot obtain the key information needed for the next
authentication by self-calculation.

(5) Anti replay attack. The tag and the reader respectively have new random numbers
in each certification process. These random numbers ensure the freshness of the
transport message for the authentication based on challenge-response mode, and
each successful authentication makes the new shared key updated synchronously
between the tag and the database. Therefore, though the attacker repeatedly sends
authentication request to the tag with the same random number RR, the responses
will be different by hash encryption, and the different tags response different
messages because of different random numbers, so the tag will not be tracked.

92 Z. Li et al.

(6) Anti desynchronization attack. The shared-key value in the tag will not be updated
because of unsuccessful authentication, but the keyold in the back-end database all
the time keeps the shared-key value for the successful authentication right, which
can make sure of using the right key in the next authentication. So the syn-
chronization of secret information can be kept between the server and the tags.

(7) Anti DOS attacks. This protocol does not limit the number of access tags instead
of the number of failed authentication. If the third session between reader and tag
in the certification process is blocked, that leads to the dynamic shared-key in
back-end database updated but the corresponding key in tag not updated syn-
chronously. However, keyold = key in the database will be the right key for the
authentication next time, the updated key value keynew will be invalid. While the
reader launches the next authentication, the equation key = keyold in the back-end
database is still set up, the tag can still be certified. So the protocol has a good
resistance to denial of service(DOS) attacks.

According to the security of seven aspects: indistinguishability, forward security,
replay attack, spoofing attack, non traceability, can not track of key, dynamic Key
update, and anti desynchronization attacks, the proposed protocol is compared with
Hash-Lock protocol (HL), Random-Hash-Lock protocol (RHL), Hash-Chain protocol
(HC) and the two improved protocol in 12th reference (Ref. 12) and 1st reference (Ref.
1). By comparison as shown in Table 1, it is found that the proposed protocol has better
security than other protocols.

3.2 Computational Performance Analysis

The Hash value and the shared key are required to calculate in the tag and the back-end
database for Hash-based RFID authentication protocol, but the storage capacity and the
amount of computation will affect the efficiency of the implementation of the protocol
and the production cost of the tags. The performance of each protocol is analyzed from
two aspects: the calculation amount and the storage capacity of the tag and the back-end
database. Comparisons are as shown in Tables 2 and 3, where N denotes the number of
tags, H says hash function, L shows logic operations, M figures Hash-chain length, O(x)
is the complexity of the calculation for searching tags in back-end database.

Table 1. Comparison of the security of the protocols

Security HL RHL HC Ref. 12 Ref. 1 This protocol

Indistinguishability � ✓ ✓ ✓ ✓ ✓

Forward security ✓ ✓ ✓ ✓ ✓ ✓

Replay attack � � � ✓ � ✓

Spoofing attack � � � ✓ ✓ ✓

Non traceability � � ✓ ✓ ✓ ✓

Dynamic key update � � � � � ✓

Anti desynchronization attack ○ ○ ○ � ○ ✓

The protocol has security with the case of: X: does not; ✓: has; ○: leaves out of
account.

A Lightweight Hash-Based Mutual Authentication Protocol for RFID 93

As can be seen from Table 2, compared with other protocols, the amount of
computation for this protocol no matter on the tag or in the back-end database is
correspondingly less. So it improves the efficiency of the authentication. However, as
Table 3 shown, the storage capacity of this protocol in tags and back-end database
storage is a bit more (where l is the length of the shared key) than the others, which has
almost no impact on the calculation.

3.3 Proof of the Protocol with SVO Logic

The security of this protocol is proved by SVO logic [21, 22]. SVO logic is proposed
by Syverson and Van Oorshot, which is optimized and derived from four kinds of
logics including BAN, GNY, AT and VO. With very simple inference rules and
axioms, SVO Logic repairs the defects and deficiencies of other Logics like BAN.

In the course of proof, R represents the reader (with database), T represents the tag.
The axiom A1, A2, A3, A4 are shown as in the references [21, 22]. During SVO
logical reasoning, those symbols “ �j ”, “/”, “ :j ”, “ �j ”, “)j ”, “3”, “#” and “�” are still
used to express “believe”, “received”, “said”, “say”, “control”, “has”, “fresh” and
“equivalent” respectively. The analysis of the RFID mutual authentication protocol is
as follows:

1. Initial hypothesis

P1: R �j #RR; T �j #RTi

P2: R �j R 3 K,R �j R 3 ID; T �j T 3 ID; T �j T 3 K

P3: T �j T$K R, R �j T$K R
P4: T �j ððK; ID; RR; RTiÞ)j ðA; B; CÞÞ; R �j ððK; ID; RR; RTiÞ)j ðA; B; CÞÞ
P5: T / RR; T / C
P6: R / ðA; B; RTiÞ
P7: R �j R / �1; T �j T / �2 (An understanding of the received message by the
subject, unknown message)
P8: R �j ðR / �1 � R / ðA;B;RTiÞÞ (Interpretation of the received messages by
the subject)
P9: T �j ðT / �2 � T / CÞ

Table 2. Comparison of calculation

Calculation HL RHL HC Ref. 12 Ref. 1 This Protocol

Backend DB o(1)H o(N)H o(MN)H o(N)H o(1)H + o(1)L o(1)H + o(1)L
Tag H H 2H 3H 2H H

Table 3. Comparison of storage capacity

Storage cap. HL RHL HC Ref. 12 Ref. 1 This protocol

Backend DB 4l * N l * N 2l * N 2l * N 3l * N 4l * N
Tag 2l l l 3l 3l 3l

94 Z. Li et al.

P10: R �j ðR / fXTgK ^ R$K T � T :j X)
P11: T �j ðT / fXRgK ^ R$K T � R :j X)

2. Proof goal

G1: R �j ðT 3 KÞ
G2: R �j ðT 3 IDÞ
G3: T �j ðR 3 KÞ
G4: T �j ðR 3 IDÞ
G5: R �j #RTi

G6: T �j #RR

3. Derivation by using SVO Logic

SVO logic has 20 axioms and 2 derivation rules, see References [21, 22]. NEC rule
is that |-P �j Ucan be derived by |-U; MP rule is that w can be derived by U and
U � w.

Firstly, an inference can be made by P6, P8 and Trust axiom
(P �j u ^ P �j ðu � wÞ � P �j w, which is denoted by A1 in this paper):

R �j R / ðA; B; RTiÞh ð3:1Þ

Secondly, an inference can be made by P3, P10, formula (3.1) and A1:

R �j Tj:fA; B; RTigK ð3:2Þ

So the formula “R �j ðT 3 KÞ” is established, and the goal G1 has to be permitted.
The following formula can be deduced by P1, P4, A1, NEC rule and

Message-freshness axiom (#(Xi) � #(X1, X2, …, Xn), which is denoted by A2 in this
paper):

R �j #fA;B;RTigK ð3:3Þ

It can be reasoned out from the formulae (3.2) and (3.3), the rule NEC and the
temporary-value-verification axioms ((#(Xi) ^ P|:X) � P| � X, which is denoted by
A3 in this paper):

R �j T �j fA, B, RTigK ð3:4Þ

Furthermore, the inference can be worked out by the formula (3.2) and the message
sending axiom (P |� (X1, X2, …, Xn) � P |: (X1, X2, …, Xn) ^ P ∋ Xi, which is
denoted by A1 in this paper):

R �j ðT 3 ðA; B, RTiÞÞ ð3:5Þ

A Lightweight Hash-Based Mutual Authentication Protocol for RFID 95

So the formula “R �j ðT 3 IDÞ” is established according to the formula (3.5), P4,
A1 and the message understanding axiom ðP �j ðP 3 F(X)Þ � P �j ðP 3 XÞ, which is
denoted by A5 in this paper), and the goal G2 gets permit.

In succession, the inference can be made by P5, P7, P9 and A1 as follows:

T �j T / fCgK ð3:6Þ

It can be easily inferred out by P3, P11, the formula (3.6) and A1 as follows:

T �j R :j fCgK ð3:7Þ

So the formula “T �j ðR 3 K)” is set up, and the goal G3 gets permit.
Similarly, it can be deduced by the P1, A2, A1 and NEC rule as follows:

T �j #fCgK ð3:8Þ

The following formula can be reasoned out from the formulae (3.7) and (3.8), A3,
A1and NEC rule:

T �j R �j fCgK ð3:9Þ

An inference can be made by the formula (3.9), A4, A1and NEC rule as follows:

T �j ðR 3 C) ð3:10Þ

So the formula “T �j ðR 3 ID)” is established and the goal G4 gets permit.
The formula “R �j #RTi” can be referred out by the formulae (3.4) and (3.5), A2

and A1, therefore the goal G5 gets permit.
The formula “T �j #RR” can be referred out by the formulae (3.9) and (3.10), A2

and A1, therefore the goal G6 gets permit.
The formal proof of G1 to G6 shows that after successful implementation of this

protocol, reader R and tag T with its ID would both trust the shared-key between them.
Furthermore, the tag T trusts the random number RR which is sent by the reader is
fresh, and the reader R trusts that the random number RTi which is sent by the tag is
fresh.

4 Conclusions

RFID authentication protocol is the key guarantee for the safe and stable operation of
RFID system. In the light of the analysis of the Hash-based RFID authentication
protocols and those improved protocols, a novel lightweight RFID mutual authenti-
cation protocol based on Hash function is proposed, and the SVO logic verification and
performance analysis of the protocol are carried out. The new protocol uses the random
numbers and the hash function to transfer secret authentication information with a
limited number for invalid authentication. Compared with the existing protocols, it

96 Z. Li et al.

supports ownership transfer and quantity scalability of Tags, and has the characteristics
of resisting spoofing attack, replay attack, tracking attack, anti asynchronous attack and
privacy protection. So it offers good security and high application value. However,
storage space of the Tag in the new protocol is slightly larger, and the computational
load on the tag side will further be reduced so as to reduce costs of tags in the future
work.

Acknowledgments. This research is supported by Natural Science Foundation of China
(NSFC), under grant number 61370227, and by Union NSF of Hunan Province & Xiangtan City
of China, under grant number: 2015JJ5034.

References

1. Zheng, Z., Mo, H.: Research and implication of RFID security authentication protocol.
Master dissertation, Beijing Jiaotong University, Beijing, April 2014

2. Sun, X., Zhao, Z.: A Hash-based mutual authentication protocol for the RFID system.
J. Hangzhou Dianzi Univ. 32(6), 29–32 (2012)

3. Sarma, S.E., Weis, S.A., Engels, D.W.: RFID systems and security and privacy implications.
In: Kaliski, B.S., Koç, ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 454–469.
Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_33

4. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan, W.,
Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 201–212.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-39881-3_18

5. Ohkubo, D., Suzuki, K., Kinoshita, S.: Hash-chain based forward-secure privacy protection
scheme for low-cost RFID. In: Proceedings of the 2004 Symposium on Cryptography and
Information Security (SCIS 2004), Sendai, pp. 719–724 (2004)

6. Henrici, D.,Muller, P.: Hash-based enhancement of location privacy for radio-frequency
identification devices using varying identifiers. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops, pp. 149–153. IEEE
(2004)

7. Rhee, K., Kwak, J., Kim, S.,Won, D.: Challenge-response basedRFID authentication protocol
for distributed database environment. In: Hutter, D., Ullmann,M. (eds.) SPC 2005. LNCS, vol.
3450, pp. 70–84. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32004-3_9

8. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices, and
architectures. In: Proceedings of the 11th ACM Conference on Computer and Communi-
cations Security, Washington, DC, pp. 210–219 (2004)

9. Tsudik, G.: YA-TRAP: yet another trivial RFID authentication protocol. In: Fourth
Annual IEEE International Conference on Pervasive Computing and Communications
Workshops. PerCom Workshops 2006, pp. 640–643. IEEE (2006)

10. Li, Z., Lu, G., Xin, Y.W.: A extensible authentication protocol based on Hash chain.
Comput. Eng. 34(4), 173–175 (2008)

11. Xiong, W., Xue, K., Hong, P., et al.: A RFID security protocol based on Hash chain in
two-dimensional interval. J. China Univ. Sci. Technol. 41(007), 594–598 (2011)

12. Yuan, S.-G., Dai, H.-Y., Lai, S.-L.: Hash-based RFID authentication protocol. Comput. Eng.
34(12), 141–143 (2008)

A Lightweight Hash-Based Mutual Authentication Protocol for RFID 97

http://dx.doi.org/10.1007/3-540-36400-5_33
http://dx.doi.org/10.1007/978-3-540-39881-3_18
http://dx.doi.org/10.1007/978-3-540-32004-3_9

13. Chen, S., Chen, R., Ling, L.: An improved Hash-function security protocol for RFID
bidirectional authentication. Comput. Syst. Appl. 19(3), 67–70 (2010)

14. Zhou, Y.: Research on RFID mutual authentication protocol based on Hash chain. Master
dissertation, South West Jiaotong University (2012)

15. Liu, P., Zhang, C., Ou, Q.Y.: A Hash-based f mutual authentication security protocol for the
mobile RFID. Design. Comput. Appl. 33(5), 1350–1352 (2013)

16. Ding, Z., Li, J., Feng, B.: Research on Hash-based RFID security authentication protocol.
J. Comput. Res. Dev. 46(4), 583–592 (2009)

17. Si, C., Wen, G.: A design and implementation of RFID security authentication protocol
based on Hash function. Master dissertation, University of Electronic Science and
technology, Chengdu, December 2013

18. Song, B., Mitchell, C.J.: Scalable RFID security protocols supporting tag ownership transfer.
Comput. Commun. 34(4), 556–566 (2011)

19. Huang, Y.J., Yuan, C.C., Chen, M.K., et al.: Hardware implementation of RFID mutual
authentication protocol. IEEE Trans. Ind. Electron. 57(5), 1573–1582 (2010)

20. Kardas, S., Akgu, M., Kiraz, M.S., et al.: Cryptanalysis of lightweight mutual-authentication
and ownership transfer for RFID systems. In: 2011 Workshop on Lightweight Security &
Privacy: Devices, Protocols and Applications, pp. 20–25 (2011)

21. Syverson, P.F., van Oorschot, P.C.: On unifying some cryptographic protocol. In:
Proceedings of the IEEE 1994 Computer Society Symposium on Security & Privacy. IEEE
Computer Society, USA, pp. 14–28 (1994)

22. Syverson, P.F., van Oorschot P.C.: A unified cryptographic protocol logic. Technical report,
NRL Publication 5540-227

98 Z. Li et al.

Photovoltaic Power Prediction Model Based on Parallel
Neural Network and Genetic Algorithms

Gaowei Xu and Min Liu(✉)

School of Electronic and Information Engineering, Tongji University,
No. 4800, Caoan Road, Shanghai, China

{0gaowei_xu,lmin}@tongji.edu.cn

Abstract. With the wide application of large-scale photovoltaic systems, photo‐
voltaic power prediction can reduce the negative effects caused by the intermit‐
tency and randomness of output power for photovoltaic system. This paper
proposes a novel photovoltaic power prediction model based on parallel back
propagation neural network (BPNN) and genetic algorithms to predict output
power, whose input parameters are historical power output data, historical mete‐
orology data, and meteorology data of the objective day. A parallel BPNN algo‐
rithm based on MapReduce is proposed to establish a mapping relationship
between input and output through studying large amounts of training sample data.
Furthermore, a parallel genetic algorithm based on MapReduce is proposed to
optimize BPNN initial weights and thresholds. Experiment results show that the
proposed model with parallel BPNN and genetic algorithms can significantly
improve prediction accuracy and speed, compared with traditional photovoltaic
power prediction model.

Keywords: Photovoltaic system · MapReduce · Neural network · Genetic
algorithm · Power prediction

1 Introduction

Facing the increasingly serious problem of global energy shortage and serious environ‐
mental pollution, exploring renewable energy sources has gained much attention in
recent years. Photovoltaic industry is one of the fastest growing industries of renewable
energy, it has become a major electricity source at an extremely rapid pace in several
countries all over the world, at least 227 GW of PV are now installed worldwide, 50
GW of solar PV were installed globally in 2015 [1]. Photovoltaic power generation
technology has many advantages: clean, reliable, no pollution, no noise and so on.
However, due to the randomness and intermittency of PV power generation, it will have
a negative effect on power grid when more and more PV power stations connect to large
power grids. If PV power output can be predicted accurately, scheduling plan can be
adjusted timely to ensure power safe and stable operation of power grid.

With the global continuous development of PV power industry, PV power generation
prediction has gradually become a research hotspot in recent years. More and more PV
power prediction methods and algorithms have been proposed until now. These methods

© Springer Nature Singapore Pte Ltd. 2017
J. Cao and J. Liu (Eds.): MiPAC 2016, CCIS 686, pp. 99–110, 2017.
DOI: 10.1007/978-981-10-3996-6_8

can be divided into two categories: one is to predict PV power output directly, PV power
output is predicted according to meteorology data and historical power output data. The
other is predict PV power output indirectly, solar irradiance is predicted based on mete‐
orology data and historical solar irradiance data, then PV power output is calculated by
solar irradiance value [2–4]. The techniques used in these methods mainly include
multiple linear regression, Markova chain, support vector machine, artificial neural
network (ANN) and so on [5–7]. Among them, ANN is the most direct and effective
technique for PV power prediction. Furthermore, in ANN-related techniques, BPNN is
considered to be the most suitable method for classification and prediction problems.
Almonacid F. et al. [3] presented a new methodology for forecasting the output of a PV
generator one-hour ahead based on dynamic artificial neural network. Liu J. et al. [4]
proposed a novel PV power forecasting model based on BPNN to predict the next 24-h
PV power outputs, the proposed model considered aerosol index data as an additional
input parameter. Obviously, BPNN is extremely practical and effective in dealing with
small-scale dataset. With the arrival of the era of PV big data [8], traditional BPNN
algorithm are facing the challenge of large-scale data storage and computation. In order
to address the above-described challenges, many correlative study focused on opti‐
mizing the neural network weights and thresholds. Alabbas M. et al. [9] used the genetic
algorithms to optimize the design of NN architecture in terms of number of hidden layers
and the choice of the best parameters (learning rate, momentum term, activation func‐
tions). Zhang E. et al. [10] presented a method for the sound quality prediction by using
a BPNN based on particle swarm optimization (PSO), which is optimizing the initial
weights and thresholds of BPNN through the PSO. Although these approaches have
obtained some achievements, they still have a great potential. In recent year, with widely
application of parallel and distributed computing technologies, many researchers have
attempted to speed up the computation process with parallel computing technologies
such as the MapReduce platform. Aljarah I. et al. [11] proposed a parallel MapReduce-
based GSO algorithm to speed up the GSO optimization process, experimental results
show that the proposed algorithm is appropriate for higher dimensions functions. Xu H.
et al. [12] presented a MUSK algorithm based on MapReduce for answering top-k
queries over large scale uncertain strings, experimental results showed that MUSK has
good scalability over large amounts of data. In conclusion, MapReduce seems tailored
for big data jobs.

In this paper, a novel PV power prediction model based on parallel neural network
and genetic algorithm is proposed. A parallel BPNN algorithm based on MapReduce
programming model can improve its convergence speed and accuracy, a parallel genetic
algorithm is developed on BPNN algorithm to improve better converge, both are excel‐
lent in dealing with large-scale data. Our experimental results are compared with
previous proposed models and illustrate the effectiveness of the proposed model. The
rest of the paper is organized as follows: Sect. 2 presents the proposed model and imple‐
mentations of parallel BPNN and genetic algorithm using the MapReduce model. In
Sect. 3, experimental results are presented and analyzed to validate the efficiency of the
proposed model. Finally, conclusions are given in Sect. 4.

100 G. Xu and M. Liu

2 Prediction Model for PV Output Power

PV power output is closely related to multiple meteorological parameters, however, it
is difficult to establish the nonlinear relationship between PV power outputs and multiple
meteorological parameters with a mathematical function. Therefore, in this section,
design details of a parallel BPNN algorithm and a parallel genetic algorithm process are
proposed separately. Based on the proposed algorithms, a novel PV power prediction
model is proposed.

2.1 Parallel BPNN Algorithm

Back-Propagation Neural Network. Artificial neural networks (ANNs) has been
widely applied in many classification and regression problems, BPNN has become one
of the most commonly used ANNs in recent years. With the help of error feedback
mechanism, BPNN can establish nonlinear input-output mapping relationships without
knowing their concrete mathematical formulas. A typical BPNN usually consists of
multiple network layers, however, a three-layer BPNN can meet most application
requirements. Figure 1 shows the structure of a typical three-layer BPNN, which is
composed of one input layer, one hidden layer, and one output layer.

jh

1x

nx

1y

kyix

my
lh

1h

Fig. 1. The structure of a typical three-layer BPNN

The input vector of BPNN is X = [x1, x2,… , xi,… xn], output vector is
Y = [y1, y2,… , yk,… ym], while the hidden layer vector is H = [h1, h2,… , hj,… hl]. The
connection weights 𝜔i, j between input layer and hidden layer and the connection weights
𝜔j, k between output layer and hidden layer are usually given randomly.

For hidden layer,

hj = f (

n∑
i=1

𝜔i, j ∗ xi + 𝛼j) j = 1, 2,… , l

The sigmoid function f (x) = 1∕(1 + e−x
) is chosen as the activation function, here

𝛼j is the threshold of jth neuron in hidden layer.
For output layer,

yk = f (

m∑
k=1

𝜔j, k ∗ hj + βk) k = 1, 2,… , m

Photovoltaic Power Prediction Model 101

Here βk is the threshold of kth neuron in output layer. Afterward, the actual output
vector yk is compared with desired output ok, the error E is expressed as follows:

E =
1
2

m∑
k=1

(ok − yk)
2

The error E can be decreased continuously until it approaches 0 by adjusting the
weights 𝜔i,j and 𝜔j, k, it is propagated backward from output layer to input layer. Weight
updating formula is given as follows:

𝜔i,j(t + 1) = 𝜔i,j(t) + 𝜂[(1 − 𝛿)D(t) + 𝛿D(t − 1)]
𝜔j,k(t + 1) = 𝜔j,k(t) + 𝜂

[
(1 − 𝛿)D′

(t) + 𝛿D′
(t − 1)

]

𝜂 is learning efficiency, 𝜂 > 0, D(t) = −𝜕E∕𝜕wi, j(t), D′
(t) = −𝜕E∕𝜕wj, k(t), 𝛿 is

momentum factor, 0 < 𝛿 < 1.

MapReduce Programming Model. Hadoop MapReduce is a software framework for
processing vast amounts of data with a parallel, distributed algorithm on a cluster consist
of thousands of computer nodes. It has become the most popular programing model in
dealing with large-scale data which is not suitable for running in single computer. A
MapReduce job usually separates the input dataset into multiple independent chunks,
multiple chunks are broken down into multiple tuples (key/value pairs). Map jobs
process these chunks in parallel and convert every tuple (key/value pair) into a set of
intermediate tuples. The outputs of map tasks are transmitted to reduce tasks, reduce
tasks combines all intermediate tuples into a smaller set of tuples. The input and the
output of the MapReduce job are stored in Hadoop Distributed File System (HDFS). A
cluster generally consists of one namemode and many datanodes, the MapReduce
framework and the Hadoop Distributed File System can run on every node simultaneous.
In addition, one namenode is responsible for monitoring tasks, scheduling tasks, and re-
executing the failed tasks, while many datanodes execute the tasks assigned by the
namemode. Figure 2 shows the MapReduce working principle diagram.

Namenode
Task

Scheduler

Client

Datanode

Map TaskMap Task

Reduce
Task

Datanode

Map TaskMap Task

Reduce
Task

Datanode

Map TaskMap Task

Reduce
Task

Fig. 2. MapReduce working principle diagram

Algorithm Design. With the arrival of the era of big data, traditional BPNN algorithm
cannot meet the real-time requirements, a parallel BPNN algorithm based on

102 G. Xu and M. Liu

MapReduce programming model is proposed [13]. A training dataset is divided into
multiple small datasets, each small dataset is processed by a datanode in a Hadoop cluster
for training in parallel, which can greatly improve the convergence speed and accuracy
of the BPNN, the framework of parallel BPNN algorithm is given in Fig. 3. When the
parallel BPNN algorithm starts, each datanode establishes a BPNN and initializes
weights and thresholds, then each datanode reads and processes a data chunk in the form
of <key, value> saved on the HDFS. The feedback error of the BPNN is calculated, and
then the BPNN adjust weights and thresholds based on feedback error. The BPNN repeat
the back-propagation process until all the training data meet the training accuracy
requirement. Finally, a namenode collect and merge all the outputs of multiple datan‐
odes.

Training data

Data
chunk 1

Data
chunk 2

Data
chunk 3

Data
chunk n

Map
function

Reduce collects results
of all BPNNs

Map
function

Map
function

Map
function

Intermediate
output

Intermediate
output

Intermediate
output

Intermediate
output

Fig. 3. The framework of parallel BPNN algorithm

2.2 Parallel Genetic Algorithm

Genetic algorithms are important parts of evolutionary algorithms, which are inspired
by the principle of nature selection. Genetic algorithms are commonly applied on large-
scale optimization and search problems, and can find efficient solutions based on bio-
inspired operators within limited time. Figure 4 shows the process of genetic algorithm,
genetic algorithm evolution flow are as follows:

Step1: Initialization. Usually, an initial population is generated randomly, the popula‐
tion size M depends on the nature of specific problems. In addition, we set up
the evolution algebra counter t as 0, the biggest evolution algebra as T.

Step2: Individual evaluation. A fitness function is used to calculate the fitness value of
each potential individual.

Step3: Selection operators. The quality of each potential individual depends on its
fitness value, better individuals are selected to the next generation with higher
probability in the iterating process.

Step4: Crossover operators. Create new individuals by selecting and recombining
genes from a pair of individuals in the current generation.

Photovoltaic Power Prediction Model 103

Step5: Mutation operators. A single individual in the current generation is changed
randomly to create a new individual. Then, the fitness value of all offspring are
evaluated.

Step6: Termination. Repeat steps 3–5 until a termination condition has been reached.

Evaluation

Fitness value

Reproduction

Crossover

Mutation

Evolution Environment

Population

GA Operators

Fig. 4. The process of genetic algorithm

Due to the intrinsic parallel property, parallel genetic algorithm is suitable to solve
large-scale parallel computation problems, it can not only improve the speed of opera‐
tion, but also prevent premature phenomenon. A MapReduce operation is invoked for
each generation of the population genetic evolution process, parallel genetic algorithm
based on MapReduce is implemented by map operation and reduce operation. To begin,
the input data set is split into several data blocks. Each data block is processed by an
independent map operation, map operation evaluate the fitness of each individual. The
results of each map operation are used as input of reduce operation. Reduce operation
can implement selection, crossover, mutation and so on. Hence, the flow chart of the
parallel genetic algorithm is shown in Fig. 5.

Input
data

Split

Split

Split

Map
operation

Map
operation

Map
operation

Reduce
operation

Output

Fig. 5. The flow chart of the parallel genetic algorithm

104 G. Xu and M. Liu

From the above analysis, Map function reads the individual groups saved on the
HDFS, and then evaluates the fitness of each individual, finally, the best individual can
be selected and wrote into HDFS. Map function pseudo code is as follows.

Map(key, individuals)
{

For individual in individuals
fitness=CalculateFitness(individual);
value=bind(individual,fitness);
If meet the migration condition

key=ChangeKey(key);
end if
emitIntermediate(key,value);

end for
}
Reduce function reads the output of map function saved on the HDFS, and combines

the values with the same key. Then, the selection, crossover and mutation operation of
sub populations are realized. Finally, sub population is wrote into HDFS and used as
the input data of the next MapReduce operation. Reduce function pseudo code is as
follows.

Reduce(key,values)
{

for value in values
Individuals[i]=value.Individual;
Fitness[i]=value.fitness;

end for
Individuals=Selection(individuals);
Individual=Crossover(individuals);
emitIntermediate(key, Individuals);

}

2.3 PV Power Prediction Model

Facing with the fact of bursting data in the PV industry, it is necessary and feasible to intro‐
duce the parallel computing technology to PV power prediction model. On the basis of
parallel BPNN algorithm and genetic algorithm, a novel PV power prediction model is
proposed, its diagram is shown in Fig. 6 [4]. It is well-known that the PV power output
mainly relates to meteorological factors, such as temperature, humidity, solar irradiance,
aerosol index and so on. Furthermore, meaning and specification of the input/output varia‐
bles of the proposed model are described in Table 1. In this study, the parallel BPNN can
establish the relationship between PV power output and meteorological factors. In addi‐
tion, in order to improve the convergence speed and accuracy of the BPNN, the initial
weights and thresholds are optimized by the parallel genetic algorithm. According to the
historical PV power output and historical meteorology data, PV power prediction model is
established to fit training. With the well-trained BPNN, hourly PV power output of the
objective day can be predicted by inputting the meteorological data of the objective day.

Photovoltaic Power Prediction Model 105

Historical PV power
output data

Historical
meteorology data

Parallel genetic
algorithm

Meteorology data of
the objective day

Parallel BPNN
algorithm

PV power prediction model

Optimization

Hourly PV power output of the objective day

Fig. 6. PV Power prediction model diagram

Table 1. The input/output variables of the proposed model

Input/output variables Description
x1 Temperature
x2 Humidity
x3 Solar irradiance
x4 Wind speed
x5 Aerosol index
x6 − x17 Historical output

power
o1 − o12 12 h PV power output

3 Experimental Results

In this section, a comparison of the proposed model and traditional BPNN model was
made to evaluate the high efficiency and scalability of the proposed model. After
performance evaluation, a case study is given to validate the feasibility and practicality
of the proposed model through its application to an actual PV power station. All the
experimental results and analysis are shown as follows.

3.1 Experiment Setup and Dataset

We have implemented parallel BPNN algorithm and parallel genetic algorithm based
on Hadoop. An experimental Hadoop cluster which consist of 6 computer nodes was
built to evaluate the performance of the proposed model. Each computer is equipped
with the same physical environment as shown in Table 2. The historical PV power
system monitoring data and historical meteorological data are acquired from an actual
20-MW capacity PV system located in Shanghai, China, during the period of May 1,
2013 to May 1, 2016, and these data are used as the training set and test set.

106 G. Xu and M. Liu

Table 2. Computer node physical environment

CPU Core i7@3 GHz
RAM 8 GB
SSD 1 TB
Network 10/100/1000 MHz Ethernet LAN
OS Ubuntu 16.02
JDK version 1.7.2, 64 bit
Hadoop
version

2.3.2, 64 bit

3.2 Execution Time and Scalability Experiment

Firstly, in order to evaluate that the proposed model based on parallel BPNN algorithm
and parallel genetic algorithm is superior to simple BPNN model in dealing with large
data set, we altered the number of computer nodes and recorded the corresponding
execution time, the execution time is depicted as the curves in Fig. 7.

Fig. 7. Execution time for different number of computer nodes

From Fig. 7, as the number of computer nodes increases, the execution time is grad‐
ually reduced. Further can see the execution time when running in single computer node
is much longer than the execution time when running in multiple computer nodes. When
dealing with large scale of data convergence, it becomes very difficult to converge the
network during the training process because of insufficient memory. Therefore, the
proposed model based on MapReduce programming model is beneficial to improve the
convergence speed and accuracy. On the other hand, with the increasing of the number
of computer nodes, the proposed model can always implement the convergence and
reduce execution time, the scalability performance of the proposed method is obviously.

Secondly, in order to validate that the proposed model obtains higher efficiency with
the help of genetic algorithm optimization, we compare convergence time of parallel
BPNN algorithm with and without genetic algorithm optimization by changing the
training accuracy while the number of computer nodes remains static at 4.

The convergence time of the two methods is depicted as the curves in Fig. 8. The x-
axis denotes the different training accuracy and y-axis presents the convergence time of

Photovoltaic Power Prediction Model 107

the two methods. As shown in Fig. 8, both two methods seem easier to converge when
training accuracy is set to a higher value. Besides, as the convergence accuracy grows
from 0.1 to 0.5%, we notice that the convergence time of parallel BPNN algorithm with
genetic algorithm optimization is much less than the convergence time of parallel BPNN
algorithm without genetic algorithm optimization. To sum up, optimizing BPNN by of
genetic algorithm is highly effective.

Fig. 8. Convergence time for different training accuracy

3.3 Power Prediction for an Actual PV Power System

The power prediction results are presented to verify the performance of the PV power
prediction model. For comparison purpose, the proposed model predicated value, simple
BPNN model predicated value and measured value of hourly PV power are depicted in
Fig. 9 [4]. From Fig. 9, it can be seen that both prediction results are approximate to the
measured values. It is hard to discover the superiority of the proposed model. Therefore,
in order to further evaluate the accuracy of the prediction results given by the proposed
model, the mean absolute percentage error (MAPE) is introduced to represent prediction
accuracy of a prediction method in statistics.

MAPE =
100
N

N∑
i=1

|Pp

i
− Pm

i
|

Pm
i

%

Fig. 9. PV output power prediction results

108 G. Xu and M. Liu

The mean absolute percentage error between predicted values P
p

i
 and measured

values Pm
i
 is calculated by the means of MAPE, the absolute prediction error of the hourly

PV outputs is shown in Fig. 10. As it can be found from the results of Figs. 9 and 10,
the predicted PV power outputs match measured data well with both simple BPNN
algorithm and the proposed model, it is obviously that the proposed model is suitable to
realize PV power prediction. Compared with simple BPNN model, prediction results
given by the proposed model has a better precision, its average error MAPE is only about
3.53%.

Fig. 10. The absolute prediction error of the hourly PV outputs

4 Conclusion

In this paper, a novel PV power prediction model based on the parallel BPNN algorithm
and the parallel genetic algorithm was presented for day-ahead hourly PV power predic‐
tion. A parallel BPNN algorithm based on MapReduce has a significant improvement
in the prediction accuracy and speed, and a parallel genetic algorithm based on MapRe‐
duce is developed for the optimization of neural network initial weights and thresholds,
experimental results show that algorithm’s execution efficiency is improved enormously
by using the parallel processing technique. Furthermore, the results of case study on a
practical solar PV power station indicate the effectiveness of the proposed model. Accu‐
rate prediction of PV station power generation plays an important role in the safe and
stable operation of power grid. As a future work, in order to further improving the
prediction accuracy, we plan to pay more attention to classify the PV power output
modes under different weather conditions by various data classification algorithms.

Acknowledgement. The research work presented in this paper is partially supported by the
Scientific Research Projects of the NSFC (Grant No. 61173015, 61573257) and Hangzhou
Municipal Science and Technology Bureau of social development and scientific research projects
(No. 20150533B16).

Photovoltaic Power Prediction Model 109

References

1. Sahu, B.K.: A study on global solar PV energy developments and policies with special focus
on the top ten solar PV power producing countries. Renew. Sustain. Energy Rev. 43, 621–
634 (2015)

2. Yang, H.T., Huang, C.M., Huang, Y.C., et al.: A weather-based hybrid method for 1-day ahead
hourly forecasting of PV power output. IEEE Trans. Sustain. Energy 5(3), 917–926 (2014)

3. Almonacid, F., Pérez-Higueras, P.J., Fernández, E.F., et al.: A methodology based on dynamic
artificial neural network for short-term forecasting of the power output of a PV generator.
Energy Convers. Manag. 85(9), 389–398 (2014)

4. Liu, J., Fang, W., Zhang, X., et al.: An improved photovoltaic power forecasting model with
the assistance of aerosol index data. IEEE Trans. Sustain. Energy 6(2), 1–9 (2015)

5. Teo, T.T., Logenthiran, T., Woo, W.L.: Forecasting of photovoltaic power using extreme
learning machine. In: 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA),
pp. 1–6. IEEE (2015)

6. Gunasekar, N., Mohanraj, M., Velmurugan, V.: Artificial neural network modeling of a
photovoltaic-thermal evaporator of solar assisted heat pumps. Energy 93, 908–922 (2015)

7. Chine, W., Mellit, A., Lughi, V., et al.: A novel fault diagnosis technique for photovoltaic
systems based on artificial neural networks. Renew. Energy 90, 501–512 (2016)

8. Hu, T., Zheng, M., Tan, J., et al.: Intelligent photovoltaic monitoring based on solar irradiance
big data and wireless sensor networks. Ad Hoc Netw. 35, 127–136 (2015)

9. Alabbas, M., Jaf, S., Abdullah, A.-H.M.: Optimize BpNN using new breeder genetic algorithm. In:
Hassanien, A.E., Shaalan, K., Gaber, T., Azar, A.T., Tolba, M.,F. (eds.) AISI 2016. AISC, vol. 533,
pp. 373–382. Springer, Heidelberg (2017). doi:10.1007/978-3-319-48308-5_36

10. Zhang, E., Hou, L., Shen, C., et al.: Sound quality prediction of vehicle interior noise and
mathematical modeling using a back propagation neural network (BPNN) based on particle
swarm optimization (PSO). Meas. Sci. Technol. 27(1), 015801 (2015)

11. Aljarah, I., Ludwig, S.A.: A scalable MapReduce-enabled glowworm swarm optimization
approach for high dimensional multimodal functions. Int. J. Swarm Intell. Res. (IJSIR) 7(1),
32–54 (2016)

12. Xu, H., Ding, X., Jin, H., Jiang, W.: Parallel top-k query processing on uncertain strings using
MapReduce. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol.
9050, pp. 89–103. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18123-3_6

13. Liu, Y., Yang, J., Huang, Y., et al.: MapReduce based parallel neural networks in enabling
large scale machine learning. Comput. Intell. Neurosci. 2, 1–13 (2015)

110 G. Xu and M. Liu

http://dx.doi.org/10.1007/978-3-319-48308-5_36
http://dx.doi.org/10.1007/978-3-319-18123-3_6

Author Index

Cao, Jian 31
Chen, Xiaochun 87

Dai, Shuji 65
Du, Zhikang 65

Ge, Jidong 3

Hu, Guangyi 75
Hu, Haiyang 3

Ji, Chunlei 49

Lei, Miaomiao 3
Li, Chuanyi 3
Li, Zhangbing 87
Li, Zhongjin 3
Liu, Jianxun 87
Liu, Min 99
Liu, Yazhou 65

Pan, Maolin 17

Shi, Bing 75
Shi, Xiaohui 17

Wang, Wenyan 17
Wang, Zhaowei 75
Wei, Hengheng 3
Wu, Xing 65

Xu, Gaowei 99

Yang, Dingyu 49
Yao, Yan 31
Yu, Yang 17

Zheng, Qiang 17
Zhong, Xiaoyong 87

	Preface
	Organization
	Contents
	Process Modeling
	Flexible Manufacturing Chain: A SCM for Electronic Commerce Enterprise in Clothing Industry Based on ...
	Abstract
	1 Introduction
	2 Application Scenario
	3 System Architecture
	3.1 Web User Interfaces
	3.2 Process Management Component
	3.3 Information Management Component

	4 Fundamental Techniques
	4.1 Business Process Modeling Language
	4.2 Process Monitoring Mechanism
	4.3 Process Improvement Mechanism

	5 System Demo
	5.1 Environment Setting Up
	5.2 Demonstration Steps

	6 Conclusion
	Acknowledgments
	References

	Process Enactment
	Crowdsourcing Complex Task Automatically by Workflow Technology
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 State Machine
	3.2 State Machine and Workflow

	4 Modeling
	4.1 Conceptual Meta-model of Crowdsourcing
	4.2 Modeling Life Cycle of Crowdsourcing Task Object
	4.3 Crowdsourcing Process Modelling

	5 Model Implementation
	5.1 Commons SCXML Introduction
	5.2 Total Design of BOWorkflow

	6 Case Study
	7 Conclusion and Future
	Acknowledgements
	References

	An Adaptive Scheduling Mechanism for Analytical Workflow Model
	Abstract
	1 Introduction
	2 Related Work
	3 Mathematical Models and Problem Formulation
	3.1 Analytical Workflow Model
	3.2 Cloud Resource Model
	3.3 Cost Model
	3.4 Problem Formulation

	4 Adaptive Scheduling Algorithm
	4.1 Initial Schedule Algorithm
	4.2 VM Consolidation Algorithm

	5 Case Study
	5.1 KNN-Based Classifier Workflow
	5.2 Simulation Setting
	5.3 Simulation Results

	6 Conclusion
	Acknowledgement
	References

	Data Driven Service Computing
	Monitoring as a Service Based on Pub/Sub System over a Cloud Environment
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Probe and Event
	3.2 Pub/Sub Monitoring System
	3.3 Subscriptions Storage
	3.4 Monitoring Service and Application

	4 System Improvement
	4.1 Complex Event Processing
	4.2 Adaptive Monitoring Frequency
	4.3 Subscription Load Balance

	5 Experiment Evaluation
	5.1 Adaptive Monitoring Frequency
	5.2 Subscription Load Balance

	6 Conclusion
	References

	The Fault Tolerance of Big Data Systems
	Abstract
	1 Introduction
	2 Applications of Big Data
	2.1 General Applications
	2.2 Case Studies of Big Data

	3 The Architecture of Big Data
	4 Fault Tolerance in Big Data
	4.1 Fault Tolerance in Batch Computing
	4.2 Fault Tolerance in Stream Computing
	4.3 Fault Tolerance in Spark
	4.4 Fault Tolerance in SDN

	5 Conclusion
	Acknowledgements
	References

	A Market-Based Analysis of Bidding Strategy Between Web Service Providers and Users
	Abstract
	1 Introduction
	2 Market Model
	2.1 Basic Setting
	2.2 The Expected Utility

	3 The Fictitious Play Algorithm
	3.1 Computing the Best Response
	3.2 Updating the FP Beliefs
	3.3 Measuring Convergence
	3.4 Algorithm Overview

	4 Equilibrium Analysis
	4.1 For One-Unit Service Marketplaces
	4.2 For Multi-unit Service Marketplaces

	5 Conclusion
	Acknowledgments
	References

	A Lightweight Hash-Based Mutual Authentication Protocol for RFID
	Abstract
	1 Introduction
	2 Lightweight RFID Mutual Authentication Protocol Based on Dynamic Shared-Key
	2.1 Initial Condition
	2.2 Authentication Steps
	2.3 Protocol Characteristics

	3 Safety and Performance Analysis
	3.1 Security Analysis
	3.2 Computational Performance Analysis
	3.3 Proof of the Protocol with SVO Logic

	4 Conclusions
	Acknowledgments
	References

	Photovoltaic Power Prediction Model Based on Parallel Neural Network and Genetic Algorithms
	Abstract
	1 Introduction
	2 Prediction Model for PV Output Power
	2.1 Parallel BPNN Algorithm
	2.2 Parallel Genetic Algorithm
	2.3 PV Power Prediction Model

	3 Experimental Results
	3.1 Experiment Setup and Dataset
	3.2 Execution Time and Scalability Experiment
	3.3 Power Prediction for an Actual PV Power System

	4 Conclusion
	Acknowledgement
	References

	Author Index

