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Preface

The understanding of how the brain works and enables intelligence, memory,
learning and control of behaviour has been perhaps the most desired knowledge that
mankind seeks. Improved understanding of the working principles of the brain
could lead to accurate diagnosis and cure of neural diseases including seizure
disorders (such as epilepsy), movement disorders (such as Parkinson’s disease),
migraine, delirium and dementia (such as Alzheimer’s disease), as well as design of
efficient neural prosthesis, such as bionic eye, ear, tongue and nose, to overcome the
effects of structural, biochemical and/or electrical abnormalities.

Neurophysiological studies are of paramount importance in revealing the
underlying behaviours and properties of neurons, providing a good understanding
of the nervous system. These studies have paved the way for the development of
neuro-prosthetics and brain–machine interface (BMI) devices. For instance,
intra-neuronal recordings from the primary motor cortex have been investigated to
develop neural decoders that can eventually drive artificial prostheses or machines.
The contribution of these studies in understanding neurological disorders, such as
the use of intracranial electrodes to gather information pertaining to epileptic
patients, has played a key role in developing new therapies. Indeed, extracellular
cellular recording technologies have been employed to understand the influence of
gamma-protocadherine, which regulates the endurance of a neural network and the
generation of new synapses.

One of the common factors behind all the aforementioned neuroscientific
breakthroughs is the ability to access inter- and intra-neuronal functionality and
communication, so as to decipher the neural networks’ collective behaviours
without disrupting their natural functioning. Extracellular recordings are the pre-
ferred techniques to aid in neurophysiological studies, and the recordings can be
mainly grouped into two categories: in vivo (invasive) and in vitro (non-invasive).

In this book, we have made an attempt to explore the emerging trends of neu-
roengineering technologies and neural computation techniques to provide a general
insight of the current research advancements and future research directions in this
domain. New technologies and techniques appear on a regular basis, giving rise to
the need of a unified information source that could keep readers up to date with the
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advancements in this field. This book will serve as a great resource of information
in addressing the current trends and future prospects in the fields of neuroengi-
neering and neural computation.

The book is divided into two major parts: neuroengineering and neural com-
putation. The neuroengineering part covers emerging technological trends and
novel techniques to interact with the brain. The neural computation part covers a
variety of computing models and techniques to decipher useful information pro-
cessing capabilities of the human brain.

Neuroengineering is an emerging multidisciplinary field of research that is about
using scientific methods to understand and model the nervous system, and to use
this knowledge to engineer systems that interact with, augment, or mimic the
functionality of the nervous system. The dynamics, biophysical mechanisms, and
information processing capabilities of individual neurons are fairly well understood;
however, a detailed collection of the facts concerning the functionality of single
neuron is insufficient to explain that of a large neuronal network. A quantitative and
scalable explanation of how large recurrent neuronal assemblies develop and learn
is the unsolved problem, and has attracted a great deal of attention in recent years.

Chapters “CMOS-Based High-Density Microelectrode Arrays: Technology and
Applications” and “Microelectrode Arrays: Architecture, Challenges and
Engineering Solutions” of this book highlight the technology trends, which
include the architecture, challenges and material solutions, in developing highly
efficient micro/nano electrodes as well as neural interfacing technologies such as
CMOS-based microelectrodes for high resolution recording of the brain activity.
Chapters “Revolutionizing Causal Circuitry Neurostimulation Utilizing the
Optogenetic Technique Through Advanced Microsystems Development” and
“Physiological Monitoring in Deep Brain Stimulation: Toward Closed-Loop
Neuromodulation Therapies” highlight the emerging trends in opto-genetics and
deep brain stimulations, which have attracted paramount attention from the neu-
roscience communities in recent years. Opto-genetics involves the use of light to
control cells in living neurons, whereas deep brain stimulations have proven useful
in treating a variety of neurological disorders, such as Parkinson’s disease, tremors,
rigidity, stiffness, slowed movement, and walking problems. Chapter “Mechanism
of Docosahexaenoic Acid in the Enhancement of Neuronal Signalling” presents the
use of extracellular recording and analysis to explore the effects of chemical
stimulations. Chapter “Insects Neural Model: Potential Alternate to Mammals for
Electrophysiological Studies” highlights the potential of electrophysiological
studies of insects’ neural model as an alternate to mammals, employing neuro-
engineering and extracellular analysis techniques. Chapter “Synchronization
Criteria for Delay Coupled Izhikevich Neurons” describes the neural functional-
ity of the brain employing mathematical techniques and stability analysis of the
presented model.

Neural computation covers computing models and techniques that represent the
characteristics and functionalities of the human brain, particularly the biological
nervous system. As part of machine learning, these computing models attempt to
imitate the information processing capabilities of the human brain through the
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combination of simple computational elements, or known as neurons, in a highly
interconnected system. Some of the key characteristics of neural computation
include input–output mapping (supervised learning), nonlinearity, adaptability,
parallelism, and fault tolerance. While research in neural computation has been in
existence for a few decades now, this area still attracts the attention of many
scientists and researchers owing to the intrinsic importance of understanding and
imitating the capabilities of the human brain in information processing.

Chapter “Capturing Cognition via EEG Based Functional Brain Networks”
highlights the use of transfer entropy to analyse multi-channel electroencephalog-
raphy (EEG) data and to examine the dynamics of functional brain networks with
respect to cognitive activities. Chapter “Modelling of Tumour-Induced
Angiogenesis Influenced by Haptotaxis” describes a mathematical model to sim-
ulate the influence of haptotaxis on angiogenesis, which shows that that migration
of endothelial cells can be accelerated when the invasive tumour enhances hapto-
taxis. Chapter “Noise Reduction in ECG Signals Using Wavelet Transform and
Dynamic Thresholding” presents a noise reduction technique to process noisy
electrocardiogram (ECG) signals. Wavelet transform and dynamic thresholding are
used to reduce different types of noise such that a high signal-to-noise ratio could be
produced.

Chapters “Development of a Co-evolutionary Radial Basis Function Neural
Classifier by a k-Random Opponents Topology”–“Monotone Data Samples Do Not
Always Generate Monotone Fuzzy If-Then Rules” describe research in data ana-
lytics problems using artificial neural networks and related methods. A competitive
co-evolutionary radial basis function neural network is presented in Chapter
“Development of a Co-evolutionary Radial Basis Function Neural Classifier by a k-
random Opponents Topology”. During the co-evolutionary process, individual
networks interact with each other in an intra-specific competition, while global and
local search procedures are exploited to find the optimal solutions. In Chapter
“Mining Outliers from Medical Datasets Using Neighbourhood Rough Set and Data
Classification with Neural Network”, a modified neighbourhood rough set is used
as a pre-processing method to select representative samples for training the radial
basis function network. An enhanced functional link neural network for data
classification is described in Chapter “A Modified Functional Link Neural Network
for Data Classification”. The genetic algorithm is employed to optimize the func-
tional link neural network by performing both weight tuning as well as selection of
expanded input features. Chapter “Experimental Study of Elman Network in
Temporal Classification” evaluates the usefulness of the Elman neural network as a
temporal data classifier. In Chapter “Monotone Data Samples Do Not Always
Generate Monotone Fuzzy If-Then Rules”, a technique to generate fuzzy if-then
rules is described. The results indicate that a set of multi-attribute monotone data
may lead to non-monotone fuzzy rules, which is in agreement with the observation
obtained from the adaptive neural fuzzy inference system that has neural learning
capabilities.
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CMOS-Based High-Density
Microelectrode Arrays: Technology
and Applications

Marie Engelene J. Obien, Wei Gong, Urs Frey
and Douglas James Bakkum

Abstract Functional analysis of brain activity requires high-throughput and
high-resolution tools for observation and manipulation. One approach is the use of
microelectrode arrays (MEAs) for long-term in vitro extracellular recording of
electrical activity from multiple neurons. Electrodes arranged on a planar substrate
detect electric signals from surrounding neurons produced by ionic current flow
through the cell membranes. Despite the advantages, MEA data analyses have been
limited to extract parameters as a population average (e.g., firing rate). In order to
extract information at the single-neuron or subcellular level, MEAs with high
spatiotemporal resolution and good signal quality are required. In this chapter, we
introduce the current trends on the technology and applications of complementary
metal–oxide–semiconductor or CMOS-based high-density microelectrode arrays
(HDMEAs). We review the recent HDMEA applications that facilitate single
neuron and neuronal network studies and accelerate drug screening and biomarker
discovery.

Keywords High-density microelectrode arrays (HDMEAs) ⋅ Extracellular
recording ⋅ Action potential ⋅ Local field potential

1 Introduction

Increasingly, approaches for high-resolution activity mapping of neuronal networks
are being developed through coordinated interdisciplinary efforts from various
fields, including biology, genetics, biochemistry, optics, and engineering [1]. The
main goal is to eventually map the whole brain and understand how the networks of
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neurons are within the brain function [2]. This requires developing techniques for
simultaneous recording of neuronal activity at multiple spatial and temporal scales
and for manipulating the activity of neurons of interest. Complementary metal–
oxide–semiconductor or CMOS-based high-density microelectrode arrays
(HDMEAs) offer a promising platform to do so. Thousands of neurons can be
simultaneously recorded and/or electrically stimulated over time scales of
microseconds to months. Owing to the high-density feature, a single neuron can be
recorded by hundreds of electrodes. This facilitates assigning recorded spikes to
their source neurons, termed spike-sorting, and allows the subcellular mapping of a
neuron’s axonal arbor.

Electrical recording of neuronal activity has been the preferred means of ana-
lyzing single neuron and neuronal networks [3, 4]. Electrical signals produced by
neurons can be detected at a distance from the source. Several recording tools apply
to different spatial scales. At the mesoscale, where local neuronal populations can
be analyzed, a popular method is extracellular recording using metal electrodes. An
electrode placed inside a brain slice in vitro or inserted in the brain in vivo detects
electrical signals produced by the surrounding cells. A wide range of neural phe-
nomena can be observed, from the spiking activity of individual neurons (extra-
cellular action potentials or EAPs; bandwidth: 300–3000 Hz) to the slower network
oscillations of small populations (local field potentials or LFPs; bandwidth: 1–
300 Hz), as shown in Fig. 1. Additionally, the same electrode can be used to deliver
electrical stimulation to a local area in the brain. While applying this method for
brain recording and stimulation is relatively straightforward, the challenge lies in

Fig. 1 Extracellular and intracellular recording. Left Illustration of cells across cortical layers
modified with permission from [6]. Right Signals of simultaneous extracellular recording and
intracellular whole-cell patch-clamp recording modified with permission from [7]

4 M.E.J. Obien et al.



the analysis of recorded data. With hundreds of possible signal sources surrounding
an electrode, the specificity and selectivity of such technique is poor. Thus,
extracellular recording has been widely used for analyzing population activity. In
contrast, intracellular recording by patch clamp has been the gold standard for
analyzing single neuron. This method is powerful, yet necessitates intricate skill to
perform. The viability of patched neurons lasts only up to a few hours. Moreover,
current implementations of the experimental setup are bulky. All these limit the
capability of the patch-clamp technique to scale for studying networks of neurons
[5].

To achieve high-resolution activity mapping of neuronal networks, multiple
electrical sensors tightly spaced in an array can be utilized. Microelectrode arrays
(MEAs, also termed multielectrode arrays) allow simultaneous long-term recording
of LFPs and EAPs from a population of neurons at sub-millisecond time scale. In
order to increase spatial resolution, i.e., to place thousands of electrodes per square
millimeter, the area taken up by wiring between electrodes and readout circuitry has
to be reduced. This has been made possible using industrial CMOS technology to
create high-density MEAs (HDMEAs). As an added benefit, readout circuitry, such
as amplifiers and analog-to-digital converters, can be included on the same substrate
as the electrodes in order to improve signal quality. The design of the on-chip signal
conditioning circuitry should consider the electrode impedance and the possible
sources of noise to ensure high-quality signals. HDMEAs with good signal-to-noise
ratio (SNR) can be used to map single neuronal activity at subcellular resolution
and to observe network activity at the same time [9, 10], as illustrated in Fig. 2.

This chapter focuses on the technology and applications of CMOS-based
HDMEAs. As data obtained from MEA experiments done in vivo and in vitro are
often very similar, the analytical concepts we include here apply to both. We
discuss the current understanding of the MEA signal flow and the different factors
affecting the shape of the recorded MEA signals from neurons. We also review
recent works using MEAs, with emphasis on new techniques using HDMEAs, for
neuroscience and medicine.

2 CMOS-Based HDMEA Technology

Advances in fabrication and semiconductor technologies allowed the miniaturiza-
tion of modern biosensor devices. For MEAs, this meant integrating active elec-
tronic components in the same substrate, together with the electrodes. A technology
for constructing integrated circuits is called complementary metal–oxide–semi-
conductor (CMOS), hence the term CMOS-based MEAs. CMOS technology
enables increasing the electrode count in a single device, from dozens to tens of
thousands of electrodes, in turn producing high-density microelectrode arrays
(HDMEAs) while also improving the signal quality of recordings [11, 12]. Fur-
thermore, tapping into the large and established CMOS production industry pro-
vides an economy of scale for HDMEA production.

CMOS-Based High-Density Microelectrode Arrays … 5



Fig. 2 Obtaining network-wide and single-neuron activity maps using CMOS-based HDMEAs.
a–d Networks. a Average EAP firing rate as measured by each electrode (26,400 electrodes in
total) shown as pixels colored with a logarithmic gray- scale between 1 Hz and 2 kHz. Red dots
correspond to the electrodes selected for the raster plot in (d). b Representation of all 2000
individual neurons identified through spike-sorting signals. A circle represents each detectable cell;
the edges indicate where the amplitude of the measured signals exceeds –4.5 standard deviations of
the electrode noise. The colors correspond to the amplitude of the most negative peak detected by
the electrodes within the circle. c Fluorescence image of transfected cells (around 5% of all cells in
the culture). d Raster plot of 100 s of activity for 1024 electrodes recorded simultaneously. Red
marker shows the time period in close-up view (bursting activity) on the right. Histogram at the
upper right shows the number of spikes per time bin of the burst close-up. e–h Single-neuron
electrical footprint. e All electrodes that captured activity attributed to a single neuron are colored
according to the time of arrival of the AP at the electrode locations. f The same electrodes in e are
colored according to the amplitude of the most negative peak detected. g–h Spike-triggered
averages (30–50 averages) of the EAP electrical footprint from the two areas of the array as
indicated by black boxes in (f). All figures modified with permission from [8]
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2.1 Device Types

MEA architectures have evolved throughout the years. In general, the
electrode-to-readout routing scheme can be divided into two types: fixed wiring
(i.e., each electrode is directly wired to outside of the array, connecting to the signal
conditioning circuit) and multiplexed array (i.e., routing from electrodes traverses
switches before reaching the signal conditioning circuit). We further classify the
MEA device types, as shown in Fig. 3.

Passive Conventional MEAs have fixed wiring and are passive (i.e., no active
circuit elements, such as amplifiers). Each electrode connects directly to a signal
pad outside the array through a wire. The pads are then connected to external
equipment for signal conditioning. Passive MEAs are easy to fabricate and many
different substrates and electrode materials can be used. The user has direct access
to all electrodes simultaneously; however, wiring and electrode geometry limit the
total number of electrodes that can fit in a given area. Examples of passive MEAs
were developed and used by [13–28].

Fig. 3 MEA architectures. This table summarizes the different architectures used for MEAs. a Passive:
Fixed wiring with electrodes directly connected to signal pads and no active circuitry. b Fixed wiring
with electrodes directly connected to on-chip active circuitry for signal conditioning. c Switch matrix
(SM): Multiplexed array with flexible addressing achieved by adding more routing resources within the
array. d Active pixel sensor (APS): Multiplexed array with all electrodes sampled at fast speeds for a
full-frame readout. Modified with permission from [12]

CMOS-Based High-Density Microelectrode Arrays … 7



Fixed Wiring with On-chip Circuitry These types of MEAs have electrodes
directly wired to on-chip active circuit elements that are used for signal condi-
tioning, such as amplification and filtering. One variation employs multiplexers to
allow readout of more electrodes despite a limited number of signal output pads.
Multiplexing can be done only if the amplifiers and filters are before the multi-
plexer. Although this architecture allows for increased electrode count, the elec-
trode density cannot be maximized (i.e., direct wiring of each electrode to signal
conditioning circuitry occupies chip area that could have been used to add elec-
trodes or readout channels). Selected fixed wirings with on-chip circuitry MEA
references are [29–33].

Switch Matrix (SM) The switch matrix (SM) concept uses transistors to
implement switches within the array to route signals from electrodes to readout
circuitry placed outside the actual electrode array. In the SM concept, these routing
means are operated in static mode, meaning that some electrodes are selected by
opening or closing the switches and a recording is then started without changing the
electrode selection. Typically, not all electrodes detect activity during an MEA
experiment, thus choosing a subset of ‘interesting’ electrodes is possible. A com-
mon protocol is to first scan all the electrodes in successive recordings to determine
which electrodes to later continuously record during an experiment. The advantage
of this concept is that large, low-noise amplifiers can be implemented outside the
actual electrode array, allowing to optimize amplifiers for best possible SNR. SM
MEAs have been implemented and various degrees of flexibility that the routing
means provide. Very simply row, column-based selectability has been implemented
[34]. Increased degree of freedom in selecting subsets of electrodes was achieved
for the following in vivo probes [35–37]. The availability of a large set of wires,
switches, and local memory allows for even more complex routing paths that
connect a subset of electrodes to the readout and stimulation channels in a flexible
manner. Frey et al. [10] use 1.2 memory cells on average per electrode, allowing
already fairly complex routing. Ballini et al. [9] use 2.2 memory cells per electrode,
drastically increasing the possibilities in selecting subsets. Viswam et al. [38]
increased the number of bits per electrode to more than 3, virtually allowing
arbitrarily subset selections. Switch matrix MEAs were developed by [9, 10, 34–
39].

Full-Frame Readout (Active Pixel Sensor or APS) Similar to image sensors
used in cameras, all electrodes in active pixel sensor (APS) MEAs can be sampled
at fast speeds in full-frame readout. Typically, rectangular sub-arrays can be chosen
as regions of interest and sampled at faster rates than full-frame readout. For
full-frame readout, the front-end amplification and filtering have to be before the
multiplexing, meaning the front-end amplifier has to be located within the pixel
itself. This is because the electrode exhibits high impedance and therefore, without
an amplifier, cannot drive multiplexed readout lines at sufficient speed. The small
pixel area (i.e., available area near each electrode) serves as a limitation to
designing very low-noise circuitry for APS MEAs, since small-sized amplifiers
inherently generate larger noise levels. Thus, while all electrodes can be recorded at

8 M.E.J. Obien et al.



the same time, only relatively large signals are detectable from noise. Examples of
APS MEAs are [39–48].

Recent HDMEAs (SM and APS) aim to increase the total number of electrodes
and the spatial resolution to allow for ever more demanding applications to be
executed. The design of on-chip signal conditioning is crucial to achieve
high-quality signals. However, due to area availability and power consumption

CMOS-Based High-Density Microelectrode Arrays … 9



limitations, there remains a compromise between the quality of recorded signals and
the number of parallel electrodes readout. SM HDMEAs prioritize signal quality,
while APS HDMEAs target a high number of parallel readout channels, see Fig. 4.

2.2 Experimental Parameters

HDMEAs have been used for recording EAPs and LFPs from neurons and evoking
neuronal activity through electrical stimulation. There are three main components
affecting the recording and stimulation performance of MEAs: (a) the conductive
extracellular volume where the electric field, caused by neuronal activity, forms; (b) the
substrate with the embedded microelectrodes; and (c) the hardware connected to the
electrodes, including amplifiers, filters, digitizer, data transmission, and stimulator [50,
51]. Figure 5 illustrates the components of the MEA signal flow. Noise affects the MEA

◀Fig. 4 Device comparison. a HDMEA in vivo and in vitro implementations are shown according
to the sensing area size and electrode density. For devices with a regular sensor pitch, such as most
in vitro MEA devices, the total area is calculated as number of electrodes times the pixel area. For
all devices, the number of electrode times the inverse of the electrode density matches the total
area. The light gray lines illustrate the number of electrodes. b CMOS-based MEAs are compared
with respect to parallel recording channel count and noise level. The noise values shown are
approximated root-mean-square values stated in the respective citations. Note that the conditions
under which these measurements were taken usually differ significantly (e.g., noise bandwidth, in-
or exclusion of electrode noise, inclusion of ADC quantization noise, etc.). This graph only serves
as a rough comparison, indicating noise values under both known and unknown conditions. The
waveforms to illustrate the noise levels are simulated and have a spectrum typical for MEA
recordings. The simulated spikes in the boxes (left) are typical spikes for acute brain slice
measurements recorded with microelectrodes. The recorded amplitudes may vary significantly
depending on preparation and sensor characteristics. Modified with permission from [12]. (See
footnotes (1Area is calculated as total horizontal extent multiplied by the vertical extent. For
probes, horizontal extent corresponds to shaft width. 2Only one subarray of 16 electrodes is
considered. 3The frame rate for this design is 20 frames per second, significantly lower than other
MEAs. 4Noise values are taken from reference [49]. 5The authors state that with a new acquisition
board, the parallel channel count could be increased to 1024 at 9.3 kS/s.))

Fig. 5 MEA recording and stimulation system diagram. A neuron’s signal, typically an action
potential, is transduced through different components of the signal path into a digitally recorded
trace. Similarly, a digital pattern generated from a computer or the MEA hardware applies current
or voltage at the electrode during stimulation. Adapted with permission from [12]
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signal across these components. Sources of noise include biological noise, electrode–
electrolyte interface noise, and device noise [12].

2.2.1 Neuron–Electrode Interface

The early MEA neuron–electrode interface model assumed a tight seal between the
neuron and the electrode [52]. However, extracellular microelectrodes can record
EAPs and LFPs at a distance from active neurons, as observed in acute tissue and
in vivo experiments. Likewise, for 2D neuronal networks grown on a MEA, EAPs
can be detected from electrodes distant from the neuronal source. Thus, the neuron–
electrode interface model can be separated into two parts: (1) the fluid side, which
considers the effect of the volume conductor to the extracellular potential at the
electrodes and (2) the metal side, which models the transformation of the extra-
cellular potential through the electrode to the input of the front-end amplifier.

2.2.2 Volume Conductor

The distance and orientation of neurons with respect to measuring electrodes affect the
amplitude and shape of the detected signals. The characteristics of the extracellular
space, such as conductivity, anisotropy, and inhomogeneity, influence the spread of
neuronal signals toward the electrodes. These effects can be estimated using the volume
conductor theory illustrated in Fig. 6a. As a first-order approximation, the MEA surface
can be considered as an infinite insulating plane, while the tissue and/or fluid in the
MEA dish can be assumed to be infinite, homogeneous, and isotropic. A neuron’s
membrane current can be decomposed into several point current sources. The method of
images can then be applied to Coulomb’s law to solve the potential Ve at any given
electrode e in a volume conductor with conductivity σ [12, 55]:

Ve =
1

2πσ
∑

In
rn
,

where In represents the nth point current source and rn represents the distance
between the point source and the recording electrode e, with n = 1, …, N, where N
is the number of individual point sources. For electrodes larger than an ideal point
electrode, Ve can be solved at multiple locations of the electrode’s surface area and
then averaged. This equation can be extended to include the anisotropy and inho-
mogeneity of brain tissue, the saline layer above the tissue, and to use line sources
instead of point sources to represent neuronal membrane currents [55].

2.2.3 Electrodes and Recording Hardware

Various materials have been used for fabricating planar microelectrodes for MEAs.
The most crucial factors to be tested are biocompatibility and electrode impedance.
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Depending on the electrode material and fabrication method, the performance of
electrodes may differ. Uniform impedance of all the electrodes in HDMEAs ensures
consistency between recording sites.

A neuronal signal is transduced by an electrode into a current, and this process
depends on the parameters of the effective electrode impedance Ze’ and effective
input impedance Za’. We discuss this using the equivalent circuit of the electrode–
electrolyte interface as shown in Fig. 6b. Noise (e.g., thermal noise and power line
hum) can be injected into the recorded signal at the liquid–metal interface. Ze’ is the
total impedance due to Rspread, Re, Ce, and Rm. Rspread represents the effect of the
electrode geometry and liquid conductivity. Re and Ce are the resistance and
capacitance of the electrode double layer formed at the electrode–electrolyte

Fig. 6 MEA neuron–electrode interface divided into a fluid side and b metal side. a The potential
at the electrode sites can be solved using the volume conductor theory. The MEA surface can be
assumed as an insulator such that the method of images applies and can be used to solve the
potential at any point on the MEA surface. The neuron–electrode distance and neuron orientation
influences the signal amplitude and shape detected at the electrodes. High spatial resolution allows
for recording EAPs at several locations of a single neuron, with large negative spikes at the
perisomatic area and positive spikes at the dendritic area, i.e., return current. b The voltage
measured at the electrode is transformed by the electrical parameters of the electrode–electrolyte
interface, represented by Ze’ as the effective electrode impedance and Za’ as the effective input
impedance. This model is derived from [11, 53, 54]. Rspread–spreading resistance; Re and Ce–

resistance and capacitance of the electric double layer at the electrode–electrolyte interface; Rm—

resistance of the metallic part of the electrode; Rs and Cs–shunt resistance and capacitance.
Adapted with permission from [12]
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interface. Rm is the resistance of the metallic part of the electrode. Connected in
series to Ze’ is Za’, which is mostly influenced by the input impedance of the
front-end amplifier Za and the shunt capacitance Cs. Cs includes the capacitances
from connectors and wires from the liquid to the amplifier. The shunt resistance Rs

is usually negligible. All these represent the metal side of the neuron–electrode
interface. For more details on the circuit model, see [11, 53, 54].

Front-end amplifiers are designed to have large Za’ in order to preserve signal
quality. The ratio between Ze’ and Za’ shows how to derive the voltage at the input
of the amplifier as [53]:

VinðωÞ= VeðωÞ
1+ Z ′

eðωÞ ̸Z ′
aðωÞ

� � ,

where Ve(ω) is the total extracellular potential at the electrode and Vin(ω) is the
voltage at the input of the front-end amplifier. Vin will be smaller than Ve, i.e., the
signal will be attenuated if Za’ is not substantially larger than Ze’.

Aside from the impedance effect to Ze’, electrode size plays an important role
depending on the signal of interest. Large electrodes (>50 μm diameter) have a
higher chance of being near a neuronal source [56]. However, the detected
amplitude of a large EAP signal from a neuron is reduced as it is averaged out by
nearby smaller amplitude signals. Sorting all the signals detected by a single large
electrode to their respective individual sources can also be daunting when many
neurons are nearby. For recording EAPs, especially for dissociated cell culture
experiments, the use of small electrodes (<15 μm diameter) minimizes averaging.
Small electrodes are inferior against large electrodes in terms of impedance, but this
can be improved by surface modification. For example, the influence of electrode
size (<10 μm diameter) on recorded signal amplitude significantly decreases by
depositing Pt-black on platinum microelectrodes [57]. HDMEAs have small elec-
trodes to allow the integration of a large number of sensors in an array. The dense
grid of electrodes in HDMEAs, as shown in Fig. 7, increases the possibility of
having an electrode ‘at the right spot’ while also allowing a single neuron to be
recorded from multiple electrodes.

Novel 3D micro- and nano-structure electrodes aim to detect subthreshold
neuronal signals (e.g., synaptic potentials, membrane oscillations) and membrane
potentials [58]. These subthreshold signals are conventionally measured using
invasive sharp microelectrodes or patch clamp. The 3D electrodes seek to achieve
either a tight seal with the neuronal membrane or to temporarily puncture into the
membrane and access the intracellular space of a neuron. With advancements in
fabrication techniques, large-scale integration of 3D micro- and nano-electrodes
will be feasible on HDMEAs.

HDMEA circuitry includes amplifiers, filters, and some sort of data transmitter
of either the amplified analog signals or, more typically, of the already digitized
data. As discussed in the previous section, the front-end amplifier needs high input
impedance to ensure signal quality. The circuitry near the cells must be low
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powered in order to prevent heating that could damage the cells. Appropriate
settings for gain and dynamic range of the readout depend on the preparation (e.g.,
maximal amplitudes of a few hundred microvolts in acute slice preparations and up
to 10 mV in cardiomyocyte experiments). The recording bandwidth needs to be
flexible to cover both LFP and EAP frequency ranges, depending on the experi-
ment, in order to avoid filtering out signals of interest.

Analog-to-digital conversion (ADC) can be included in the device or done
externally. Quantization noise due to the discretization error at the ADC can affect
the recorded signals. Typically, a value of 1 ̸

ffiffiffiffiffi
12

p
times the magnitude of the least

significant bit (LSB) approximates the quantization noise. Data transmission may
also affect the quality of recorded signal, e.g., if lossy compression is used due to
bandwidth constraints.

2.2.4 Stimulation

MEAs allow passive observation of neural activity but also can actively influence
and control activity. Metal electrodes can deliver electrical stimuli directly. CMOS

Fig. 7 Comparison of the recording capability of small electrodes at high-density and large
electrodes. a The EAPs of three identified neurons (green, red, and blue) detected from each
electrode site (light gray rectangles) are superimposed to a fluorescence image (MAP2 staining) of
a cell culture on a HDMEA. Each spike represents the spike-triggered average over 50 trials.
Spikes with amplitude below 50 μV are not shown. White squares represent the location of
hypothetical large electrodes (60 μm × 60 μm) used for comparison of signals. b Raw traces
from small electrodes (1–5) and large electrodes (m, n) indicated in (a). Signals for the large
electrodes (m, n) are estimated by averaging the traces of the small electrodes within the area
covered by the white squares. Estimated signals from (m, n) show reduced amplitudes due to the
averaging effect only. The impedance effect due to electrode size differences may be neglected due
to high input impedance at the first-end amplifier of the HDMEA, and is thus not considered.
Modified with permission from [8]
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fabrication allows including electrical stimulation circuitry directly on-chip, in turn
allowing a high degree of flexibility in generating spatiotemporal patterns of
stimulation owing to dense and flexible wiring, higher spatial resolution for stim-
ulation owing to densely packed electrodes, and room for on-chip circuitry to blank
or suppress stimulation artifacts.

Electrical stimulation has been typically applied as a “trigger” for the so-called
stimulus-triggered averaging [59]. By delivering electrical pulses through the
microelectrode, action potentials (APs) can be triggered from nearby neurons, with
an effective stimulation range depending on the neuron’s distance from the stim-
ulation site and the amplitude of the pulse. With HDMEAs, stimulus-triggered
averaging reveals the electrical activity footprint of a single neuron, i.e., signals
detected at the electrode sites corresponding to the EAPs from a single neuron,
where negative spikes correspond to the AP initiated at the axonal initial segment
and the positive spikes represent return current, including the propagation of APs in
axons [60]. The stimulation amplitude has to be sufficient to consistently evoke an
AP with small temporal jitter, e.g., a jitter of 160 μs [61]. Figure 8a shows how
small axonal signals, typically undetectable from noise, become observable by
increasing the number of trials averaged. The number of trials that must be averaged
depends on the spike amplitude as shown in Fig. 8b.

One issue of electrical stimulation is the occurrence of artifacts in the recording
channels. Stimulation pulses are typically three to four orders of magnitude larger
than the recorded EAPs; the recording channels can pick up the artifacts through the
wiring in the circuitry or through the media to neighboring electrodes. If the artifact
amplitude is large, the amplification circuits may saturate and this prevents
recording neuronal activity until the offset settles back to normal. Figure 8c pro-
vides an example of signal saturation due to stimulation in a SM HDMEA [10].
A recording electrode near the stimulation electrode (18 μm away) saturated for
around 5 ms; another electrode located far from the stimulation site (1.5 mm away)
did not saturate. Figure 8d presents the relationship between the distance from
stimulation to recording electrode and the duration of saturation for an
11,011-electrode MEA [10], without employing any artifact suppression measures.
As long as the amplifiers do not fully saturate, artifacts can be suppressed via
software by subtracting the estimated artifact (based on templates, filters, or local
curve fitting) from the data [62, 63]. To also allow recording from electrodes on
which saturation would occur, counter measures in hardware have to be employed.
One solution is to use a “reset” switch that can bring back the saturated amplifier
into normal operation quickly, by resetting the high-pass filter of the front-end
amplifier [10, 45].

Local delivery of stimulation pulses can be achieved by HDMEAs. Figure 8e, f
shows stimuli-activated neuronal responses with high spatiotemporal precision. In a
study to track axonal APs [60] several ten thousands of stimuli used for
stimulus-triggered averaging did not damage the electrodes or the cells.
Voltage-mode stimulation was used, although the stimulation hardware supported
both current- and voltage-mode [64].
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Combined recording and stimulation capabilities allow performing closed-loop
experiments, whereby recorded signals are programmed to control the application
of electrical stimuli. In such experiments, spike detection is performed online,
typically through a dedicated hardware, e.g., a desktop with a real-time operating
system or a field-programmable gate array (FPGA) [65, 66].
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3 Applications in Neuroscience

In this section, we discuss specific neuroscience studies from selected experiments.
Measurements done using passive MEAs can also be done using CMOS-based
HDMEAs. However, the high spatiotemporal resolution of HDMEAs leads to novel
types of data that were not possible to collect using conventional MEA devices.

In recent years, CMOS-based MEAs have been increasingly used for neuro-
science and biomedical research. Figure 9 lists the currently available CMOS-based
in vitro MEAs, their key specifications, and the experimental preparations for which
they have been applied so far. The two most prominent preparations investigated
using these devices are dissociated cell cultures from snails [44], rats [8, 49, 60, 65,
67–70] and chicken [65] and acute retina from mice [71–76], rats [77–79], rabbits
[9, 80, 81], hamsters [82], guinea pigs [42, 83], and humans [84]. Additionally, data
from acute slices of cerebellum [85, 86], cortex [87, 88], and olfactory bulb [46]
have been presented. Cultured cardiomyocytes were also studied [30, 34, 89–91]
and first results from mice organotypic hippocampal slices were presented [92].
This section reviews recent neuroscience applications of HDMEAs.

◀Fig. 8 Stimulation capability of HDMEAs. a–b Stimulus-triggered averaging improves detection
of axonal signals. a Evoked spikes detected at three chosen sites (columns) along the same axon.
Each row shows individual traces obtained by increasing the number of averaged trials, from 1 to
60. Scale bars, 1 ms horizontal, 10 μV vertical. b The number of averaged trials necessary to
detect a spike with a given height (0.5–3 times the standard deviation of the noise, σ) with respect
to the detection threshold. c–d Electrical stimulation affects recorded signals of elec-
trodes <100 μm away from the stimulation site. c Left A raw trace recorded at an electrode
neighboring a stimulation electrode (18 μm away) saturated for about 4 ms (flat line). Right A raw
trace recorded at an electrode located 1.46 mm away from a stimulation electrode did not saturate.
d The duration of a saturated signal occurring after stimuli decreases with increasing distance from
the stimulation electrode (mean ± s.e.m.; N = 18 stimulation electrodes from five HDMEAs).
Stimuli consisted of biphasic voltage pulses between 100 and 200 ms duration per phase and
between ± 400 and 800 mV amplitude. e–f Electrical stimulation can be delivered locally to axons
and evoke action potentials. e Locations of stimulation electrodes that directly evoked (black
boxes) or did not evoke (empty or filled gray boxes) APs detected at a soma located ∼890 μm
away. The line arrow indicates the orthodromic propagation direction. Scale bar, 20 μm. f Voltage
traces of somatic APs elicited by biphasic voltage stimuli. Traces in response to eight stimuli are
overlaid for each of three stimulation magnitudes (indicated at the top), plotted for all effective
(black), and four ineffective stimulation sites (gray at the bottom). Stimulation electrode locations
are represented as numbered boxes in (e). Scale bar, 200 μV. All panels and description adapted
with permission from [60]
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Fig. 9 CMOS-based in vitro MEAs, their key specifications, and references to biological
applications for recording and stimulation. The specifications may differ for other device versions.
Modified with permission from [12]
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3.1 Dissociated Cell Culture

3.1.1 Investigating Axonal Signals

HDMEAs with high SNR, such as SM HDMEAs [8, 10], allowed detection and
tracking of APs propagating along a neuron’s axon over days for the first time [60].
Axonal signals are difficult to measure using conventional methods—thin axons are
challenging to patch and extracellular signal amplitudes are low compared to those
from the soma and axon initial segment. In this work, the propagation of APs along
the full arbor of a neuron has been electrically imaged, as shown in Fig. 10.
Subsequently, axonal AP velocity was found to vary within single axon, hinting
that axon velocity might contribute to temporal coding schemes of neuronal
information. This capability can help expand new fields of research, such as axonal
information processing and neuronal computation. Tracking the velocity of axonal
signals also provides a new and promising parameter that can be used for analyzing
the effect of different therapies, e.g., drugs and prolonged electrical stimulation, to
the information transfer and signaling between neurons.

HDMEAs have also been used for precise microstimulation. By taking advan-
tage of the high electrode density, the responses of neurons to different stimulation
patterns and intensity can be investigated, including how best to selectively

Fig. 10 Imaging axonal signal propagation with HDMEAs. a Antidromic action potential
triggered by electrical stimulation at the axon. Left Heat map shows stimulation-triggered averages
of 60 traces from 95 electrodes. Dark colored line from top to bottom indicates the antidromic
propagation of an AP from the stimulation site. A subsequent rebound from the soma is also
visible. Right A subset of averaged raw traces. Scale bars, 1 ms horizontal; 100 μV vertical. b The
electrical footprint of the stimulated neuron recorded in (a). The gray-scale pixels indicate the
maximum peak-to-peak amplitude of the APs detected at each electrode. The red circles denote the
locations of the subset of traces in (a). The black arrows show the direction of the AP propagation
along the axon, while the blue arrow indicates the subsequent rebound. The green dot is the
location where the green trace in (a) was recorded from. Scale bar, 100 μm. c AP propagation
velocity changes, as shown by the colored dots along the electrical image of the axon. Adapted
with permission from [60]
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stimulate single neuron [93]. Characterization of how stimulation affects neurons
can benefit the design of stimulation therapies for clinical use.

3.1.2 Analyzing Networks

HDMEAs, especially devices with a readout channel count on the order of thou-
sands, can be utilized to analyze neuronal networks in dissociated cell cultures. The
spontaneous activity of neuronal networks varies from one culture to another. There
can be behaviors, however, that are similar. For example, using parametric models
to analyze activity patterns and their sensitivity to changes showed that neuronal
networks are sloppy, i.e., insensitive to changes in many parameter combinations,
but very sensitive to a few [94]. Sloppiness behavior was also observed in vivo by
recording from monkey visual cortex. Another study investigated synchronized
activities in spontaneously active cell cultures [95], see Fig. 11. The authors dis-
covered that a repertoire of repeating spatiotemporal patterns exists during network
bursts. Some patterns shared similar sequence of activation of subpopulations of
neurons, which suggested that the network conserves certain spatiotemporal acti-
vation patterns. Different sets of activated subpopulations of neurons tended to
appear repeatedly, indicating that such spatiotemporal patterns may be related to the
state of the network.

For low-density cultures, functional connectivity of neurons in the network has
been estimated [96]. Using low-density cultures, optical visualization of stained
neurons provides an estimate of the structural connectivity of neurons. Imaged
locations of neurons support the identification of neurons using HDMEA signals.
Maccione et al. processed and analyzed the functional connectivity of neurons from
HDMEA signals by ad hoc developed spatiotemporal filtering and by applying a
cross-correlation-based method.

3.2 Acute Retina

3.2.1 Extracting Retina Cell Types by Light Stimulation

The retina encodes visual input and sends information to the brain via the optic nerve.
Retinal ganglion cells (RGCs) serve as the final output of the retina; they encode visual
information as complex patterns of APs. The planar arrangement of RGC bodies and
axons is highly compatible with MEA recordings from retina explants. Acute retina
tissue superfused with oxygenated Ringer’s medium can survive and respond to light
stimulations for several hours. A significant capability of applying HDMEAs to study
the retina is the identification of different RGC types and the mapping of their receptive
fields. Fiscella et al. developed a method to examine the AP responses of mice RGCs to
different light stimulation patterns, e.g., moving bars at different angles. Different pop-
ulations of ON–OFF direction-selective RGCs were identified by extracting the APs
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synchronized with light stimulations and by spike sorting [72], see Fig. 12. Proper
intensity and focal width adjustments of light stimulation aimed at the array area are
important to prevent light-induced noise or fluctuations to the recording channels.

A similar technique was used to characterize hamster RGCs [82]. Light stimu-
lation responses of different RGC populations were evaluated according to direction
selectivity, speed tuning, width tuning, transience, and latency. Out of 262 RGCs
recorded using HDMEA, seven distinct RGC groups were extracted using the
evaluated parameters.

Fig. 11 Analysis of subpopulation activation during synchronized bursts. a Schematic illustration
of the sequential activation of neuronal subpopulations during synchronized spontaneous activity
in cell cultures. Such sequential activation of subpopulations is hypothesized to generate stable
spatiotemporal patterns. b Illustration of the procedure to evaluate the sequences of subpopulation
activation during bursts. Upper right A sample template of subpopulation activation weights
(SPAWs) of five subpopulation patterns (SPPs) during a burst. Lower right SPAWs from the upper
right image were converted into a sequence of their peaks. Upper left SPAWs computed for the
chosen SPPs during a 5 s recording. Lower middle to right Subpopulation sequences of bursts
were compared with the template sequence. Permutation times for matching refers to the way in
which many pair permutations are required to match the template sequence. Duplet/triplet order
matching indicates whether the order of two/three subpopulations matches the template sequence.
Adapted with permission from [95]
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Fig. 12 Classification of ON–OFF retinal ganglion cells using HDMEAs and light stimulation.
a Mouse retina patch placed on the HDMEA with the ganglion-cell-side down. b Schematic of the
mammalian retina: ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;
IPL, inner plexiform layer; GCL, ganglion cell layer; MEA, microelectrode array. Light stimulus
detected by the photoreceptors will be processed by the retinal circuitry and converted into action
potentials, which are generated by the retinal ganglion cells (indicated by green, blue, and red
cells) in the GCL. APs can be recorded by the MEA. c Samples of spike trains belonging to three
different types of retinal ganglion cells (Blue ON type, Red OFF type, Green ON–OFF type) in
response to the same light stimulus. The white bar represents a light stimulus brighter than the
background light level. The gray bar represents a light stimulus darker than the background light
level. d Superposition of 959 APs (gray traces) from six electrodes, indicated in (e). e Electrical
footprint of a single RGC using averaged signals. The thick-black waveform denotes the highest
peak-to-peak amplitude (central electrode). Color code (right corner) yellow-red indicates the
region of maximum signal amplitude (active electrodes with APs –4.5 standard deviations above
the noise level). f–h Physiological response of RGCs. Top Polar plot showing the responses of the
RGC to motion of a bar in 8 directions at 45° radial intervals. Bottom Inter-spike interval
distribution showing the time intervals between consecutive spikes. f Blue = ON RGC.
g Red = OFF RGC. h Green = ON–OFF RGC. Adapted with permission from [72]
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3.2.2 Network Oscillations in Degenerated Retinas

Aside from EAPs, LFPs have been detected from retinas using HDMEAs. In
rod-degenerated (rd1) mice retinas, ON- and OFF-type RGCs exhibit spontaneous
oscillatory spike activity due to the loss of photoreceptors [97]. Such oscillatory
spiking was found to coincide with LFPs through HDMEA recordings [75], as
shown in Fig. 13. LFPs initiated at random locations on the retina and propagated
across the retina. LFPs also persisted in the presence of pharmacological blockers,
such as TTX. The authors suggested that large-scale retinal network oscillations are
caused by excitation of electrically coupled interneurons.

3.3 Acute Brain Slice

An acute brain slice can be placed on MEAs to monitor the electrical activity of
neurons in a 3D environment. Cutting the brain into very thin slices allows access to
neurons deep in the brain for imaging, i.e., mapping the anatomy. The same method
can be used for recording the activity of neurons that are otherwise difficult to reach
and identify in vivo. Perfusion of fresh oxygenated artificial cerebrospinal fluid
keeps the neurons viable for up to 10 h. The neurons and network structure in slices
are physiologically and biochemically similar to the in vivo situation.

Fig. 13 RGC spiking and local field potential minima coincide in rod-degenerated mice retinas.
a Extracellular recordings from an APS HDMEA electrode, indicated by a black dot in subplot
(b1). Filter settings of 1 Hz to 3 kHz revealed single spike and a slow oscillatory extracellular
potential. The superimposed red trace, low pass filtered at 1 to 60 Hz, reveals LFPs. The open
green arrows mark the start point and end point of a six frame series of extracellular voltage maps,
shown in (b). b Extracellular voltage maps or “electrical images” recorded at a spatial resolution of
8 × 16 μm captured the origin and propagation of LFPs. Each image represents the average
extracellular voltage over 2 ms. Separation between images is 10 ms. Scale bar, 200 μm. Adapted
with permission from [75]
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3.3.1 Analyzing Local Network Activity in Brain Slices

LFPs and oscillations inherent in different states of the brain can be measured. Such
recordings have been done for different brain areas, e.g., hippocampus, suprachi-
asmatic nucleus, etc. HDMEAs have the ability to extract electrical images of
neuronal network activity in slices at high spatial resolution. For instance, func-
tional imaging of the dentate gyrus has been demonstrated using HDMEAs [87].
Field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation
were detected across different layers of the acute slice, as shown in Fig. 14a–c.

High-resolution imaging of epileptiform activity in slices has also been done.
Not only can the propagation of activity be mapped using HDMEAs, but more data
for analysis and statistics can be obtained compared to conventional MEAs.
Medrihan et al. [88] showed that the absence of synapsin II (Syn II), a protein
related to epilepsy, decreases tonic inhibition in mouse hippocampal slices, thus
increasing synchronized bursts (see Fig. 14d, e). THIP (4, 5, 6,
7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol; gaboxadol), a selective agonist of δ
subunit-containing GABAA receptors, restores tonic inhibition.

3.3.2 Analyzing Single Neuron in Brain Slices

Depth recording of EAPs from neurons up to 100 μm distance from the MEA
surface was also shown [98, 99]. Using HDMEAs, subcellular resolution recording
from single Purkinje cell (PC) in acute cerebellar slices has been demonstrated [85].
To ensure the quality of recorded signals, proper tissue adhesion on the MEA
surface has to be maintained throughout the experiment. Adhesion can be achieved
by cellulose nitrate coating [98], but also by a slice anchor typically used for
patch-clamp recordings. EAPs were observed along the PC layer and, after spike
sorting, the EAP footprint of a single PC was analyzed. The negative spikes were
recorded around the perisomatic area of the neuron, while positive spikes were
obtained along the molecular layer corresponding to the dendrites of the PC.
A comparison of the high spatiotemporal resolution recording with simulations of a
full-compartmental model based on the stereotypical morphology of a PC was
done. Figure 15 shows both measured and simulated EAP data from PCs at high
resolution. Although the planar geometry of a PC is advantageous, a similar
analysis can be applied to neurons in other brain areas.

3.4 Organotypic Brain Slice Culture

The organotypic brain slice culture method has been applied to study different brain
areas, such as hippocampus [100], striatum [101], cortex, spinal cord [102], and
cerebellum [103]. Moreover, several co-culture models study the interactions
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Fig. 14 Network waves in acute hippocampal slices. a–c Functional imaging of the dentate gyrus,
adapted with permission from [87]. a A cortico-hippocampal slice placed atop an APS HDMEA,
with superimposed color-coded fEPSP activity. b Close-up on the activated area in (a). The white
tip indicates the site of stimulation using a patch pipette. c Recorded traces of fEPSPs from three
chosen electrodes indicated in (b). Electrode 1 is located in the dendritic layer of the dentate gyrus,
electrode 2 in the granular cell layer, and electrode 3 in the polymorphic layer. d, e Using
HDMEAs to study the effect of deleting synapsin II (Syn II) on tonic inhibition in mouse
hippocampal slices, adapted with permission from [88]. d Mean firing rate computed from each
electrode from WT and Syn II knock-out hippocampal slices before and after THIP treatment.
THIP: (4, 5, 6, 7-tetrahydroisoxazolo [5, 4-c] pyridin-3-ol; gaboxadol), a selective agonist of δ
subunit-containing GABAA receptors. e Raster plots showing highly synchronized bursts, x-axis
corresponds to time, y-axis corresponds to pixels (electrode). THIP reduced the high frequency
bursts in Syn II knock-out hippocampus. Scale bar: 1 min
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between different brain networks, such as entorhino-hippocampal, cortico-spinal,
and cortico-striatal preparations [104]. Compared with dissociated cell cultures,
organotypic brain slice cultures better preserve the anatomy of brain regions, since
the synaptic connections have been partially maintained. Advantages of organ-
otypic slice cultures over acute slice cultures include a long (weeks) experimental
time window with multiple measurement points. This allows observing effects from
chronic manipulations on slice cultures.

Fig. 15 High-resolution mapping of spontaneous cerebellar Purkinje cell activity using
HDMEAs. a Activity map of the detectable spike activity in the recording area. Small dots
correspond to the electrodes used for recording (∼ 30% of the available electrodes). Events
exceeding a threshold of ±36 μV were used to calculate the color-coded event rate. Scale bar:
0.3 mm. b Close-up of a region with high activity delimited in (a). All units identified by spike
sorting are marked, i.e., the somatic region is blue and the dendritic region is red. Scale bar:
0.1 mm. c Schematic of the basic cellular structures in the cerebellar slice (Gray, 1918). Scale bar:
0.1 mm. ML, molecular layer; PCL, Purkinje cell layer; GL, granular layer; CF, climbing fiber;
MF, mossy fiber; PF, parallel fiber; PC, Purkinje cell; GgC, Golgi cell; SC, stellate cell; BC, basket
cell. d Footprint of a PC selected from the region shown in (b). Scale bar: vertical is 200 μV,
horizontal is 1.9 ms. e Current source density (CSD) analysis for the cell shown in (d) at several
points in time (green sink; yellow source). The sink moves from the soma at 0.4 ms to the
proximal dendrites at 0.6 ms and covers the dendritic area, while the soma repolarizes. Frequency
band: 180 Hz–3.5 kHz. f–h Matching simulated and measured EAP footprints. All panels and
descriptions adapted with permission from [85]
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3.4.1 Different Methods for Organotypic Slice Cultivation

The two most commonly used methods of organotypic slice preparation are the
roller tube method [105] and the membrane interface method [106]. The roller tube
method glues the slice culture on top of a glass coverslip using a drop of plasma and
thrombin. The slice culture is continuously rotated inside a test tube, such that the
slice cultures would be immersed in the culture media during half a cycle of the
rotation, and exposed to air during the other half. On the other hand, the membrane
interface method cultivates slice cultures on top of semipermeable membranes at
the interface between culture medium below and air above. The slice cultures
receive extra oxygen from the air, while still having contact with the culture
medium. The membrane interface method is an easier preparation, while the roller
tube method produces monolayer-thick slice cultures making it easier to image
individual cells for analysis. The roller tube method can be directly integrated with
MEAs by adhering slices on MEAs instead of glass slides. On the other hand, the
membrane interface method cannot be directly implemented on MEAs because the
slice would need to interface with the submerged MEA surface for recording.
Instead, the slice culture can be cut off from the membrane insert and flipped upside
down to face the electrode array in a one-time experiment. In this case, an anchor,
similar to one used for acute slice experiments, is required on top of the slice culture
to improve the contact between the slice culture and the electrode array.

Fig. 16 Electrical activity
maps of a hippocampal slice
culture at four different time
points (6–34 days in vitro,
DIV). The colors, coded from
white to dark red, indicate the
largest amplitudes detected at
each electrode. The neurons
in the organotypic slice
remained spontaneously
active for over one month,
with decreasing spiking
amplitudes after DIV 10.
Adapted with permission
from [107]
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Long-term HDMEA recordings of hippocampal slice cultures have been shown
[107]. By developing a novel system based on the roller tube method, organotypic
hippocampal slices were cultivated on HDMEAs for months. This system allowed
continuous observation of neuronal spike activity at a single-unit and network
levels at the same time, which was done over consecutive weeks at daily intervals,
as presented in Fig. 16.

3.5 Other Advanced Techniques

HDMEAs allow easy integration of other methods and techniques for advanced
measurements. Depending on the study, other equipment for neuronal recording
and manipulation can be combined with the HDMEA setup, and the data from each
tool can be synchronized. Microdevices, such as microfluidics, can also be readily
attached on the HDMEA surface. Moreover, partial data analysis can be performed
online, which can be useful to automatically deliver stimulation and control com-
bined devices.

3.5.1 Investigating Neuronal Plasticity Through Closed-Loop
Stimulation

SM HDMEAs enable simultaneous stimulation and recording of arbitrarily selected
neurons in a network. By changing spike timing between sets of neurons via
electrical simulations, the functional network connectivity was also changed [66].
In this study, a reprogrammable event engine unit was programmed into a
field-programmable gate array. The system can detect arbitrary action potential
patterns and use these to trigger electrical stimulations to arbitrary neurons, pro-
viding flexible and sub-millisecond latency closed-loop feedback. Cross-correlation
analysis of spike trains showed the spike timing of the selectively stimulated
neurons changed, which indicated that plasticity was induced in the network
(Fig. 17).

3.5.2 Amplifying Axonal Signals Using PDMS Tunnels

Neuron axonal signals can be amplified if an axon is grown through poly-
dimethylsiloxane (PDMS) micro-tunnels [70]. PDMS tunnels were attached on top
of an HDMEA and cultured cortical neurons on each side of the tunnels. In time,
many axons naturally enter and grow through the tunnels. While axonal signals
outside of tunnels were also detectable, tunnels amplify the signals enough to avoid
the need to average across trials and single axonal AP can be observed. By
recording the spontaneous activities of the neurons, axonal signals were signifi-
cantly amplified by a factor of 20–150.
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Stimulating the neurons at different stimulation frequencies caused changes in
spike shape and velocity of axonal signals inside the channels [69]. Velocity and
spike height decreased for increased stimulation frequency. Furthermore, potassium
ion concentrations impacted axonal spike amplitude and propagation velocity. High
potassium concentration improved signal fidelity while low concentrations caused
axonal propagation failures (Fig. 18).

4 Applications for Medicine

HDMEAs provide a promising platform for drug screening and pre-clinical therapy
diagnostics of electrogenic cells, e.g., brain, retina, and heart cells. In particular,
human-induced pluripotent stem cells (hIPSCs) require an efficient readout for
functional analysis, which can be achieved using HDMEAs. Culturing hIPSCs on
HDMEAs has been proven feasible and the cells remained viable up to three
months [108]. Spontaneous activity and responses to electrical stimulation were

Fig. 17 Effect of closed-loop stimulation. a Spontaneous activity of two neurons before the
application of the closed-loop stimulation. Spike traces are median waveforms of several spikes
aligned at the negative peak. Top In green, spike trace from neuron A, the trigger neuron. Middle
In yellow, spike trance of neuron B, a neuron with correlated spiking activity. Bottom
Cross-correlation curve of spike times of neuron B with respect to neuron A. Red-dotted lines
denote the 95% confidence intervals. Around 2000–3000 spikes were used to compute the
cross-correlation. Elevated correlated activity of neuron B was observed around 2.4 ± 0.4 ms after
neuron A fired an AP. b Same as (a), but with closed-loop feedback stimulation applied. The time
delay of the spikes between neurons A and B was reduced to around 1.1 ms. Stimulation is applied
upon detection of a spike from neuron A. During stimulation, the trace of neuron A was zeroed
out. c Same as (a), but after application of the closed-loop stimulation. The cross-correlation plot
changed after closed-loop stimulation. d Schematic of the synaptic connectivity between neurons
A and B and the artificial synapse caused by closed-loop stimulation. e Comparison between the
cross-correlation curves before (black) and after (red) the closed-loop stimulation. Adapted with
permission from [66]
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Fig. 18 PDMS axonal channel device on HDMEA amplifies axonal signals. Spontaneous spike
propagation from a soma to a branched axon. a Illustration of the axonal channel device, with 12 μm
channels, and neuronal culture chambers. The black rectangle shows dimensions of the HDMEA used
(1.75 × 2.0 mm2). b Photograph of a packaged HDMEA chip wire bonded to a printed circuit board
and with the PDMS channel device on top. The plastic ring (18 mm diameter) holds the cell culture
medium. Scale bar, 2 mm. c Close-up view of a fluorescence image of cultured neurons at the top
chamber. Tau1 (axons) is shown in green, DAPI (nuclei) in blue, and GFAP (glia) in red. d Sample
waveforms recorded in the PDMS channels. Individual spikes are shown in gray and spike-triggered
averaged waveforms are indicated by colors green for signals from the perisomatic area and blue to
purple from the axons under the channel device. A branching axon growing into three channels was
observed. The small axonal signal outside of the channels is shown in light blue (averaged). Electrodes in
three adjacent channels recorded spikes that were time aligned with that of the soma, and their positions
and spike shapes are shown. The spike amplitudes detected under the channels were significantly larger
compared with the signals from the axon outside the channels. A cartoon neuron was drawn over the
traces to guide the eye. Adapted with permission from [70]

characterized. The authors found that spontaneous spiking activity of hIPSCs
peaked around 81 DIV and that hIPSCs responded to electrical stimulation.
Low-frequency electrical stimulations (0.2 Hz, biphasic current with peak-to-peak
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amplitude of 300 μA) led to an increase in the number of active electrodes, i.e.,
from 564 ± 28 to 688 ± 21, but decreased the mean firing rate, i.e., 0.66 ± 0.03–
0.58 ± 0.03 spikes/s). Figure 19 summarizes these results.

The recent advent of CRISPR/Cas9-mediated genome editing has paved the way for
fast development of disease models [109]. Mice models of human diseases can be used
to characterize the functional differences of cells from different parts of the body
compared to their healthy counterparts. HDMEAs can provide high-throughput and
high-quality characterization of cells in culture and in acute preparations. One appli-
cation of such characterization is biomarker identification, which has been done for a
human retina disease called congenital nystagmus caused by FRMD7 gene mutation
[76]. A mouse model of such disease was developed and light stimulation evoked
responses of RGCs in the retina were recorded and analyzed in a high-throughput
manner. Using HDMEAs, it was found that FRMD7 mutation leads to selective loss of
horizontal selection selectivity of RGCs, as illustrated in Fig. 20.

5 Outlook

This chapter has shown the current state of CMOS-based HDMEA research in
terms of technology and biomedical applications. Novel types of data can be
obtained, which opens up new waves of possibilities for neuroscience discoveries
and medical advancements. Potential future developments include device hardware
improvements, advanced experimental methods, and new data analysis techniques.

Fig. 19 Spontaneous activity
of hIPSCs. Recorded
extracellular signal traces
show changes in firing rates
during development. The
activity develops from single
spike (8 DIV), tonic firing (28
DIV) to bursting, and
synchronized spikes (81, and
90 DIV). Red arrows denote
the start of propagating burst.
Adapted with permission
from [108]
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Next-generation HDMEAs may target increased array area, electrode density,
and number of parallel recording/stimulation channels. A larger array area will
extend the observable region of a sample, allowing simultaneous access to more
neurons in cell cultures and to more distal brain areas in slices. This also enables

Fig. 20 Screening transgenic mouse models of human eye diseases with HDMEAs. Top Polar
plots showing the preferred directions (directions of arrows) and direction-selectivity index (length
of an arrow) of individual direction-selective retinal ganglion cells in a WT and b FRMD7tm

retinas. The color code shows the different preferred directions (green = superior, blue = nasal,
purple = inferior, and orange = temporal). (Middle Raster plots showing the spike responses
(each black line is a spike) of example DS cells in WT and FRMD7tm retinas in response to motion
in eight different directions, indicated by the arrows at the bottom of the plot. Bottom polar plots of
the normalized mean spike numbers of cells shown in middle panes. The preferred direction and
DSI of each cell are represented by the direction and length of the corresponding (color-coded)
arrow. Adapted with permission from [76]
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opportunities for co-culturing different tissues or brain regions. Higher spatial
resolution and more recording channels will assist spike-sorting accuracy and will
potentially increase the number of detectable neurons per square millimeter. Mul-
tiple HDMEAs can also be combined in a multiwell-plate format, making
HDMEAs compatible to current drug screening protocols.

Aside from improving the devices through resolution and scalability, adding new
functionalities may also be done. Other readout circuitry may also be integrated in
HDMEA devices, e.g., neurotransmitter and impedance measurement units [38].
Multi-modal measurement of neuronal activity will be helpful to understand the
overall neuronal network function and the interplay between electrical activity and
biochemical release.

Another promising route is the combination of HDMEA with different tools
separate from the device, such as optical methods. Fluorescent calcium and voltage
indicators, generic markers, and optogenetics have been used to map and manip-
ulate brain activity. Similar to extracellular recordings, the presence of many
molecules and compartments in the brain with different optical properties renders
optical recording and analysis challenging. Of interest is to pinpoint the advantages
and constraints of electrophysiological versus optical methods to determine how
they can complement each other. For example, optogenetic manipulation of specific
cellular subpopulations, while measuring the responses of the neurons using
HDMEAs, will allow studying functional roles of different classes of neurons [110].
Additionally, the effect of different optogenetic therapies to compensate for neu-
ronal dysfunction can be tested with HDMEAs.

Data obtained from next-generation HDMEAs and multi-modal experiments
require advanced computational analysis and modeling techniques. Fast imple-
mentations of spike-sorting algorithms and parallel computing are needed to handle
the large amounts of data produced during long-term HDMEA experiments.
Multi-scale modeling, a system biology technique, may be employed to synchro-
nize events recorded at different time and spatial scales. Overall, all data analysis
methods need to be optimized to extract meaningful information within a feasible
time from the massive amounts of data produced.
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Microelectrode Arrays: Architecture,
Challenges and Engineering Solutions
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and Asim Bhatti

Abstract Neural interfaces are connections linking the neuronal systems with
electro-mechanical systems for information exchange. Microelectrodes of various
designs have been fabricated utilizing both metallic and non-metallic materials so
that they can be employed as neural interfaces. Recent studies have shown that the
performance of microelectrodes can be enhanced significantly through structure
controlling, surface chemistry and biotechnology. This review highlights the
challenges including invasiveness, stability and selectivity associated with the
employment of common electrodes as interfaces for neural recording and stimu-
lation. It also includes controlling of electrode material and geometry as engi-
neering solutions for the aforementioned challenges. Due to their high surface area,
small size and high electrochemical properties, nanostructured electrodes show
promise as electrodes that could be employed as neural interfaces for stable signal
recording and stimulation. We hope this work will provide a concise picture of the
evolution and the progress of current neural interfaces technology, the development
of which is still in progress.
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1 Introduction

As neurons in the nervous system communicate by electrical signals, neuroscience
has given great attention to understanding how they are electrically connected in
their networks as a major key to exploring the physiological and pathological
functions of neurons [1]. Neural interface is an effective tool that enables the
information to be exchanged in two directions within the nervous system. Electrical
stimulation is a process by which the introduced information to the nervous system
can be employed as an external control. The contraction of muscle resulting in
stimulation of motor nerves is an example of external control [2]. Recently, brain–
machine interfaces have been used to control prosthetic limbs by enabling users to
supervise and process the activities of neurons. Deep brain stimulation is an
effective method to treat patients suffering from Parkinson’s disease [3], mental
illness [4], depression [5], obsessive compulsive disorder [6] and epilepsy as
neurological disorders by applying pulses of voltage or current to particular pro-
found regions in the brain. Furthermore, electronic devices have been successfully
instilled in the brain, eyes and cochlea to elicit and iterate the missing or weakened
sensory and muscle function. In such devices, neural interfaces are the most
important components [7, 8]. To measure the action potential and record the neural
activity, different methods have been applied. These methods include: (a) extra-
cellular recording and stimulation, (b) intracellular recording and stimulation,
(c) technologies of optical imaging and stimulation and (d) methods designed to
record signals of in extensive neural populations such as electroencephalography,
magnetoencephalography and functional magnetic resonance imaging and
electrocardiography.

Intracellular and extracellular recording are two prime electrophysiology meth-
ods that have been employed for measuring action potential and realization of
neural information processing in neural circuits. Intracellular recording is more
suitable for sensitive recording, but it needs rending a part of plasma membrane to
approach the cell abdomen directly. Therefore, intracellular recording is a highly
invasive method and difficult to perform causing significant limitations for
long-term or large-scale recording. Extracellular recording, however, is a
non-invasive method and supports long-term recording, but the weakness in signal
strength and poor quality of the recorded signals are significant limitations of this
method [1, 8]. For recording of action potential, microelectrodes should be close to
neurological target cells, the surface area of the electrode should not exceed 4000 µ2

for single unit recording and the ratio of signal to noise of the recorded action
potential should not be less than 5:1. Electrochemical impedance is one of the most
important electrochemical properties of the recording electrode. Signal-to-noise
ratio has an inverse relationship with the electrode impedance, as lower impedance
is equivalent to having higher signal-to-noise ratio. Furthermore, amalgamation of
high impedance of the electrode and the distribution of the capacitance between the
recording amplifier and the electrode leads to reduction of high frequency response
of the electrode [9].
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Many materials such as platinum, gold, stainless steel, tungsten, iridium oxide
and titanium nitride have been used to fabricate the recording electrodes [10].
Neural interfaces need to be implanted deeply in the brain to record the action
potentials of neurons; therefore, the implantation process will be accompanied by
significant clinical risks represented by tissue damage and infection of target sites.
For less tissue damage and accurate long-term recording, implanted interfaces with
smallest cross section and largest number of electrode sites are the ideal interfaces.
Microelectrodes are used to stimulate neurons as well as signal recording. Current
picoamperes range is required to excite single neurons by the technique of patch
clamp while current in the microamperes and milliamps ranges are required for
nerve and muscle stimulation respectively. Microelectrode arrays are the most
important component in the brain–machine interfaces as they act in a way that
facilitates direct contact between the neural tissue and the electrical sensor. To
obtain harmonious signals recorded from small clusters of neurons with retention of
micro-stimulation abilities, microelectrode arrays are fabricated in a way that
enables them to provide a low impedance path for the charge movement represented
by charge injection and charge transformation. For low impedance, microelectrode
arrays were made of highly conductive materials and fabricated in specific
geometries [11]. To decrease the impedance of the microelectrode and improve the
neural recording, porous structures such as carbon nanotubes, Pt-black and
high-conductive polymers were employed to increase the effective surface area of
the exposed part of the electrode [12–15].

The use of electrical stimulation of neural tissue goes back to the time of the
invention of electricity. Electrical shock with 400 V from catfish was used for pain
relief and as a treatment of several diseases by Ancient Egyptians in 2500 BC [16].
Also, there is historical evidence that refers to the use of electricity in religious
rituals as a means to influence the spirit [17]. For pain relief and stimulation of
blood circulation, ancient Greeks employed electric eels to apply electrical pulses in
foot baths. Benjamin Franklin [18, 19], in 1759 looked into the contraction of
muscles as a result of an electrical shock. A fuzzy concept was introduced in 1791
by Luigi Galvani illustrating the electricity in an animal’s body after electrically
stimulating frogs legs [20]. In the year 1939, a major development in the design of
neural interface occurred when Hodgkin and Huxley [21] studied the electrical
signals recorded from single neural fibre by reduction of neural interface size. In
1960, an important attempt in use of the neural interface system was done by Evarts
[22] when electrophysiological experiments were conducted on the primary motor
cortex of springy monkeys. Evarts pointed out that the firing rate of solitary neurons
highly corresponded with the force created by the joints of the moving arm.
Another significant transitional step in neural interface design and application took
place in 1985, when microwire array electrodes came into force when dealing with
a large number of patients [23, 24].

Electrodes made of diverse materials with different shapes and geometries have
been employed as interfaces for neural recording and stimulation. These electrodes
can be classified into two main groups: metal-based electrodes and non-metal-based
electrodes.
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2 Metal-Based Electrodes

Metals of high electrochemical properties and good biocompatibility have been
used to fabricate electrodes for neural interfaces. These electrodes have been
designed in different geometries to match the biological and electrochemical
requirements.

2.1 Microwire Arrays

Microwires were the first electrodes made of sharpened metal and were used to
record electrical signals chronically from the individual neuron in the brain by
implanting the electrodes inside the brain. The wires were totally insulated except
their tips, which were left uninsulated to inject neurons with current pulses and
record their extracellular potentials [25].

Figure 1 is an exemplary array of microwires. Nontoxic metals of high corrosion
resistance such as gold, platinum, tungsten and stainless steel were used to fabricate
microwire arrays [26]. Stainless steel microwires, with a diameter of 80 µm, were
used to record the action potentials from stimulated neurons of animals that had
been awake for more than week [27]. As a sharpened steel microwire electrode has
insufficient rigidity, Hubel [28] used pencil-like tungsten microwire electrodes with
a tip point of 0.5 µm diameter for recording signals receipted from mammalian
nerves. The electrodes were insulated with a suitable varnish up to the tip. The
measurements showed that tungsten microwire electrodes have a low
signal-to-noise ratio and slow signals were lost when a high-pass filter was used to
diminish the noise. To increase rigidity, elasticity and corrosion resistance of

Fig. 1 Microwire arrays. a Arrays of microwires connected to the connector, b dense arrays of
microwires [25]
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microwire electrodes, iridium microwires were employed as microelectrodes for
measurement of action potentials. It was reported that iridium has higher rigidity,
corrosion resistance and elasticity than tungsten. Furthermore, increases in maxi-
mum charge density can be attained because it is possible to activate iridium
surfaces electrochemically [26]. It was shown that an implemented array could
consist of from 4 to over 100 wires. Nicolelis et al. used 704 microwires in 10
arrays to record 274 neurons individually in monkey cortex [29, 30]. An extra-
cellular recording with spike amplitude of 60 µV was achieved by microwire
tetrode from individual pyramidal cells distributed within a radius of 50 µm [31].
The ease of fabrication is an obvious advantage of microwire electrodes [32].
Another advantage of microwire electrodes is that these electrodes can access
deeply in the brain to reach the target neurons [33]. The main obstacle of the
microwires technique is that the bending of microelectrodes during implantation
leads to loss of accuracy of the positions of the wire tips relative to each other [26].

2.2 Planar-Type Microelectrode Array

Planar-type microelectrodes made of nontoxic and high corrosion resistance metals
such as gold, platinum, iridium and titanium nitride are a common electrode with a
diameter of a few tens of micrometres. Planar microelectrodes are a cell culture dish
used to study the activity and plasticity of the neural network [15]. To facilitate the
observation of the cultured cells using conventional transmitted light microscopy,
leads of one of the aforementioned metals are usually embedded in a glass wafer
substrate. Figure 2 shows the planar-type electrode. It is usual to coat the glass
substrate with laminin or polylysine to promote the cell adhesion and increase the
sealing resistance between the substrate and the cultured cells. The substrate con-
sists of 1–100 electrode sites spaced at inter distances of 100 µm. Organic or
inorganic materials such as epoxy resin, polyimide, silicon oxide and silicon nitride

Fig. 2 a Planar-type electrode connected to contactor lines, b hippocampal neurons are cultured
on the planar-type electrode [15]
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are used to insulate the electrodes from each other. All electrodes are connected
with a contact pad by thin contactors to transfer the captured signals to the amplifier
[34]. It was reported that the impedance of a standard gold electrode with a diameter
of 60 µm in electrolyte solution is 50 kΩ at 1 kHz. Individual sensing pads must be
made smaller to match the size of the individual neurons. However, reduction of the
surface area that accompanies the reduction of the sensing pad size results in a
significant increase in the impedance and consequently decreases the
signal-to-noise ratio. Nanostructures such as gold nanoflakes, gold nanopillers,
carbon nanotubes or Ti3N4 compensate for the lack in the surface area resulting
from the reduction of the electrode size [35].

2.3 Mushroom-Shaped Microelectrode

Although, micro patterned electrodes afford non-invasive and long-term extracel-
lular recording, they suffer significantly in signal strength and quality. Recording
understrength and quality signals restricts microelectrodes from sensitive recording
such as, disinhibition, synaptic integration and under threshold oscillations [35].

To enable microelectrodes for such applications, Spira et al. used a micro-size
protrusion made of gold with a mushroom shape as a sensing electrode (Fig. 3a).
By increasing the electrical coupling coefficient between the neuron and the
microelectrode to 50% recorded by a gold mushroom-shaped sensing electrode
compared to 0.1% for the gold planar microelectrode array, it becomes possible to
record synaptic potentials in addition to the action potentials. The enhancement in
cell recording achieved by using gold mushroom-shaped electrodes was attributed
to three main causes. The first is that the unique geometry of the electrode enables
neurons to engulf the electrode as shown in Fig. 3b. The second is the high seal
resistance between the cell membrane and the mushroom-shaped electrode and the
third is because of the increase in the junctional membrane conductance [1].

Fig. 3 a SEM image of gold mushroom-shaped microelectrode, b TEM image shows the Aplysia
neurons engulf the mushroom-shaped electrode [1]
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2.4 Nanostructured Microelectrodes

Great efforts have been exerted to overcome challenges such as inflammation and
noise associated with the use of neural interfaces for neural stimulation and signal
recording. Previous studies showed that the mechanical, physical and chemical
properties have a crucial influence on the performance of the neural interfaces [36].
Ordinary interfaces in brain–machine interfaces utilize a small number of large
electrodes for signal recording. It was reported that electrodes with diameter range
of 10–100 microns were used in brain–machine interfaces for signal recording
while electrodes with size of 4–8 mm were used for deep brain stimulation [37, 38].
As the human brain contains approximately a hundred billion neurons and each
neuron has a diameter of about 10 microns, accurate monitoring and precise control
on the neural circuit activities requires electrode arrays of high density and small
size [39]. The efficiency of neural electrodes for neural signal recording and
stimulation is greatly affected by the electrical coupling and the contact between the
cell and the electrode surface, the electrochemical properties of the electrode and
the biocompatibility of the material at the contact sites [11].

2.4.1 Nanowire Arrays

Due to their high aspect ratio, nanowires made of nontoxic and high corrosion
resistance metals have attracted a lot of attention in different applications.
Employing nanowires as neural interfaces is one of their important applications
[40]. Platinum nanowires with a diameter of 150 nm and height of 1.5 µm were
deposited on planer platinum electrodes by means of focused ion beams (Fig. 4a).
A layer of Si3N4/SiO2 with a thickness of 350 nm was deposited by
plasma-enhanced chemical vapour deposition to insulate the substrate. Platinum
nanowires were utilized to stimulate and record electrical signals from mitotic
cardiac cells [40]. Bruggermann et al. [41] have fabricated gold nanowires with a

Fig. 4 SEM images of metal-based nanowire electrodes. a Platinum nanowire electrode [40].
b Gold nanowire electrode [41]. c gallium phosphide nanowire electrode [43]
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diameter of 60 nm and height of 300–400 nm on pads with diameter of 2 µm
(Fig. 4b). Extracellular potential recordings were taken from cardiac muscle cells
(HL-1) using the gold nanowire electrode. The maximum-recorded amplitudes
achieved by gold nanowire electrodes were 100% higher than those achieved by
planar gold electrodes [42]. Gallium phosphide nanowires with 70 nm diameter and
5 µm length were fabricated by Suyatin et al. [43] on substrate of 12 µm diameter
with a pitch size of 500 nm. A gold film was subsequently deposited on the top of
the nanowires. Gallium phosphide nanowire electrodes are illustrated in Fig. 4c.
Gallium phosphide nanowire based electrodes were employed to perform acute
recordings in the rat cerebral cortex.

2.4.2 Nanotube Arrays

Previous studies have shown that vertical electrodes are able to achieve intracellular
recording of action potential with high signal to noise ratio. These studies pointed
out that the geometry of vertical electrodes has a crucial influence on the sensitivity
and quality of recorded signals. Nanotube geometry was pointed out as an
important factor influencing the performance of the vertical electrodes as the cell
membrane wraps around and extends into the nanotube, thus the gap between the
electrode and the membrane is significantly reduced [44–46].

Recently, Eick et al. [47] developed a new nanoelectrode consisting of iridium
oxide nanotubes (Fig. 5a). After cardiomyocytes were cultured on the fabricated
nanotube electrode, the images of scanning electron microscopy showed that the
cell membrane wraps around and extends into the pore centres. Electrochemical
measurements showed that iridium oxide nanotube electrodes possess lower elec-
trochemical impedance and higher capacity of charge storage compared to gold
nanopillar electrodes having the same surface area. The author demonstrated that
the geometry of nanotubes promotes cell–electrode coupling and larger signals can
be recorded compared with solid electrodes. Moreover, stable recording can be
achieved by nanotube electrodes as they provide non-invasive and have longer

Fig. 5 a Iridium oxide nanotubes array on a platinum substrate (left). Iridium oxide nanotube
(right) [47]. b TiO2 nanotube array [48]
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intracellular access. As a result, the author pointed out that nanotube geometry
significantly enhances nanoelectrode performance.

In many studies, titania nanotubes were identified as a promising form of bio-
logical electrode as they possess high corrosion resistance, distinctive mechanical
properties, elevated specific surface area in addition to excellent biocompatibility
[44, 45, 48]. TiO2 nanotube arrays are illustrated in Fig. 5b. It has been established
that a titania tubular structure has a great potency for application in the medical
area. Results have shown that TiO2 nanotubes enhance the mineralization, prolif-
eration and adhesion of osteoblasts and expedite the recovering of bone tissue. It
has also been established that tube dimensions have a crucial influence in the
differentiation of mesenchymal stem cell [44]. It was suggested that tube pores and
the spacing in a titania tubular structure offer a substantial pathway for continuous
supply of ions, nutrients and proteins required for healthy cell growth [45]. The
anatase phase shows a better support for formation and growth of hydroxyapatite
than rutile [46]. Park et al. showed that tube diameter has an important effect on
adhesion as well as proliferation of mesenchymal stem cells. Authors have pointed
out that tubes with a diameter of 15 nm improve the cell activity when the spacing
between nanotubes is less than 30 nm while cells showed programmed death when
they were cultured on tubes with a diameter larger than 50 nm [46]. Tube mor-
phology has a critical effect on the electrical behaviour of a titania tubular structure.
Tubes with wall thickness of 30–40 nm showed low impedance. Sun et al. attrib-
uted the electrical behaviour of these nanotubes to the thickness of their walls being
sufficient to that being required for charge transformation [49].

Many approaches have been employed to fabricate TiO2 nanotubes. These
approaches include templating, sol-gel, photo-electrochemical etching and anodic
oxidation. Low cost and the possibility of fabrication of TiO2 nanotubes in a wide
range of morphologies, anodic oxidation is generally used to fabricate titania
tubular structures. Anodization parameters such as applied voltage, electrolyte type,
electrolyte pH and anodization time have significant influence on the fabricated
nanotube morphology [50]. Figure 6 shows TiO2 nanotube arrays with different
morphologies fabricated by controlling the anodization voltage. It was shown that
subjecting the nanotubes to the annealing process at 450 °C enhances their

Fig. 6 TiO2 nanotube arrays fabricated in ethylene glycol containing 0.5 wt% NH4F and 4 vol.%
of deionized water at anodization voltages of a 10 V, b 40 V and c 60 V
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electrochemical properties as a result of successful transformation from amorphous
to anatase crystal structure [51]. As titania nanotubes inherently possesses low
conductivity, which is highly desirable for neural interfacing, therefore electro-
chemical and physical methods have been employed to introduce metallic and
non-metallic electrically active particles such as Pt, Ag, N and C into the titania
lattice to enhance the electrical properties and biocompatibility of titania nanotubes
[52–54]. It was reported that doping with nitrogen improved the electrochemical
properties represented by electrochemical impedance and charge storage capacity
[55]. To improve the capacitive properties of TiO2 nanotubes, Zhang et al. have
fabricated carbon-doped nanotubes. The authors show that the presence of carbon
atoms in titania tubular structure improve the capacitance of the nanotube layer
[56]. Kyeremateng et al. have investigated the effect of Sn doping on the electro-
chemical properties of TiO2 nanotubes. The authors showed that Sn-doped nan-
otubes have higher capacitance than simple nanotube arrays [57]. Figure 7
illustrates TiO2 nanotube arrays doped with different elements.

3 Non-metal-Based Electrodes

Due to the wide range of their structure, non-metals with their various physical,
chemical and mechanical properties have been employed in different applications.
One of their important applications is the neural interfaces. Neural electrodes made
of non-metals have been utilized to overcome the limitations related to the use of
metallic electrodes including inflammation, tissue damage and low flexibility.

3.1 Silicon-Based Electrodes

The emergence of technologies such as lithography techniques by which compli-
cated structures can be fabricated has been followed by micromachined electrodes
used to stimulate neurons and record potential signals [11, 58–60]. To overcome the

Fig. 7 TiO2 arrays doped with a carbon [56], b nitrogen [55] and c tin [57]
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difficulties associated with the curvature of the wires used with the microwire
technique, micromachining techniques utilizing silicon arrays have been used to
generate a more rigid structure. As silicon arrays are smaller in size than that of
microwire electrodes, larger number of sites in different layers of the cortex can be
recorded by silicon arrays for the same quantity of tissue displacement [61]. There
are two major models of micromachined electrode. The first model was fabricated
in the University of Michigan and consists of a shank with silicon substrate having
several electrode sites. Different types of Michigan electrodes are illustrated in
Fig. 8a. The Utah array is the second model of micro machined electrodes. In Utah
array, sharpened needles made of silicon with lengths up to 1.5 mm and diameter
ranging from 1 to 100 µm were electrically insulated up to their tips using polymers
with a good biocompatibility like parylene-C or polyimide. The bare tips of the
silicon needles were coated with a conductive metal such as platinum or iridium.
The architecture of Utah array provides the ability of signal recording from the
individual neurons with high locative resolution as well as stimulation of the target
neurons. Due to their biocompatibility, geometry and architecture, Utah arrays can
be deeply inserted into the brain safely. Therefore, Utah arrays are widely used in
neuroscience and medical researches [11, 62]. Figure 8b and c shows flat and
inclined microelectrode arrays.

3.2 Polymer-Based Electrodes

Materials of rigid structures are usually used in conventional electrodes. Using stiff
electrodes cannot provide vigorous interfaces with neurons and precludes long-term
signal recording. The poor contact between the stiff interfaces and the soft neural
tissue causes aggressive contact at the tissue-interface contact sites which leads to
tissue damage and inflammation [63]. To avoid neural damage and inflammation of
the implant sites, flexible arrays made of polymer-based electrodes have been
developed to provide less invasive methods for neural stimulation and signal
recording. Polymers such as polyimide, parylene-C, liquid crystal polymer, SU-8,
benzocyclobutene and silk are common polymers used in fabrication of flexible

Fig. 8 Micromachined electrodes a different types of Michigan electrodes [62]. b Utah electrode
(flat array) [63]. c Utah electrode (incline array) [63]
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arrays [64–69]. Because of their good mechanical flexibility, high corrosion
resistance and good biocompatibility, flexible arrays are widely used for long-term
neural recording [70]. The variety of flexible electrode design was illustrated in
Fig. 9. The low elastic modulus of polyimide and parylene-C electrodes (3.2 GPa)
enable them to lessen the tissue damage and afford longer term recording than that
of silicon [69–71]. In 1970s, Hoffer and Loeb successfully recorded neural signals
by implanting cuff electrode and flexible platinum wire in the lumbar spine of a cat
[36, 72]. The next attempt for flexible interfaces was made by Donaldson et al. to
improve the flexibility and electrical conductivity by using the cuff interface with
silicone rubber [35, 73]. As Parylene base electrodes have high flexibility, they
show extremely consistent coverage of the tissue surface and this enables them to
provide steady electrical contact and subsequently high signal to noise ratio [38].

A parylene-based microelectrode array has been employed for neural recording
and drug delivery by utilizing electrode sites at different sides include the top, back
and edges. Cuff electrodes made of hybrid polyimide entrenched in silicon guidance
were fabricated to stimulate the peripheral nerves and record sensory signals. It was
noticed that nerve trunks wrap around the cuff electrodes and furthermore, the
muscles can be activated by stimulation of the motor fibres [74, 75]. However,
although polymer electrodes are common neural interfaces, there are two main
limitations for the use of these electrodes. The first is the difficulty of signal
recording from neurons with different diameters and the second is the inability of
communication with very small nerves (less than 300 µm in diameter). As a nerve
size has a random distribution in the body, the predefined polymer electrodes lose
the perfect match with target nerves [76, 77].

3.3 Nanostructured Electrodes

For many reasons nanomaterials are a promising technology in neural interfacing
fabrication. Neurons are electroactive cells and the electrochemical properties of

Fig. 9 Different types of flexible electrode. a Cuff electrode with polyimide substrate [74].
b Sieve electrode [74]. c Flexible ribbon electrode [76]
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improved nanostructure can meet the requirements of the charge transformation.
The distinctive chemical and mechanical properties of nanoscale structures strongly
support the neural tissue for a long-term implantation. Furthermore, the high bio-
compatibility of improved nanomaterials solves the biological problems related to
the implanted interfaces [78]. The discovery of nanomaterials with their unique
properties of high electrical conductivity, exceptional chemical stability, excellent
mechanical properties and high surface area moved neural interfaces to a new stage
by enhancing the sensitivity and selectivity in addition of improving the biocom-
patibility and the response time [79].

3.3.1 Nanowire Arrays

Non-metallic nanowire used to record the electrical signals from the biological
systems show higher sensitivity in observation of the changes in action potentials
for cultured neurons than micro-size electrodes [80]. Nano wires made of semi-
conductor materials are a powerful technique and have a great impact on a wide
range of scientific areas such as electronics, photonics, bioscience and healthcare.
The good understanding of nanowire growth mechanism enables the production of
nanowires with a homogeneous composition and diameter and, as a result, electrical
and optical properties can be highly controlled. The correspondence in nanosize
between the nanowires and the nano components in biological systems makes
nanowires a promising candidate as a sensitive tool for investigation of biological
systems [81]. As the bend of nanowires enables them to protrude between the
lineaments of the cellular membrane, nanowires have a tight connection with the
neural membrane. Decreasing the gap between the electrode surface and the cellular
membrane enhances signal-to-noise ratio and increases the sensitivity of signal
recording [82]. Two major techniques Langmuir–Blodgett and dry transfer tech-
niques have been used to grow nanowire arrays on surfaces of silicone/silicone
oxide substrate [83, 84].

Different strategies have been used to fabricate silicon-based vertical nanowires.
Duan et al. [85] employed electron beam lithography to create gold islands on the
gate of a nanowire field-effect transistor with nanoscale to use them as precursors
for germanium nanowire growth by vapour–liquid–solid mechanism. By using the
atomic layer deposition technique, germanium cores were coated with SiO2 and
subsequently etched by hydrogen peroxide and the result was vertical glass tubes
(Fig. 10a). The author showed that these glass tubes have been successfully used
for intracellular potential recording by penetrating plasma membranes of car-
diomyocyte cells. To improve penetration, fabricated nanotubes were coated with
phospholipid which makes it difficult to culture cells on these nanoelectrodes.
Therefore, cells were cultured on separated substrate. As it is shown in Fig. 10 b,
Robinson et al. [86] have fabricated silicon nanowire, using plasma etching tech-
niques, which were insulated by thermally grown SiO2 film. The silicon oxide film
was removed from the tips of silicon nanowires followed by coating uncovered tips
with vapourized platinum or gold film. The fabricated silicon nanowires were
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employed to stimulate individual neurons as well as record neural action potential.
The main obstacle of the nanowire interfacing technique is the inherent high
electrode impedance. It is worth mentioning that although a single pad in the
interface contains a number of nanowires, the impedance of the electrodes is still
too high to make it possible to record subthreshold potentials [40, 86]. Theoreti-
cally, increasing the number of the nanowires in a single pad may solve the problem
of high impedance of electrodes. Nevertheless, high density of the nanowire
electrodes precludes electrode to cell interior in intracellular recording.

3.3.2 Carbon Nanotube Arrays

Carbon nanotubes based electrodes are one of the most common nanotube elec-
trodes because of their distinctive properties including very good electrical con-
ductivity, high tensile strength, superior thermal conductivity and high aspect ratio
[87–91]. Figure 11 shows an image of a carbon nanotube electrode array (a) and

Fig. 10 Two strategies to fabricate nanowire electrode [8]. a Silicon nanotube on an insulated
germanium nanowire. b Silicon nanowire with gold or platinum coated tip [8]

Fig. 11 SEM images of a Carbon nanotube electrode array [94]. b Carbon nanotubes electrode
[94]
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carbon nanotube electrode (b). Carbon nanotubes have been utilized in neuro-
science research with one important application in recording of electrical activities
of neurons [92, 93]. It was illustrated that carbon nanotubes enhance cell attachment
and promote differentiation and growth of neurons [61]. Wang et al. [94] showed
that vertically aligned carbon nanotubes offer a high level of charge injection
(1–1.6 m C/cm2). The authors demonstrated that carbon nanotubes increase the
active surface area and decrease the impedance of the electrode–tissue interface. To
improve the performance of single wall carbon nanotubes interface and achieve
long-term recording, the nanotubes were electrochemically co-deposited with
polypyrole. The modified electrode showed high injection level, good stability and
low impedance [95].

4 Conclusion

In the past several decades, considerable effort has been made towards development
of neural interfaces with many advantages and limitations of common interfaces
being discovered. Various materials, utilizing different shapes and sizes, have been
used to fabricate neural interfaces. Electrode design is important in that it has an
influence on the cell–electrode coupling and tissue rehabilitation. Thin, sharp and
flexible electrodes are desired for better performance in neural recording and
stimulation. Lower electrochemical impedance and higher charge storage of inter-
faces are required to achieve good signal to noise ratio. Nanostructured electrodes
are promising as their size matches the neuron size enabling signal recording for
individual neurons and they can be shaped such that cells engulf the electrodes
supporting enhancement of the cell–electrode coupling. As current neural interfaces
have their limitations including high impedance, large size and high invasion,
technology of interfaces fabrication is still in progress. This review focussed on the
history and current status of neural interface technology.
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Revolutionizing Causal Circuitry
Neurostimulation Utilizing the Optogenetic
Technique Through Advanced
Microsystems Development

R.P. Kale, S. Paek, S.J. Tye and A.Z. Kouzani

Abstract Optogenetics has recently emerged to become one of the most significant
tools for in vivo causal analysis of neural networks. Developed through decades of
pioneering work, the optogenetic toolbox has expanded utility to allow virtually
total control over cellular actions. This article explores the emerging technologies
that have been incorporated into making optogenetics a versatile technique in
neuroscience research. Genetically engineered opsins continually evolve to directly
activate or inhibit neuronal transmission with greater precision and functionality.
A variety of light sources and fiber coupling methods employ unique photoacti-
vation patterns and shapes. This article further explores the novel devices and
systems that have been developed for the research setting and the technologies each
system incorporates. These tethered systems, portable devices, and implantable
microdevices have inherent benefits and detriments that are also discussed. Finally,
emerging translational properties of optogenetics, particularly that for retinal pig-
mentosa, demonstrate how optogenetics may one day precipitate out of the research
setting and into our healthcare practice.
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1 Introduction

The implementation of targeted light stimulation has enabled neuroscientists to
perform brain circuitry dissection with an unprecedented level of selectivity and
specificity in spatial and temporal domains. This tool, known as optogenetics,
utilizes light to control neurons that are genetically sensitized to specific types of
light. To define optogenetics, Michael Häusser, a leading researcher in neural
computation, states

There’s a broad definition and a narrow definition. The broad definition is rooted in ety-
mology: any approach that combines optical interrogation with genetic targeting qualifies as
‘optogenetic’, and that includes the use of genetically encoded activity sensors. However,
most people generally use the term optogenetics to mean the use of probes to manipulate
activity, and (as is usual in English) usage normally wins [1].

Optogenetics exploits the function of genetically engineered light-sensitive
membrane proteins that gate the ionic flux between internal and external space of
the cell in a high temporal resolution. Ionic influx and efflux causes neuronal
depolarization (activation) or hyperpolarization (inhibition), modulating the neu-
ron’s membrane potential. Furthermore, cell types can specifically be targeted to
respond to light stimulation, as opposed to whole regions being vulnerable to the
stimulation. The result is full control of neuronal firing patterns of preselected
photosensitive neurons. Photosensitivity of neurons is possible through their
induced expression of specialized proteins that are responsive to light. These pro-
teins act as gated ion channels that open as wavelength-specific photons are
absorbed. Activation of these channels floods the cell with either positive or neg-
ative ions as shown in Fig. 1. The type of ion and its charge is dependent on the
type of light-sensitive protein used. Investigators utilize this technique to control
neurons both in vivo and in vitro for a diverse range of experiments including
neuronal connectivity mapping, functional connectivity, behavioral experiments,
and induction of disease. These experiments can be carried out in cell cultures or in
animal models, and one day may translate to clinical therapies for human patients.

Currently, optogenetic experiments are exclusive to preclinical settings. The first
step in performing optogenetic studies is acquiring a genetically photosensitive cell
group or animal. For example, murine optogenetic experimentation utilizes trans-
genic knock-in rodents. Knock-in rodent models incorporate a specific photosen-
sitive protein into the animal’s cellular DNA, and subsequently express this protein
to become optogenetically viable. Transgenic animal lines are available almost
exclusively within mouse models, but transgenic rats are becoming more available.
The alternative to this is implementing viral vectors to specifically target neuronal
cells of interest within the brain. Viral vectors offer more feasible transfection than
transgenic cell lines in terms of resources, and can be performed in multiple types of
animal models instead of genetically tractable rodents [80].

Photoactivation of cells was originally pioneered by Richard Fork in 1971 by
stimulating native abdominal ganglia cells of marine mollusks at Bell Laboratories
[23]. Decades later in 2005, Karl Deisseroth’s lab first transfected mammalian cells
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with photosensitive proteins and performed millisecond-timescale activity control
on these cells [8]. He would later coin the term ‘optogenetics’ and this technique
would be hailed as nature’s method of the year in 2010 [60]. A growing number of
laboratories and research groups are continually make advances in optogenetics and
the future of this technique seems endless in possibilities. We describe some of
these advances in terms of photosensitive proteins, light sources, optical fibers and
coupling, optogenetic microdevices and systems, and translational properties.

2 Opsins

Achieving optical neuronal control through optogenetics is often dependent on the
photosensitive protein (known as an opsin) that is genetically encoded into the cell.
Once expressed, opsins travel to the neuronal surface and are bound to the membrane.
Naturally, opsins mediate photosynthetic functions by storing light energy into
conjugated molecular bonds. Photon absorption results in conformational changes of
the opsin into an open state to allow passage of ions across cell membranes. These
opsins allow neuronal manipulation of the electrical potential in a high temporal
precision (millisecond-scale) with light. Mediating light-driven depolarizations and
hyperpolarizations of neurons with the opsins has proven to be facile [7].

The light-sensitive proteins channelrhodopsin-2 (ChR-2) from the alga
Chlamydomonas reinhardtii and halorhodopsin (NpHR) from the archaeon
Natronomonas pharaonis are two of the most commonly employed opsins in

Fig. 1 Representation of channelrhodopsin and halorhodopsin in their closed conformational
state. When activated by a light source, channelrhodopsin (at 460 nm wavelength) and
halorhodopsin (at 590 nm wavelength) allow passage into the cellular membrane for cations
(cellular depolarization) and anions (cellular hyperpolarization) respectively

Revolutionizing Causal Circuitry Neurostimulation Utilizing … 63



optogenetics [85]. Due to their robust temporarily precise control of neural activity
in vitro [8] and in vivo [2, 3, 58, 63, 70], the use of these opsins, originally
identified in microbes, has exploded in the neuroscience field. When illuminated
by ∼470 nm blue light [59], ChR-2 functions as a cation channel that evokes the
influx of positive voltage change through ions such as sodium ions and protons but
also potassium and calcium ions. Such influx results in depolarization of the basal
membrane potential in specific population of neurons that are expressing ChR-2.
Reversely, once illuminated by ∼580 nm yellow light, NpHR functions as a
chloride ion pump that inhibits cell firing of neurons that are expressing it [21].
ChR-2 and NpHR can be utilized simultaneously, allowing concurrent bidirectional
control of neuronal activity. Archaerhodopsin-3 (Arch) is yet another opsin that has
been identified to produce strong inhibitory photocurrents at yellow light wave-
lengths (566 nm) [16]. These photocurrents can be as high as 900 pA, dwarfing
those of NpHR photocurrents of 38.9 pA [27]. These three opsins have originally
allowed researchers to modulate cellular activity with some variety of optical
parameters; however, their effective power densities (EPD50) are relatively quite
low compared to today’s bioengineered opsins. EPD50 is a measure of the light
intensity required for 50% of the opsin population to become activated. The EPD50
of ChR-2 for example is 1.3 mW/mm2, while the EPD50 of Arch is about
7.5 mW/mm2 [53].

Opsins have been artificially advanced through genetic engineering throughout
the years. These newer opsin versions expand the optogenetics toolbox, allowing
researchers to stimulate or inhibit cells at optical wavelengths and intensities much
different than from their native forms. For example, ChETA was derived from
ChR-2 to produce sustained spike trains greater than 200 Hz, compared to only
40 Hz of ChR-2 [32]. ChETA was among the first class of bioengineered opsins
that was produced through singe-amino-acid substitutions of ChR-2. A second class
of opsins was produced through combining segments of ChR-1 and ChR-2. ChIEF
is one of these opsins and was developed to produce more reliable photoactivation
during persistent light stimulation [50]. At higher frequencies, ChIEF experiences
only 33% inactivation compared to ChR-2’s 77% inactivation. This allows ChIEF to
produce action potentials that more closely resemble normal neuronal spiking
patterns. Currently, there exists a variety of stimulating opsins that is available with
an assortment of unique properties. ReaCHR for example is a ChR-2 variant that
has been red-shifted to respond to orange or red light, which is completely on the
other side of the optical spectrum compared to ChR-2’s blue light optimal excita-
tion [49]. ReaCHR opens up the possibility of manipulating retinal cells with
wavelengths that do not cause damage to the eye, and allows the possibility of
clinical optogenetic treatment for ocular conditions such as retinal pigmentosa
(discussed at the end of this chapter). Interestingly, the amount of light that is
absorbed by the tissue is dependent on the wavelength [2, 81]. Shorter wavelengths
will tend to have higher absorption in the tissue and therefore have a lower volume
of penetrance through the brain. Therefore, the wavelength at which the opsin
responds can dictate the overall volume of illumination penetrance within the brain.
ChR-2 has also been modified into forms that gate inhibitory chloride ions in order
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to hyperpolarize the cell, such as iCIC2 and slow chloride-conducting channel-
rhodopsin (SloChloC) [6, 79]. Halorhodopsins have similarly observed evolutions
with the implementation of eNpHR2.0 [27]. This original adaptation solved the
issue of NpHR’s poor expression in cells by promoting membrane localization and
ER export. Photocurrents of this adapted NpHR therefore increased to 68.1 pA.
This was followed by the production of eNpHR3.0, which had substantially
increased light sensitivity and could respond to illuminations as weak as
3.5 mW/mm2 [29]. Other inhibitory proton pumps, including ArchT [33] and Mac
[16], have observed similar modifications as NpHR [53]. Table 1 offers a summary
of opsins and their parameters that are typically used in optogenetics. Finally, an
interesting class of opsins has also been bioengineered that acts on second mes-
senger systems instead of gating ion channels. These opsins are referred to as
OptoXRs and can be used to modulate cellular signaling molecules and cascades.
At 473 nm light, Opto-α1-AR has the ability to activate IP3 or DAG recruiter
GPCR, while Opto-β2-AR activates cAMP recruiter GPCR [16]. These second
messenger manipulations provide an even greater control of intricate molecular
pathways of the cell to allow more refined modulations that mimic the actions of
pharmaceutical drugs or specific diseased states.

Recently, a new method has come into the spotlight for its ability to edit,
knockdown, or activate specific genes in localized or global cell populations. This
genetic control can occur either at the germline level or in mature animal models.
Known as CRISPR (clustered regularly interspaced short palindromic repeats), this
method would allow researchers to take full control of genetic manipulations. Of the
many fascinating possibilities CRISPR can unearth, one of the particular interests is
its ability to genetically produce neurological disease models in animal research.
However, the spatiotemporal precision of CRISPR lacks feasibility, especially
considering the amount of toxic effects many of the chemicals used for CRISPR
control can induce onto the cell and surrounding tissue during experimentation. This
problem was alleviated with the production of photoactivatable-Cas9 (paCas9) [61].

Table 1 Examples of opsins used in optogenetics and their characteristics

Opsin Subfamily Gating type Activation
λ (nm)

EPD50
(mW=mm2)

Photocurrent

Channelrhodopsin ChR-2 Cation Channel 460 1.3 1-1.5 nA
Channelrhodopsin ChETAA Cation Channel 470 3.1 <0.5 nA
Channelrhodopsin ChIEF Cation Channel 470 ∼1.5 390 pA
Halorhodopsin NpHR Chloride Pump 589 5.4 38.9 pA
Halorhodopsin eNpHR3.0 Chloride Pump 566 5.5 450 pA
Archaerhodopsin Arch Proton Pump 566 ∼ 7.5 900 pA
Archaerhodopsin ArchT1.0 Proton Pump 566 ∼6.5 ∼0.2 nA
Archaerhodopsin eArch3.0 Proton Pump 566 ∼7.5 ∼1.2 nA
Leptosphaeria
rhodopsins

eMac3.0 Proton Pump 540 ∼2.0 ∼0.3 nA
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Cas-9 is a vital control point in the CRISPR method as it produces DNA breakages to
allow targeted genome editing. Thus, paCas9 allows researchers to turn this system
on or off with precision by stimulating with blue light. This blue light activates a
photoinducible dimerization system called magnets to bring the two components of
paCas-9 together using ionic coupling. The functional paCas-9 can then produce
targeted DNA breakage as shown in Fig. 2. Once the light is turned off, the magnets
decouple and the CRISPR system shuts down, reversing the original effects. The
potential of this system is far-reaching in biomedical sciences, with abundance in
both exciting opportunities for research and ethical concerns for the human popu-
lation [12].

3 Light Sources

Cellular performance of optogenetic stimulation relies on adequate delivery of
photons from a light source. This light delivery has to occur at certain set param-
eters. These parameters include the specific wavelength of the photons needed for
opsin activation, as well as the frequency and pulse width of the stimulation that
govern the cell’s response. As shown in Fig. 3, the needed wavelength of the
produced light is dependent on the type of opsin and can range from near-infrared
to near-ultraviolet light. Deviating from the optimal opsin-specific wavelength
results in lower total activation. The frequency and pulse duration, however, can
change based on the brain region and neuron type, as well as the behavior that is
being sought.

Fig. 2 Left: In the absence of blue light, nonfunctional paCas-9 is separated into two components
that are each attached to magnets. Nonfunctional paCas-9 does not interact with DNA (green bar).
Right with the induction of blue light, the magnets come together and form ionic bonds, allowing
paCas-9 to dimerize into its functional form. The functional form is then able to produce DNA
linkage breaks for targeted gene editing
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A variety of different light sources have been utilized to modulate neuronal
activity in optogenetics experiments. These include lasers, liquid crystal displays
(LCDs), arc lamps, halogen lights, light emitting diodes (LEDs), and organic LEDs
(OLEDs). Previously, a majority of optogenetic systems have incorporated a
laser-based system as the light source. However more recently, LEDs have become
a primary source of photostimulation due to their benefits over laser-based systems
in price, beam stability, instrumentation size, and high-frequency temporal preci-
sion [17]. In order to deliver a sufficient amount of light for ChR-2 activation, a
relatively modest illumination irradiance is necessary. At 470 nm, these opsins
necessitate between 0.1 and 1 mW/mm2 [19]. Falling below this range results in
less than 10% activation of ChR-2 [30]. Experiments have shown that LEDs [28,
40] can adequately supply this irradiance. Other experiments that use high intensity
light sources, including lasers [2, 26, 34] and arc lamps [8, 84], have been per-
formed. However, these powerful light sources promote the risk of damaging or
killing the neural tissue by heating up the cell. Furthermore, these light sources
produce only a single-point illumination, whereas OLEDs and LCDs can produce
diverse patterns of two-dimensional arrays of illumination. However, their irradi-
ance potential is around 1 × 10−4 mW/mm2, which is 3 orders of magnitude too
low for ChR-2 activation [31].

Neuromodulation experiments that utilize photostimulation, as opposed to
electrical stimulation, beneficially produce very low-intensity stimulation artifacts.
Having low artifacts facilitates better detection during simultaneous recording by
increasing the signal-to-noise ratio. Various neural recording platforms have been
incorporated into optogenetics experiments, including local-field potential [22],
evoked-potential [20, 52], electroencephalogram [74], and single neuron recording
[22]. Each study would have to consider all possible artifacts that could hinder their
recording signal strength. Generally, there are three sources of artifacts occurring at
the recording electrode level that are actively suppressed through signal filtering:
capacitive coupling, common-mode conversion, and voltage gradients [44, 55]. The
intensity of this noise generated by recording instruments (at the millivolt range) is
orders of magnitude larger than the artifacts produced by optogenetics system (at
the microvolts range) [17]. Therefore, the noise produced by optogenetic

Fig. 3 Simplified activation
profiles for ChR-2, Arch, and
NpHR over the visible light
spectrum. The greater the
deviation from optimal
wavelength, the less relative
activity is expected from the
opsins expressed by the cells
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instruments can be relatively negligible and easy to minimize. These low-frequency
artifacts are typically the product of the photoelectric effect, which is brought on by
illumination-induced temperature kinetics directly changing the electrode conduc-
tance and releasing electrons picked up by the recorder [13]. Low-frequency arti-
facts produced by optogenetics can be remedied through high-pass filtering [34].

4 Fiber Coupling

The interface between light that is being produced and the neural region being
modulated needs to retain efficiency in optogenetics experiments. Often this can be
a limiting factor in the necessary power consumed by the system as well as the
intensity of neural damage from optical fiber insertion into the brain. Optical fibers
are typically inserted into the brain to transmit light into deep neural regions.
Optical fibers are relatively inert and thin materials, which helps minimize the
immune and inflammatory response of foreign body insertion as well as promote
biocompatibility. Generally, a thinner optical fiber produces a smaller “kill-zone” in
neural tissue [73]. Thinner optical fibers are, however, less efficient at transmitting
light because of the smaller cross-sectional area for photons to enter the fiber.
Optogenetics studies on larger animal models can tolerate thicker materials when
inserted into the brain. Mice are able to tolerate optical fibers up to 300 µm,
whereas rats can tolerate up to 400 µm [14].

Maximizing efficiency of optical fiber transmission is imperative, as it ensures
sufficient photoactivation while simultaneously minimizing power consumption.
Efficiency is influenced by the uniformity in direction that the photons travel once
they exit the light source. Lasers inherently produce unidirectional light, but other
light sources produce photons that are more scattered. The light source’s viewing
angle greatly affects the system’s overall efficiency, as wider angled light sources
result in a smaller percentage of photons that are able to enter the core of the optical
fiber. Multimodal optical fiber cores, which have a greater core diameter compared
to single-mode fibers, are preferred as the proportion of their cross-sectional core
area is greater. A visual representation of viewing angle and fiber types is shown in
Fig. 4. This directly relates to the numerical aperture (NA) of the fiber, which can
be measured as

NA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2core − n2cladding

q
,

where ηcore represents the fiber core’s refractive index and ηckadding represents the
fiber cladding’s refractive index. Cladding is the material that lines the core and
helps prevent the light from refracting out of the core as it reflects down the fiber.
The NA is an important measure when comparing the relative light gathering
capabilities of different fibers. Additionally, lenses can be used to focus light into
the optical fiber’s core, as long as the numerical aperture of the fiber is greater than
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the numerical aperture of the lens. Typically, the lens’ refractive index should be
greater than 1.9 or else the maximum coupling efficiency is equivalent to simply
butt-coupling the light source to the fiber [78].

More recently, there have been successful modifications to optical fibers for
enhanced functionality during stimulation. For example, tapering the fiber produces
a thinner fiber tip for focused activation while also minimizing neural damage at the
proximal location to the site of stimulation. This helps the likelihood of maintaining
the neural connections that may otherwise be damaged with a wider fiber pene-
trating the area of interest. Tapering can be accomplished chemically [35, 68] or
thermo-mechanically [72]. Tapered fibers can also be coated with a thin metallic
film, such as gold, to offer electrophysiological recording capabilities along the
optical fiber [62]. In this case, the metallic film is inserted into a polyamide tube
covered by a stainless steel tube. The multiple layers result in a larger diameter but
are necessary for electrical insulation during electrophysiology recording and
mechanical rigidity. Optical fibers have also been modified through focused ion
beams to create optical windows on the fiber [64, 65]. These are essentially small
windows that allow photons to escape at specific points along the fiber. Fabricating
multiple windows and modifying the input angle can direct the light to exit through
specific windows only. Therefore, researchers are able to target different neural sites
using a single optical fiber that is easily changeable. These windows also allow the
optical fiber to act as optical array by allowing the light to escape through multiple
windows at once. This is demonstrated in Fig. 5. The implementation of optical
windows on fibers further enhances the spatiotemporal resolution that optogenetics
offers, and can be utilized with any optogenetic device that uses fibers.

Fig. 4 Left Different viewing angles created by two LEDs. Although they produce the same
amount of energy, Θ2 viewing angle will have better efficiency when coupling to a fiber because
the energy is more directed towards the fiber’s core. Right Single-modal (top) and multimodal
(bottom) optical fibers with the outer cladding stripped back to demonstrate light transmission.
Multimodal fibers have larger core diameters, allowing for more light to enter the fiber and be
delivered to the photoactivation region, thereby increasing efficiency
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5 Devices

The number of novel optogenetic systems that are being introduced into the
research setting is vastly growing every year. Either for specific investigations or
for commercial sales, these systems are becoming increasingly diverse in their
functionality, size, cost, throughput, and more. The types of optogenetic systems
that are being developed can be classified into three main categories: tethered
systems, portable devices, and implantable microdevices [43]. Each of these has
their own unique advantages and disadvantages, which will be discussed. There-
fore, it is in the researcher’s best interest to carefully determine which type of
system suits their needs and would be optimal for their investigation.

5.1 Tethered Systems

Neuromodulation experiments typically require a power source to deliver stimu-
lations to the intended neurons. In tethered systems, an optical fiber cord directly
connects the animal to an external light source that is outside the animal’s habitat.
This light source is then connected to a wall power outlet, which delivers essentially
an infinite supply of power to the system. Therefore, tethered systems can harness a
very high current to power their light source, and deliver optical power with as
much illuminance as needed. This process comes with limitations, particularly due
to the animal being tethered to the light source. This setting potentiates the risk of
the animal becoming tangled by its optical fiber cord. It would be difficult and
dangerous to freely stimulate multiple animals during social behavior studies while
preventing them from damaging each other’s cords and implants. Additionally,
behavioral tests in mood disorder models would be negatively affected by the cord
as they deviate from the animal’s naturalistic setting. The animal can become
tangled by its own cord unless open-top home cage and behavioral apparatuses are
used [48]. This issue may be alleviated with a rotary joint; however, these com-
ponents inflict stressful rotational torques on the animal. Mice can typically with-
stand rotational pulling of up to 150 μN m, whereas rats can withstand upwards of
300 μN m [46]. Thus, selecting the ideal pulling strength is imperative—too soft

Fig. 5 A tapered optical fiber with optical windows. Depending on the angle of the incoming
light source, the windows will project light out at different intensities. In this way, specific regions
along the fiber can be targeted
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and the cord could become tangled around the animal, too hard, and the force would
cause stress and injury. Tethered optogenetic systems may be ideal for experiments
that compare stimulation of motor pathways and the resulting muscle movements
the animal performs. Recent studies have gained insights into how motor control is
affected by optogenetic modulation of cells [36, 71].

A majority of tethered studies incorporate laser-based light sources because of
their ability to harness high power demands. However, as previously discussed,
LEDs can be advantageous to optogenetic studies [17]. With the incorporation of
LEDs, one possibility is to eliminate the optical fiber entirely and simultaneously
add a deep brain electrophysiological component onto a single optrode [11]. This is
accomplished by incorporating the LED onto the tip of the optrode, so that the light
source sits proximal to the site of photostimulation. Other tethered systems have
used hybrid multielectrode recording and fiber optic arrays for both neuromodu-
lations and measurements of cortical cells [47, 76]. Multifunctional systems can be
adapted to a single platform and are not limited to electrophysiological recordings
only. A novel device has combined a microfluidic channel to the recording and
stimulating optrode [69]. This technology offers a combination of optogenetics,
recording, and drug delivery, with the potential viral redelivery function to maintain
opsin expression for long-term longitudinal studies.

5.2 Portable Devices

Most devices and technologies have a tendency to miniaturize over time. This
concept is no exception in optogenetics. The detriments of tethering can pose a
challenge to experimenters. Having the device mountable or wearable by the animal
has exceptional value to the study, particularly in behavioral experiments. Tethered
systems are capable of restricting behavioral experiments involved in complex
paradigms such as wheel running, pain, and social interactions with other animals
[54]. These restrictions can be minimized or eliminated with smaller portable
devices when implemented in animal research. However, limitations inherently
exist with portable devices too. The most obvious limitation is the lack of a power
source capable of producing unlimited continuous power, which is not an issue with
tethered systems. As a result, power consumption of the device needs to be mini-
mized. This can come at the expense of limited functionality, lower optical power
output, and potentially a higher cost of consumables.

Typically, portable devices can harness power from either a battery or through
wireless energy harvesting. Batteries offer a reliable and cost-effective approach
compared to wireless energy harvesters. For example, the amount of sophisticated
components and circuitry is modest compared to wireless energy harvesters.
However, batteries tend to be quite heavy, and this poses a problem for small
animal research. Furthermore, inherent issues with thermodynamic chemical reac-
tions that take place in batteries include slow recharging, limited charge and dis-
charge cycles, and issues of being a biohazard if the internal chemicals are leaked
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[4, 9]. Also considering that the animal may also destroy the battery and ingest the
hazardous toxins, the risks of using batteries is often greater to animals in weakly
constructed devices. At the same time, the battery would likely need to be easily
accessible and replaced during the experiment. Therefore, there is a tradeoff
between accessibility of the battery for the researcher and risks posed to the animal.
Despite these risks, battery-powered microdevices can be relatively cost-effective
compared to tethered systems and wireless energy harvesters. Teams that produce
portable optogenetic devices claim to have a low-cost product that is easily man-
ufactured using commercially available components [24, 41]. Alternative compo-
nents have been utilized in bioelectronics to circumvent battery usage, such as
piezoelectric, thermoelectric, biopotential harvesting, and glucose harvesting [51].
However, these components tend to produce energy densities much too low for
portable devices.

A more sophisticated method for powering portable optogenetic devices is
through wireless energy harvesting. This can be accomplished through
radio-frequency (RF) transmission. Although this technology is relatively new,
portable optogenetic devices have successfully utilized wireless energy harvesting
[42]. They incorporate an antenna and rectifying circuitry to form a rectenna [39].
This rectenna supplies the circuit with DC power supplied from an RF transmitter
some distance away. This harnessed current is subsequently used to power the light
source. The light source, however, does not require constant power, but instead
typically pulses at set frequencies and pulse widths that depend on the experimental
parameters. Therefore, the energy must be stored within the circuit and pulsed in
bursts to the light source. Two traditional components can accomplish this to some
degree—batteries and capacitors. As described, there are inherent flaws with bat-
teries such as size limitations and charge/discharge capacities. There is also little
purpose utilizing RF transmission to power a bulky battery, as the benefits of size
reduction are diminished. Furthermore, power densities of batteries are relatively
low while energy densities are sufficiently high. On the other hand, capacitors
usually have sufficient power densities but provide too low energy densities [56].
A fundamental middle ground is needed between batteries and capacitors. Fortu-
nately, there exists a component that satisfies the sufficient energy and power den-
sities to power an LED for optogenetics—supercapacitors. An electric double-layer
capacitor, known as a supercapacitor, can be produced that measures only 1 mm3

and can produce a high enough area of capacitance at 1.3 mF/mm2 [56].
Supercapacitors have a tendency to be damaged by high current loads. This can

be rectified through the use of a boost converter, which limits the current intensity
on the circuit by increasing the voltage. An RF harnessing headstage was developed
by Wentz et al. [77] that makes use of this boost converter in mice, with the
headstage weight totaling about 2 grams [77]. This team has since formed a
company (Kendall Research Systems) that produce wireless optogenetics head-
stages that concurrently transfer wireless neural data for closed-loop stimulation.
Closed-loop systems can modify the stimulation parameters in real time to only
stimulate when certain brain activity patterns are detected. Incorporating a
recording electrode into the device has key benefits for closed-loop systems. With
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this, Ameli et al. (2013) produced a headstage that can wirelessly transfer the neural
readouts to a base station over 2 meters away. A centralized base station offers
control of multiple animals in parallel for high-throughput studies. Other devices
have been developed that eliminate the optical fiber entirely by fitting the LED onto
an optrode for direct stimulation deep into the brain [67]. A lower illumination
intensity can be used when the LED is implanted into the site of stimulation
because efficiency loss from fiber coupling is eliminated. This results in a lower
power consumption of the overall headstage.

5.3 Implantable Microdevices

Newer technologies are allowing researchers to implement smaller components into
their optogenetic systems, and in many cases these systems can become fully
implantable. µLEDs, which can range in sizes from 625 to 10,000 µm2, greatly
reduce the overall dimensions of the implanted light source compared to traditional
LEDs. Once implanted, they are able to direct the light to specific sites on the tissue
with miniature lenses [54]. µLEDs can also be produced in an array format to
deliver light distribution in complex shapes and designs, providing enhanced spatial
resolution at the cellular scale [31]. Partially implanted microdevices have been
produced that incorporate a rectenna system that is exposed outside the skull, while
the majority of the components are implanted within the animal (Kim et al. [45, 54].
This device has the ability to optically stimulate while concurrently taking elec-
trophysiological recordings using a Pt-contact pad, optical measurements using a µ-
IPD, and temperature using a serpentine platinum resistor. Optical measurement
provides assurance that light is being produced by the device since light can be
difficult to see when implanted. The temperature sensor ensures animal safety as
heat can be produced by any electrical and optical components within the implant.

Research groups more recently have been successful at producing microdevices
that are small and safe enough to be fully implanted into the animal. Dr. Deis-
seroth’s team at Stanford University have accomplished this by creating a chamber
that uses resonance cavities to produce RF signals [57]. These signals target the
optogenetics device that is implanted into the mouse and provide the energy to
activate it. The mouse can move freely inside of an enclosure that is above the
chamber. These devices are miniscule in size and weight, with the smallest version
of the system being 10 mm3 and weighing 20 mg. This same group had previously
developed implanted microdevices that use direct inductive coupling between two
coils to power their device [82]. However, electromagnetic fields produce stronger
localization for energy in the low gigahertz frequencies, allowing for smaller coils
to be utilized in RF systems compared to inductive coupling. RF-powered wireless
technologies appear to be fruitful in the preclinical setting because they can more
easily compensate for the different orientations that the animal can take, and can
utilize sophisticated resonance chambers for the animal to reside in. On the other
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hand, midfield technologies may offer a unique method of coupling internal devices
for humans to external power sources that are easily replaceable [38]. One
important difference between human and animal implants is that the human device
orientation is unlikely to move in relation to the power transmission coil. Midfield
technologies may one day facilitate the translational properties of optogenetics to be
incorporated into the clinical setting.

6 Translational Properties

Performing clinical optogenetic therapy to treat neurological diseases may be
decades from becoming a reality because of existing concerns such as the inva-
siveness of this technique. Viral stability may also be an issue, and antibiotic-driven
promoters may offer a solution for the future, as they provide precisely tuned gene
expression and even complete shutoff at undesirable instances [15]. However, this
task is hindered by regulatory agencies requiring full toxicology investigations
before becoming clinically viable. Despite these setbacks, current therapeutic
advances are being researched in the preclinical realm, making the translational
properties of optogenetics a possible reality. One example worth noting is a type of
blindness, and optogenetics may offer a remedy to many that are affected.

6.1 Retinal Pigmentosa

Retinal pigmentosa (RP) is a retinal degenerative disorder that currently affects
roughly 100,000 patients in the US [15]. Investigations are occurring into activating
ON bipolar or retinal ganglion cells of the eye using ChR-2. The light delivered to
the eye from a light source transduces the photons into signals that can be processed
by the visual system to enable sight [10]. Simultaneous inhibition of dysfunctional
cells may resensitize retinal photoreceptors through inhibitory opsins. The eye,
through intravitreal injections, can express these opsins. This is a relatively non-
invasive procedure when compared to viral injections into the brain. The alternative
to intravitreal viral injections would be nanoparticles or gene-gun approaches;
however, viral vectors offer rapid delivery, high infectivity, and cell-specificity [37].
This offers a unique translational property of optogenetics to patient therapy before
full-blown neural interfacing occurs. Currently, preclinical intravitreal transfection
in primates remains difficult due to the poor transport of the virus through the inner
limiting membrane [18]. Scaling viral delivery to primate eyes also proves to be
difficult as a massive amount of particle numbers is necessary for whole eye cov-
erage compared to regional coverage of the brain.

The noninvasiveness nature of optogenetic RP therapy demonstrates the
important benefits of promoting translational research. However, many device and
computational issues would need to be addressed. Ambient light would not
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sufficiently produce illumination intensities strong enough to activate opsins in the
eye. Outerwear goggles can transmit the light at strong enough intensities with
precise temporal and spatial locations onto the eye. The goggles would reproduce
visual images from the external visual field, amplify this signal, and output the
transformed visual images onto the retina through wavelengths that the ocular
opsins can respond to [25]. Sophisticated components would be necessary to
accomplish optogenetic RP therapy. One that stands out is the need for inward
eye-tracking capabilities. Normally, eyes receive visual input from images that are
produced from both a static retina and a moving retina. Exclusively static retinal
images could produce visual stimulation different than what healthy individuals see,
and therefore the goggles would need to compensate through altered arrays of
projected intensities. Otherwise constant static images would result in adaptations to
the eye, ultimately depressing visual response [66]. Additionally, computational
compensation for ocular vergence would need to be performed for binocular vision
of objects at different fixation points. Healthy-sighted individuals automatically
adjust both eyes’ positions simultaneously to maintain the site on an approaching
object. This allows photons coming from the object to fall directly onto the focal
point of the retina as it approaches or retracts away. Eye-tracking functionality
could mediate this by actively adjusting the image’s projected location so the retina
can correct itself by radial stretch in the fovea, among other methods [5].

RP therapy has one of the highest translatable properties of any disease for
optogenetics. However, many other disease states are being investigated by
researchers. Animal models of disease coupled with optogenetics are providing
these researchers with tools to further understand the underlying basis of disease
genesis and progression, as well as novel methods to treat them. These diseases
include but are not limited to anxiety, depression, schizophrenia, addiction, social
dysfunction, Parkinson’s disease, and epilepsy [75]. As scientists gain more
knowledge of these diseases, better targeting drugs and personalized treatment
options may be available as better treatment options for patients.

7 Conclusion

Advancing technologies in the optogenetic technique are emerging in this exciting
and revolutionary field. The current trends towards technological sophistication and
diverse functionality give this relatively new technique an exciting prospect to its
future potentials both in preclinical and translational sciences. Clinical optogenetics
may see a place in the future for patient healthcare once all of its caveats have been
solved. For now optogenetics continues to inspire new research in complimentary
areas, such as genetic engineering and neurostimulation. Novel methods are being
investigated because of the excitement, such as focused ultrasound that offers
noninvasive brain stimulation in deep regions of the brain [83]. Albeit the possi-
bility exists that newer neurostimulation techniques may be adapted that are more
translatable compared to optogenetics. But the high degree of causal information
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gained, coupled with the incredible spatiotemporal properties of this technique, will
make optogenetics a viable option for uncovering the deep mysteries of the brain
for years to come.
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Physiological Monitoring in Deep Brain
Stimulation: Toward Closed-Loop
Neuromodulation Therapies

Seungleal (Brian) Paek, Rajas P. Kale, Katheryn M. Wininger
and J. Luis Lujan

Abstract Deep brain stimulation (DBS) is a widely used, efficacious neurosurgical
treatment for neurological movement disorders. For example, electrical stimulation
in the ventral intermediate thalamic nucleus drastically reduces tremor in patients
with essential tremor. Likewise, stimulation in the subthalamic nucleus or the
internal globus pallidus significantly attenuates tremor, rigidity, bradykinesia, and
gait complications of Parkinson’s disease. Its application is now rapidly expanding
to a wide variety of conditions including epilepsy, neuropsychiatric disorders,
Tourette syndrome, Alzheimer’s disease, and intractable pain. However, the exact
underlying therapeutic mechanisms of action of DBS remain unclear. Despite this
lack of understanding, clinical utility of DBS cannot be underappreciated, and there
is a great need for studies that can elucidate patient-specific optimization of DBS
parameters and targets. This chapter explores recent approaches for studying the

S. (Brian) Paek
Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic,
200 First Street SW, Rochester, MN 55905, USA

R.P. Kale
School of Engineering, Deakin University, Geelong, VIC 3216, Australia
e-mail: rajas.p.kale@gmail.com

S. (Brian) Paek ⋅ J.L. Lujan (✉)
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
e-mail: Lujan.Luis@mayo.edu

K.M. Wininger
Department of Molecular Pharmacology and Experimental Therapeutics,
Mayo Clinic, Rochester, MN 55905, USA

R.P. Kale
Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW,
Rochester, MN 55905, USA

J.L. Lujan
Department of Physiology and Biomedical Engineering, Mayo Clinic,
Rochester, MN 55905, USA

© Springer Nature Singapore Pte Ltd. 2017
A. Bhatti et al. (eds.), Emerging Trends in Neuro Engineering
and Neural Computation, Series in BioEngineering,
DOI 10.1007/978-981-10-3957-7_4

81



underlying mechanisms of action of DBS. Additionally, it discusses the limitations
of current open-loop approaches to DBS and accentuates the importance of
developing a smart closed-loop DBS system that can optimize therapeutic param-
eters in real time to individual patients and symptoms.

1 Introduction

As recently as 30 years ago, surgical techniques for treating many neurologic
disorders involved ablative procedures, potentially resulting in significant and
sometimes generalized damage to the brain [26, 110]. The advent of thermal and
cryogenic lesioning brought forth greater spatial selectivity during surgery; how-
ever, these procedures are irreversible and cannot be modulated if the treatment
needs change [4, 10, 13]. In the early 1990’s, deep brain stimulation (DBS) became
a reversible alternative to lesioning procedures for the treatment of movement
disorders such as Parkinson disease and essential tremor [8, 9, 87]. Since then, the
use of DBS has become more widespread for the effective treatment of other
neurologic disorders such as dystonia [55, 64, 87, 96], Tourette syndrome [24, 46,
87, 104, 108], epilepsy [27, 52, 103], depression [25, 37, 72, 74], neuropathic pain
[31, 48, 64, 87], and obsessive-compulsive disorder (OCD) [1, 33]. Additionally,
DBS offers promising outcomes for the treatment of other neurological conditions
ranging from bipolar disorder [45] and Alzheimer’s disease [58] to addiction [65],
cerebral palsy [69, 107], and hyperphagic obesity [103] (Table 1). However, the
underlying therapeutic mechanisms of DBS remain unknown despite years of
research and successful clinical application.

The predominant hypothesis suggests that DBS modulates pathological activity
via excitation of axonal fibers of passage and inhibition of local cell bodies [28, 73].
However, the integration of spatially and temporally distant signals suggests that
the neural mechanisms underlying DBS efficacy may be far more complex [43].
Therefore, further advancement of DBS technology will require a greater under-
standing of the response to DBS on the molecular, biochemical, cellular, and cir-
cuitry levels. For example, the brain is a highly complex organ, with innumerable
neural signals transmitted via distinct neurotransmitters capable of modulating
neural activity across both local and global neural circuitry [40]. Thus, DBS may
induce complex changes in synaptic plasticity that reorganize neural circuits and
rectify neuropathological changes associated with neurological disorders. These
changes could help explain the different timescales in therapeutic efficacy observed
across different disorders. For example, DBS patients with Parkinson’s disease who
experience immediate symptomatic relief, and patients with major depression who
require longer intervals before symptomatic improvement can be observed [42].
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2 Monitoring of Neural Activity

Numerous techniques are being utilized in clinical and preclinical studies to unravel
the mechanisms of action of DBS and assist in target selection as well as opti-
mization of stimulation parameters [35, 42]. These techniques allow examination of
the neural responses to DBS at local and network-levels with high spatio-temporal
resolutions. The most commonly utilized techniques include electrophysiological
measurement of compound neural activity, electrochemical measurement of neu-
rotransmitter signaling, and functional imaging techniques.

Table 1 Neurologic disorders and deep brain stimulation targets

Neurologic Disorders Targets References

Addiction NAc, STN [32]
Alzheimer’s disease NBM, fornix [59]
Depression Cg25, ALIC, NAc [14, 25, 49, 63, 67, 72], Schlepper

et al. (2008)
Dystonia GPi, (STN) [50, 57, 81, 107]
Epilepsy ATN, (cerebellum, CN,

STN, hippocampus, CM,
CC, LoC, MB)

[12, 27]

Essential Tremor Vim, (STN) [8, 16, 54, 61, 84, 101, 117]
Neuropathic Pain PAG, VPL/VPM [86]
Hyperphagic obesity VMH, LH [38, 112]
Obsessive-compulsive
disorder

VC/VS, (ALIC, NAc,
STN, ITP)

[21, 36, 66]

Parkinson’s disease GPi, STN, (PPN) Deep Brain Stimulation for
Parkinson’s Disease Study Group
(2001), Schuepbach et al. (2013), [22,
23, 29, 76, 78, 98, 111, 113]

Tourette syndrome CM thalamus, GPi,
ALIC, NAc

[109]

List of neurologic disorders and deep brain stimulation targets. Targets listed in parentheses are
non-validated potential targets. Anterior limb of the internal capsule: ALIC, Anterior thalamic
nucleus: ATN, Cingulate area 25 or subgenus cingulate: Cg25, Centromedian nucleus of the
thalamus: CM, Caudate nucleus: CN, Globus pallidus internus: GPi, Interior thalamic peduncle: ITP,
Lateral hypothalamus: LH. Locus coeruleus: LoC, Mammillary bodies: MB, Nucleus accumbens:
NAc, Nucleus basalis of Meynert: NBM, Periaqueductal gray: PAG, Pedunculopontine nucleus:
PPN, Subthalamic nucleus; STN, Ventral capsule/ventral striatum: VC/VS, Ventral intermediate
uncles of the thalamus: Vim, Ventral intermediate nucleus of the thalamus: VMH, Ventral
posterolateral thalamus: VPL, Ventral posteromedial thalamus: VPM, Ventral segmental area: VTA
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2.1 Electrophysiological Monitoring

Electrophysiological analysis has played an instrumental role in unraveling the
function of the central nervous system (CNS) since the early 1950s, when Hodgkin
and Huxley demonstrated the electrical nature of the action potential [44]. Since
then, electrophysiological analysis techniques have evolved to enable the analysis
of a broad range of neurological activity, from patch-clamp techniques that allowed
the study of single ion channels, to single-unit recordings and global field potentials
via multiunit recording arrays [75]. This technological diversity permits compre-
hensive evaluation of neurological activity from the subcellular to circuitry levels
[35]. For example, electrophysiological techniques have been utilized to investigate
the physiological mechanisms underlying DBS efficacy in the treatment of Tourette
syndrome [47]. In this study, local field potential (LFP) recording electrodes were
implanted into the thalamus, globus pallidus pars internal (GPi), or nucleus
accumbens to analyze neural activity before, during, and after stimulation. Results
from this study suggest that the pathophysiology of Tourette syndrome is related to
dysfunctional synaptic transmission within deep brain nuclei, producing oscillations
of inappropriate frequency and amplitude, and preventing the effective inhibition of
stereotypical behaviors and tics such as blinking, head jerking, sniffing, throat
clearing, and other vocalizations [2]. Similarly, excitatory postsynaptic potentials
(EPSPs) evoked by high and low frequency stimulation of neurons within the
subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-lesioned rats
revealed that high frequency stimulation produced significant EPSP depression in
dopamine-depleted rats [115]. Similarly, low frequency stimulation resulted in
EPSP augmentation in dopamine-intact rats [115].

2.2 Neurochemical Monitoring

Preclinical studies have demonstrated that neurotransmitter release is evoked by
high frequency stimulation, and thus may be associated with the effects of DBS
[60]. Fixed potential amperometry is a technique for measuring neurotransmitters
and other analytes such as Glutamate, and involves the application of a constant
voltage through a carbon fiber microelectrode implanted within the target of interest
(Gale et al. 2013; Tye et al. 2013). Carbon fiber microelectrodes are coated with
specific enzymes that react with non-electroactive analytes of interest, resulting in
electroactive products that can be electrically measured [53]. The signals detected
are caused by oxidative reactions between the applied voltage and the molecules of
analyte within the extracellular space (Van Gompel et al. 2010). Unfortunately, the
continuous enzyme delivery required to detect the neurotransmitter of interest
makes this technique impractical for chronic in vivo detection of neurochemicals
(Jacobs et al. 2010). Fast scan cyclic voltammetry (FSCV) is an alternative elec-
troanalytical technique capable of real-time detection of electroactive
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neurotransmitters, hormones, and other metabolites [34, 51]. Previous studies have
demonstrated that FSCV can effectively detect serotonin, norepinephrine, epi-
nephrine, dopamine, and adenosine, as well as changes in oxygen and pH [41, 88,
106]. FSCV relies on the delivery of rapid voltage oscillations to allow oxidation
and reduction of electrically active compounds of interest, resulting in the gener-
ation of unique electrical voltage versus current signatures specific for each analyte
[88, 92]. By taking advantage of FSCV and a Wireless Instantaneous Neuro-
transmitter Concentration Sensing (WINCS) system designed to wirelessly measure
neurochemical responses during DBS, Chang and colleagues showed that the
immediate symptomatic relief induced by implantation of the DBS lead, also
known as the microthalamotomy effect (Tasker 1998) was accompanied by a
neurochemical signature resembling that of adenosine release [18, 19] (Fig. 1).
Previous preclinical animal studies have demonstrated that administration of

Fig. 1 Fast scan cyclic voltammetry recording during DBS electrode implantation into the VIM
of the thalamus. a Pseudocolor plot collected from an awake patient. The plot depicts oxidation
currents immediately on DBS electrode insertion. Black arrow indicates a second oxidation current
peak. b Pseudocolor plot collected during electrical stimulation (130 Hz, 60 μsec pulse width,
2 V) through DBS electrode (in 4 out of 7 awake patients; no significant oxidation currents were
not observed in the other 3 patients). The plot indicates oxidation current at a switching potential
(1.5 V). Black arrow points to a much smaller second oxidation current. c, d Cyclic
voltammograms (current versus voltage) at black dotted lines from A and B. Modified from [18]
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adenosine A1 agonists alleviates tremor symptoms in mice models of
harmaline-induced essential tremor [7]. Therefore, it is possible that enhancement
of adenosine signaling induced by the microthalamotomy effect, or by the admin-
istration of adenosine agonists, inhibits the maladaptive excitatory signaling pro-
ducing uncontrolled movement in patients with essential tremor. However, the CNS
contains multiple receptors for adenosine that operate through a variety of
G-proteins, including Gs, Gq, and Gi. Variable effects in synaptic transmission are
observed based on their localization on presynaptic, postsynaptic, or astrocytic
membranes and the subsequent downstream signaling from the G-protein coupled
receptor [79].

2.3 Functional Imaging

Functional magnetic resonance imaging (fMRI) is an MRI technique that measures
changes in blood flow [62]. The utility of this technique for characterizing the effects
of DBS is based upon the principle that the magnitude of cerebral blood flow and
oxygen consumption is proportional to the relative activity of individual brain
regions due to differential energy requirements during periods of neural activity
[105]. Specifically, the blood-oxygen-level dependent (BOLD) signal measures
changes in the magnetization of hemoglobin following deoxygenation of blood
within the CNS [77]. This enables the generation of an oxyhemoglobin/
deoxyhemoglobin heat map based upon changes in oxygen consumption resulting
from modulation of neural activity [94].

To this end, fMRI has been recently used to characterize the effects of high
(130 Hz) and low (10 Hz) frequency stimulation on neural activity in a swine
model of DBS [82]. In this study, modulation of activity in the sensorimotor cortex,
basal ganglia, and cerebellum was observed as a function of the stimulus voltage
applied to the ventrolateral (VL) thalamus. Specifically, Paek and colleagues
showed that high frequency stimulation produced a negative BOLD response in the
motor cortex, while low frequency stimulation produced a positive BOLD response.
Additionally, they showed that by increasing the amplitude of the applied voltage,
both the change in BOLD signal as well as the size of the affected brain region
increased, correlating with an increase of neural activity (Fig. 2). This suggests that
differences in BOLD response can be used to analyze brain responses to electrical
stimulation and characterize these responses as a function of stimulation
parameters.

In addition to characterization of the neural response to DBS, functional imaging
may be also effectively utilized to facilitate identification of optimal DBS targets
[87]. In this context, fMRI and positron emission tomography (PET) have already
demonstrated clinical utility in the treatment of treatment-resistant depression. For
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example, an overactive subgenual cingulate cortex (Brodmann area 25) observed
with PET has been shown in patients with acute sadness [71]. This overactivity has
subsequently decreased in clinical responders following antidepressant treatments
[25, 70, 71]. In 2005, Mayberg and colleagues used PET to show that chronic
stimulation of the cingulate cortex in patients with treatment-resistant depression
normalized metabolic hyperactivity and produced clinical benefits [72]. In that
study, remission was accomplished in four out of six patients, with decreases in
cerebral blood flow to subgenual cingulate, orbital frontal cortex, hypothalamus,
anterior insula, and medial frontal cortex. At the same time, their results showed
increases in cerebral blood flow within the dorsolateral prefrontal, dorsal anterior,
posterior cingulate, premotor, and parietal regions.

Fig. 2 Ventral lateral thalamus stimulation with different voltage intensities (3, 5, and 7 V). All
voltages evoked increased BOLD signals in the ipsilateral prefrontal, primary somatosensory,
insular cortices, and contralateral cerebellum. Also all voltages evoked decreased BOLD signal in
the ipsilateral primary motor and premotor cortices. Abbreviations: BOLD, blood-oxygen-level
dependent; CB, cerebellum; CC, cingulate cortex; DBS, deep brain stimulation; FDR, false
discovery rate; IC, insular cortex; PFC, prefrontal cortex; PRIMC, primary motor cortex; PREMC,
premotor cortex; V, voltage. Modified from [82]
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3 Novel Stimulation Paradigms

While DBS has been used effectively to treat multiple disorders such as essential
tremor and Parkinson disease, DBS technology must be further developed in order
to improve patient care. For example, the existing DBS paradigm requires patients
to return to the clinic for periodic adjustment of their stimulation parameters as their
disease progresses [23, 35, 72]. Switching the existing DBS paradigm from an
open-loop strategy where stimulation parameters are fixed, to an adaptive paradigm
that relies on biological feedback to adjust stimulation parameters will be crucial for
developing the next generation of DBS systems. Thus, closed-loop DBS systems
equipped with electrophysiological, biochemical, and inertial sensors that monitor
the molecular, cellular, and behavioral responses to DBS may allow for automated
titration of stimulation parameters for sustained therapeutic benefits in the face of a
changing environment. Developing a greater understanding of the cellular and
molecular mechanisms of DBS by leveraging functional imaging in conjunction
with neurochemical and electrophysiological techniques may also assist in opti-
mizing DBS targets and stimulation parameters for specific disorders and individual
patients [35]. Ultimately, adaptive, closed-loop DBS systems will extend battery
life, reduce required hospital visits and associated healthcare costs [30].

Several key factors need to be investigated before automated adjustment of
stimulation parameters can be clinically implemented. First, the complex relation-
ships between clinical behavior and neural activity need to be elucidated. The
advancement of electrochemical, electrophysiological, and functional imaging
techniques from preclinical to clinical settings will be essential for the development
of next-generation smart DBS systems. For example, optimal locations for
recording of neural activity should be identified for specific disorders and specific
patients. Furthermore, neurotransmitters critical for pathological activity and ther-
apeutic response will need to be identified (Fitzgerald 2014). Additionally, specific
neurotransmitter concentrations and their role in therapeutic efficacy will need to be
elucidated. Second, the type of sensors that will be used to monitor the environment
in order to effectively adjust stimulation parameters must be identified. The material
of these sensors must be MRI safe and biocompatible for chronic implantation. For
example, efforts are underway to develop electrochemical-sensing techniques
capable of extending electrode longevity by renewing the electrochemically active
surface following adsorption of chemical species [102]. This is paramount, as the
carbon fiber microelectrodes typically used for FSCV are subject to electrode
fouling due to the charge imbalance of the waveforms required for FSCV and are
thus not suitable for chronic measurements [11]. Recent efforts to overcome this
limitation have been focused on the use of boron-doped diamond microelectrodes
that can be used over longer periods of time [15, 17, 39, 68, 83, 85, 93, 97, 99, 114,
116, 118]. Third, correlation of multimodal electrophysiological and neurochemical
activity may provide new insight into the cellular and molecular mechanisms of
therapeutic neuromodulation. Therefore, efforts should be directed toward
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developing smart DBS controllers that rely on the relationships between neural
activity and the clinical effects of DBS to replace the trial-and-error process cur-
rently used for clinical DBS programming [35, 91, 100]. The versatility and
adaptability of such controllers will allow optimization of DBS therapies to indi-
vidual patients and symptoms. In turn, this will likely improve clinical outcomes,
reduce the time and frequency of patient visits, and decrease overall health care
costs.

4 Conclusion

Despite its clinical efficacy, limitations in existing DBS technology make opti-
mization of therapeutic benefits a difficult and expensive endeavor. However,
combination of multimodal electrophysiological and neurochemical sensing with
functional imaging techniques may provide new insight into the cellular and
molecular mechanisms of therapeutic DBS. By focusing on these techniques that
further the efforts in understanding the underlying therapeutic mechanisms of DBS,
we may be able to tailor application of DBS to individual patients and symptoms.
Furthermore, the development of closed-loop DBS strategies will likely lead to the
improvement of therapeutic outcomes.
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Mechanism of Docosahexaenoic Acid
in the Enhancement of Neuronal
Signalling

Md Ahsan Ul Bari, Julie Gaburro, Agnes Michalczyk, M. Leigh
Ackland, Catherine Williams and Asim Bhatti

Abstract Microelectrode array (MEA) has attracted paramount attention from
neuroscientific community to explore and understand the working principle of
nervous systems and the effect of drugs on the behaviour of neurons. In this work,
we attempt to explore the effect of docosahexaenoic acid (DHA) on the overall
neuronal spike activity as well as the spontaneous activity patterns of primary
cortical neurons employing MEA technology. Neocortex neurons of C57BL/6 mice
were cultured on MEA for 2 weeks until maturation and then treated with 10 µg/ml
DHA for 48 h. Our results demonstrated that DHA supplementation enhanced the
overall spike activity (454.35 spikes/s) of the neurons compared to the non-treated
control (297.01 spikes/s). This is a preliminary study to explore the changes in the
electrophysiological properties of neurons in response to DHA. Our results indi-
cated the potential use of DHA in improving neuronal signalling indicating it could
be helpful in improving the diseased condition of neuronal disorders particularly in
Alzheimer’s disease (AD).
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1 Introduction

Gradual decline in memory and cognitive function is considered to be normal and is
one of the most prominent health concerns for older individuals worldwide.
Recently, a positive effect of docosahexaenoic acid (DHA) in improving cognitive
function has been reported [1]. Deficiency of DHA is associated with many diseases
including heart, kidney, rheumatoid arthritis, neurodegenerative disorders and
cancer [2, 3]. Neuroimaging and post-mortem histological studies show that adult
patients with recurrent affective disorders have neuronal atrophy in the pre-frontal
cortex, a region of the brain that is susceptible to degenerative changes induced by
nutritional DHA deficiency [4]. A link between DHA and Alzheimer’s disease
(AD) has also been established highlighting diseased patients had low levels of
DHA [5]. Studies on animals fed on DHA-deficient diets displayed learning and
memory deficits [6] and an increased depressive and aggressive behaviour [7].

In recent years, Alzheimer’s disease (AD) has become a great concern amongst
the highest health risks worldwide. The pathogenesis of AD includes synaptic loss
[8, 9] and synaptic dysfunction. In this state, communication through neurotrans-
mitters is disrupted, hindering neuronal signal processing [10, 11]. DHA plays an
effective role in synaptic function and cognitive abilities by providing plasma
membrane fluidity at synaptic regions [12], which in turn improves neuronal signals
flow.

1.1 Docosahexaenoic Acid (DHA)

DHA is an essential polyunsaturated fatty acid (PUFA) [13] having 22 carbons with
6 double bonds (22:6n-3) and is a member of omega-3 fatty acid family [14, 15]. It
is a primary component of membrane phospholipids in the central nervous system
(CNS) [3], particularly in the brain, retina [16–18], growth cones [19] and sperm
[20]. DHA constitutes approximately 30–40% of the phospholipids of the grey
matter of cerebral cortex and photoreceptor cells in the retina. DHA is most
abundant among subcellular fractions of brain tissue [12, 21]. In mammals brain
size and number of brain cells vary depending on species but the DHA content of
the brain cells remains relatively unique between species [22]. Metabolically active
areas of the brain including the cerebral cortex, mitochondria, synaptosomes and
synaptic vesicles [15, 23] are highly enriched in DHA content [24]. It has a major
role in the development and function of the CNS. It is also associated with the
formation of synapses between neurons in the nervous system, enhancement of
memory, neuroprotection [25] and vision [26].

There have been several negative effects of deficiency of DHA documented
suggesting DHA has a role in the development of brain hippocampus [27]. Hip-
pocampus is essential for learning and memory tasks. Deficiency of DHA impairs
the growth and development of hippocampus thus impairing learning ability.
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Reduced DHA content also increase the chance of Hypertension, which is a major
risk factor for cardiovascular and cerebrovascular disease as there is not enough
DHA to lower the blood pressure [28].

DHA is incorporated into phospholipids in neuronal membranes, which can
influence chemical and physical properties of membrane. It also helps regulating
cell signalling that involved in neuronal survival, proliferation and differentiation
[29]. Cascade of mechanism involved in this process. DHA promotes development
of neurite [30] which can lead to a further anti-apoptotic properties through AKT
signalling pathway [31]. This novel anti-apoptotic property of DHA would be of
prime interest of in preventing diseases caused by neuronal apoptosis that subse-
quently leads to neurodegeneration.

1.2 Experimental Evidences Revealing the Beneficial Effects
of DHA on Neuron

To reveal the effects of DHA on neurons or neuronal cells, several scientific
methods have been put into practice. One of the prominent researchers in the field
of DHA, Hee-Yong Kim and associates in 2000 had demonstrated anti-apoptotic
feature of DHA using some basic molecular techniques [32]. PC12/Neuro 2A cells
were pre-enriched with DHA (22:6n-3) before serum starvation showed decreased
apoptotic cell death. DHA showed reduced DNA fragmentation and caspase-3
activity. In 2001 another study was conducted by Hee-Yong Kim et al. revealing
the protective effect of DHA along with other polyunsaturated fatty acids such as
arachidonic acid (20:4n-6; AA) against apoptosis induced by serum starvation.
According to them protection by Arachidonic acid (AA) is due to direct involve-
ment as free fatty acid serum starvation. On the other hand, DHA enrichment
increases the phosphatidylserine accumulation by pre-treatment of the cells with
DHA for at least 24 h prior serum starvation. Decreased DNA fragmentation and
down regulation of caspase-3 activity was observed as a positive effect of DHA
[33]. Akbar and HY Kim in 2002 showed anti-apoptotic effect of DHA towards
staurosporine-induced apoptosis in neuro-2A cells. The conclusion of their study
was that anti-apoptotic effect of DHA enrichment is mediated through the
PI3-kinase/Akt pathway, which was enhanced by DHA-promoted phos-
phatidylserine (PS) accumulation on neuronal membrane [34].

Another effort made by Cao et al. in 2005 to investigate the effects of DHA on
survival and neurite outgrowth in primary cultures of rat cortical neurons.
A dose-dependant increase and decrease in cell viability were prominent in their
study. Neurite outgrowth and a greater growth-associated protein-43 (GAP-43)
immunoactivity were reported in DHA treatment. This indicates DHA-stimulating
neuron-specific protein synthesis could be a result of neurite outgrowth [35].
Neuroprotective function of DHA through reduction in cellular zinc levels in
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opposing apoptosis was hypothesized by Suphioglu et al. in 2010, by reducing
ZnT3 expression and zinc uptake in human neuroblastoma cell line M17 [36].

1.3 Biological Evidences Towards Beneficial Effects
of DHA on Neuron

DHA has beneficial effects on brain only when used in appropriate concentration.
High concentrations of DHA are potentially damaging to the neurons [34]. Hence,
an appropriate concentration of DHA was determined to induce optimum cell
growth and development of neurons. As shown in (Fig. 1a), 10 µg/ml of DHA
enhanced cell growth and survival in NT-2 cells. Further increase in DHA con-
centrations triggered continuous decrease in cell viability. Cells without DHA
supplementation grow normally without any significant physiological changes
(Fig. 1b). On the other hand, DHA-treated cells promoted neurite outgrowth with
visible increase in neurite length without affecting the neurite number (Fig. 1c),
which can enhance neuronal signalling.

To show the anti-apoptotic effect of DHA, neuronal committed NT2 cells were
exposed to apoptotic agents such as staurosporine (STS) and hydrogen peroxide
(H2O2). STS is a protein kinase inhibitor that has a potential to induce apoptosis in
several neuronal and non-neuronal cell types [37, 38]. Hydrogen peroxide has also
been shown to induce neuronal cell death in undifferentiated and differentiated
neuronal cell lines through the induction of generation of reactive oxygen species
(ROS) [39]. The effects of DHA on cell viability were assessed after 48 h of
co-treatment with STS and H2O2, respectively. This was a different approach of
DHA enrichment from previous experiments, which used pre-enrichment of DHA
to the cells [34]. In our study we used co-treatment approach. NT2 cells were
exposed to DHA presence of STS or H2O2 for 48 h. The unpublished data showed
NT2 cells enriched with DHA indicated significant increase in cell viability up to
80% compared to the cells only treated with STS (Fig. 2a) and H2O2 (data not
shown). Western blot analysis was carried out to detect pro-apoptotic marker

Fig. 1 Effect of DHA in cell survival and neurite outgrowth on NT-2 cell line. a Optimization of
DHA concentration for improved cell survival, b normal cell growth without DHA treatment,
c visible neurite outgrowth after DHA treatment (yellow arrow)
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protein BAX. The expression of BAX was increased by more than 50% compared
to control when cells were co-treated with STS (Fig. 2b) and H2O2. When cells
were co-treated with DHA, DHA-PLs and STS, BAX expression was decreased by
20–40% in DHA-treated cells relative to STS (Fig. 2b). Reduction of BAX
expression by DHA treatment is a clear sign of anti-apoptotic feature of DHA.

Enhanced neurite growth (Fig. 3b upper panel) compared to non-treated control
(Fig. 3a upper panel) can be observed as shown in Fig. 3 [35]. Enhanced neurite
growth and neuronal connections are visible in DHA-treated cortical neurons that
lack in untreated control. Similar condition is applied to the rat cortical neurons as
well. Anti-βIII tubulin mouse antibody was used to depict the growth of neurite. In
this study it was used to expose if the DHA treatment actually promotes neurite
growth or not. In Fig. 3 it was clearly visible that DHA treatment had significantly
increase the growth of neurite (Fig. 3b) compared to untreated control (Fig. 3a).
Detailed experimental procedures are explained in methods section.

Although significant physical changes were observed in neuron from DHA
treatment, there was nothing we can depict what exactly causing the physical
changes or how this physical changes stimulate neuronal activity in the brain. To
dig deeper into the effect of DHA on neuronal electrophysical properties we moved
to a modern extracellular stimulation and recording tool named microelectrode
arrays (MEAs).

Action potentials or “spikes” are the common computational currency of the
brain. Numerous ways have been developed to identify the activity of individual
neurons in response to external stimuli and to our perception of those stimuli.
However, an individual neuron’s activity does not signify the cognitive and per-
ceptual processes. It is more likely to be the network-level phenomena in which
groups of neurons act in concert [40]. One of the most powerful and successful
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Fig. 2 Graphs showing improved cell survival by DHA treatment in NT2 cells against induced
cell death by staurosporine. a observed increase in cell viability, b reduced BAX expression
indicating protection against apoptotic cell death
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methods used for the recording of neural activity is extracellular recordings and
stimulation by substrate-integrated microelectrode arrays (MEAs) [41]. The use of
microelectrode arrays (MEAs) is constantly increasing to measure electrical activity
from many excitable cells over periods of days and months [42, 43] even for a year
[44]. MEA for both in vitro and in vivo is advantageous as the extracellular
recording can be performed without mechanical damage to the cellular plasma
membrane [43]. In this present study, we focus on elucidating beneficial effect of
DHA in neuronal signalling on mouse cortical neuron and revealing the neural
activity in response to DHA using MEA technology.

1.4 Microelectrode Array (MEA)

In vitro microelectrode array (MEA) technology has been widely adopted for
recording signals from neurons [45, 46] to understand the fundamentals of neural
network mechanisms in the brain [47]. Accurate detection and localizing signatures
of neural activity waveforms are essential in understanding the functioning of

100 μm

100 μm

(a) (b)           

Fig. 3 Effect of DHA in neurite outgrowth on primary cortical neuron. a Normal cell growth
without DHA treatment. b Visible neurite outgrowth after DHA treatment (yellow arrows). (Upper
panel represents phase contrast microscopic view and lower panel represents fluorescent
microscopic illustration of neuron treated with anti-β III tubulin antibody and conjugated with
Alexa 594 fluorophore)
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neural networks [48]. The spikes of neural signals normally characterize these
signatures.

The modern MEA technique has been emerged through a historical development
over time [49]. Thomas et al. pioneered the first design for MEA [50] in 1972. They
recorded embryonic chick heart cells on an array of 30 electrodes (2 × 15, size of
7 μm2 and 100 μm apart). Later on, action potential from dissociated snail ganglia
was recorded by Gross and his associates using MEA with an array of 36 micro-
electrodes (100 or 200 μm apart) [51, 52]. In 1980, a successful effort was made by
Pine [53] in correlating the intracellular and extracellular events from dissociated rat
superior cervical ganglion neurons by simultaneous recordings in combination of
intra- and extracellular recordings by MEAs (2 × 16 array of 32 microelectrodes,
8 × 10 μm in size and 250 μm apart). This successful correlation makes the MEA
recording technique a beneficial electrophysiological tool to study pharmacology
[54] and network physiology. Use of high-efficiency and high-quality MEA tech-
niques was not widely successful in the late twentieth century although the efforts
made in cultured preparations of wide range of invertebrates and vertebrates [55–
61].

Use of the MEA technology platform has provided us with simplified model of a
neuronal network in the order of a single cortical column rather than a complete
intact brain. This unique feature of MEA enables us to monitor neural activity in
detail and over-defined period of time using a computer interface and record
transient and steady-state behaviour of the neuronal network in response to DHA.
In addition, neuron cell cultures on MEAs have been reported to survive for over a
year in vitro [62], making it an ideal research model to understand the effect of
different stimulations and drugs on the neuronal connectivity.

2 Materials and Methods

2.1 Cell Line and Culture Condition

NT2 cells (ATCC: CRL-1973) that have phenotypic characteristics of neuronal
cells [63] were used as a model cell line to study the effects of DHA. The cells were
routinely maintained in 1:1 (v/v) mixture of DMEM (Gibco, Life Technologies) and
nutrient mixture F-12 (Gibco, Life Technologies) supplemented with 10% (vol/vol)
foetal bovine serum (Gibco BRL, Grand Island, NY, USA), 1 mM sodium pyru-
vate, 1X uridine and kept at 37 °C in a tissue culture incubator with 5% CO2 and
98% relative humidity. The exponentially growing cells were used throughout the
experiments. NT2 cells were treated with 10 µg/ml DHA for 48 h [34]. The cellular
responses to DHA were measured by cell viability assay using trypan blue exclu-
sion method after 48 h treatment with different concentrations of DHA (Fig. 2a).
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2.2 Acutely Dissociated Cortical Neurons and DHA
Treatment

Cultures of neocortex neurons were prepared from 14−16-day gestation C57BL/6
mice. The cortices from embryonic mice brains were excised and then treated with
20X trypsin, and then manually triturated with DNase/SBTI (Sigma) that stops the
action of the trypsin and allows a single-cell suspension to be prepared. The cells
were then centrifuged and the resulting cell pellet was then resuspended in B27
supplemented neurobasal medium (Gibco, Life Technologies) and plated at the
required density. Excess cells were then frozen down in neurobasal medium sup-
plemented with B27, 20% foetal bovine serum and 10% DMSO, at a concentration
of 10x106 cells/ml to ensure continuous supply throughout the experiments. Cry-
opreserved cortical neurons of mouse embryo were stored in liquid nitrogen for
long-term storage. Freshly prepared neuronal cells were diluted with pre-warmed
B27-supplemented neurobasal medium (Invitrogen). For the DHA treatment cells
were (4.0 × 105 cell/well) seeded on poly-D-lysine-coated 24-well culture plate.
On DIV 7 cells were treated with 10 µg/ml DHA for 48 h leaving control cells
aside. All treatments were done in triplicates. The picture of neurite outgrowth was
captured under phase contrast microscope (Olympus, IX51). The cell density and
viability was determined using a haemocytometer, allowing a stock suspension to
be prepared at a density of 25,000 cells in a 30 µl drop of neurobasal medium
(Gibco, life technology) and seeded to MEA’s previously coated by poly-D-lysine
and Laminin. At days in vitro (DIV) 7, MEAs were treated with DHA as before,
after DHA treatment signals from MEA’s were recorded.

2.3 Immunostaining of Cortical Neurone for Labelling
Neurite

Immunostaining of cortical neuron was performed following general procedure for
the immunocytochemistry (ICC) (abcam protocols) with some modification.
Briefly, round coverslips rinse in ethanol were placed inside 24-well plates and
coated with poly-D-lysine (100 µg/ml) for 1 h at room temperature. Coverslip wells
were rinsed with sterile water three times (10 min each) allowing to dry completely
and sterilized them under UV light for at least 1 h. Acutely dissociated cortical
neurons were seeded at a concentration of 4 × 105 cells per well allowing them to
grow in B27 supplemented neurobasal medium (Gibco, Life Technologies) for
7 days with changing the medium in two days interval. After 7 days ells were
treated with DHA (10 µg/ml) and incubated for 48 h leaving untreated controls
aside. Medium was aspirated and cells were rinsed in phosphate-buffered saline
(PBS) three times. Plated cells were fixed in 4% paraformaldehyde in PBS (pH 7.4)
for 10 min at room temperature, and then permeabilized by 0.1% Tinton-X on ice.
Nonspecific labelling was blocked using 1% BSA (Sigma) and 0.2% Gelatin
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(Sigma) prior to primary antibody incubation. Plates seeded with cells were incu-
bated overnight with anti-βIII tubulin mouse monoclonal antibody (Promega,
Cat#G172A) in 1% BSA. Following three times washing with PBS cells were
subsequently labelled with fluorescent tagged Alexa 594 (Molecular Probe)
anti-mouse secondary antibody for 1 h at room temperature. Cells were visualized
under fluorescent microscope and photographed.

2.4 MEA Preparation

MEAs were pre-treated for coating with poly-ethylene-imine (PEI) and laminin
(Sigma Aldrich). Laminin (0.02 mg/ml in Neurobasal medium) was applied directly
to the centre of the array, in drops of 20 μl. After incubation, laminin drops were
removed by vacuum aspiration just prior to plating cells. Primary neurons were
allowed to rest for 30 min in the incubator for adhesion and then 1 ml of media was
added in the MEA dish. Cultures were maintained in petri dishes with lids on, in an
incubator with 5% CO2, 37 °C and 65% relative humidity. The media was regularly
changed after 4–5 days during 2 weeks of cells growth and maturation.

2.5 Extracellular Microelectrode Recordings

On the 15–17 DIVs MEA recording was performed at 37 °C in the standard growth
medium in a cell culture incubator (37 °C, 5% CO2, 65% relative humidity). In
order to avoid contamination, culture chambers’ lids were tight under biosafety
cabinet before starting recording. A high band pass digital filter (200 Hz) was
applied to the raw signal in order to remove electrical background noise. Recording
sessions lasted for 3–5 min to record spontaneous signals from the control and
treated cultures. There is a specific pathway towards the accumulation of signals
from neuron through MEA system devices that is described in Fig. 2. Neuronal
responses from drug treatment are transformed by different parameters across the
components of the MEA toward the recorded signal typically as a form of action
potential.

Simultaneous signals from all 60 electrodes were sampled at 25 kHz, visualized
and stored using the standard software MC-Rack provided by Multi Channel
System (Reutlingen, Germany). Later on spike and burst detection analysis was
performed using specialized software NeuroSigX developed by IISRI, Deakin
University, Australia. Spike’s detection threshold with justification: −15 µV was
set to record the response from neuron from MEA.
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3 Experimental Outcomes

3.1 Spatio-Temporal Spike Analysis

To explore the effect of DHA on the electrophysiological behaviour of the neurons,
spike activity behaviour was analysed using spatio-temporal analysis. Figure 4
shows the raster plot of spatio-temporal analysis where spike activity of all 60
electrodes is distributed over time. An increased activity in the DHA-treated MEA
(Fig. 4b) compared to control (Fig. 4a) is clearly visible. This raster plot represents
a zoomed section of the whole. Each dot in the raster plot represents electrode
activity over a specific time window. Increase in the electrical signalling in between
the cells will subsequently increase amount of dots in the raster plot.

3.2 Burst Activity Analysis

To further analyse the effect of DHA, quantitative spike analysis was performed
employing activity histogram, as shown in Fig. 5. An increase in the spike activity
can be observed from control to DHA-treated cells. Table 1 presents estimated
average spike rate that increases from 297.01 spikes per second to 454.35 spikes per
second for control and DHA-treated neuronal cultures, respectively.

Minimum and maximum spike rate per channel and mean spike rate per channel
have also been shown as increased (Table 1) in DHA treatment compared to
control. These differences are visible in Fig. 5. In control the maximum spike rate
and the mean spike rate per channel were recorded as 4714 and 1485.6, respectively
(Fig. 5a), where they were 14577 and 2296.7 for DHA treatment (Fig. 5b). This
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Fig. 4 Effect of DHA treatment in neuronal signalling. Neuronal signalling pattern presented in
raster plot a in control and b DHA-treated cortical neuron

108 Md Ahsan Ul Bari et al.



improved spike rate in DHA treatment clearly demonstrates the beneficial effect of
DHA in neuronal signalling.

Furthermore, spontaneous network burst activity behaviour was analysed to
further assess the effect of DHA on primary cortical neurons. Network bursts are
characterized by short transients of rapid spiking activity flanked by silent periods
indicating activation patterns of neurons defined by rapid action potential spiking
over narrow time intervals [64, 65]. Network bursts are common feature of the
central nervous system used in several in vitro preparations and are considered to be
indicators of robust neural operation, communication and neuropathology [66].
Bursts were detected based on calculating the total spiking rate, which is the total
number of spikes from all electrodes within 100 ms time bin. As a criterion of
spotting the burst, a rapid appearance of a large number of spikes over all electrodes
in a small (100 ms) time bin was used [67].

Burst activity analysis is shown in Fig. 6, where the estimated bursts are
highlighted with green and red line. Green and red lines indicate the start and end of
the burst activity with respect to time. A clear difference and improvement in
bursting pattern from control (18 distinct burst) (Fig. 6a) to DHA-treated (20 dis-
tinct burst) (Fig. 6b) cortical neurons is apparent. By the rate of occurrence, burst
patterns are classified differently. Typically, burst rates are relatively constant over
time, evident with either regular or more chaotic spacing. Differently, the burst rate
can be varied by more than an order of magnitude over the course of a recording

Fig. 5 Spike activity analysis of a control and b DHA-treated cortical neurons. Blue line
highlights variation of the spike activity over 60 channels and red line highlights the mean spike
activity over all channels

Table 1 Spike rate of the
control and DHA-treated
neuronal network

Criteria Control DHA-treated

Spike rate per second 297.01 454.35
Min spike rate per channel 393 408
Max spike rate per channel 4714 14577
Mean spike rate per channel 1485.6 2296.7
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and evident with the burst rate which is highly variable [68]. Looking into the
control, it was apparent that the burst pattern was more likely to be continuous
(Fig. 6a) than the pattern detected in DHA treatment (Fig. 6b) tend to be versatile.
This criterion indicates the positive effect of DHA on neuron in terms of signal
processing.

Bursting is a general amplifying mechanism of signals from dendritic structures,
synaptic inputs and voltage-gated channels of neurons. Changes of any of these
structural cores of neurons may bring about the alterations in bursting pattern in
more versatile way. It is acknowledged that bursting is effective at enhancing
transmitter release and promoting activity-dependent synaptic plasticity [69]. Our
experimental phenomenon coincides with the statement and indicates the changes
in neurite outgrowth due to DHA treatment may have been improve the bursting
pattern.

3.3 Energy Profile of the Electrodes

Electrode activity is measured based on the total active electrodes and their intensity
of activeness thought out the recorded time. These activities are represented as heat
map in Fig. 7 (2D view in top panel and 3d view at the bottom). Colour-coded
intensity map shows the position and intensity of a particular electrode during
recording.

3D view gives us a vertical representation of the degree of intensity of a par-
ticular electrode. From our experiment it is evident that the intensity of electrodes
activity for a period of time is more likely to be three times higher in DHA
treatment (count of 14,000) (Fig. 7b top panel) than the untreated control

Fig. 6 Changes in spontaneous network burst activity of neuronal signalling subsequent electrode
activity during data recording in a control and b in DHA-treated cortical neuron
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(4500 count) (Fig. 7a to panel). A fair bit of conclusion could be drawn as DHA
treatment promotes the neuronal activity.

3.4 Neural Activity Pattern Variance

To understand the variance between neural activity patterns, dynamic time warping
technique was employed. Dynamic time warping (DTW) was developed originally
for the purpose of speech recognition [70]. It is a well-known technique of time
series alignment algorithm. DTW is used to find an optimal alignment between two
given (time-dependent) sequences of feature vectors implying certain restrictions.
The sequences are warped spontaneously in a nonlinear fashion to match each other
in order to find similarity variance between them [71]. DTW has been successfully
applied in the fields of data mining and information retrieval and can automatically
deal with time deformations and different speeds of time-dependent data. The
distance between two sequences or points is measured by the function of manhattan
distance. The Manhattan distance function of metric computes the distance that
would travel to get from one data point to the other following a grid-like path.
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Fig. 7 Spontaneous electrode activity pattern of MEA’s in a control and b DHA-treated cortical
neuron on MEA
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The distance between two items is the sum of the differences of their corresponding
components.

In this experiment DTW was measured considering Windows (BW) of 100 ms
and minimum electrode (ME) umber 10. It can be seen that the similarity variance
calculated based on manhattan distance of detected burst has a low variance in
control and were presented in a form of 2D bar graph (Fig. 8a top panel). Distances
of variances were presented as 3D graph (Fig. 8a bottom panel) along with the
intensity of individual burst. On the other hand DTW from DHA-treated samples
were detected with high variance (Fig. 8b top panel) and the distances are highly
diversified (Fig. 8b bottom panel), which may suggest the physical changes in
neuron promoted by DHA treatment can bring along the variation in the signal
processing as well.

Fig. 8 Dynamic time warping (DTW) of MEA-recorded data response from a control (top panel)
and graphical distribution of variance of distances (bottom panel) and b DHA-treated cortical
neuron (top panel) and graphical distribution of variance of distances (bottom panel)
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3.5 Network of Signal Flow

Network flow diagram is usually used to express the connective network of pro-
cessed signal during MEA recording. A complete informative idea can be gained
from network flow. Network flow describes the dynamic utilization of a network as
communication medium such as electrical grids anatomical connections in the brain
[72] and is related to network connectivity. Following Fig. 9, organized
two-dimensional network connectivity of signals from individual electrode in
control (Fig. 9a top panel) is seen. Green thread-like structures represent the con-
nective paths from one electrode to another. Bottom panel (Fig. 9a) represents the
intensity of activities of the electrodes. The taller the red bars, the more active the
electrodes are. On the other hand response from the DHA-treated electrodes mores
dense and organized network activity were observed (Fig. 9b top and bottom
panel). This improved activity in the network flow by DHA treatment suggests that
supplementation of DHA may have some progressive effect on neuron that in turn
can improve the signalling mechanism of central nervous system.
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Fig. 9 Network flow of MEA-recorded data of responses from a control, 2D representation of
connected electrodes (top panel) 3D representation of connected electrodes (bottom panel).
b DHA-treated cortical neuron, 2D representation of connected electrodes (top panel) 3D
representation of connected electrodes (bottom panel)
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4 Conclusion

This study was conducted towards revealing the changes in electrophysical prop-
erties of neuron due to DHA treatment. The aim of the current study was to examine
whether DHA have any effects on neuron that can enhances physical properties
hence improving neuronal signalling pattern. Our study demonstrates a positive
function of DHA in modulating action potential duration, affecting the information
sent by one neuron and received by others and thus enhances neuronal signalling.
Increased signalling may be due to increase in neurite growth, synaptogenesis and
synaptic membrane fluidity promoted by DHA supplementation and increasing
signal flow. These phenomena were supported by the results of spike detection,
Busts analysis and the DTW function. Our experiment is pioneering the preliminary
approach to highlight the significant role of DHA in neuronal signal processing.
This was a short-time treatment approach for DHA. Long-term treatment with DHA
for prolonged cortical neurone culture may have given us more information of DHA
activity on neuron. Further experiments in more elaborative space are to be con-
ducted to explore the vast range of neuronal signalling pattern in response to DHA
supplementation.
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Insects Neural Model: Potential Alternate
to Mammals for Electrophysiological
Studies

Julie Gaburro, Saeid Nahavandi and Asim Bhatti

Abstract Microelectrode arrays are a promising tool in the study of electrophys-
iology of the brain in vitro. Allowing non-invasive recording of electrical signals
from neuronal networks, the device is a perfect tool to help scientists to understand
brain functioning at the cell level and as a whole system. Despite the large increase
of MEA technology in terms of device diversity and use in neurophysiology,
biological models in vitro are mostly restrained to mammals. This chapter high-
lights the advantages to combine insects and MEA technology for future neuro-
physiological studies, and introduce the possible perspectives of this research.

Keywords Microelectrode arrays ⋅ Neuronal network ⋅ Primary neurons ⋅
Insects

1 Introduction

After the discovery of Cajal that the nervous system is made of neurons [1], Edgar
Adrian was able to record signals from the nervous system for the first time [2]. His
breakthrough on describing neuron’s function was awarded in 1932 by the Nobel
Price of Physiology community. For recording electrical impulses along the nerve,
Adrian used electrodes, which was followed by the development into the voltage
clamp technique by Kenneth Cole and George Marmont in 1949 [3]. This was the
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start of electrophysiology, which can be defined as the analysis of neuronal activity
by recording neuron events, either spike activity or network oscillations [4]. As this
branch of physiology was developing, techniques for recording have evolved and
specialized into different types.

First, the patch-clamp technique is to record and measure ion currents from a
single channel. This microscale technique is powerful, and however has some
limitations. The method is indeed quite tedious and requires skills and specialized
tools. The main disadvantage is that it can only be applied to a single neuron, so
only few cells can be used during an experimental setup [5]. Despite the use of
automated patch-clamp systems [6], measuring the characteristics of different
neurons, simultaneously, is limited by the dependency on the equipment such as
micromanipulators.

Second, indirect measurement technique appeared to record the full brain’s or
area’s activity with functional resonance imaging (fRMI), positron emission
tomography (PET) and electroencephalography (EEG). With those methods, sci-
entists can work at the macroscale and determine functional connectivity, from
different areas of the brain or network. Yet, those techniques are not precise enough
and detect neuronal signals at low spatial resolution.

An intermediary solution to those techniques is to design an electrophysiology
technique working at the mesoscale. This is the case of microelectrode arrays
(MEAs), which consist of microelectrodes integrated on a chip to record extra-
cellular signals from neuronal network. Electrodes can be either made of metal or
open-gate field-effect transistors (OGFETs), or oxide-semiconductor FET (OSFET).
The main advantages of this technique are that it is non-invasive to the culture, it
can record activity from a network of cells, at millisecond time scale for days,
weeks and even months [7]. Microelectrodes record extracellular field potentials
(FPs) and reflect the spike activity of neurons in time and space building a network
activity, illustrating the whole neurons culture. Spikes can be sampled either via
spontaneous activity or electrically stimulated. Mostly used with mammalian
neurons, those devices unlocked few mechanisms of neural network functioning.

Despite all those advances, mammal brains present a major challenge to science
as their central nervous system (CNS) holds 100 trillions of connections between
billions of neurons. The processing of information through these intercellular
communication channels is extremely complicated as well as incredibly robust.
Behaviours are the response to signals from multiple neuronal networks processed
in the CNS, and it is then necessary to understand how this information is treated in
order to treat behaviour and brain diseases. Insects are good candidates as model of
study of the CNS as their brains contain less complex neuronal networks (about 250
000 neurons for a fruit fly). First, thought as brainless, insects are endowed of
complex behaviours such as orientation, body communication and social beha-
viours [8, 9]. Besides, both nervous systems have anatomical similarities, sharing
the same embryonic origins. On the cellular level, for both nervous systems, the
basic unit is the neuron, which delivers signals, thanks to similar hormones and
neurotransmitters. These properties make insects a good model, since results can be
extrapolated to humans.
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Combining modern technology such as MEAs and adequate neural models, such
as insects, will improve our understanding of the organization of the brain as a
whole. This chapter reviews the similarities between insects and mammalian CNS
and the lack of studies in neurophysiology using MEA technique combined with
insect neurons. Second, the manuscript will present the possibilities of insect
models which could be used with MEAs and their potential and perspectives into
different fields of research.

2 Insects Neuronal Networks: Potential Alternate
for Mammals

The study of insects has been very helpful in understanding biological mechanisms
in mammals. From understanding of taste [10], pain [11] and learning [12], studies
have demonstrated the usefulness of insect model system to complement and
apprehend research in vertebrates. Evidence have been published that insect and
mammalian nervous system have basic mechanisms in common.

2.1 Insects and Mammalian CNS, not so Different

2.1.1 Insects Are Capable of Complex Behaviours

Although their smaller size, insects possess a complete and complex nervous sys-
tem, which can be compared to mammals at different levels. As vertebrates, insect’s
nervous system is composed of CNS with a chain of ganglia and a peripheral
nervous system, which includes a stomatogastric ganglion and sensory and motor
nerves. At the end of the ganglia chain, the head of the insect includes a brain which
can be divided into different regions like mammals. Insect brain consists of three
main regions, known as protocerebrum, deutocerebrum, and tritocerebrum and can
be subdivided in different sub-regions. Insect and mammal brains consist of neu-
rons, a common functional and structural unit. Neuron cells are connected to each
other to form networks, which process information into the brain. Basic behaviours
such as walking and flying for voluntary actions or breathing regulation and
digestion for involuntary ones are regulated by the brain. Studies of insect brain
have been reviewed by Howse, which gives an overview of electrophysiological
recordings and stimulation results [13]. Insect brain shows basic patterns, but are
however capable of more complex and evolved behaviours.

Socialization or cooperation between pairs is considered as elaborated beha-
viours. Ants and bees are able of colony organization and are social species. They
are capable food location using complex communication mechanisms with pher-
omones: once an individual finds food, it walks to and from this source and deposits
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on the ground a pheromone that other individuals of the same species can detect and
follow in order to find the source. This way of communication is very effective and
even inspired a number of methods and techniques for optimization. The mecha-
nism is called “ant colony optimization” and is used to design algorithms for
optimization of solutions to logistical problems [14]. Yet, the best evidence that
insects are endowed with complex patterns is their capability for learning and
memorization. Learning and memory are, respectively, defined as the acquisition
and retention of neuronal representations of new information. Recent studies
showed that insects learn and use their previous learning for basic life activities
including feeding, predator avoidance, aggression, social interactions and sexual
behaviour [15]. As for example, bees have been showed to have the ability to be
trained to recognize visual stimuli such as colours, shapes and patterns, depth and
motion contrast. Those learning capacities to retain local cues are essential for bees
to characterize places of interest, essentially for food sources [16].

2.1.2 Insects Have Comparable Neurophysiological Mechanisms

Looking at the evolution tree, separation between insects and vertebrates, and so
mammals and humans, is quite far. Nevertheless, their CNS has many basics
structures and mechanisms in common.

First, the nerve cell or neuron is the basic structural unit of the nervous system
for all species. This highly specialized has several dendrites and an axon along
which electric impulses are distributed to other neurons. There are some clues in the
literature that stem cells generating those neurons are not too different between
vertebrates and invertebrates. For instance, CNS of Drosophila has been used as a
key model to study asymmetric division of stem cells and revealed recently the link
between unregulated stem cell division and production of tumour [17]. In the same
study, similarities between fundamental aspects of neural stem cell biology in
Drosophila and the mammalian cerebral cortex have been recognized [17].

Second, neurotransmitters, which are small molecules carrying information
across synapses from a nerve cell to its neighbouring cells, can be similar in both
groups. It has been showed that inhibitory (GABAergic) [18] and modulatory
(dopaminergic) [19] transmitters, which facilitate the regulation and release of
adaptive behaviours, are the same for insects and mammals. It means that network
connectivity and neuronal activity in the substructures of each CNS are mediated by
common neurotransmitters. Also for both cases, CNS dysfunctions result in
behavioural defects including motor abnormalities, impaired memory formation,
attention deficits, affective disorders and sleep disturbances.

Multitude similarities observed suggest deep homology of insects CNS and
vertebrate basal ganglia underlying the selection and maintenance of behavioural
actions [20]. As the mammalian cerebral cortex is the most highly evolved region of
the CNS, use of an insect model would allow resolution of neuronal communication
at a high level. Although the study of insects has been very helpful in understanding
biological mechanisms in mammals in terms of anatomy, physiology,
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pharmacology and neurophysiology of vertebrates (including mammals) and
invertebrates (including insects), it has been showed that there is a gap in the
application of the MEA technique with insects [21].

2.2 Insects Neurons on MEAs: A Missing Combination
in Electrophysiology

Since their first use in the second half of the twentieth century [8, 9], MEAs have
become a promising experimental platform for electrophysiological studies of
neural networks. Figure 1 illustrates a general MEA system which can be applied to
different types of MEAs. There is now a great diversity of MEAs used in neuro-
physiology, with a large field of applications (in vivo versus in vitro, or implantable
array). Recent publications have described and reviewed the recent use of those
MEAs in details [22–25].

Till now, numerous studies using MEAs to record primary neurons have been
reported. However, most of the preparations have been made with rodent primary
neurons, closest model to human. The dissection techniques and cells seeding on
the microchips are well established [26] and provide good spikes and burst data
analysis. Those models are now commonly used for drug testing and neurotoxi-
cology and open a new field of research for neurodegenerative disease studies
(Alzheimer [27]). Rodent primary neurons on MEAs have been tested for toxicity
of a wide panel of substances, such as ethanol, metals, neuro-excitatory or inhi-
bitory chemicals, and insecticides. The neuro-effects of those substances are
detailed in Johnstone and all in their review in 2010 [28].

Mammal or vertebrate models require strict ethical authorization and are
expensive and/or limited. However, most of MEA studies use rodent as source for
primary neurons. For birds, only two recent studies have been found using chicken
primary neurons [29]. There are disparities of type of models used on MEAs, with a
clear preference for rodent models. Figure 1 illustrates the disparities over the last
3 years of studies in this domain including all types of planar MEA and in vitro
studies (primary neurons, retina and brain slices). This imbalance can be explained
by the availability of mouses and rats in laboratories, which are commonly used for
experimental model rather than other mammal or vertebrate. Despite of their

Fig. 1 MEA recording system overview
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comparative simplicity, a gap is still to fill with invertebrates. Till today, the only
invertebrate primary neurons cultured on MEA are from molluscs Helix [30–32]
and one study reported with leech neurons [33]. No study using MEAs as tool for
electrical recording of neurons has been done using insect’s neurons so far, even for
Drosophila a well-established model in insect neurophysiology [34].

In the next section of this chapter, we present great potential of the use of insect
models with MEAs for future neurophysiological studies, still under explored today
(Fig. 2).

Fig. 2 The use of different models on MEAs in research studies from 2014 to 2016. Keywords
used for Google Scholar search were “Microelectrode array” + neuron and in vitro biological
studies were selected for the 10 first pages. a Proportions in percentages of the different in vitro
models used with MEA technology the last three years. b Bar plots representing, in percentages,
different models used with MEA technology per year. For 2014: N = 14, for 2015: N = 22, and
for 2016: N = 31
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3 Potential and Feasibility of the Insects Cultures
on MEAs

As before mentioned, in entomology, insect’s primary neurons have been used for
neurophysiological studies, enhancing our knowledge on neurophysiological
mechanisms.

Insect primary cell culture is a useful tool for studying the shape, the function
and chemistry of neurons in a simplified and controlled environment [35]. It has
repercussions in different areas of research such as physiology, pharmacology and
cell interactions. The study of anatomy of neurons in insects is not new and spans
over a century [36]. Nowadays, precise staining, powerful microscopes and 3D
image analysis allow us to go further in the anatomical understanding of the brain
morphology and structure. Ignell and his colleagues described in 2005, the archi-
tecture of the mosquito deutocerebrum with details of number of glomera and
neurons structure in Anopheles gambiae and Aedes aegypti mosquitoes, and proved
structural differences between male and female individuals [37]. Other tools have
been developed to record the action potential in single-taste receptor neurons,
allowing the detection of hydro-soluble compounds of single-taste receptors in
insects [38].

Neuronal cultures have been developed in many different types of insects, at all
development stages, reviewed by beadle in 2006 [39]. A primary culture refers to
the stage of the culture after the cells are isolated from the tissue and proliferated
under the appropriate conditions until they reach a stable stage and can be trans-
ferred to a new vessel with fresh growth medium to provide more room for con-
tinued growth (Life technology, ‘Introduction to Cell Culture’). The first ever done
with insect was designed in 1970 by Chen and Levi-Montalcini from the brains of
embryonic cockroaches [40]. From there, other trials have been done with adult and
embryonic stages with crickets, flies, moths and bees, all described in detailed in
Beadle review. First, the studies were mostly targeted on the morphology to dis-
tinguish the different types of neurons in the insect brain [41]. Then improvement of
materials and techniques allowed scientists to study neuron action potential
parameters and in more detail ionic currents in insects’ cultured neurons. For
example, characterization of potassium channels has first been done with brain
cricket primary cultures [42] and today improved cultures even provide information
of potential genes involved in action potential generation in Drosophila [43].
Identification of GABA, glutamate, and acetylcholine receptors has been achieved
for the first time on cockroach-cultured neurons respectively in 1987 [44], followed
by other insect’s models, such as honeybees, Drosophila, moths, crickets and other
flies.

In Drosophila, the use of primary cell cultures originating from embryonic and
from larval tissue has been well established and cell cultures are known since half a
century [45]. Continuous neuron cell line can be established from Drosophila larval
CNS cells and maintain their proliferation outside their endogenous environment

Insects Neural Model: Potential Alternate to Mammals … 125



[46]. Also established from Drosophila larval CNS, Ui and collaborators have
described different stable neuron lines [47].

Figure 3 shows primary neurons from Aedes aegypti cultured on MEA. Trial
experiments (data not published) have showed that after 7 days in Vitro, dissected
and dissociated mosquito neurons are spontaneously firing on MEAs. This model is
then compatible with neural network activity recording, allowing neuronal network
studies of chemicals impacts on insects (pesticides), and also virus interactions on
insect’s nervous system.

To summarize, insect primary neurons are a well-established system used in
neurophysiology. An association of those neuronal networks on MEAs would take
the research of insect neurophysiology a step further.

4 Perspective and Applications

There are many reasons to believe that culturing insect cells on MEAs can open
many doors to neurophysiological research. To begin with, medical research has
used for more than a century, Drosophila melanogaster populations, to study
diverse biological functions such as vision, reproduction, feeding behaviour, etc.
With the emergence of neurodegenerative diseases, due to the ageing population,
mutant fly models have been designed, allowing reproducible testing to be con-
ducted more diversely and in shorter times than in rodent models. Drosophila is

Fig. 3 Aedes aegypti primary neurons growing on MEAs (a). MC_Rack interface while
recording spontaneous activity, all channels (left) and burst zooming form one channel (right)
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also known to be a powerful tool, thanks to its unique and successful genetic tool
[48]. The highly diverse and accessible Drosophila mutant resources have facili-
tated our understanding of genetics underlying neurophysiology processes. The
other advantages to use insects as model are their low cost, high-speed processes
(days instead of weeks) and easy handling conditions. This is why MEA experi-
ments could add another prospect for the application of this model to improve our
global understanding of neuron communication and its implications in human and
animal nervous diseases.

Neurodegenerative diseases have increased rapidly in developed countries since
the end of the twentieth century, and yet no cure has been validated for Alzheimer’s
and Parkinson’s diseases. Experiments using MEAs with mouse neurons culture
[27] revealed the early steps in generation of Alzheimer’s disease lesions in the
hippocampus. The effectiveness of MEA technology has been demonstrated when
electrophysiological properties of the sub-thalamic nucleus, an area involved in
Parkinson’s disease, have been identified [49]. As mentioned before, flies have been
recently used as model for neurodegenerative studies [50, 51]. The use of insect
brain cell cultures on MEAs could take neurodegenerative diseases research to
another level in improving our understanding and the development of a cure for
these neurodegenerative diseases.

Another major public health burden concerns vector-borne diseases, or diseases
caused by viruses carried by a vector such as insects. Those diseases are a major
issue in developing countries and represent a constant threat of emerging diseases
worldwide. The best example is the case of Zika virus which has been linked in
2015 with Guillain-Barré syndrome, and 2015 microcephaly in new born babies
(World Health Organization). Insects, such as mosquitoes but also flies, can be
vectors of numerous pathogens, which can be responsible for diseases in humans
and other mammals. Pathogens are transmitted mainly by bite allowing them to
pass from animal to animal through a totally biological process. In contrast to
vertebrate hosts, insect’s infection by arboviruses does not show sign of infection
and no or little pathology. Till now, arbovirus mechanisms and interactions with its
vectors are totally unknown. Discoveries on molecular mechanisms of host inter-
actions with pathogens could reveal a powerful tool to limit or stop arbovirus
replication in insects. Combined with insect cells, MEA technology represents a
good potential to understand these processes.

Finally, neurotoxicity and pharmacology research could have some advantages
to use insect neurons on MEAs. Besides, enabling recordings in real time of neu-
ronal networks culture, and so provides robust measures of network activity, MEA
can have multi-wells, allowing then chemical testing on neurons at higher scale
[52]. Regular or multi-well MEA systems can record physical, chemical and
pharmacological perturbations after introduction of different chemicals, which are
reflected in the tissue responses under different conditions. Cell or tissue responses
provide important data of their impact on nervous system and those substances
effects can be classified a classification [28, 53–55]. However, all studies to date
have been conducted in vertebrate cell cultures, highlighting the gap for use of
MEAs in insects despite their medical and ecological importance. There is a huge
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potential to use insect neurons on MEA systems for pesticides testing, especially
with the emerging problem of insecticide resistance. This research could benefit
both agriculture and medical prevention against bites.

5 Conclusion

This chapter emphasizes the importance of the use of insect neuronal networks with
MEA technique. Literature has showed that insects and mammals share common
and elementary molecular mechanisms. This is why studying CNS insects could be
an advantage to understand the main underlying nervous processes of neural
communication. Those results could be then extrapolated to mammals and even
humans with supplementary tests including vertebrate models. The outputs of this
research can be advantageous in diverse medical research domains, but also useful
for neurotoxicity testing.
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Synchronization Criteria for Delay Coupled
Izhikevich Neurons

Imali T. Hettiarachchi, Lakshmanan Shanmugam, Asim Bhatti
and Saeid Nahavandi

Abstract In this chapter, we investigate the chaotic synchronization of two coupled

Izhikevich neurons via a gap junction. In the absence of a controller, the coupled

neurons will achieve complete chaotic synchronization only when the degree of con-

nectivity or the coupling strength exceeds a critical value. This transition to synchro-

nization with varying connectivity strengths is analysed with conditional Lyapunov

exponents. Synchronization of gap junction separated, coupled Izhikevich neurons

using control laws has remained non-investigated to this date. As such, in this chapter

we propose a nonlinear adaptive controller, in order to obtain complete chaotic syn-

chronization for any value of coupling strength and delay, based on the Lyapunov

stability theory. Effectiveness of the proposed nonlinear controller for synchroniz-

ing delayed-coupled Izhikevich neurons are shown through numerical simulations.

Keywords Izhikevich model ⋅ Gap junction ⋅ Delay coupled ⋅ Synchronization ⋅
Nonlinear control

1 Introduction

Chaotic synchronization is one of the most interesting dynamical behaviours that

can arise in a neuronal network. Important brain functions such as working memory,

selective attention, sensory perception, and multisensory integration which requires
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efficient sensory and cognitive processing are the result of synchronized firing activ-

ity of coupled neuronal networks. The information processing of the brain is a result

of intensity keeping of the neuronal response during the propagation over the net-

work, which occurs during neuronal synchronous states [1]. Further, disturbances in

the synchronized network activity causing imbalance of the neurons are the cause of

clinical disorders such as Parkinson’s disease, schizophrenia and epilepsy [2].

Therefore, studying the synchronization and de-synchronization of neuronal

spike-burst behaviours can give us insight to the information processing in the brain

and even the origins of certain mental disorders. In this regard, biophysical models of

single neurons have been proposed in the literature, which are useful in understand-

ing various neuronal behaviour such as spiking, bursting, and chaos [3–7]. These

models can reproduce various spiking activity observed in neural systems by tuning

the parameters, and also can be used to investigate the phenomenon of synchroniza-

tion of neuronal networks [8].

The Hodgkin–Huxley (HH) neuron model [3] is known to be the most comprehen-

sive, yet the most complex spiking neuron model for simulating neurodynamics. Due

to the complexity of involving biophysical parameters such as capacitance of mem-

branes and resistance of ion channels, many alternative biologically plausible, yet

computationally efficient neuron models have been proposed by researchers. Some

widely used computationally efficient biophysical neuronal models are, Hindmarsh-

Rose (HR) neuron model [6], the FitzHugh-Nagumo neuron model [4], the Morris–

Lecar neuron model [5], and the Izhikevich neuron model [7–9].

Among such simplified models, the Izhikevich neuron model [8] is capable of

reproducing almost all spiking activity observed in neural systems by tuning the

parameters, with the variety of the spiking properties greater than those obtained

through other models [7]. Among a wide variety of spiking and bursting neuron

models proposed in the literature, we focus on the Izhikevich model of a single neu-

ron [8].

Several studies have considered the dynamics of the Izhikevich model under dif-

ferent parameter settings [7, 9]. The chaotic characteristics of the Izhikevich model

are examined in a few studies, where the authors examine and classify the chaotic

characteristics of the single Izhikevich neuron model [10–13] and an assembly of

Izhikevich neurons [11] using bifurcation diagrams, Lyapunov exponents with a

saltation matrix and Poincaré section methods. Dynamics of coupled networks of

Izhikevich neurons are studied in [8]. Here, a pulse coupled neural network (PCNN)

model is proposed, which is capable of reproducing temporal neural activity such as

spindle waves, sleep oscillations, and sustained spike synchrony.

A few studies have considered the synchronization of coupling-induced Izhike-

vich neurons [11, 14, 15]. In [14] two general network models of electrically coupled

bursting neurons via static homotypic gap junctions (connexin-43) are studied. The

degree of synchronization is discussed with respect to the strength of the gap junction

connection and the population size of the network. The network models included a

fully connected network (FCN) and a sparse random network (SRN), and the mean

conductance of the FCN and density of connections in a SRN, characterised the

strength of the gap junctions. The study shows that increasing mean conductance
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in a FCN and density of connections in a SRN result in increased synchronization,

while the increase in population size decreases the degree of synchronization in the

network. The results of the study concluded that, a large neural network could tran-

sition to a high degree of synchronization when exceeding critical parameter values.

In [15] the authors studied coupling-induced population synchronization of a pop-

ulation of neurons connected via excitatory AMPA synapses. This study reported,

that for small coupling strengths, the population state is incoherent due to individ-

ual neurons fire spikings independently. However, when exceeding a lower threshold

of the coupling strength, the coupling stimulates coherence between noise-induced

spiking resulting in spike synchronization.

The studies on population synchronization of Izhikevich neurons reported in [14,

15] consider the case of bursting and regular spiking. Apart from the work presented

in [11], no studies consider the case of chaotic synchronization of an assembly of

Izhikevich neurons. This study also considers coupling strength dependence of signal

response in the neuron assemblies consisting of strong and weak chaotic neurons.

Studies involving other neuronal models such as the HR neuron also confirms

this transition to synchronization between neurons [16, 17], only occurs after a criti-

cal value of the coupling strength. In an electrically coupled HR network, sequential

transitions to synchronized states are observed with the increase of coupling strength.

Increasing the coupling strength from zero, first an increased incoherence and then

two different transitions to synchronized states; one associated with bursts and the

other with spikes occurs [16, 17]. A general conclusion of the aforementioned studies

are that the coupling strength of coupled neurons with electrical or chemical excita-

tory synapses can enhance synchronization of the Izhikevich neuronal populations

[11, 14, 15]. In this chapter, we consider chaotic synchronization of two coupled

Izhikevich neurons via a gap junction and provide a control theory perspective to

guarantee synchronization at any value of the connectivity strength or transmission

delay.

Control law derivation of coupled neuronal models have gained vast interest

among researchers during the recent years. From the control theory perspective, the

goal is to achieve synchronization among coupled neurons irrespective of their cou-

pling strength or coupling delay [17]. Many different types of controllers including

nonlinear control [18], adaptive control [19], sliding mode control [20], and feed-

back control [21] has been proposed to synchronize chaotic neurons. Control law

derivation for synchronization of gap junction separated coupled Izhikevich neurons

has remained a topic yet to be discussed. In order to fill this research gap, we propose

a nonlinear synchronization control strategy in this chapter.

The study is twofold. First, we derive the conditions of synchronization based on

the coupling strength in the absence of control and second using a nonlinear adaptive

control to guarantee chaotic synchronization. The rest of the chapter are organized

as follows. Section 2 presents the Izhikevich model and its dynamic behaviour while

Sect. 3 presents the coupled model and the conditions for complete transition to syn-

chronization of the coupled neurons. An adaptive nonlinear feedback control law is

derived in Sect. 4 followed by numerical simulations in Sect. 5. Section 6 concludes

the chapter.
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2 Methods and Material

2.1 Izhikevich Model of a Single Neuron

The single neuron model proposed by Izhikevich [7, 8] combines continuous spike-

generation mechanisms and a discontinuous resetting process following the spikes.

Mathematically, this is implemented as a two dimensional ordinary differential equa-

tion system given as,

v̇ = 0.04v2 + 5v + 140 − u + Iext
u̇ = a(bv − u) (1)

with the auxiliary after-spike resetting,

if v ≥ +30mv then

{
v ← c
u ← u + d

(2)

where v is the membrane potential of the neuron and u represents the membrane

recovery variable, which accounts for the activation of K+
ionic currents and inac-

tivation of Na+ ionic currents. The membrane recovery variable provides negative

feedback on v. After the spike reaches its apex (+30 mv), the membrane voltage and

the recovery variable are reset according to (2). Iext is a direct current input. The time

scale and the sensitivity of u is adjusted by the parameters a and b respectively. The

Izhikevich model can emulate a wide variety of neuronal behaviour such as regu-

lar spiking, intrinsic bursting, chattering, and fast spiking [7, 8]. Figure 1 shows an

example of regular spiking (RS), chattering (CH), and chaotic behaviour (CHAOS)

of the Izhikevich neuron. The parameter values corresponding to each behaviour are

summarized in Table 1.

In the present work, we concentrate on the chaotic behaviour of the system and

chaotic synchronization of coupled Izhikevich neurons. A detailed analysis of the

dynamic behaviour of the single neuron Izhikevich model can be found in [13], with

reference to Lyapunov exponents and bifurcation diagrams. For the rest of the paper,

we use the parameter values a = 0.2, b = 2, c = −56, d = −16 and I = −99 as in [7,

13] to simulate chaotic firing from the Izhikevich neurons.

3 Coupled Izhikevich Neuronal Model

The neurons are coupled through their synapse and this synaptic communication is

twofold: electrical or chemical. Electrical synapse also referred to as gap junctions

are faster synapse compared to the chemical synapses. In this paper, we consider

neurons coupled through an electrical synapse and incorporate the time delay in
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Fig. 1 Izhikevich model behaviour for different parameter combinations a, b regular spiking c, d
chattering and e, f chaotic behaviour. The corresponding parameter values for each firing pattern

are given in Table 1

Table 1 Parameter values for different firing patterns of the Izhikevich model

Behaviour a b c d I
RS 0.02 0.2 −65 8 10

CH 0.02 0.2 −50 2 10

CHAOS 0.2 2 −56 −16 −99
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coupling. Two identical neuron coupled Izhikevich model through gap junctions can

be modelled using the Izhikevich single neuron model in (1) as,

Neuron 1,

v̇1 = 0.04v21 + 5v1 + 140 − u1 + Iext − g(v1 − v2(t − 𝜏))
u̇1 = a(bv1 − u1) (3)

Neuron 2,

v̇2 = 0.04v22 + 5v2 + 140 − u2 + Iext − g(v2 − v1(t − 𝜏))
u̇2 = a(bv2 − u2) (4)

with the auxiliary after-spike resetting,

if v1 ≥ +30mv then

{
v1 ← c
u1 ← u1 + d

if v2 ≥ +30mv then

{
v2 ← c
u2 ← u2 + d

(5)

where, v1, v2 are the membrane voltage of the neurons and u1, u2 are the membrane

recovery variables, g is the coupling strength and 𝜏 is the time delay during synaptic

information flow. The dynamics of the membrane potentials of the coupled neurons

and the effect of connectivity strengths and delay on the same will be discussed

further in the Sect. 5.

3.1 Synchrony in Coupled Izhikevich Neurons

In this section, we investigate the chaotic synchronization of two coupled Izhikevich

neurons, with the goal of exploring the effect of the coupling strength on the process

of transition to synchronization. Here we assume the coupling time delay 𝜏 = 0,

and discuss the effect of coupling strength of synchronizing two coupled identical

Izhikevich neurons.

In order to analyse the synchronization of two coupled chaotic Izhikevich neu-

rons, we use the conditional Lyapunov exponents (CLEs), a method for chaos syn-

chronization introduced by Pecora and Caroll [22]. To follow this method, first we

define the error system of the coupled neurons as, e1 = v2 − v1 and e2 = u2 − u1. The

linearized system that satisfies e1, e2 can be given as,
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e1 = 0.08e1vsync + 5e1 − e2 − 2ge1
e2 = a(be1 − e2)

(6)

with,

v̇sync = 0.04v2sync + 5vsync + 140 − usync + Iext
u̇sync = a(bvsync − usync) (7)

with the auxiliary after-spike resetting,

if vsync ≥ +30mv then

{
vsync ← c
usync ← usync + d

(8)

where vsync and usync are the synchronized states of the Izhikevich neuron model.

At complete synchronization, i.e. at time limit t → ∞, |v2 − v1| = |e1| → 0 and|u2 − u1| = |e2| → 0, reaching the synchronized state v2 = v1 = vsync and u2 = u1 =
usync. Then the system in (7) gives the synchronization manifold. Lyapunov expo-

nents of the linearized system (6), namely the CLEs determine the stability of the

synchronized manifold. The stability of a synchronization manifold is attained when

all the CLEs are negative [22], which implies complete synchronization of the cou-

pled neurons. Figure 2 shows the variation of the two CLEs with varying coupling

strength g between the coupled Izhikevich neurons.

As the coupling strength is increased from zero, the initially positive exponent

starts to decrease. It implies that a low coupling strength makes the system inco-

herent. It can be observed that with increasing coupling strengths both of these

exponents decrease and become negative by crossing zeros at two different cou-

Fig. 2 Variation of the

conditional Lyapunov

exponents with the varying

connectivity strength for two

coupled chaotic Izhikevich

neurons. First and the second

Lyapunov exponents

transition from positive to

negative at

g ≈ 0.212 and g ≈ 0.348
respectively
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Fig. 3 a, c, e Time series of membrane potential of the coupled Izhikevich neurons (v1 in contin-
uous line and v2 in dashed line) b, d, f Phase portrait of the coupled neuron membrane potentials.

a, b g = 0.1, c, d g = 0.22, e, f g = 0.35

pling strengths, implying that the coupled Izhikevich neurons become less and less

incoherent and finally completely coherent, with an increasing value of the coupling

strength.

Figure 3 shows the membrane potentials of the master and slave neurons, as well

as the phase portraits for varying values of connectivity strength g. The synchroniza-

tion error of the system is shown in Fig. 4. It can be seen that although the second

CLE crosses zero at g = 0.212, the other CLE is still positive. This case is shown

in Figs. 3 and 4c, d with g = 0.22. However once both CLEs become negative for

g > 0.348, complete synchronization occurs and it can be seen from Figs. 3 and 4e,

f how the synchronization error vanishes.
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Fig. 4 Time series of the synchronization error of coupled Izhikevich neurons a, c, e ev = v1 − v2
b, d, f eu = u1 − u2. a, b g = 0.1, c, d g = 0.22, e, f g = 0.35

From the above discussion it is evident that in the case of two coupled identical

Izhikevich neurons, complete synchronization will occur only when the connectivity

strength exceeds a critical value (g > 0.348) in align with other population synchro-

nization studies found in the literature [11, 14, 15]. In the next section we derive a

control law which will guarantee complete synchronization between two delay cou-

pled Izhikevich neurons at any value of their connectivity strength and delay in cou-

pling.

4 Adaptive Synchronization via Nonlinear Feedback
Control Law

The dynamical error of the two-interconnected neuronal system can be defined by

e1 = v2 − v1, e2 = u2 − u1, as given blow,

[
ė1
ė2

]
=
[
0.04(v1 + v2)e1 + 5e1 − e2 − g(e1 − e1(t − 𝜏)) + C

abe1 − ae2

]
(9)
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The nonlinear control,

C = −0.04(v1 + v2)e1 − ke1. (10)

The parameter update law

̇k = 𝛼e21. (11)

Theorem 1 The asymptotic synchronization of the two neurons described in (3) and
(4) can be achieved under the control law (10) and (11).

Proof Now construct the following Lyapunov function,

V(t) = 1
2
e21 +

1
2
e22 +

1
2𝛼

(k − l)2 +
∫

t

t−𝜏
e21(s)ds, (12)

where l > 0. The derivative of the Lyapunov function in (12) with respect to (9) is,

̇V(t) = e1ė1 + e2ė2 +
1
𝛼

(k − l) ̇k + e21 − e21(t − 𝜏)

= e1[0.04(v1 + v2)e1 + 5e1 − e2 − g(e1 − e1(t − 𝜏)) + C]

+e2[abe1 − ae2] +
1
𝛼

(k − l)𝛼e21 + e21 − e21(t − 𝜏)

= e1[6 − g − l]e1 + e1[ab − 1]e2 + e2[−a]e2 + ge1e1(t − 𝜏) − e21(t − 𝜏).

Moreover, we can express as matrix form

̇V(t) =
⎡⎢⎢⎣

e1
e2

e1(t − 𝜏)

⎤⎥⎥⎦
T ⎡⎢⎢⎣

6 − g − l 1
2
(ab − 1) g

2
∗ −a 0
∗ ∗ −1

⎤⎥⎥⎦
⎡⎢⎢⎣

e1
e2

e1(t − 𝜏)

⎤⎥⎥⎦ (13)

where ∗ denote the symmetric term. We can conclude that ̇V(t) < 0 if 6 − g < lwhich

implies that based on Lyapunov stability theory, the proposed error model is asymp-

tomatically stable, i.e., two neurons are synchronized.

5 Numerical Simulations

The numerical simulations are run in MATLAB and the models are implemented

using the Euler method with a step size h = 0.01. The parameter values of the Izhike-

vich neuron are chosen to be in the chaotic region of operation as, a = 0.2, b = 2, c =
−56, d = −16, Iext = −99. The connectivity strength was varied for different values

g = 0.1, 0.2, and 0.35, while the coupling delay was fixed at 𝜏 = 0.2 ms. The ini-

tial conditions for the master model are set to v1(0) = −65, u10 = b ∗ v1(0) = −130,
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Fig. 5 a, c, e Membrane potential time series of the delay coupled Izhikevich neurons (v1 in con-
tinuous line and v2 in dashed line) b, d, f Phase portrait of the delay coupled neuron membrane

potentials. a, b g = 0.1, c, d g = 0.22, e, f g = 0.35. Coupling delay 𝜏 = 0.2 ms

while those of the slave neuron were set to v2(0) = −70, u20 = b ∗ v2(0) = −140.

Figure 5 shows the membrane potentials as well as the phase portraits of the mas-

ter and slave neurons for varying connectivity strength. In comparison to Fig. 3, it

is evident the time delay in coupling has affected the degree of synchronization as

well as the membrane potentials. This shows the effect of coupling time delay on

the dynamics of the master–slave system. Also, in the absence of coupling delay the

neurons show complete synchronization at g = 0.35 (Figs. 3 and 4e, f), however with

a 𝜏 = 0.2 ms coupling delay the coupled Izhikevich neurons fail to attain a complete

synchronization (Fig. 5e, f). These results confirm that synchronization between two

neurons cannot be attained at all settings of coupling strength and delay without

control.
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Fig. 6 Synchronization error of the delay coupled Izhikevich neurons a ev = v1 − v2 b eu = u1 −
u2. Top row g = 0.1, Middle row g = 0.22, Bottom row g = 0.35. Coupling delay 𝜏 = 0.2 ms

In order to investigate the effectiveness of the proposed control scheme, we apply

the control law (10) and (11), for the delay coupled Izhikevich neurons with varying

coupling strengths. Figure 6 shows the synchronization error of the coupled neurons

in the absence of a controller. Figure 7 shows the phase portrait and the synchroniza-

tion error with the control law. It can be seen that the coupled neurons achieve com-

plete synchronization under external control. By solving the above (3) and (4) with

parameter values set for chaotic behaviour, we find that in spite of the differences in

the initial conditions, the two neurons synchronizes so that for t → ∞, |v1 − v2| → 0
and |u1 − u2| → 0.

6 Conclusion

The study presented a control theory-based criterion for synchronization of two gap

junction coupled chaotic Izhikevich neurons. The coupled neuron model includes

coupling delay of signal transmission between both neurons. From numerical simu-

lations, we have shown that synchronization of the coupled system cannot occur at

all settings of the coupling strength and delays. Thus, in order to achieve synchro-

nization between coupled Izhikevich neurons, independent of the coupling strength

and coupling delay, we have proposed a nonlinear adaptive control scheme. We

have demonstrated the effectiveness of the proposed controller through numerical
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Fig. 7 Synchronization error of the delay coupled Izhikevich neurons with the nonlinear controller

in (10) and (11) a ev = v1 − v2 b eu = u1 − u2. Top row g = 0.1, Middle row g = 0.22, Bottom row
g = 0.35. Coupling delay 𝜏 = 0.2 ms

simulations. In future, we will consider the case of non-identical and uncertainty in

the model parameters of the model in network configurations consisting of two or

more neurons.
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Capturing Cognition via EEG-Based
Functional Brain Networks
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Bernadine Cocks and Ramasamy Vijayalakshmi

Abstract The human brain is comprised of complex networks of neuronal con-
nections, with the functioning of these networks underscoring human cognition. At
any given point in time, the complexity of these networks may be greater than the
entire communications network on the planet yet functional brain networks are not
static; instead, they form and dissolve within milliseconds. Although much is
known about the functions and actions of individual neurons in isolation, at a
systems level, when billions of neurons coordinate their individual activity to create
functional brain networks and thus cognition, understanding is limited. This is due
in part to the system behaving completely differently to its parts; that is, emergent
properties such as intelligence, emotion and cognition cannot be adequately
explained from a sum-of-parts perspective; what is needed instead are powerful
computational techniques to model and explore both the intricacies and dynamics of
functional brain networks. Although unravelling the activity of the human brain
remains circumscribed by technological and ethical constraints, complex network
analysis of EEG data offers new ways to quantitatively characterize neuronal cluster
patterns. This, in turn, allows the analysis of functional brain networks to under-
stand the complex architecture of such networks. Despite the increasing attention
that functional brain network analysis is gaining in computational neuroscience, the
true potential of such analysis to reveal dynamic interdependencies between brain
regions has yet to be realized. To address this, multi-channel EEG data has been
used to examine the dynamics of such networks during cognitive activity using
Information Theory based nonlinear statistical measures such as transfer entropy.
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Results across different paradigms requiring different types of cognitive effort
clearly suggest that transfer entropy is a highly sensitive measure for detecting
cognitive activity. Furthermore, these results demonstrate that transfer entropy has
clear potential for developing cognitive metrics based on complex features such as
connectivity density, clustering coefficient and weighted degree. These techniques
may also have application in the clinical diagnosis of cognitive impairment as well
as providing new insights into normal cognitive development and function.

Keywords Transfer entropy ⋅ Information flow ⋅ Directed functional brain
network ⋅ EEG ⋅ Cognitive activity ⋅ Cognitive load

1 Introduction

The human brain is one of the most complex systems known to humankind.
Weighing in at, on average, around 1.3 kg [1] the brain can be structurally divided
into hemispheres (left and right) and/or lobes (occipital, frontal, parietal and tem-
poral), with each division classically associated with different functions. For
example, the left hemisphere is traditionally associated with language processing
[2] while the occipital lobe is associated with visual processing [3]. Brain regions
can also be categorized via relative depth; for example, the cerebral cortex,
responsible for higher order cognitive processing, encompasses the surface of the
human brain, while deeper structures such as the brain stem are associated primarily
with non-conscious processing such as respiration [4]. In between such regions lie
neural interfaces such as the thalamus [5], which mediate higher order top-down
processes such as memory, with lower order, bottom-up processes such as sensory
information (e.g. vision and hearing).

It is within these structural constraints that approximately 86 billion neurons [6]
perform the work of the human brain. This is achieved via communication between
neurons, both within specific neuronal groups or ensembles, and between different
ensembles. Together, this communication system is comprised of over 1 trillion
connections [7] or synapses, with different patterns of connections thought to
represent different functional neural activity [8]. Some of these patterns can remain
relatively stable over time [9], while others can form and dissolve within a matter of
milliseconds [10]. Thus the first challenge for understanding the specifics of human
cognition is to examine and measure neural activity with appropriate temporal
sensitivity; that is, changes in patterns of neural activity must be able to be iden-
tified and then mapped with millisecond precision. Of the various technologies
currently available, only electroencephalography (EEG) and magneto-
encephalography (MEG) are capable of providing such measurement precision
[11].

The second challenge to accurately capturing cognition is the neural property of
plasticity [12]. Although gross anatomical features of the brain remain stable over
time, the inner functional workings do not; rather, they adapt to the environment,
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both internal and external, within which the individual operates [13]. For example,
new experiences are thought to be encoded through the modulation of existing
neural circuits [14]; that is, learning occurs as a result of neural plasticity. Similarly,
various types of memory processing are thought to depend on plastic responses
within the brain [15]. Because of this plasticity, no two human brains are identical
[16] and no single brain will necessarily behave in an identical manner at two
different points in time, with a variety of endogenous and exogenous factors cap-
able of directly influencing brain function [17–19].

As a result, human cognition cannot be considered either a static nor linear
process, so measures such as Granger Causality [20] are unlikely to truly capture
the intricacies and subtleties of neural function.

The final major challenge to capturing cognition is the nature of the beast itself.
Human cognition is not a mere sum of parts; instead, it is an emergent property that
is related to but completely different to its constituent parts [21]. To illustrate,
human speech involves various sub-processes such as articulation, respiration,
memory and sound processing. Although much is known about each of these
sub-processes in isolation, this knowledge cannot adequately explain why a sen-
tence such as “That is so gay” can evoke vastly different reactions depending on
who, where, when, how and why the utterance is spoken [22]. Similarly, the
experience of listening to and appreciating music cannot be explained simply by
considering the perception of the individual musical notes [23]. As a result, con-
sidering cognitive processes such as working memory (WM) in isolation is not
capturing cognition per se and it is the challenge of identifying and measuring the
emergent properties of cognition that remain one of the great final frontiers for
cognitive neuroengineering.

1.1 Functional Brain Networks

Although the network behaviour of the human brain has been known for some time
[24], the measurement of such activity has only recently gained serious research
attention. For example, the concept of small world networks, as they apply to
cognitive function, was only formally introduced in 1998 [25], while the application
of complex network theories such as graph theoretical analyses of cognitive
function was first published in 2009 [26]. Despite this relative youth in relation to
brain function such analyses have a solid, empirical support base within a variety of
other domains. For example, within conservation biology, graph theoretic
approaches have been applied using focal-species analysis to examine landscape or
habitat connectivity [27]. From a different perspective, the World Wide Web
(WWW) has been studied by numerous authors using different aspects of graph
theory [28–30].

The translation from communication or social networks to brain networks, or
more specifically functional brains networks (FBNs), is conceptually straight for-
ward. A network is created by creating a graph comprised of nodes (or vertices) and
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edges. Nodes, in the case of EEG or MEG data, refer directly to electrode sites on
the scalp (i.e. brain regions) whilst edges are the physical connections between
nodes (i.e. synapses or axonal projections). As proposed by Bullmore and Sporns
[26], it is these edges that represent functional associations among brain regions,
thus plotting edges and edge strengths between nodes allows the creation of FBNs.
Having thus constructed FBNs, it then becomes a case of applying the appropriate
complex network analysis, the interpretation of which must be done within both
anatomical and functional constraints.

Both linear and nonlinear statistical measures have previously been used to
construct and analyse FBNs. From a linear perspective, such measures include cross
correlation [31], magnitude squared coherence [32], Pearson’s product moment
correlation [33] and wavelet coherence [34] with all providing the degree of syn-
chronization between signals arising from any given pair of electrodes. Such linear
measures can produce linear brain network connectivity within the time domain,
with stronger functional connectivity indicated by a higher correlation between the
signals and vice versa, although the interpretation of any resultant FBN is restricted
by the linearity of the measure. By comparison, nonlinear statistical measures
provide a more realistic representation of neural activity due to the nonlinear
behaviour of the brain. Granger Causality (GC) [20], Mutual Information (MI) [35]
and Transfer Entropy (TE) [36] can all be used to construct FBNs with MI resulting
in undirected networks, whereas GC and TE can be used to construct directed
networks. As the direction of information flow within the brain is able to provide an
additional layer of information on how one brain region influences another, this is
clearly valuable information that MI fails to capture. It should be noted, however,
that TE appears to be the most sensitive of the nonlinear measures for the con-
struction of directed FBNs and thus the remainder of this chapter will focus on TE
and its application to FBN construction and analysis.

2 Transfer Entropy

The general concept of entropy is based on the laws of thermodynamics, whereby
entropy can be defined as a measure of disorganization or degradation [37]. This
concept was then appropriated into Information Theory by Shannon [38] for the
quantification of information with entropy defined as the average number of bits
required to optimally encode independent draws of the discrete variable X following
a probability distribution pðxÞ, which is known as Shannon entropy and is given in
Eq. 1 [39]:

HðXÞ= − ∑
x
pðxÞ log2 pðxÞ ð1Þ

where the sum in Eq. 1 is for all possible states of x. Shannon entropy for two
variables X and Y is given in Eq. 2.
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HðX,YÞ= − ∑
x, y

pðx, yÞ log2 pðx, yÞ ð2Þ

where the sum in Eq. 2 is for all possible states of x and y.
Assuming that the two time series of interest X = xt and Y = yt can be approx-

imated by Markov process, Schreiber proposed a measure of causality called
Transfer Entropy to compute the deviation from the following generalized Markov
condition as shown in Eq. 3 [39]:

p yt+1jynt , xmt
� �

= p yt+1jynt
� � ð3Þ

where xmt = xt, . . . ., xt−m+1ð Þ, ynt = ðyt, . . . ., yt− n+1Þ, while the subscript t denotes
the considered state (or time step); m and n represent the orders (memory) of the
Markov processes X and Y respectively. More simply, transfer entropy (TE) is an
information theoretical measure which determines the direction and quantifies the
information transfer between two processes [39]. Furthermore, TE estimates the
amount of activity of a system which is not dependent on its own past activity but
on the past activity of another system. Schreiber represented TE from X to Y as
shown in Eq. 4 [40],

TEX→Y = ∑
yt+ 1, y

n
t , x

m
t

p yt+1, ynt , x
m
t

� �
log

pðyt+1jynt , xmt Þ
pðyt+ 1jynt Þ

� �
ð4Þ

TEX→Y can be regarded as the information about future observations yt+1 gained
from the past observations of ynt and xmt minus the information about future
observations yt+1 gained from past observations of ynt only. The TE measure is
inherently asymmetric and based on transition probabilities, so it incorporates
directional and dynamic information and can be in the range 0≤TEX→ Y <∞..

To improve the calculation accuracy, two additional steps can be included for the
computation of TE [41, 42]. Due to the finite size and non-stationarity of EEG data,
TE matrices usually contain large amounts of noise. Noise/bias can, however, be
removed from the estimate of TE by subtracting the average transfer entropy from
X to Y using shuffled version of X denoted by ⟨TEXshuffle → Y⟩, over several shuffles
[42]. Xshuffle contains the same symbols as in X but those symbols are rearranged in
a randomly shuffled order. Then, normalized transfer entropy is calculated from X to
Y with respect to the total information in sequence Y itself. This will represent the
relative amount of information transferred by X. The normalized transfer entropy
(NTE) is shown in Eq. 5 as follows [41]:

NTEX→ Y =
TEX→Y − ⟨TEXshuffle →Y⟩

Hðyt+1jytÞ ð5Þ
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In Eq. 5, Hðyt+1jytÞ represents the conditional entropy of Y at time t+1 given
its value at time t as shown in Eq. 6.

H yt+1jytð Þ= − ∑
yt+1, yt

p yt+1, ytð Þ log p yt+1, ytð Þ
p ytð Þ ð6Þ

NTE is in the range 0≤NTEX→ Y ≤ 1, where 0 represents that X transfers no
information to Y, and 1 represents that X transfers maximal information to Y. By
computing the NTE between each pair of EEG channels FBNs can then be con-
structed (See Fig. 1).
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Fig. 1 Transfer entropy analysis framework. a EEG data acquisition, b EEG signal
pre-processing, c graph database construction and d measurement of cognition
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3 Measuring Cognitive Activity Using Complex Network
Metrics

Any FBN created via Graph Theory is a mathematical model in which EEG scalp
electrodes are considered as vertices (nodes) which represent the activity of
underlying neuronal populations. The connections between each pair of vertices
(known as edges/links) [26, 43] are then measured using a correlation representing
the weight of the edge. By then applying complex network metrics, quantitative
analysis techniques can be used to characterize the different connectivity patterns of
brain networks attributable to different cognitive states. Such complex network
metrics include connectivity density, clustering coefficient and different types of
centrality measures.

3.1 Connectivity Density

Connectivity density is the actual number of edges in the graph as a proportion of
the total number of possible edges [26]. It is also referred to as the physical cost,
wiring cost or connectivity cost. For a directed graph with n nodes where there are
no self-connections/loops, the total number of possible connections is n * ðn− 1Þ.

3.2 Clustering Coefficient

The clustering coefficient for node i represents the ratio between all directed tri-
angles actually formed by i and the number of all possible triangles that i could
form. The clustering coefficient measures the cliquishness of a network and rep-
resents how well the neighbourhood of a node is connected. A high clustering
coefficient is related to high local efficiency of information transfer [26] and is
mostly used to measure functional segregation. A clustering coefficient for a
directed network has been developed by Fagiolo [44], whereby the directed clus-
tering coefficient, Cd of a network is the average of the clustering coefficients of all
nodes as given in Eq. 7

Cd =
1
N

∑
N

i=1
Ci =

1
N

∑
N

i=1

1
2∑

N
j=1 ∑

N
h=1 aij + aji

� �
aih + ahið Þ ajh + ahj

� �

kouti + kinið Þ kouti + kini − 1ð Þ− 2∑N
j=1 aijaji

ð7Þ

where Ci is clustering coefficient of node i, N is the number of nodes, aij denotes the
directed connection from node i to node j, and kouti and kini are the out-degrees and
in-degrees of the node i respectively.
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3.3 Node Degree or Node Strength

Node strength, a centrality measure of weighted directed networks, represents the
sum of all incoming and outgoing edge weights [43]. This measure not only
depends on the number of incoming and outgoing edges, but also depends on the
weights of the incoming and outgoing edges. For a binary directed network, node
degree or total degree represents the total of incoming and outgoing edges.

3.4 Characteristic Path Length

The average shortest path length between all pairs of nodes in a network is known
as the characteristic path length. The shortest path between node i and node j, dði, jÞ
can be defined as the minimum number of nodes that it has to traverse to reach node
j from node i. The shortest path length, between nodes i and j is given by

dij = ∑
auv ∈ gi↔ j

auv

where gi↔ j is the shortest path between i and j. Thus, the characteristic path length
of the network [25] is given by

L=
1
n
∑
i∈N

Li =
1
n
∑
i∈N

∑j∈N, j≠ i dij
n− 1

where Li is the average distance between node i and all other nodes. It is used
mostly for measuring the functional integration.

3.5 Interpreting Outputs

Although the application of such complex network metrics provides accurate
quantitative data, this data cannot be interpreted without considering the broader
context of the experimental paradigm in which it is used, as well as the functional
and anatomical constraints presented by the brain itself. For example, if an FBN is
constructed that displays a uniquely left temporal lobe localisation to Brodmann
Area 44 (the Inferior frontal gyrus or Pars opercularis also known as Broca’s Area),
it could potentially be interpreted as a language-related response [45]. If, however,
the associated experimental paradigm was related to odour perception [46], then an
interpretation of language processing would be erroneous. Similarly, if the same
FBN had resulted in response to a visual paradigm such as a Stroop Task [47], then

154 Md.H.I. Shovon et al.



concluding that the FBN was vision related would likely be erroneous given the
anatomical location; instead, the FBN would more likely represent internal (silent)
speech generation [48]. As a result, despite the sensitivity and accuracy of using
complex network metrics to detect and measure cognitive activity in the human
brain, such analysis cannot always be applied post hoc; rather, the experimental
paradigm needs to be planned and conducted with the demands of the analysis in
mind.

4 Computational Approach to Capturing Cognition

Many statistical measures have been used to attempt to unravel the complexity of
EEG data; however, the computational approach proposed here is a relatively
unique blend of graph theory, information theory, statistical measures of complex
networks and effective visualization of the results. These techniques serve as a lens
through which the neuronal activities and interactions of complex brain networks
can be explored more effectively. It specifically makes use of network theory,
transfer entropy as a nonlinear statistical measure to compute pairwise correlations
between EEG channels and hence construct FBNs, and the complex network
metrics discussed in the previous section.

The proposed computational framework for capturing cognition is illustrated in
Fig. 1.

First, multi-channel EEG data is collected during various cognitive load con-
ditions. This data is then pre-processed to remove noise and artefacts such as eye
blinks and muscle interference (see next section for more detail on data collection
and pre-processing methods). This pre-processed EEG data are then used for the
computation of TE matrices, where each cell of the TE matrices represents the TE
value from one electrode to another. For noise removal, an average shuffled TE
matrix (noise matrix) is calculated and subtracted from the original TE matrix
(Fig. 1c) with the resulting noise removed normalized TE matrix called the NTE
matrix. The computed NTE matrices are then subsequently used for the construc-
tion of directed FBNs and further analysis. Note also, that the constructed NTE
matrices are binarized using a threshold = 0.002 for the analysis using different
types of complex network metrics. Both binary and weighted directed graphs are
then constructed for analysis (Fig. 1d). From this NTE computation, a graph
database for each experimental paradigm, task or cognitive load state is thus
established. Complex network analysis is then carried out to determine the con-
nectivity density, clustering coefficient and node strength directly corresponding to
each paradigm, task or state thereby providing quantitative measures of cognitive
activity. Three examples of the practical application of this computational approach
are discussed in the next section.
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5 Practical Examples of Applying NTE to Measure
Cognition

Three experiments [36, 49, 50] exploring the application of NTE to construct FBNs
have been conducted by the Cognitive Neuroengineering and Computational
Neuroscience Laboratory at the University of South Australia. In all three cases, the
participation criteria, EEG signal acquisition, and EEG pre-processing were iden-
tical. A description of the three experimental paradigms is further discussed in the
sections that follow.

5.1 Participation Criteria

Right-handed, healthy participants aged >18 years were recruited from the
academic/professional staff and student populations of the University of South
Australia (Mawson Lakes campus), as well as the wider Adelaide general com-
munity. All participants reported normal hearing and normal or corrected-to-normal
vision; none reported any history of psychological, neurological or psychiatric
disorders. Before the experiment started, experimental procedures were explained
to participants and signed, informed consent was obtained.

5.2 EEG Data Acquisition

EEG data were acquired at a sampling rate of 1000 Hz through a 40 channel
Compumedics Neuroscan Nuamps amplifier using Curry 7 software [51, 52]. Prior
to data collection, each participant was fitted with an appropriate sized 32 channel
Quikcap as shown in Fig. 1a. The 30 electrode sites used in the current study were
based on the international 10–20 convention: FP1, FP2, F7, F3, Fz, F4, F8, FT7,
FC3, FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz,
P4, T6, O1, Oz and O2 with the average of two the earlobes (A1, A2) used as the
reference. Impedance values of all electrodes were checked using Curry with no
recording undertaken until all channel impedances were below 50 kΩ. All stimulus
onsets and participant responses were time marked on the EEG record using
Compumedics Neuroscan STIM 2 software [53].

5.3 EEG Signal Pre-processing

The pre-processing of EEG data was done by applying band pass filter of 1–70 Hz
and a notch filter at 50 Hz as previously illustrated in Fig. 1b. To detect eye blinks,
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one of the typical eye blinks was selected by visual inspection and the remaining
eye blinks detected using Curry 7 template matching. These eye blink artefacts were
then removed using principal component analysis (PCA). Further bad blocks were
removed by the Curry 7 software.

5.4 Experimental Paradigm 1

Participants (6 × male, 2 × female; age range 28–65 years) were first asked to sit
quietly with eyes open to generate a baseline (no cognitive load) condition. Par-
ticipants were then instructed to drive normally using a “Simuride” driving simu-
lator [54] for approximately 4 min to generate a cognitive load (Drive) condition.
As well a negotiating both straight and winding roads whilst maintain a virtual
speed of between 50–60 km/h, participants were then also asked to respond to
auditory stimuli played to them through headphones to generate a second cognitive
load (DriveAdo) condition. These stimuli were comprised of a combination of
digits and letters (for instance, H3, 8A) read by either a male or female voice. If the
voice was male, participants then had to respond ‘yes’ or ‘no’ (by pulling left or
right levers mounted behind the steering wheel) based on whether the digit was
even or odd. If the voice was female, participants then had to respond based on
whether the digit was even or odd.

5.5 Experimental Paradigm 2

Participants (same as Experiment 1) had EEG data collected during the following
five conditions:

5.5.1 Baseline—Eyes Open (EOP) and Eyes Closed (EC)

To obtain baseline brain activity, participants were asked to first stare at a blue
fixation star on the STIM computer monitor for 2 min. They were then asked to
close their eyes and sit calmly for further 2 min, although it should be noted that
only the EOP data was used as the baseline for analytical purposes.

5.5.2 Mild Cognitive Load (MiCL) 1-Back Stroop Task

To evoke a relatively mild level of cognitive activity, participants undertook a
1-back Stroop task. The standard Stroop task is one of interference. Known to
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evoke large effect sizes and validated as being statistically reliable [47], the task
requires participants to respond to a series of visually displayed congruent and
incongruent colour word stimuli. For example, a congruent stimulus would be the
word red typed in red-coloured font; an incongruent stimulus would be the word
red typed in yellow-coloured font. A 1-back variation on the standard Stroop task
involves inserting a neutral stimulus between the presentation of the target stimulus
and the cue to respond. In this experiment, a fixation cross (neutral) was inserted
between the stimulus presentation (Stroop stimulus) and the cue to respond via a
keyboard button press; specifically, “Y” if the font colour and word meaning were
the same or “N” if they were different. This 1-back component was used to add a
second layer of higher cognitive processing (working memory) to the base level of
the Stroop task itself (attention).

5.5.3 Moderate Cognitive Load (MoCL) 1-Back Stroop Task
with Go/No-Go Variation

To increase the cognitive activity to a moderate level, a Go/No-Go (G/NG) vari-
ation was added to the 1-back Stroop Task. As a recognition reaction time (RT) task
[55], participants must respond to some stimuli (Go) whilst inhibiting their response
to other stimuli (no-go). In this specific instance, participants were required to again
undertake a 1-back Stroop task but with the explicit instruction to ignore any
stimulus words appearing in blue font whether that stimulus was congruent. This
thus placed an additional layer of load on both working memory and attention
processes.

5.5.4 Heavy Cognitive Load (HCL)—Moderate Cognitive Load
with Auditory Distraction

To further tax global cognitive processing, bottom-up processing was then
increased through the addition of auditory distraction. Participants again performed
the 1-back Stroop Task with Go/No-go Variation whilst also listening to a
pre-recorded sound track constructed using dichotic listening principles [56]; that
is, different sounds played to different ears at the same time (e.g. bird song on left
channel, tornado siren on right channel). They were also instructed to listen for a
specific stimulus (a spoken number) as part of that sound track and further told that
they would be asked a question about that stimulus at the completion of the task.
This thus provided personal salience, as well as encouraging attention to the task.
To ensure heightened auditory monitoring throughout the task, no number was
actually spoken on the soundtrack.
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5.5.5 Extreme Cognitive Load (ECL)—Moderate Cognitive Load
with Auditory and Visual Distraction

In the final task, participants were again asked to perform the 1-back Stroop Task
with Go/No-go Variation whilst also listening to a pre-recorded sound track.
Additionally, equal numbers of neutral and aversive distractor images were inserted
between and with-in each visual stimulus. As per the auditory-only distraction,
participants were also asked to attend to a specific stimulus type (e.g. tool) and
advised that a question would be asked at the conclusion of the task; thus, par-
ticipants were asked to attend to one specific distractor per modality.

5.6 Experimental Paradigm 3

Ten adults (7 × male, 3 × female; age range 22–59) had continuous EEG data
collected during three different conditions: eyes open (baseline), visual search and
Web search interaction.

5.6.1 Eyes Open/Eyes Closed (2 min each)

As per experiments 1 and 2, baseline brain activity was first obtained during both an
Eyes Open (EOP) and Eyes Closed state, although only the EOP data was used for
further analysis.

5.6.2 Visual Search (VS) Task

In this task, participants were asked to identify a target object from an array of
distractor targets [57]. For example, as shown in Fig. 2, the top red letter is the
primary target. The participants would be required to press ‘y’ if the target is
present amongst the black distractor array, or ‘n’ if the target is absent.

5.6.3 Web Search Task

Participants were instructed to search for information on the Web based on three
provided topic areas. They were free to use any Web browser (e.g. Internet
Explorer, Google Chrome, Mozilla Firefox) and any search engine (e.g. Google,
Yahoo). Participants were also free to choose the source of information. The search
questions provided for the three different scenarios were:

Scenario 1: Your employer has just told you that he is going to give you a new company car
and asked you to choose one. The only restrictions are that the car must be red and be
reasonably fuel efficient but it cannot be a European brand.
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Scenario 2: While walking in the scrub in the Adelaide Hills you get bitten by what appears
to be a tick. Should you go to the hospital Emergency Department ASAP? YES/NO and
WHY?

Scenario 3: You’ve decided that you want to see a movie at the cinema. What movie do you
decide to see, which session, which cinema and why?

In the Web search interaction, the tasks were divided into three sub-tasks: Query
formulation (Q), viewing of search result List (L) and reading the each individual
Content page (C).

6 Results and Discussion

6.1 Result of Experiment 1

From the continuous eyes open (EOP) and driving (Drive) data, 50 good epochs of
2 s were chosen using the back-to-back epoching process of Neuroscan Curry 7,
then averaged into a single two second data epoch [12]. During audio distraction
driving (DriveAdo), reaction times varied from 1 to 5 s after the stimulus onset, so

Fig. 2 An example of visual search
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for analysis purposes, extreme outliers (i.e. very fast and very slow responses) were
disregarded leaving only those epochs where reaction times were 1.5–3 s. When
such epochs were identified, smaller epochs were taken from 0 to 2 s from the
stimulus onset. The 2 s epochs from each of the conditions (EOP, Drive and
DriveAdo) were then used for the construction of binary and weighted graph
database.

6.1.1 Connectivity Density

The connectivity density for all the participants is shown in Fig. 3. As indicated in
the figure, connectivity density is higher in the cognitive load condition than the
baseline condition, inferring more connections are established to facilitate more
active information flow.

6.1.2 Clustering Coefficient

The clustering coefficient for all the participants is presented in Fig. 4. As can be
seen, the, EOP condition has the smallest clustering coefficient and DriveAdo the
highest. An increasing pattern of clustering coefficient across the states for all
participants was also observed, presumably attributable to the increasing amount of
cognitive load. This suggests that the clustering coefficient of the directed FBN
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increases with an increase in induced cognitive load thereby further suggesting that
the clustering coefficient is sensitive to cognitive load. As a result, the clustering
coefficient of directed FBNs may be able to be further refined to develop a quan-
titative metric to measure cognitive activity with such a metric having potential
application in the diagnoses of cognitive impairments.

6.1.3 Node Strength

Figure 5 represents the comparison of node strengths during different cognitive
states computed using the weighted FBNs of participant P1. As shown, most of the
electrodes have higher strength values during cognitive load, which indicates that
each electrode sends and receives more information during cognitive load.

6.2 Result of Experiment 2

As per Experiment 1, extreme outliers (excessively fast and slow responses) were
excluded from analysis. As a result, only those trial epochs with RTs between 1.5
and 3.5 s were used. In each cognitive load state, the selected 2 s epochs were then
extracted from the stimulus onsets and averaged. For the comparison of each
cognitive load state with baseline (EOP), 50 chunks of EEG data of 2 s duration
were randomly selected from the EOP data, and then averaged. The 2 s epochs
during EOP, MiCL, MoCL, HCL and ECL were then used for the construction of
binary and weighted graph databases.

6.2.1 Connectivity Density

For all participants, the connectivity density of the constructed binary directed FBN
during the different conditions (EOP, MiCL, MoCL, HCL and ECL) has been

Fig. 5 Comparison of strength across electrodes during EOP, Drive and DriveAdo of participant
P1
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calculated and is shown in Fig. 6. Here, EOP has the least connectivity density and
ECL the highest. Again, an increasing pattern of connectivity density across the
states for all the participants was observed in relation to the increasing amount of
cognitive load. The results demonstrated that the connectivity density of the
directed FBN increases with increases in induced cognitive load; that is, connec-
tivity density is directly proportional to the amount of cognitive load applied.

6.2.2 Clustering Coefficient

Figure 7 shows the clustering coefficient value during the different cognitive tasks
(EOP, MiCL, MoCL, HCL and ECL) for all participants.

Figure 8 shows an example of the clustering coefficient value across electrodes
(note, due to space restrictions, only the results of participant P1 are displayed). Of
note, the clustering coefficient value increases in almost all of the electrodes during
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cognitive load when compared to the baseline state (EOP), thus demonstrating that
the information transfer among the neighbouring nodes of each electrode increases
with increasing cognitive load.

Figure 9 also shows the clustering coefficient values of all the electrodes during
the different cognitive tasks, this time plotted on a 3D head surface. Using the
EEGLAB Headplot function, minor changes in the clustering coefficient values
between the cognitive states have been visualized [58]. To effect this visualization,
the colour map scale of Headplot function has been customized such that dark blue
represents the minimum clustering coefficient value and the dark red the maximum
clustering coefficient value. The increased clustering coefficient during increased
cognitive load is demonstrated by the appearance of higher valued colour around
the electrodes on the head scalp.

6.2.3 Node Strength

Node strength value across electrodes was calculated from weighted directed FBNs
during the different cognitive states (EOP, MiCL, MoCL, HCL and ECL). Due to
space limitations, only the results for participant P2 are shown in Fig. 10, although
as expected, node strength value is higher in most of electrodes during higher
cognitive load.

6.3 Results of Experiment 3

Sub-tasks (Q, L and C) were time marked on the EEG signals using the captured
interaction logs (key and mouse strokes) of Camtasia Studio software [59]. EEG
data were then divided into 2 s epochs for each subtask (if greater than 2 s), with
those epochs then averaged for each subtask to produce one epoch of averaged data
per subtask. In order to compare search features with the baseline (EOP), 50 chunks
of EEG data (2 s each) were randomly selected from the EOP data and then
averaged. Visual search data was also considered as baseline search activity by
making 2 s epochs from the stimulus onsets, then averaging into a single 2 s

Fig. 8 Comparison of clustering coefficient across electrodes during EOP, MiCL, MoCL, HCL
and ECL
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averaged data epoch. The averaged EEG data epochs relating to EOP, VS, Q, L and
C were then used for the computation of NTE matrices, where each cell of these
matrices represents the NTE value from one electrode to another.

6.3.1 Connectivity Density

The group averaged connectivity density evoked by the different conditions (EOP,
VS, Q, L and C) was calculated and is shown in Fig. 11. This was calculated by
first calculating the connectivity density for each participant, then averaging across
participants. As EOP was considered the baseline cognitive state, and displayed the
lowest connectivity density compared to the Web search task stages (Q, L and C),
this suggests that the higher connectivity density during Q, L and, C is directly task
related. That Q has higher connectivity density than L or C further supports this
given that query formulation requires the execution of a number of simultaneous
processes (e.g. defining query terms, viewing search interface, typing, etc.).

6.3.2 Clustering Coefficient

As shown in Fig. 12, the group averaged clustering coefficient of different brain
states (EOP, VS, Q, L and C) followed the same pattern as the group averaged
connectivity density.

6.3.3 Total Degree

The group averaged degree centrality of all electrodes for each brain state was then
plotted using the EEGLAB Topoplot function [58]. This function creates a topo-
graphic map of a scalp data field in a 2-D circular view. To visualize the subtle
variations of degree centrality values in different brain states, the colour map scale

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

EOP VS Q L C

Co
nn

ec
Ɵv

ity
 D

en
si

ty

CogniƟve States

Fig. 11 Comparison of connectivity density (group average) during different brain states

166 Md.H.I. Shovon et al.



of Topoplot was customized such that a colour map scale is used from minimum
degree centrality value to maximum degree centrality value among the degree
centrality value of all the electrodes of all the brain states [60]; that is, dark blue
represents the minimum degree centrality value and dark red the maximum degree
centrality value. As shown in the example in Fig. 13, participant P1’s topoplots
showed clear activity which is reflective of the degree of engagement for each task;
that is, the visual search condition shows greater engagement than the eyes open
condition, while the list reading condition shows greater engagement than the
content reading condition. In the case of eyes open versus visual search, this is
easily explainable—a visual search task requires focused, more intense visual
attention than simply staring at a fixation star. Similarly, the button press response
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requirement of the visual search task elicited higher activity in motor areas (FCz,
Cz, C4) than the eyes open condition. The differences between list and content
reading are also explainable, albeit conjecturally, on an attentional/focus basis; that
is, content reading has been “filtered” via the list process, therefore is focused
externally by this process such that content reading requires less internal focus
through reduced decision-making requirements. Interestingly, the similarities in
processing between the visual search and contents reading tasks suggest that the
two tasks share common cortical regions in the execution of those tasks. There are,
however, some obvious differences between content and list reading, with list
reading eliciting higher activity at CP4 and TP8 whereas content reading exhibited
higher midline activity at CPz and Pz. In the case of the query formulation task,
however, the high activity is most likely a reflection of multiple processes con-
taminating the averaging process. Further work is currently being conducted to
divide this task into smaller sub-tasks so that movement, language, decision-making
and attentional processes can be further delineated during this query formation
phase.

7 Conclusion

As demonstrated by the results of Experiments 1, 2 and 3, NTE shows clear
promise for the construction and analysis of FBNs. In the case of Experiment 1,
information theoretical NTE measures were successfully applied to construct
EEG-based directed FBNs in baseline and cognitive load conditions. The overall
results demonstrated that the directed FBNs constructed using NTE were sensitive
to changes in cognitive load and that this sensitivity of NTE-based FBNs has the
potential to assist in the development of quantitative metrics to measure cognitive
activity within the human brain. Experiment 2 took NTE-based FBNs from three to
five divisions of cognitive load, with the results again clearly supporting that
directed FBNs constructed using NTE are highly sensitive to changes in neural
activity directly related to changes in degrees of cognitive load. As well as further
supporting the possible application of this approach to the development of quan-
titative metrics, it also suggests practical applications. For example, it might be
possible to develop simple devices for measuring cognitive load in real time. Such
devices could then, potentially, be used in adaptive intelligent systems as well as in
safety critical systems which require intensive mental activity (e.g. air traffic
control).

Finally, the results of Experiment 3 showed that FBNs constructed using NTE
can be used in a variety of different research settings and contexts. In this specific
instance, the key contribution of the study was the construction of such FBNs
during different stages of Web searching which enabled detailed investigation of
brain function during such searching. The results identified that during Web
searching information transfer increases in brain networks when compared to
baseline but that brain activity during different Web search task stages is not the
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same. Consequently, the results may have implications for examining the effects of
cognitive abilities on information search behaviour/processes and search task
performance/outcomes which, in turn, could potentially allow an adaptive infor-
mation retrieval system to better personalize its interaction with users.

Although the results reported here are, in general, foundational in nature, they
clearly show that NTE-based FBNs are sensitive to changes in cognitive load,
irrespective of the actual task. This thus potentially provides new ways of devel-
oping objective, quantified scales and metrics for categorizing human cognitive
activity which, in turn, may provide new ways for diagnosing and monitoring
cognitive impairment. Furthermore, NTE-based FBNs may provide new avenues
for the development of devices that monitor cognitive activity in real time, thereby
improving safety in cognitively intense occupations such as air traffic control; for
example, such a device could sound a warning when the individual approaches or
passes a critical level of cognitive load. Such a device might also find use in clinical
settings by allowing practitioners to monitor cognitive activity in a treatment set-
ting; for example, gauging the degree of neural “distress” during exposure therapy
[61]. Alternately, such a device might aid psycho-pharmaceutical treatment by
monitoring the effects of such medications on overall cognitive function and
adjusting dosages as required.
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Modelling of Tumour-Induced
Angiogenesis Influenced by Haptotaxis

Wei Chen, Li Zhang, Chengyu Liu and Alamgir Hossain

Abstract Endothelial cell (ECs) migration, influenced by both chemotaxis and
haptotaxis, is a crucial step in tumour-induced angiogenesis. According to recent
bioclues, we assume that some subgroups of invasive tumours generate fibronectin,
leading to enhance haptotaxis. Hence, we developed a mathematical model simu-
lating the influence of haptotaxis on angiogenesis. The simulation results show that
migration of ECs can be accelerated when the invasive tumour enhances haptotaxis,
which means angiogenesis can be simultaneously synthetically promoted by both
chemotacxis and haptotaxis. Such results have not been reported in previous models
of tumour-induced angiogenesis. According to the consensus theory, angiogenesis
supplies oxygen and nutrients to facilitate tumour development. By linking the
relationship of tumour invasion and angiogenesis, we propose that there is a pos-
sible mechanism of tumour-invasion and tumour-induced angiogenesis, as these
promote each other and make the tumour develop faster, becoming more harmful
for some subgroups of tumours. Since the proposed research on angiogenesis and
the neural development systems share similar tasks of accomplishing and sup-
porting complex networks and bear striking functional similarities, the proposed
research promotes the potential connection between vascular biology and neuro-
science to motivate future computational biological research.
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1 Introduction

Neuro-engineering is an emerging multidisciplinary research field which has drawn
uprising interests from researchers in related field. Because of the striking func-
tional similarities between angiogenesis and the neural development systems per-
taining to accomplishing and supporting complex networks, the study of the
tumour-induced angiogenesis process shows great potential in inspiring future
multidisciplinary neuroscience and neuro-engineering research. It also has become
the focus of this research.

Specifically, angiogenesis is the process of forming new blood vessels from the
existing ones, and is a crucial requirement for the growth, progression and
metastasis of a tumour [1–3]. Tumour-induced angiogenesis is the phenomenon that
in hypoxic microenvironment, the tumour triggers angiogenesic processes by
secreting the tumour angiogenic factor (TAF), such as vascular endothelial growth
factor (VEGF) [4]. The concept that tumour growth is dependent on the
tumour-induced angiogenesis was first proposed by Judah Folkman in 1971 [5].
Since then, lots of studies have been involved in the tumour-induced angiogenesis.

Endothelial cells (ECs) are the most important cells involved in the angiogenesis
process. Endothelial tip cells are some ECs spearheading at the nascent sprouts and
guiding the newly formed vessel there. The procedure of angiogenesis is the
migration of the endothelial tip cells and the proliferation of the stalk cells fol-
lowing the endothelial tip cells. Modelling of the migration of the endothelial tip
cells is a pivotal aspect for studying tumour-induced angiogenesis process. Also,
the proposed work on angiogenesis and neural systems share similar mechanisms
and principles to evolve, develop, and perform biological functions [6].

2 Anderson and Chaplain’s Model

2.1 Model Construction

Anderson and Chaplain’s mathematical model described the relationship between
the ECs density and the TAF and fibronectin concentrations. The migration rate of
ECs is influenced by the random motility, chemotaxis and haptotaxis factors, which
was defined as [7–9]:

∂n
∂t

=D∇2n−∇ ⋅ χ cð Þn∇cð Þ−∇ ⋅ ρn∇fð Þ, ð1Þ

where n denotes the ECs density (at or near a capillary sprout tip) per unit area,
c denotes the TAF concentration and f denotes the fibronectin concentration. In
Eq. (1), the first term D∇2n described the random motility of the ECs which
follows the Ficks’ diffusion law, D is a positive constant and denotes the cell
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diffusion rate; the second term ∇ ⋅ χ cð Þn∇cð Þ described the chemotactic motility
characterized by the function χðcÞ= χ ð̸1+ δcÞ, which reflects the decrease in
chemotactic sensitivity with the increase of the TAF concentration; the third term
∇ ⋅ ρn∇fð Þ described the haptotactic motility, where ρ is a positive constant.

From [10–12], chemotaxis is in response to the TAF gradients and haptotaxis is
in response to the fibronectin gradients. To derive the nonlinear PDEs governing the
ECs motion, the total cell flux balance was considered in Eq. (1). Considering when
the ECs migrate in the microenvironment towards the tumour, there are some
uptake and binding of TAF molecular by the ECs. A simple TAF uptake function
describing the TAF concentration was proposed in Eq. (2):

∂c
∂t

= − μnc, ð2Þ

where μ is the consumption rate of TAF.
Endothelial cells are known to produce fibronectin with a rate β as they migrate

and the degradation of fibronectin f depends upon the MDE density m at rate γ. The
function is described in Eq. (3).

∂f
∂t

= βn− γmf ð3Þ

The MDE is produced by each individual endothelial cell n at a rate of α. Once
the MDF is produced, it diffuses locally with diffusion coefficient, and is sponta-
neously degraded at a rate ν. The function is defined as Eq. (4):

∂m
∂t

= αn+ ε∇2m− νm ð4Þ

2.2 Initial Conditions and Parameter Settings

(1) TAF concentration distribution

Assume that a large initial concentration of TAF locates at the side of the tumour
line source [13–16] and a low concentration locates at the parent vessel were
considered in the original Anderson and Chaplains model [17]. The initial condi-
tions of TAF concentration in a two-dimension domain ω x, yð Þwere described as
follows:

c x, y, 0ð Þ= e−
ð1− xÞ2

ε2 , x, yð Þ∈ 0, 1½ �× 0, 1½ �, ð5Þ

where ε is a positive constant.
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(2) Fibronectin concentration distribution

A large initial concentration of fibronectin is formed in and around the parent
vessel in the original Anderson and Chaplain’s model [13–16]. They assumed the
largest concentration of fibronectin located at the side of the parent vessel and the
lowest concentration located at the side of the tumour line source. The initial
conditions of fibronectin concentration were described as follows:

f x, y, 0ð Þ= ke−
x2
ε2 , x, yð Þ∈ 0, 1½ �× 0, 1½ �, ð6Þ

where k < 1 and ε is a positive constant.
The parameters in the aforementioned equations were set as: D = 0.00035, χ =

0.38, ρ=0; orρ = 0.34 respectivelyð Þ, β = 0.05, γ = 0.1 and δ = 0.6, α = 10− 6,
ε = 0.01, ν = 3, n0 = 0.9, ε1 = 0.45, ε2 = 0.45, k1 = 0.75 [7, 8, 17].

3 The Proposed Improved Model in This Work

Based on the Anderson and Chaplain’s model, we modified and improved their
model in three aspects: i.e. involving ECs proliferation, ECM degradation and
fibronectin concentration gradient.

3.1 Improved Model with the New Assumptions

In Anderson and Chaplain’s model, there are not birth and death terms, which mean
the total number of cell does not change. In fact, during the progress of angio-
genesis, the density of the capillary network increases. This means that ECs density
should increase in magnitude. So the proliferation of ECs happens during the
approach. In addition, the fact that ECM is degraded by enzymes should be also
taken into account.

We have created a proliferation term μMn 1− n
n0

� �
, which means that prolifer-

ation is proportional to the density of ECs, n, and is also limited by the density of

itself autonomously, as described in 1− n
n0

� �
. Here n0 should be at the same scale

of the non-dimensionlized initial ECs concentration n so we set n0 = 0.9. We
assume that the proliferation rate is also proportional to ECM because the prolif-
eration of cells requires growth factors which rely on ECM. The ECM is a vast
source of potent growth factors which can promote EC proliferation and subsequent
invasion through a degraded ECM [18]. μ is the constant proliferation coefficient.
By integrating the proliferation term into Eq. (1) we obtained Eq. (7).
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∂n
∂t

=D∇2n−∇ ⋅ ðχðcÞn∇cÞ−∇ ⋅ ðρn∇f Þ+ μMn 1−
n
n0

� �
ð7Þ

(1) TAF concentration distribution

Under hypoxia condition, the tumour secrets TAF to induce angiogenesis.
The TAF is produced by the tumour and diffuses into the two dimensions sur-
rounding tissue and ECM towards the vessels based on Ficks’ diffusion law with
diffusion constant Dc. At the same time, the decay of TAF occurs. Thus, the TAF
concentration c satisfies Eq. (8). Once TAF is secreted and diffused, a steady-state
concentration gradient between the tumour and vasculature can be set up. There-
fore, the steady-state concentration gradient of TAF concentration c can be used as
the initial condition for inducing angiogenesis:

∂c
∂t

=∇2c− θc ð8Þ

(2) Degradation of ECM

ECM degradation as Mantzaris et al. [18] pointed out, it is necessary to account
for the fact that the ECM should be degraded during the approach. In order to make
way for the capillary network process, we assume that the ECM degradation rate
follows the first-order dynamic reaction and is proportional to the MDE concen-
tration. Thus, we modelled ECM degradation using Eqs. (9–11):

∂f
∂t

= βn− γmf ð9Þ

∂m
∂t

= αn+ ε∇2m− νm ð10Þ

∂M
∂t

= −ωMm ð11Þ

M and m represent the concentration of ECM and MDE, respectively, ω is a
positive degradation constant, and the minus represents the opposite direction of the
ECM concentration change [19].

3.2 Parameter Settings

First, we should consider the length of the two-dimensional domain at an appro-
priate range. From the experiments of Gimbrone, an average distance from a
tumour implant to the parent vessels in the cornea is between 1 and 2 mm [20, 21].
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Therefore, a length scale of L = 2 mm was taken as the initial distance between the
tumour and vessels from the experiments of Folkman et al. [22]. Folkman and
Klagsbrun reported that angiogenesis was initiated when this distance was 2 mm.
Therefore, we took a length scale of L = 2 mm for the domain to simulate the
angiogenesis [22]. We assumed τ= L2

Dc
= 2×2

2.5 = 1.6 day, so we took the time scaling
as 1.6 day. The doubling time of the ECs was estimated at 18 h, so the proliferation
coefficient of ECs can be estimated as μ= 18

24× 1.6 = 0.47. Considering the death of
ECs, the proliferation coefficient of ECs should be less than 0.47, so we estimated it
as μ=0.3.

After non-dimensionalization [17], the parameters in these equations are as
follows: M0 = 0.9, Dc =1, θ=0.003 [19], μ=0.3 (estimated), n0 = 0.9, Chaplain
et al. [23] gave the MDE secrete rate coefficient as α=10− 6, and thus to make the
simulation results of ECM visible and in an appropriate range, we estimate the
ECM degradation coefficient to be ω=2×106.

3.3 Boundary Conditions

Appropriate initial and boundary conditions are demanded by the model. For
Eq. (8), the boundary conditions for the vessel and tumour side satisfy the Diriohlet
condition c 0, y, tð Þ=0, c 1, y, tð Þ=1 and on the left and right side satisfy the Neu-
mann condition ∂c

∂y =0. For Eqs. (7), (9), (10) and (11), the boundary condition of
the domain, subject to the non-flux conditions, satisfies the Neumann condition and
can be presented as follows: ∂n

∂x =0, ∂n
∂y =0, ∂m

∂x =0, ∂m
∂y = 0 ∂M

∂x =0, ∂M
∂y =0, and

∂f
∂x =0, ∂f

∂y =0.

3.4 Initial Conditions

For the solution of Eq. (7), the initial condition should be described. As we dis-
cussed above, the TAF is diffused from the edge of the tumour and reaches a steady
state. Its initial condition of concentration can be determined by Eq. (8).

Recent studies [24–33] have implied that, for some cancers, the fibronectin
density around the stroma is higher than that of the ECM. Accordingly, cancer
marks its progression through increasing the ECM density, where the amount of
fibrillar ECM proteins, including collagen and fibronectin, is enhanced [34]. In
breast cancer, there is a nearly 10–20 fold increase in bulk stiffness in the tumour
microenvironment [34].
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Based on the above, we assume the highest concentration of fibronectin is at the
side of the tumour line source and the lowest concentration at the side of the parent
vessel. Thus, we established the equation describing fibronectin concentration as
follows:

f x, y, 0ð Þ= ke−
1− xð Þ2
ε2 , x, yð Þ∈ 0, 1½ �× 0, 1½ �, ð12Þ

where k < 1, and ε is a positive constant.
From Fig. 1, we can observe that the gradient of TAF and the gradient of

fibronectin are in the opposite direction. From Fig. 2, we can observe that the
gradient of TAF and the gradient of fibronectin are in the same direction. We set
four clusters of ECs at the side of a parent vessel. It can be represented as:

Fig. 1 The concentration of
the TAF and fibronectin
presented in Eqs. (5) and (6)

Fig. 2 Concentrations of the
TAF and fibronectin from
Eqs. (8) and (12) which are
proposed in the current study
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nðx, y, 0Þ= e−
x2
ℓ3ð1− sin2ð10πyÞÞ ð13Þ

MDE is stimulated by ECs. The value of MDE equals to zero. Therefore, we can
describe the initial MDE field as:

m x, y, 0ð Þ=0 ð14Þ

We assume ECM is a homogenous density field with an initially uniform con-
centration of ECM components. Daub and Merks [19] propose that ECM con-
centration is 0.9 after non-dimensionalization. This was taken and, therefore, the
initial ECM field is presented as:

M x, y, 0ð Þ=0.9 ð15Þ

4 Simulation Results

All of the numerical solutions of the models were obtained with finite difference
methods. We compared the results between the Anderson and Chaplain’s model
(refer to Eqs. (1–6) and (13)) [17, 23, 35] and the improved model in this study
(refer to Eqs. (7–15)) and summarized the results as follows (Fig. 3).

4.1 Comparison of ECs Migration Between Two Models
Without Considering the Effect of Haptotaxis

To separately test the effects of the chemotaxis and haptotaxis factors on the
models, first we did not include the haptotaxis factor in the models. So the
migration of ECs was mainly influenced with chemotaxis. Both the Anderson and
Chaplain’s model and our own improved model were simulated at the condition

Fig. 3 The initial
concentration of ECs from
Eq. (13)
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without the influence of haptotaxis (ρ=0), and the results are shown in Figs. 4 and
5, respectively. From these Figs. 4 and 5, we can observe that ECs move towards
the tumour line source with the same migration velocities for both two models. The
moved distances covered by the ECs were the same at t=1τ (1.6 days), t=2τ
(3.2 days), and t=3τ (4.8 days) for the two models. The difference between Figs. 4
and 5 is with regard to the ECs density. The ECs density is larger in Fig. 5 than that
in Fig. 4 due to the term of proliferation in Eq. (7).

(a) = 1 (b) = 2 (c) = 3

Fig. 4 Spatio-temporal evolution of EC density from Anderson and Chaplain’s model. The figure
shows that the ECs migrate from the parent vessel ðx=0Þ towards the tumour line source ðx=1Þ
with the influence of chemotaxis factor and without the influence of haptotaxis factor ðρ=0Þ.
a t=1τ, b t=2τ, c t=3τ

(a) t=1 (b) t=2 (c) t=3

(d) t=1 (e) t=2 (f) t=3

Fig. 5 Spatio-temporal evolution of EC density from the proposed improved model. a–c Show
that the ECs migrate from the parent vessel ðx=0Þ towards the tumour line source ðx=1Þ with the
influence of chemotaxis factor and without the influence of haptotaxis factor ρ=0. The initial four
clusters of high cell density are drawn towards the line of the tumour. d–f Show that the ECM is
hydrolyzed by the proteolytic enzyme secreted by ECs. The four clusters of ECs move forward to
the line of the tumour and correspondingly leave four ditches behind them. a t = 1τ, b t = 2τ,
c t = 3τ, d t = 1τ, e t = 2τ, f t = 3τ
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The same EC velocities seen in both models are due to the same chemotactic
attraction. Here, chemotaxis determines the velocity of tip cell migration. We can
observe that at t=2τ (3.2 days), ECs have passed more than halfway through the
domain, and at t=3τ (4.8 days) they have migrated across almost 80% of the
domain. No significant lateral migration of the ECs is observed. The four clusters of
ECs retain the shape of the initial distribution, while the density decreases to a
certain extent. This is because the migration is mainly controlled by chemotaxis,
and at the same time diffuses outwards, leading to a small amount of lateral
movement due to random motility.

4.2 Comparison of ECs Migration Between Two Models
with Considering the Effect of Haptotaxis

Then we simulated the EC migration with the influence of both chemotaxis and
haptotaxis. From the fact that the fibronectin gradient is opposite to the TAF shown
in Fig. 1, the haptotaxis offsets the chemotaxis, and the influence on EC velocity is
negative.

In Fig. 6, under the negative influence of haptotaxis, ECs move towards the
tumour much more slowly than as shown in Fig. 4. ECs only covered one-third of
the domain at t=3τ (4.8 days). Significant overlaps of cells can be observed in
Fig. 5c.

Compared with the results shown in Fig. 4, without the influence of haptotaxis,
EC move faster and take three time scaling (t = 3τ) to cover 80% of the domain.
However, in Fig. 6, with the negative influence of haptotaxis, ECs move much
more slowly and take three time scaling (t = 3τ) to cover only 30% of the domain.
This is because TAF and fibronectin are opposite in their gradient direction and
counteract the movement of the ECs. Therefore, the negative influence of hapto-
taxis could slow down the velocity of ECs. On the other hand, if the fibronectin
gradient is in the same direction as the TAF shown in Fig. 2, the influence of
haptotaxis on velocity is enhanced.

(a) t=1 (b) t=2 (c) t=3

Fig. 6 Spatio-temporal evolution of ECs density in Anderson and Chaplain’s model, when setting
ρ=0.34. a t = 1τ, b t = 2τ, c t = 3τ
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Unlike with the results shown in Fig. 6, as shown in Fig. 7c, we considered the
positive effect of haptotaxis on the velocity of ECs. We observed the four separate
peaks of cells covered 80% of the domain at t = 1.5τ (2.4 days). The velocity of the
ECs is the fastest because both the TAF and fibronectin gradients are in the same
direction. The superposition of both TAF and fibronectin accelerates the EC
migration and the ECM changes correspondingly.

4.3 Effect of Proliferation on ECs Density

Figure 8 shows the change in EC density with and without proliferation. In Fig. 8a,
without proliferation, EC density is kept at conservation whereas with proliferation,
it increases towards the tumour. In Fig. 8b, without proliferation, the trend of its
average density for each cluster is declining in Eq. (1). This is due to the term of
random motility which makes it diffuse, and its density per unit area is declining.
With proliferation (see Eq. (7)), the trend of its average density for each cluster
remains higher than that in Eq. (1).

(a) =0.5 (b) =1 (c) =1.5

(d) =0.5 (e) =1 (f ) =1.5

Fig. 7 Spatio-temporal evolution of ECs density from the improved model. a–c Show that the EC
migration is influenced by chemotaxis and positive haptotaxis. d–f Show that the ECM is
hydrolyzed by the proteolytic enzyme secreted by EC migration. ECs move forward to the tumour
and correspondingly leave four ditches behind them. a t=0.5, b t=1τ, c t=1.5τ, d t=0.5τ,
e t=1τ, f t=1.5τ
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4.4 Results of ECM

The simulation results of ECM are shown in Figs. 5d–f and 7d–f, respectively.
The ECM is proteolyzed by MDE secreted by ECs and degraded simultaneously
when the ECs clusters move forward, forming a “ditch” in the ECM. This indicates
that the density of the ECM decreases because of degradation. The front of the
“ditches” is at the same distance from the parent vessel as that of ECs, which
reveals that ECM approaches the tumour correspondingly with the ECs. It can be
clearly seen that when the four clusters of ECs migrate forward, its enzymes, such
as MMPs, degrade the ECM and leave the “ditch” behind them. Thus, we assume
that the degradation can take place only at the front, and the four clusters of ECs are
extremely actively, leaving the “ditches” behind it. It can also be clearly observed
that in Fig. 5d–f, the “ditches” are deeper and wider than those in Fig. 7d–f. This
indicates that the faster the ECs migrate, the shallower the “ditches” will be. The
more slowly the ECs migrate, the deeper and wider are the “ditches”.

5 Comparison of the Evolution of Capillary Network
Between the Two Models

Agent-based modelling (ABM) is a computational modelling approach providing a
systematic view of the simulation of action and interaction between autonomous
individual entities [36]. Cellular automata (CA) is another framework for defining
the interacting components in a system [37]. Since CA is not capable of repre-
senting a large amount of data transformation between entities due to the increasing
complexity of the input symbols and the number of states, modelling
tumour-induced angiogenesis requires the application of an agent-based approach

Fig. 8 The effect of proliferation on the total ECs density (a) and average ECs density (b). Dash
lines show the results with proliferation
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which provides a more powerful state machine to allow for an intuitive exploration
of the dynamics and the complexity of biological systems. We used ABM to
discretize the mathematical model described above, so that we could obtain the
feature of the capillary sprouts and individual behaviour. The discrete capillary
sprouts are shown as follows.

In Fig. 9, we can observe that the four clusters of vessels develop from the
parent vessel across the domain and finally reach the tumour. In front of the vessels
are the sprout heads by the endothelial tip cells. In the simulation, the ECM
degradation is not involved into the continuous model, so no background of ECM
can be observed and it seems that the capillary network formed mechanically.

In Fig. 10, we can observe that the four clusters of vessels develop from the
parent vessel across the domain and finally reach the tumour. In front of the vessels
are the sprout heads by the endothelial tip cells. When the ECs approach, they
secret MDE and proteolyze the ECM, making the density of ECM decline alone in
the way the ECs passed. In this way, the endothelial tip cells remove barriers and
make way for the vessels to develop. This can be observed from the background
with different colours and contour lines. In the background, the local density of
ECM adjacent to the vessels appears to change gradually through blue, green, and
yellow to red towards the outside, which means the ECM density is the lowest at
the vessels due to being proteolyzed. At the same time, the directions of the nascent
sprouts are mainly guided by the TAF gradient and also influenced by the density of

Fig. 9 Spatio-temporal evolution of capillary network with ABMs to discretize the continuum
model where the ECM degradation is not involved. The figure shows ECs at the capillary sprout
tips migrating from the parent vessel (x=0) towards a tumour (x=1)
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local ECM, making the morphology of the vessels appear tortuous. We can also
observe that the density of vessels is increasing, forming a “brush border”
approaching the tumour, which demonstrates the density of endothelial tip cells
increasing due to EC proliferation.

6 Discussion

The simulation results show an accelerated endothelial tip cell migration towards
the tumour, which implies a possible mechanism that promotes angiogenesis in
some subgroups of invasive tumours.

According to Shekhar, Pauley and Heppner, ‘the invasive carcinoma is often
associated with expansion of the tumour stroma and increased deposition of ECM’

[38]. Such an increased deposition of ECM in tumours is known as desmoplasia
and is similar to changes that are observed during organ fibrosis. According to
Folkman, solid tumours vascularize more actively than the normal tissue [38]. The
fibroblast is an important stromal cell type in cancer progression [24].

Therefore, we obtained the important points as follows.

Fig. 10 Spatio-temporal evolution of capillary network with ABM to discretize the continuum
model where the ECM degradation is involved. The figure shows the ECs at the capillary sprout
tips migrating from the parent vessel (x=0) towards a tumour (x=1). The background formed
with contour lines and colours shows the ECM density degraded by the MDE secreted from the
ECs
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1. Without haptotaxis, the clusters of EC density migrate directly across the
domain to the tumour.

2. With negative haptotaxis in which the fibronectin gradient is opposite to the
TAF gradient, the clusters of EC density migrate more slowly, with lateral
movement.

3. With positive haptotaxis in which the fibronectin gradient is in the same
direction as the TAF gradient, the clusters of EC density migrate most quickly.
This means angiogenesis is promoted by the superposition of both haptotaxis
and chemotaxis.

Tumours can be initiated and developed by the interactions between malignant
cells and cancer-associated fibroblasts (CAFs) [25, 26]. Through modulating stro-
mal ECM, CAFs produce directional paths of fibronectin in order for tumour
invasion to occur [27]. Fibronectin is critical in many cell processes, such as cell
adhesion, migration, growth and differentiation [39]. Fibronectin is expressed in
many different cell types and its expression is activated during
epithelial-mesechymal transition (EMT) [28]. This is a process which facilitates cell
motility and invasion [29–31].

The increased expression of fibronectin has been observed by Lundberg [32] in a
subgroup of colorectal cancer (CRC) classified as CIMP-negative tumours. They
point out that fibroblasts induce CIMP-negative tumour cells to produce more
fibronectin. They indicate that the density of fibroblasts is higher at the front of the
tumour than the normal tissue. Similar results have been reported by Derya, Yilmaz
and Aytekin in Small Cell Lung Cancer (SCLC), an aggressive form of lung cancer.
The ECM surrounding SCLC cells contains a great amount of fibronectin [33].
Therefore, we think that there may be a density gradient of the fibronectin which is
expressed as Eq. (12). This generates a positive haptotatic effect and augments the
velocity of ECs shown in Figs. 2 and 7. The quick migration of ECs approaching
the tumour means that angiogenesis occurs quickly when the invasive tumour
produces a high concentration of fibronectin in the stroma and its adjacent
microenvironment.

Previous studies have suggested that fibronectin could be generated by various
types of cells, including tumour cells [40]. Fibronectin enhanced the secretion of
MMPs and promoted the invasive migration of gallbladder cancer (GBC) cells.
Stromal fibronectin is produced by tumour cells. Recent studies in human mela-
noma and ovarian cancer have revealed that MMPs could cleave fibronectin into
shorter fragments, and facilitate the fibronectin integrin adhesive interactions. This
process in turn reinforces the generation of MMPs, forming a positive feedback
loop for the invasive migration of GBC cells [41].

Angiogenesis plays a major role in solid tumour growth, because it links the
harmless avascular growth phase and the fatal vascular growth phase [7]. In our
model, we assume that some subgroups of invasive tumour, such as CAFs or GBCs,
can produce fibronectin and create a higher fibronectin concentration for the cancer
cell migration, which results in a positive haptotatic effect and accelerates angio-
genesis. Finally, the rapid growth of vascular tumours contributes to cancer cell
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progression known as metastasis for the establishment of a new colony in distant
organs [42]. Therefore, we assume that there is a possible mechanism through
which tumour-invasion and tumour-induced angiogenesis promote each other,
making the tumour develop faster.

Firstly, we improved the aspect of the degradation of ECM because it should be
degraded to make way for the development of the capillary network with the
migration and proliferation of the approach of ECs to the tumour. Our simulation
results provided above clearly show that ECM is degraded during angiogenesis. As
a result, the degradation dynamics of ECM is catalyzed by the protease enzyme
[18].

Second, we improved Anderson and Chaplain’s work of tumour-induced
angiogenesis in the aspect of fibronectin gradient direction. They assume that
concentration of fibronectin is higher at the side of the parent vessel than at the side
of the tumour, so they set Eq. (6). However, we think that there is another possi-
bility in which the fibronectin concentration is higher at the tumour side than at the
vessel side. This may happen in some invasive tumour situations, so we set
Eq. (12). Our simulation results show that during angiogenesis the ECs move much
faster as the TAF and fibronectin gradient are in the same direction. The synthetic
effect of both chemotaxis and haptotaxis in the same direction accelerates the
movement of the ECs.

According to Cao et al. [41], the overexpression of fibronectin will promote
cancer progression. Their experimental results indicate that exogenous fibronectin
significantly enhances and promotes proliferation and metastasis. Our simulation
results show that the migration of ECs can be accelerated by the invasive tumour.
This means that invasive tumours generate fibronectin, which enhances haptotaxis
and promotes angiogenesis. According to the consensus theory, angiogenesis
supplies oxygen and nutrients to promote tumour development. We propose that
there is a possible mechanism of tumour-invasion and tumour-induced angiogenesis
promoting each other, and making the tumour develop faster, and this at the very
least becomes more harmful for some subgroups of tumours.

7 Conclusion

Tumour progression promotes overexpression of fibronectin. The overexpression of
fibronectin generates a fibronectin concentration gradient which is in the same
direction of TAF concentration gradient. The fibronectin gradient generates the
positive haptotaxis which accelerates the ECs migration. The capillary vessels
formed through accelerated angiogenesis supply oxygen and nutrients to the tumour
and make it more invasive. Our conclusions agreed with this point and pointed out
the migration of ECs can be accelerated by the invasive tumour. Thus we argue that
there may be a possible mechanism for the cross promotion between
tumour-invasion and tumour-induced angiogenesis, and we identify this as our
future work. Moreover, the development of vascular systems also associates
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strongly with the behaviours of neural systems since both employ complex func-
tions to accomplish network behaviours. We will also explore such connections
between these aspects to motivate future research. Moreover, the proposed research
also shows great potential in contributing to the understanding and explanation of
how large recurrent neuronal assemblies develop and function in complex bio-
logical environments.
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Noise Reduction in ECG Signals Using
Wavelet Transform and Dynamic
Thresholding

Diptangshu Pandit, Li Zhang, Chengyu Liu, Nauman Aslam,
Samiran Chattopadhyay and Chee Peng Lim

Abstract Biomedical signals produced by mobile sensors usually carry various
noises. This poses great challenges for the subsequent signal processing and disease
analysis. Thus, noise removal becomes an important step of signal processing. This
research proposes a noise reduction algorithm which can be applied to noisy ECG
(electrocardiogram) signals to obtain a higher signal-to-noise ratio (SNR) for further
processing. The proposed algorithm utilises wavelet transform and dynamic
thresholding to reduce specific types of noise embedded in raw ECG signals. To
prove the efficiency of the proposed algorithm, we employ a half-hour-long real
ECG signal and add different types of noise for the evaluation of the proposed
algorithm. We also compare the results obtained using different families of wavelets
and different decomposition levels. The experimental results show that the proposed
algorithm is able to produce a higher SNR in the output signal than that in the raw
test signals.
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1 Introduction

Electrocardiogram (ECG) represents different activities of the heart during the
cardiac cycle [1]. Physicians use ECG signals to detect and diagnose multiple types
of cardiac arrhythmias. In automated ECG processing, the raw signal has to go
through multiple processing stages for detection of disease or abnormality. For
instance, in the first stage, the signal is pre-processed for noise reduction. The next
stage is feature extraction which is followed by the classification process. The
pre-processing or noise reduction stage plays a very important role since noisy
signals might affect the subsequent processes, and result in errors in the final
outcome. Moreover, noise reduction or cancellation is not only useful for ECG
signals, but also helpful in processing many other biomedical signals, such as
Electroencephalogram (EEG), Electromyogram (EMG), Electrooculography
(EOG), Galvanic skin response (GSR), Magnetoencephalogram (MEG) and
Mechanomyogram (MMG). Figure 1 shows different types of noise in ECG signals,
as taken from the MIT-BIH Arrhythmia database [2].

The noise removal process separates a valid part of the signal by cancelling
unwanted artefacts which are not influenced by the electrical activities of the heart.
The common noise categories include powerline interference, motion artefact,
baseline wander, muscle contraction and electrode contact noise, as follows.

Fig. 1 Different types of noises in ECG signals, including a powerline interference, b motion
artefact, c baseline wander and d EMG noise. Y axis represents the amplitude in mV and X axis
denotes the sample number
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• Powerline interference

This type of noise consists of 50 Hz or 60 Hz (and multiples) pickups and har-
monics. The amplitude of the noise varies up to 50% of the ECG amplitude peak
[3]. The common causes include improper grounding, interference with other
electrical equipment (e.g., motors, air conditioners), stray effect of the alternating
current, etc. An example signal is shown in Fig. 1a.

• Motion Artefact

The transient baseline changes in ECG signals due to the difference in the
electrode-skin impedance with electrode motion are known as motion artefact [4].
This type of noise might cause very large spikes. It has a frequency typically less
than 0.5 Hz except for the abrupt shifts (due to motions). A signal distorted by
motion artefacts is illustrated in Fig. 1b.

• Baseline Wander

Respiration or body movement causes this type of low frequency noise. Baseline
wander causes problems for detecting R peaks of the signal. Because of this
baseline wander, the T peak of the ECG signal could appear higher than the R peak
[5]. Figure 1c shows an example of an ECG signal with baseline wander.

• Muscle Contraction

Muscle contraction noise, also known as EMG noise, is caused by the electrical
activities of body muscles [6]. This type of noise might have a frequency range
from 20 to 10 kHz. The amplitude of this noise could go up to 10% of the QRS
amplitude. A sample signal with this noise is illustrated in Fig. 1d.

• Electrode Contact Noise

This category of noise appears due to the discontinuous connection between the
ECG electrode and patient skin during signal acquisition.

As mentioned earlier, noise removal is a very important step and it highly
impacts the subsequent ECG signal processing. It has drawn increasing research
interests in the related field. Indeed, noise reduction using filtering has become a
very popular research area in domain of signal processing. Different types of filters
have been used for the ECG pre-processing such as bandpass filter, notch filter,
finite impulse response (FIR) and infinite impulse response (IIR) filters, etc.
A comprehensive study of employed notch filter is presented by Bai et al. [7]. In
their work, the mean square error was used in performance comparison while
demonstrating the adverse effect of higher order filter. Rani et al. [8] presented a
comparison of multiple FIR and IIR filters and illustrated the superiority of the IIR
filter over the FIR filter in terms of resource requirements. Other types of filters
include adaptive and morphological filters [9, 10], median and bandpass filters [11,
12] and quantisation [13]. Recently, wavelet transform has gained popularity in
automated ECG processing. As ECG is a non-stationary signal, wavelet methods
are highly suitable for automatic ECG signal processing. Many wavelet noise
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removal techniques are proposed in the literature [2, 5, 14–19]. These include
Fourier transform [20], Principal Component Analysis [21], Segmented-Beat
Modulation [22], Independent Component Analysis [23] and Ensemble Empirical
Mode Decomposition [24]. In this research, we propose a noise reduction technique
using stationary wavelet transform (SWT) [25] and dynamic thresholding to deal
with the removal of various types of ECG noises. We also demonstrate the effec-
tiveness of the proposed algorithm by conducting an empirical evaluation with
noisy ECG signals.

The rest of the article is structured as follows. In Sect. 2, we introduce the
proposed noise reduction algorithm based on wavelet transform and dynamic
thresholding. Section 3 presents the experimental study and outcomes. Finally,
concluding remarks and directions for further work are presented in Sect. 4.

2 The Proposed Noise Reduction Algorithm

In this section, we propose a noise reduction method that incorporates five main
steps as illustrated in Fig. 2. In the first step, the baseline is corrected using moving
window average. Then, the signal is decomposed using discrete stationary wavelet
transform. From the decomposed signal, thresholds are computed dynamically in
the third step. Next, the computed thresholds are applied to the decomposed signal.
Finally, the output signal is recomposed using inverse discrete stationary wavelet
transform.

Raw ECG 
Signal

1. Baseline 
Correction

2. Wavelet 
Decomposition

3. Dynamic 
Threshold 

Calculation

4. Apply 
Thresholding

5. Wavelet Re-
composition

Output 
Signal

Fig. 2 Flowchart of the
proposed noise reduction
method
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2.1 Baseline Correction

In this step, we correct any baseline-related deviations of the ECG signal. This is a
necessary step as the subsequent dynamic threshold generation will be affected if
the signal refers to a wrong baseline. We use a simple baseline removal technique,
which subtracts the averaging window (around the current sample) of half a second
from the current sample to remove baseline. The operation is defined as follows:

ybðxÞ= y xð Þ− 1
w ∑

w

i=1
y x+ i− w

2

� �
If w

2 ≤ x≤ size yð Þ− w
2

y xð Þ Otherwise

8
<

:
ð1Þ

w= round fs× 0.5ð Þ+ round fs×0.5ð Þ%2 ð2Þ

where y(x) denotes the raw ECG signal (with a baseline problem) and yb(x) denotes
the corrected signal. The window size w is an even number, which is close to the
number of samples in half a second. An example using this technique is illustrated
in Fig. 3, where the raw signal is shown on top of the figure and the corrected signal
is plotted at the bottom.

2.2 Wavelet Decomposition

We use SWT method in this step. A detailed discussion on SWT can be found in
[25]. The decomposition process depends on the type of wavelet family used and
the decomposition level N. The output of the decomposed signal contains both the
detailed coefficients for each level (up to N) and the detailed approximation coef-
ficients of level N. An example using level 3 SWT decomposition is shown in

Fig. 3 An ECG signal with baseline problem (top) and a baseline corrected signal (bottom)
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Fig. 4. The noisy (but with baseline corrected) signal (i.e. signal a) is illustrated in
the top row of Fig. 4. The next three signals (b, c and d) in Fig. 4 represent resulting
decomposed signals with the last row representing the filtered signal (i.e. signal e).

2.3 Threshold Calculation

In this stage, we calculate amplitude approximation thresholds for each decom-
posed signal. The threshold is calculated using a certain percentage value tp. This
indicates that only about tp% of the sample values exist, and they are above the
output cut-off threshold ta. The following algorithm is used for the threshold
calculation.

In Fig. 4, an example is provided where the threshold values are calculated using
tp = 10%. The resulting ta is marked as positive and negative straight (orange and
yellow) lines for each decomposed signal (b, c and d).

Fig. 4 a Noisy signal, b–d the decomposed signals (detailed coefficients and thresholds) and e the
filtered signal
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2.4 Threshold Application

Next, the calculated threshold is applied to all the decomposed signals. The fol-
lowing formula is used to apply the threshold to the corresponding decomposed
signal.

ya xð Þ= signðy xð ÞÞ× srn y xð Þj j−Tð Þ, ð3Þ

where sign(x) returns the sign of x; srn(x) returns x if the value of x > 0; otherwise it
returns 0; ya represents the output signal after applying the threshold on the input
signal, y. In Fig. 4b, c, d, the threshold values are marked as two straight lines along
the X axis (for each signal) with both having the same positive and negative
amplitudes. All the values within the threshold regions will be reduced to 0.

2.5 Wavelet Re-Composition

The filtered decomposed signals are used in this stage to reconstruct the final
filtered ECG signal. This step involves inverse discrete stationary wavelet trans-
form. Detailed inner workings of this process can be found in [25].

Input:
tp //Threshold percentage
y(x) //The decomposed ECG signal
Output:
ta //Cut-off threshold for the decomposed ECG signal
Begin
{ 

//Find the average of the mean of the absolute signal and the peak of the signal as the starting threshold

//L is the number of elements in the signal

dr = 0.001; //Decrement amount
s = true;
While s = true do

t = t – dr ;   
n = ; // pos(x) returns x if x > 0; otherwise it returns 0.
If n L > tp

s = false;

End

End

Output ta
} 
End

Algorithm 1: Cut-off threshold calculation
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3 Experimental Study and Results

In this section, we conduct a series of experiments using different wavelet families
as well as different levels of decomposition. All of our experiments are conducted
using MATLAB. In this section, we discuss the experimental data, the experiment
method and analyse the results obtained.

3.1 Experimental Data

We used ‘signal 100’ from the MIT-BIH Arrhythmia [2] database as the raw test
signal. Different types of noise were added to this ECG signal, which result in
varied signal-to-noise ratio (SNR) for each of the generated test signals. The added
noise included both 60 Hz sinusoidal signal and Gaussian white noise. A set of 20
noisy signals was generated by integrating time varying and amplitude varying
noise signals with the raw ECG signal (i.e. signal 100). Each of the generated noisy
signals has increasing noise power, resulting in SNR starting from −0.0182 dB up
to −4.2091 dB. The base waveform contains a half-hour-long real ECG recording
sampled at 360 Hz. Each of the generated noisy signals had the same length
containing different degrees of power and variation of noise. Table 1 summarises
SNR values for all noisy test signals.

3.2 Evaluation Results

We tested the proposed algorithms using the ‘Daubechies’ family of wavelets
(DB2, DB3 and DB4) with the decomposition levels of 3, 4 and 5. Two tests were
conducted. In the first test, we assumed tp = 10%. The first test results are shown in
Table 2. The same results are depicted pictorially by plotting them in Figs. 5 and 6.
In Fig. 5, we compared the SNR output using the same family of wavelet (‘DB1’)
and varying decomposition levels for each test signal. It can be observed that
increasing the decomposition level greatly improves the final SNR output. In Fig. 6,
we compared the outputs using the same level of decomposition but different
families of wavelet for each signal. It can be seen that the outputs from different

Table 1 A summary of SNR values in dB for all the test signals

Signal
No.

1 2 3 4 5 6 7 8 9 10 11

SNR −0.01 −0.06 −0.14 −0.24 −0.38 −0.53 −0.71 −0.91 −1.12 −1.35 −1.58
Signal
No.

10 11 12 13 14 15 16 17 18 19 20

SNR −1.35 −1.58 −1.83 −2.08 −2.34 −2.60 −2.86 −3.12 −3.39 −3.65 −3.91
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families of wavelet (for the same level of decomposition) vary for the signals with
low noise. However, similar results can be observed when the signal contains a high
amount of noise.

In the second test, we focused on the noisiest signal (test signal no. 20) and the
least noisy signal (test signal no. 1) for experimentation. We applied wavelets
decomposition at multiple levels (levels 2 to 7), each using DB1 to DB7 families of
wavelet on both signals. A detailed comparison of the test results is shown in
Table 3. Figures 7 and 8 show the comparison graphically for test signal 1 and test
signal 20, respectively. For the input signal with a low noise level, the performance
of our algorithm increases corresponding to a higher family of wavelet and a higher
level of decomposition. This is also the case for processing signals with more noise.
However, the improvement of SNR is comparatively less as compared with those in
the previous situation (see Fig. 8).

Fig. 5 Comparison of the
SNR of the output signals
using multiple levels of ‘DB1’
wavelet transform

Fig. 6 Comparison of the
SNR of the output signals
using multiple families and
level 4 wavelet decomposition
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4 Conclusions

In this study, we have proposed an effective noise reduction algorithm for ECG
signals using baseline removal, discrete SWT and dynamic thresholding. The
empirical results indicate that the efficiency of the proposed algorithm depends on
the wavelet family used and the applied decomposition level. We have evaluated
the proposed algorithm using both a half-hour-long real ECG signal from the
MIT-BIH Arrhythmia database and the generated noisy signals. The proposed
algorithm can also be applied to any other one-dimensional signals (e.g., EEG
signals) for the noise removal.

In future work, we aim to combine the proposed noise reduction algorithm with
peak detection methods pertaining to different wavelets and classification algo-
rithms to identify abnormal ECG signals for heart disease detection. Furthermore,
the proposed algorithm can be utilised for other biomedical signals, such as EEG
and EMG, with appropriate modifications according to the characteristics of dif-
ferent types of signals.

Fig. 7 Comparison of the
SNR of the output signal
using multiple families and
levels of wavelet transform
using the test signal 1

Fig. 8 Comparison of the
SNR of the output signal
using multiple families and
levels of wavelet transform
using test signal 20
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Development of a Co-evolutionary Radial
Basis Function Neural Classifier
by a k-Random Opponents Topology

Bee Yan Hiew, Shing Chiang Tan and Way Soong Lim

Abstract The interest of the research in this paper is to introduce a novel com-
petitive co-evolutionary (ComCoE) radial basis function artificial neural network
(RBFANN) for data classification. The motivation is to derive a compact and
accurate RBFANN by implementing an interactive “game-based” fitness evaluation
within a ComCoE framework. In the CoE process, all individual RBFANNs interact
with each other in an intra-specific competition. The fitness of each RBFANN is
evaluated by measuring its interaction/encounter with k number of other randomly
picked RBFANNs in the same population through a quantitative yet subjective
manner under a k-random opponents topology. To calculate the fitness value, both
the hidden nodes number and classification accuracy of each RBFANN are taken
into consideration. To obtain a potential near optimal solution, the proposed model
performs a global search through ComCoE approach and then performs a local
search that is initiated by a scaled conjugate backpropagation algorithm to fine-tune
the solution. Results from a benchmark study show high effectiveness of the
co-evolved model with a k-random opponents topology in constructing an accurate
yet compact network structure.

Keywords Competitive co-evolutionary algorithm ⋅ Radial basis function artificial
neural network ⋅ Classification
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1 Introduction

Artificial neural networks (ANNs) are generally accepted by the computing com-
munity as a branch of machine-learning technique that can perform data classifi-
cation with promising results [1]. ANNs could be integrated with other
machine-learning techniques to enhance the recognition performance. For exam-
ple, to train an ANN with good results, two popular techniques of evolutionary
computation (EC), i.e. co-evolutionary algorithm (CoEA) and evolutionary algo-
rithm (EA), have been applied. These two techniques are similar in the sense that
their mechanisms are based on the ideas of natural evolution whereby the mech-
anisms encompass a selection phase as well as genetic operations, e.g. crossover
and mutation [2]. Nevertheless, conceptually, a CoEA and an EA are not similar. In
CoEAs, interaction and adaptation to changes occur among individuals themselves
[3]. In contrast, in EAs, no such interaction exists among individuals in the evo-
lutionary process. In addition, in EAs, individuals are evaluated independently with
an objective fitness measure [4]. Conversely, in CoEAs, the fitness of an individual
is obtained in a subjective manner [4], for which the evaluation involves a function
of measuring the interaction between the individual and others in the population [3].

Cooperative co-evolution and competitive co-evolution are two fundamental
types of co-evolution. In cooperative co-evolution, its core idea engages “divide
and conquer” [5]. The initial step is the division of a problem to (smaller)
sub-problems (where their potential solutions are defined and assigned to different
populations). Then, these populations are evolved concurrently and continuously
from one generation to another generation to refine the solutions. Finally, selected
individuals (that represent the best solutions from each population) are merged to
form a complete solution [5]. In competitive co-evolution, individuals in a popu-
lation generally interact by either one of two modes: (1) intra-specific competition;
(2) inter-specific competition [6]. For the former, individuals from the same pop-
ulation (same species) compete among each other. For the latter, competition occurs
among the members from different populations (different types of species). Notably,
it is possible to design a single-population CoE model [4, 5] where individuals from
the same population evolve and “interact” via intra-specific competition individuals
[4]. A single-population CoE model has been applied to game playing and artificial
life simulations [7]. For instance, under a tournament topology in a game, a fitness
value is rewarded to an individual after competing/playing with an opponent. Two
commonly used tournament topologies in games are single elimination tournament
and round robin [4].

In the recent literature, CoE model was applied in many research areas. For
example, in machine learning, to improve the population diversity, a multipopu-
lation CoE approach was proposed [8]. In [9], a cooperative CoE genetic fuzzy
finite state machine was introduced to identify and improve the classification results
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of epilepsy (i.e. a neurological disorder that could cause cognitive damage and
depression). Chandra et al. [10] introduced a novel architecture to encode
two-dimensional time-series data into Elman Recurrent ANNs. Elman Recurrent
ANNs comprised a single input neuron and were trained by a combination of
cooperative co-evolution and backpropagation through-time algorithms to perform
time-series prediction [10]. A novel competitive CoE team-based particle swarm
optimiser algorithm, which has overcome a saturation problem when adapting ANN
weights, was introduced to train teams of multi-agent that are essentially the
neuro-controlled soccer players [11]. Artificial Neuron–Glia Networks (ANGNs)
requires manual tuning of parameters configuration. By means of cooperative CoE
genetic algorithm (CCGA), the proposed ANGN-CCGA in [12] has improved
ANGNs by automatically learning all parameters. In [13], a CoE particle swarm
optimizer mimicking parasitic behaviours of the host–parasites interactions in the
natural ecosystem was proposed to perform function optimization. Apart from
tackling the flexible job shop scheduling problem, a cooperative CoE algorithm was
proposed to find a solution for task relative order and machine assignment [14].
Recurrent ANNs that are trained with cooperative co-evolution were utilised to
predict rapid intensification in tropical cyclones in the South Pacific region [15].
A competitive cooperative CoE technique was introduced to train recurrent ANNs
to perform chaotic time-series prediction [16]. The authors proposed two versions
of competitive methods (i.e. two- and three-island competitive methods) to embark
on competitive co-evolution [16]. Three hybrid algorithms which integrate the
heuristic algorithm and co-evolution based on distance-adaptive policy were pro-
posed in [17]. In [18], a radial basis function, ANN classifier was built through a
subspace learning process involving optimization of the ANN’s structure and
feature subspace vectors with a cooperative CoE algorithm.

In this paper, a competitive co-evolutionary (ComCoE) RBFANN is introduced.
From the literature, ComCoE ANN is relatively less explored as compared to
cooperative CoE ANN(s). The construction of a ComCoE ANN is based on a
common setup [19–25], i.e. (1) where a data sample population and a classifier
population were involved in the evolutionary process (e.g. [19, 20, 23–25];
(2) normally only one objective was utilised, i.e. classification accuracy (for
instance [19–25]).

In this paper, a ComCoE RBFANN model (single-population-based) is intro-
duced which deploys a k-random opponents topology during fitness evaluation
process for improving data classification performance. The proposed model is
named as ComCoE(kRO) RBFANN.

The structure of the remaining of the paper is as follows: In Sect. 2, the model of
ComCoE(kRO) RBFANN is explained. Section 3 presents results from experi-
ments. In Sect. 4, conclusions are given.
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2 The Proposed ComCoE(kRO) RBFANN Model

In the proposed model, a population of RBFANNs (developed from the Netlab
toolbox [26]) is initialised before the competitive co-evolution embarks. During the
process of co-evolution, the competitions/games among these RBFANNs are car-
ried out/played under a tournament topology regulated by k-random opponents.
Section 2.1 describes the proposed ComCoE process. The explanation of the fitness
evaluation process under the k-random opponents topology is given in Sect. 2.2.

2.1 The Proposed CoE Process

In the proposed model, competitive co-evolution was applied to adapt RBFANNs
by searching as well as refining the networks’ width, σj, centre, cj, weight, ωuj as
well as bias, ωu0. To discover fitter chromosomes, a global-local search algorithm is
executed where ComCoE is utilised to carry out a global search whereas a scaled
conjugate backpropagation algorithm is employed to carry out a local search. The
ComCoE(kRO) RBFANN model is constituted according to the following
procedure:

1. Population initialisation, chromosome representation and initial fitness
evaluation. One population of L RBFANNs (chromosomes) is initialised on a
random basis. The number of hidden nodes, h (h ∈ ½1, 10�) set in every
RBFANN is different. Each value of hidden nodes number, h is a pseudorandom
integer value (within a certain range) drawn from the discrete uniform distri-
bution. Every RBFANN’s initial fitness, f, is computed. Section 2.2 presents the
fitness evaluation/computation of a RBFANN in details. Then, the RBFANNs
are ranked from the best to the worst according to their fitness scores.
Each RBFANN is encoded as a chromosome, zi where zi is the ith chromosome
corresponding to the ith RBFANN. An RBFANN’s width, σj, centre, cj, weight,
ωuj together with bias, ωu0, are combined to create a chromosome,zi

zi = cjσjωu jωu 0
� � ð1Þ

2. Mutation. All chromosomes are performed with the Gaussian mutation (the
main search operator). To control the mutation operation, a user defined prob-
ability value, i.e. a mutation rate MR, is utilised. Gaussian mutation is executed
once MR is higher than the probability value and the following offspring, z

0
i is

generated.
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η
0
i = ηi exp τ

0
Nð0, 1Þ+ τNð0, 1Þ

� �
ð2Þ

z
0
i = zi + η

0
iNð0, 1Þ, ð3Þ

where τ0
and τ are equal to

ffiffiffiffiffi
2n

p� �− 1
and

ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
n

pp� �− 1
respectively in this work;

ηi signifies the variance vector, Nð0, 1Þ refers to a normally distributed one
dimensional random number with mean and variance equal to zero and one
respectively.

3. Fitness evaluation. Every z
0
i (in the chromosome form) is decoded back into the

structure of an RBFANN and the network will go through a fitness evaluation as
explained in Sect. 2.2. Once the fitness evaluation is completed, each RBFANN
is converted to a chromosome.

4. The construction of a new population. The chromosomes are sorted in a
sequence based on descending fitness scores. A new population is formed by
these sorted chromosomes (offspring). The process returns to step 2 from step 4.
The procedure from step 2 to step 4 is carried on for a fixed number of gen-
erations (i.e. G).

5. Before embarking on phase-2 search, the best candidate chromosome obtained
from the last generation of the global search from phase-1 (steps 1 to 4) is
picked. The chromosome is decoded to an RBFANN followed by the local
training through the scaled conjugate (SCG) backpropagation algorithm.

6. Using a testing dataset, evaluate the trained RBFANN from step 5.

2.2 Fitness Evaluation

A key difference between CoE and a typical EA is in fitness evaluation. In the EAs,
an individual performance is measured using an objective fitness. On the contrary,
one’s fitness in the CoE framework is measured in a subjective manner through
interaction between the chromosome and the others [27]. In this study, an inter-
active approach to fitness evaluation by adopting a k-random opponents tournament
topology is proposed. In the tournament of k-random opponents, each individual
plays with k other different (which are randomly picked) individuals [28]. In this
approach, only one complete cycle of k-random opponents tournament is imple-
mented during the fitness evaluation phase in every generation The explanation is as
follows.

During the fitness evaluation phase in every generation, every individual
maintains the following information:
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• a counter of k that indicates the number of games an individual chromosome has
played. In this work, k is reset as 5 before starting the k-random opponents
tournament in a generation so that each individual could play five games in the
k-random opponents tournament in a generation.

• the opponents’ record (whom it has played with). This record is reset as null
before beginning the k-random opponents tournament in a generation.

• fitness score. This score is reset as 0 before the k-random opponents tournament
starts.

When an individual RBFANN I is to be evaluated, an opponent RBFANN (with
k > 0) is picked randomly from the population to play with individual RBFANN
I under a condition that no individual plays with individual RBFANN I more than
one time. This is to ensure that each individual plays with different opponent in
each game. In each game, the following indicators are used to compare the per-
formance of two RBFANNs:

• The number of hidden nodes, h
• The training classification accuracy

To carry out an accurate classification task is the main goal of a classifier [29].
The concern of devising a low complexity classifier (e.g. a neural classifier with
small number of hidden nodes) is only taken into account after a classifier’s main
goal is achieved (can classify correctly). Hence, the award of point(s) to the number
of hidden nodes and classification accuracy are different with a priority to emphasis
on classification accuracy. An RBFANN is awarded 1 point whenever its hidden
node number is lower than its opponent. An RBFANN is awarded 2 points if its
classification accuracy is higher than its opponent.

At the end of each game played under the k-random opponents tournament, the
k value for both individual RBFANN I and the opponent are decremented. If the
k counter of an individual RBFANN reaches 0, then that individual is “removed”
from that population and is no longer considered as a candidate of opponent in the
subsequent games under the k-random opponents tournament. A new opponent for
individual RBFANN I is chosen, and this process continues until the k value of
individual RBFANN I has reached 0. Thereafter, a new player RBFANN J is
chosen, and the fitness evaluation goes on using the same way practiced by indi-
vidual RBFANN I. At times, an individual RBFANN K may have no opponent
(with k > 0) because none is available in the population to play games with the
individual RBFANN K. When this occurs, this causes the individual RBFANN
K could not complete its remaining k games. For an example, k value of individual
RBFANN K = 3 (which means individual RBFANN K has remaining 3 games to
play), the number of remaining opponents (with k > 0) available for playing games
with the individual RBFANN K is null. Hence, to complete remaining three games
of individual RBFANN K, no leftover opponent is available. Under such circum-
stances, the individual RBFANN K will play with any opponent disregards its
k value randomly from among the “removed” individuals. The selected opponent
should not play against the individual RBFANN K more than once. When all

212 B.Y. Hiew et al.



individuals have played k games, the fitness evaluation process which implements a
cycle of k-random opponents tournament, is completed. [Note: the fitness score
attained by every individual is accumulated from all games that it has played in a
complete cycle of k-random opponents tournament.]

Figure 1 depicts an example of how a complete cycle of k-random opponents
tournament works during the fitness evaluation phase in a generation. In this
example, four players (L = 4) are initially set with k = 2. This means each member
will compete with two other opponents without encountering the same opponents.
In Fig. 1b–d, the k value of an individual is reduced by one after each game played
from one fitness evaluation session in a generation; the updated k value is written at
the bottom of initial k value (which is double strikethrough after each game).

3 Experiments

The performance between ComCoE(kRO) RBFANN and the baseline RBFANN
and also with other CoE ANNs is evaluated and compared. In the experiments, the
benchmark datasets applied (shown in Table 1 and were normalised to [0, 1] in our
experiments) were taken from UCI Machine Learning Repository [30]. The average
attribute value was calculated and then assigned to missing attribute values.
A 10-fold cross-validation was utilised.

A baseline RBFANN was developed from the Netlab toolbox [26]. A 10-fold
cross-validation strategy was imposed. Besides, to train/test the baseline RBFANN,
the same partition of datasets used in the training and testing process of the pro-
posed model were utilised. For each baseline RBFANN, its hidden node number

(a) Before the k-random oppo-
nents tournament starts, k is set as 
2. 

(b) Individual no. 1 is selected to 
compare with individuals 2 and 3. 
The k counter of each mentioned 
individual is reduced. 

(c) Individual no. 2 is selected to 
be evaluated. 

(d) Individual no. 3 is “skipped” due to its k=0. Individual no. 4 is se-
lected to be evaluated. No individual (with k>0) available for individual 
no. 4 to play games. All other indi viduals (who have never played with 
individual no. 4) are randomly picked without checking their k value. 

Legend

               player 

               randomly picked and  
               play a game 

k=2 

k=2 

k=2 

k=2 4 

3 

1  

2 k=2
k=1
k=2
k=1
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3

2k=2
k=0 

1  k=1 
k=0
k=2 4 

3 k=1
k=0 
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2

1k=2 
k=0 
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Fig. 1 An example of how a complete cycle of k-random opponents tournament works during the
fitness evaluation phase in a generation
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(between 1 and 10) was set at random. That number is also a pseudorandom integer
value picked from a discrete uniform distribution. The RBFANN was trained via
the SCG backpropagation algorithm for 100 iterations.

The performance of ComCoE(kRO) RBFANN and its baseline RBFANN is
compared in Table 2. In general, although the number of average #h of the pro-
posed model is lower, its classification accuracy (Acc.) results are significantly
better than its baseline. The results show that while performing with high classi-
fication accuracy, the proposed model can produce a less complex network struc-
ture than its baseline.

The proposed method is compared with other CoE ANNs, i.e. MPSON [31],
CO2RBFN [32] and CO-RBFNN [33]. MPSON is one of the generic EAs; The
model of CO2RBFN engages evolutionary cooperative–competitive process; and
CO-RBFNN is entirely involved in cooperative CoE mode. MPSON and
CO2RBFN used a 10-fold cross-validation in their experiments [3, 4]. In
CO-RBFNN, the datasets were divided into training (50%), validation (25%) and
testing (25%) subsets [8]. The results are shown in Table 3. The lowest #h and the
highest Acc. of a method in each classification task are bolded. From Table 3, it
shows that the proposed model provides the least complex network architecture
while its classification accuracies are at least comparable to MPSON, CO2RBFN
and CO-RBFNN.

Table 1 The benchmark datasets

No. Datasets Classes Attributes Number of
instances

Missing attribute values
(%)

1 Breast 2 9 699 0.3
2 Heart 2 13 270 0
3 Iris 3 4 150 0
4 Pima 2 8 768 0
5 Sonar 2 60 208 0
6 Wine 3 13 178 0

Table 2 Comparison results
between ComCoE(kRO)
RBFANN and its baseline
RBFANN

Dataset Proposed model Baseline RBFANN
Acc. (%) Average #h Acc. (%) Average #h

Breast 96.3 2.0 93.10 5.9
Heart 84.1 2.7 82.96 7.5
Iris 96.7 2.9 90.00 6.8
Pima 77.1 1.5 75.40 5.3
Sonar 70.8 2.0 53.38 5.1
Wine 93.3 3.5 53.82 7.2

214 B.Y. Hiew et al.



4 Conclusions

A ComCoE ANN model (with single-population) which adopts tournament-based
fitness evaluation in its design is introduced. The proposed model, called as
ComCoE(kRO) RBFANN, has adopted k-random opponents tournament topology
in creating a subjective fitness evaluation. By utilising benchmark datasets from the
UCI repository, ComCoE(kRO) RBFANN was evaluated. The comparison results
between ComCoE(kRO) RBFANN and other CoE ANNs as well as its baseline
ANN affirmed that the ComCoE(kRO) RBFANN can provide high classification
accuracy with a compact network architecture. The future works include: (1) ex-
tension of the existing proposed model by taking into account several populations
of different or same neural classifiers, which apply either the same or different EAs;
(2) evaluation of the applicability of ComCoE(kRO) RBFANN to the real life
problems.
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Mining Outliers from Medical Datasets
Using Neighbourhood Rough Set and Data
Classification with Neural Network

Pey Yun Goh, Shing Chiang Tan and Wooi Ping Cheah

Abstract In this paper, a neighbourhood rough set is modified and applied as a
data pre-processing method to select samples from a data set before training with a
radial basis function neural network (RBFN). Data samples that are not selected for
training is considered as outliers. Four medical datasets from a famous repository
were used and results were compared in terms of number of training samples and
accuracy between the proposed model and RBFN. The results are encouraging
where classification accuracy of the proposed model is improved after outlier
removal. Results are compared with other classification models as well using a
medical dataset. The proposed model is competitive to give high classification
accuracy.

Keywords Neural network ⋅ Rough set ⋅ Outlier ⋅ Medical data

1 Background of the Study

Since many decades ago, a lot of machine-learning and data-mining technologies
have been introduced to support the decision of diagnostic and prognostic tasks.
However, there are many open questions pending to answer by delivering more
effective solutions, for instance, about the prediction capability of machine learning
and its power in knowledge discovery for decision support in the medical domain
[1–3]. One of the challenging tasks in mining medical data is to find outliers [2].
Outliers may carry information that is deviated from the norm of the data that could
lead to a doubt whether they are generated by a different mechanism [4]. Outliers
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could affect the prediction capability of a data-mining model. As such,
pre-processing medical data using an outlier detection method may be helpful to
reduce the negative impacts of outliers on the model’s prediction capability. Rough
set theory (RST) is efficient for finding hidden patterns in data [5, 6]. It has been
actively applied in various application domains, to name a few, such as medical,
finance and image processing [5]. These hidden patterns could be outliers. The
application of RST for outlier detection can be seen in [6–9]. A limitation of RST is
it is designed to deal with categorical data only. A generalized model, i.e. neigh-
bourhood rough set (NRS), was proposed by Hu et al. [10] who extended RST to
process numerical data. In [10], NRS was proposed to identify a subset of features
effective for data classification. In this paper, NRS is modified to determine outliers
in a data set. It is assumed that by pre-processing input samples with the proposed
outlier detection method, the classification performance of a predictive model such
as a neural network could be better and more reliable. Neural network is well
known and popular as one of the classification tools in medical domain with sig-
nificant advantages [11–14]. In this research, we have chosen radial basis function
network (RBFN) as the classification model due to its favourable characteristics:
fast in learning [15], simple topological structure [16] and a universal approximator
for information processing [14, 15]. However, to obtain the optimum parameter
values of RBFN is tedious [11]. To ease the problem at this point, we use the exact
design RBFN in MATLAB, with the function named as newrbe, where number of
hidden nodes that build up is similar to the number of input samples. The proposed
NRS will pre-process the data samples from a training set before constructing an
RBFN with newrbe.

The remaining sections of this paper are organized as follows. Related works are
presented in Sect. 2. An overview of the NRS, RBFN and the description of pro-
posed methods are presented in Sect. 3. Experiment and results that follow are
explained in Sect. 4. The empirical study includes a performance comparison
between the proposed RBFN and its original model as well as with other classifi-
cation methods using several benchmark data sets from the UCI machine-learning
repository [17]. The paper ends in Sect. 5 with a few concluding remarks and notes
for future work.

2 Related Works

RST is commonly applied to pre-process datasets before a neural network is used.
Such hybridization of RST and neural network compensates the weaknesses of each
other [18, 19]. Here are the reasons: RST is good in dealing with inconsistent data
but it is sensitive to noise which makes it generalize poorly; neural network gen-
eralizes better but it may have a complex structure when a training dataset has high
number of dimensions.

One of the popular application areas of RST is in medical or clinical field. Some
related works in soft computing focus on reducing the number of features of high
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dimensional medical datasets. For example, Anitha [18] applied rough neurons (a
pair of neurons with upper and lower approximation) to reduce features while a
neural network trained by a back propagation algorithm to predict embryonal
tumour; Eissa [19] applied RST with granular to reduce features and a neural
network trained by a back propagation algorithm to classify Hepatitis C; and
Ratnarparkhi and Ghongade [20] applied fuzzy rough to extract and reduce the
number of decision rules while multilayer perceptron to classify the Electrocar-
diogram (ECG) which helps the diagnose of heart disease. Wang et al. [21]
developed self-organizing maps from a breast cancer dataset, then reduced features
through genetic algorithm and finally induced rules using rough sets. Durairaj and
Nandhakumar [22] is another related work but instead of feature selection, RST is
applied to fill up missing data in in vitro fertilization data. Feature reduction is
common in the integration work of rough set and neural network but input
reduction is not. Our work is focused on reducing the number of input data instead
of the number of features. RST is applied to identify whether or not the input data is
an outlier, i.e. it contains meaningless information. After pre-processing with RST,
a dataset with no outliers is sent to an RBFN for learning and classification.

3 The Methods

3.1 Overview of NRS

NRS is a rough set model proposed by Hu et al. [10] to deal with feature selection.
It is applicable to both categorical and numerical attributes. The description of NRS
is below.

Assume an information system, ISyst= ⟨Uni,Fields⟩, where Uni is the universe
with a nonempty finite set of samples {x1, x2, x3, …, xn}, and Fields represents the
characteristics of the samples, denoted as {f1, f2, f3, …, fm}. There are two types of
attributes in the system, i.e. information InforF and decision attributes DecF where
Fields= InforF ∪ DecF. The granularity level is controlled using a neighbourhood
parameter, δ. The neighbourhood granule for attribute Z of sample xi, δZðxiÞ, is
determined through the distant function, D. A general distant metric, i.e. Min-
kowsky distance is used

Dkðx1, x2Þ= ∑
m

i=1
dðx1, fiÞ− dðx2, fiÞj jk

� �1 ̸k

, ð1Þ

where x1, x2 ∈ Uni; Fields={f1, f2, …fm}; m = dimensional space; d(x, fi) implies
the value of sample x in the i-th attribute fi; k = type of distant function (with k = 1,
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it is Manhattan; k = 2, it is Euclidean; k = ∞, it is Chebychev). The neighbourhood
information granule δZðxiÞ is defined as

δZðxiÞ= xijxj ∈Uni, DZðxi, xjÞ≤ δ
� � ð2Þ

For ∀ x1, x2, x3 ∈U, the following conditions must be fulfilled:

(a) Dðx1, x2Þ≥ 0,Dðx1, x2Þ=0 if and only if x1 = x2;
(b) Dðx1, x2Þ=Dðx2, x1Þ;
(c) Dðx1, x3Þ≤Dðx1, x2Þ+Dðx2, x3Þ.
The definitions below explain how this neighbourhood information granule can

deal with categorical and numerical attributes.

Definition 1 Let Z1 = numerical attributes, where Z1 ⊆Fields and Z2 = categorical
attributes, where Z2 ⊆Fields. The neighbourhood granule of δZ1ðxÞ, δZ2ðxÞ and
δZ1 ∪ Z2ðxÞ are
(a) δZ1ðxÞ= xijDZ1 x, xj

� �
≤ δ, xi ∈Uni

� �
that deals with numerical attributes;

(b) δZ2ðxÞ= xijDZ2 x, xið Þ=0, xi ∈Unif g that deals with categorical attributes;
(c) δZ1 ∪ Z2ðxÞ= xijDZ1 x, xið Þ≤ δ, ∧DZ1 x, xið Þ=0, xi ∈Unif g, where ^ denotes an

“And” operator. It deals with a mixture of numerical and categorical attributes.

Then, the neighbourhood relation, Neighrel on the Uni can be written as a
relation matrix

M Neighrelð Þ= ðrðxi, xjÞÞn× n ð3Þ

where xi, xj ∈Uni, rðxi, xjÞ=1 when Dðxi, xjÞ≤ δ or else rðxi, xjÞ=0.
Neighrel fulfils rðxi, xjÞ=1 and rðxi, xjÞ= rðxj, xiÞ, i.e. reflexivity and symmetry

respectively and this relation can be considered as similarity relations. This relation
shows that samples with a closer distant that fulfil the conditions are categorized
together and these samples are within the same neighbourhood. Thus, the neigh-
bourhood granules are close to each other. The definition of neighbourhood
approximation space is

Definition 2 Let ⟨Uni,Neighrel⟩ equal to an approximation space of the neigh-
bourhood, with Uni = universe (a set of samples); Neighrel = neighbourhood
relation. The lower and upper approximations of X in ⟨Uni,Neighrel⟩, with
X ⊆Uni, are defined as

NeighrelX = xijδðxiÞ⊆X, xi ∈Unif g,
NeighrelX = xijδðxiÞ∩X ≠∅, xi ∈Unif g ð4Þ

Hence, NeighrelX ⊆NeighrelX. With these, the roughness degree of X can be
shown through the boundary region, Boundary
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Boundary=NeighrelX −NeighrelX ð5Þ

For implementation, an inclusion degree is needed. This degree generalizes the
implementation of upper and lower approximation. It enables the model to become
more robust against noisy data. Let information attribute denoted by InforF,
decision attribute denoted by DecF, with InforF ⊆Uni and DecF ⊆Uni. Although
InforF could contain multiple information attributes, but here we assume that it has
only one attribute. The definition of inclusion degree for InforF in DecF with
respect to InforF is

IncluDegreeðInforF,DecFÞ= CardðInforF ∩DecFÞ
CardðInforFÞ , where InforF ≠∅ ð6Þ

For example, InforF = {x1, x4, x5, x7, x8}, DecF = {x1, x4, x6}, the cardinality of
InforF ∩ DecF is 2, cardinality of InforF is 5. Therefore,
InclusionðInforF, DecFÞ=0.4. Hence, the definitions of lower and upper approx-
imation are as below

Definition 3 Let X ⊆Uni in (Uni, Field, Neighrel), the variables’ correctness, i.e.
lower and upper approximations of X are

NeighrelidX = xijInclusion ðδðxiÞ,XÞ≥ id, xi ∈Unif g,
NeighrelidX = xijInclusion ðδðxiÞ,XÞ≥ 1− id, xi ∈Unif g,

ð7Þ

where 1 ≥ id ≥ 0.5, id is the inclusion degree. Assume that id is set as minimum
0.5, based on the example above, IncluDegreeðInforF,DecFÞ=0.4 does not fulfil
the condition of both lower and upper approximations. Therefore, InforF is not
selected as the information feature to predict the decision.

3.2 Overview of RBFN

The original RBFN, which was firstly proposed by Moody and Darken [23],
contains two layers: the hidden and the output layers. The hidden layer is formed by
the hidden units that aim to compute the response Ri for each data input x (see
Fig. 1). In [23], Gaussian response function was used. The hidden units are defined
by nonlinear functions, and all responses are combined linearly in the output layer.
This linear combination is parameterized by the weights, w between the hidden and
output layers. K-mean clustering algorithm is used to optimize the centres and the
radii functions in the hidden layer while supervised training is applied to compute
the weights in the output layer.
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3.3 The Proposed Method

NRS [10] was introduced to find a subset of attributes. In this work, it is modified to
select samples. The proposed idea will be explained through an example of a
heterogeneous data set defined in Table 1.

Assume that the neighbourhood distant parameter, δ = 0.1, the equivalence
classes of each sample input x can now be identified. For example, x2 under Z1 has
relationship R, i.e. Rx21 = {x2, x5} by considering the distant function between x2
with x2, x2 with x5 are within ±0.1. However, it has no relationship NR with {x1, x3,
x4, x6}, i.e. NRx21 = {x1, x3, x4, x6}; under Z2, Rx22 = {x1, x2, x5} but NRx22 = {x3,
x4, x6}. Two different classes are available for decision, i.e. No and Yes. A rela-
tionship exists for DecFno is {x1, x4, x6} but not for {x2, x3, x5} while for DecFyes, a
relationship exists for {x2, x3, x5} but not for {x1, x4, x6}. Correctness matching
(CorM) for each input xi per attribute Zj relevant to a class can be defined as:

CorMij =CardðRxij ∩DecFclassRÞ+Card(NRxij ∩DecFclassNRÞ ð8Þ

The higher the CorM, the better the input data to approximate the decision
feature. The probability of CorM can be obtained using Eq. 9

PðCorMijÞ= CorMij

n
, ð9Þ

Fig. 1 The architecture of
RBFN

Table 1 A heterogeneous data set

Data, X Numerical attribute, Z1 Categorical attribute, Z2 Decision attribute, DecF

x1 0.71 1 No
x2 0.95 1 Yes
x3 0.74 2 Yes
x4 0.41 2 No
x5 0.92 1 Yes
x6 0.30 3 No
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where n is the total number of input. P(CorM) of each attribute Zj is then averaged
using Eq. 10

EðCorMjÞ=
∑
n

i=1
P(CorMijÞ

n
ð10Þ

Consider Z1, by applying Eq. 9, the probability for each sample under Z1 is:
x1 = 0.5, x2 = 0.83, x3 = 0.5, x4 = 0.67, x5 = 0.83, and x6 = 0.5. As the rank
value is applied on attribute, we accumulate the probability of correctness matching
of each sample and average the value per attribute. The rank value is based on
EðCorMjÞ to reflect the significant weightage of each attribute. Higher rank value is
obtained when EðCorMjÞ is high. Based on Table 1, we can obtain
EðCorM1Þ=0.64, EðCorM2Þ=0.56, then Z1 is ranked as 2, and Z2 is ranked as 1.
Finally, the degree of correctness matching for each sample (CorMD) can now be
obtained

CorMDi =

∑
M

j=1
ðrankj *CorMijÞ

∑
M

j=1
rankj

ð11Þ

Then, potential outliers can be defined using the RST through lower and upper
approximation

NeighrelidOut= xijCorMD ðδðxiÞ, OutÞ≤ id, xi ∈Unif g,
NeighrelidOut= xijCorMD ðδðxiÞ, OutÞ≤ 1− id, xi ∈Unif g

ð12Þ

Based on Eq. 11, CorMD of each sample is: 0.44, 0.78, 0.50, 0.61, 0.78 and 0.56
respectively. If the parameter of inclusion degree is set as id = 0.5, then x1 is an
outlier based on Eq. 12. This information is used to remove all input samples below
id. The selected data samples are then sent to RBFN for classification. The proposed
model is called as neighbourhood rough set with modified Correctness to RBFN
(NRSC-RBFN).

4 Experiments

Four medical datasets are used to benchmark the results of NRSC-RBFN. These
datasets from UCI Machine Learning Repository [17] are: Blood Transfuse (BT),
Haberman (Haber), Heart, and Indian Liver (Liver). All datasets have binary classes
with number of samples 748, 306, 267 and 583 and number of attributes 5, 3, 44
and 8 respectively. Experiments were carried out using a 10-fold cross validation to
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calculate the performance of the proposed model. The neighbourhood parameter is
set as 0.1 and inclusion degree is 0.5. The RBFN component of NRSC-RBFN is
built using a newrbe in Matlab with a default setting of spread as 1. This network
could be built automatically where only input samples and target values are needed.
The experiment is implemented on a computer platform with these specifications:
operating system Windows 7, Intel Core (TM) CPU i5-2410M and 4.0 GB RAM.
The performance is compared between the RBFN (that is built using newrbe) and
NRSC-RBFN in terms of the number of input samples and accuracy rate.

Table 2 shows the results before and after the implementation of NRSC.
NRSC-RBFN performs with higher accuracy rates and has a lower number of input
samples as compared to original RBFN. The percentage of accuracy improvement
of NRSC-RBFN in BT is 4.54, Liver 9.87, Haber 9.08 and Heart 17.21. NRSC is an
effective method to identify outliers at the data pre-processing stage. The percentage
of outliers that is found from each data set is 26.01, 10.14, 40.01 and 31.92
respectively. These data samples are removed from each training set. RBFN that is
built by newrbe will have the number of hidden nodes similar to the number of
input samples. Thus, after NRSC reduced the number of input samples, the
resulting hidden nodes in RBFN are also reduced. The samples that have been
removed from a training set are considered as outliers.

The performance of NRSC-RBFN is also compared with other classification
models in [24] using a Liver data set. It is claimed that outliers exist in the Liver
data [25]. As such, when applying ordinary classification model, the accuracy
performance is not good (see Table 3). The compared models include Naïve Bayes
(NB), Decision Tree (DT), Multilayer Perceptron (MLP) and k-Neural Network
(k-NN). Details of these models can be referred from [24]. Authors in [24] applied
10-fold classification. As such, we ran the experiments using the similar method as
well.

Table 2 The results of RBFN and NRSC-RBFN

BT Liver Haber Heart

RBFN Accuracy 70.33 85.33 56.91 61.04
# training sample 673.20 524.70 275.40 240.30

NRSC-RBFN Accuracy 74.87 95.20 65.99 78.25
# training sample 497.50 471.50 165.20 163.60

Table 3 Classification
performance of various
classifiers (Acc. = average
test accuracy) from a 10-fold
cross validation strategy.
(The results of NB, DT, MLP,
k-NN are taken from [20])

Methods Acc.

NB 53.90
DT 69.40
MLP 67.90
k-NN 65.30
RBFN (newrbe) 85.33

NRSC-RBFN (newrbe) 95.20
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The results are compared with NRSC-RBFN in terms of prediction accuracy to
see whether the proposed model can produce compatible results. The present of
outliers causing the ordinary classification methods, i.e. NB, DT, MLP and k-NN
has on average around 64% in prediction accuracy. Although RBFN has higher
accuracy, i.e. 85.33 but after outlier removal, better performance is achieved with
the average accuracy equal to 95.20. It is motivated that NRSC-RBFN outperform
all the other classification methods Such comparison is not to show the superiority
of NRSC-RBFN but just to provide another alternative way to improve perfor-
mance when apply classification, i.e. outlier removal.

5 Conclusion

In this study, a NRSC-RBFN is proposed to mine the outliers from a data set.
NRSC-RBFN could perform with encouraging results where the proposed method
could detect outliers from a training set before proceeding to training with RBFN.
By referring to the experimental results, we notice that these outliers if are not
removed from the training set can affect the prediction ability of RBFN.
NRSC-RBFN is also compared with other classification methods where its per-
formance is found competitive in the benchmark study. In the future, additional
experiments will be carried out using other benchmark and real datasets. It is as well
to consider other RBFN that contains the nature of incremental learning instead of
batch training neural network to see the impact of outlier. Other interesting research
in the future is to integrate attribute selection with sample selection for identifying
outliers from high volume datasets in multiclass.
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AModified Functional Link Neural Network
for Data Classification

Toktam Babaei, Chee Peng Lim, Hamid Abdi and Saeid Nahavandi

Abstract The functional link neural network (FLNN) increases the input dimen-

sion by functionally expanding the input features. In this paper, modifications to the

FLNN are proposed for undertaking data classification tasks. The main objective

is to optimize the FLNN by formulating a parsimonious network with less com-

plexity and lower computational burden as compared with the original FLNN. The

methodology consists of selecting a number of important expanded features to build

the FLNN structure. It is based on the rationale that not all the expanded features

are equally important in distinguishing different target classes. As such, we modify

the FLNN in a way that less—relevant and redundant expanded input features are

identified and discarded. In addition, instead of using the back-propagation learn-

ing algorithm, adjustment of the network weights is formulated as an optimisation

task. Specifically, the genetic algorithm is used for both feature selection as well

as weight tuning in the FLNN. An experimental study using benchmark problems

is conducted to evaluate the efficacy of the modified FLNN. The empirical results

indicate that even though the structure of the modified FLNN is simpler, it is able to

achieve comparable classification results as those from the original FLNN with fully

expanded input features.

1 Introduction

Artificial neural networks, or simply neural networks, have emerged as a promising

model for tackling different problems, e.g., prediction [1–3], pattern recognition and

classification [4–7], and optimization [8]. They have been successfully used in many

applications, ranging from medical and industrial to financial sector [9–11].

In a multilayer perceptron (MLP) neural network with single or multiple hidden

layers, the input features undergo a nonlinear transformation before being propagated
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to the next layer. Without loss of generality, assume an MLP with one hidden layer

and one output layer. A mapping function from the hidden layer to the output node

can be formulated as a quadratic optimization task. Pao et al. [12] proposed a non-

linear transformation method known as the functional links that generates expanded

features from the original inputs (see Fig. 1). They conducted several experiments,

and showed that the proposed functional link neural network (FLNN) could serve as

an accurate approximator for mapping the input and output data samples [12, 13].

Ingelnik et al. [14] presented mathematical proof for the weight learning process

in the first transition as well as mathematical information to implement such neural

network.

As proposed by Klassen and Pao [12], the FLNN can be used for data classifica-

tion and prediction tasks with a faster convergence speed and a lighter computational

load as compared with the MLP network. This is because that the FLNN has a flat

structure, without any hidden layers, in contrast to the stacked structure of the MLP

network.

Although the FLNN model has only one layer of trainable weights, it is able

to undertake nonlinear classification and regression problems. This is owning to

the functional expansion units embedded in the FLNN. These functional expan-

sion units(or nodes) effectively enhance the input features by expanding them into

a higher dimensional space, allowing the boundary (either linear or nonlinear) to

be approximated by hyperplanes in the expanded feature space [12]. Several FLNN

variants have been developed using different functional units. As an example, in a

recent work [15], different FLNN models were devised and their performances in

financial forecasting have been compared.

In [16], an FLNN-based model was used to predict machinery noise in the mining

industry. In [17], a FLNN-based classifier was benchmarked against different com-

mon classifiers, including kNN (k-nearest neighbor), C4.5 decision tree, and MLP.

FLNN-based models have also been shown as useful tools for solving nonlinear

equations. In [18], a variant of the FLNN which uses Hermite polynomial expansion

was proposed. It was then used to solve a challenging problem in nonlinear dynamics

known as the Duffing–van der Pol oscillator equation. In [19], a Chebyshev polyno-

mial expansion FLNN was proposed and used for solving Emden–Fowler type of

equations. Comparing the results with those from the conventional neural network

model, the FLNN required less CPU time to produce similar performances.

Research towards improving FLNN models can be broadly categorized into two:

(i) improving the FLNN learning algorithms; (ii) reducing the FLNN model com-

plexity. A number of studies in the first area are as follows. In [20] the gradient-

based back-propagation learning algorithm was replaced with a modified artificial

bee colony algorithm. The proposed FLNN was able to overcome the limitations of

gradient decent and achieve better classification rates, as compared with the original

FLNN. In [21], Harmony search (HS) was integrated with the gradient decent algo-

rithm to improve the learning capability of the original FLNN. In [22], the original

FLNN was trained with another meta-heuristic algorithm, i.e., the firefly algorithm.

The resulting FLNN was used for time series forecasting. The predictive accuracy

and processing time were better than those from the original FLNN. In [23], a FLNN
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with a hybrid particle swarm optimisation (PSO)—back-propagation learning algo-

rithm for data classification was proposed. An improved version of this model, was

developed in succession [17]. The same group of researchers attempted to decrease

the complexity and computational load of the FLNN using a genetic algorithm (GA)

to select a subset of input features from the original feature space [24]. In [25], a dis-

tributed learning strategy to improve the learning property of a random vector FLNN

was presented. The proposed model performed with promising results in problems

requiring big data processing.

While enhancing the input dimension enables the FLNN model to handle nonlin-

ear classification and regression problems, it increases the resulting network com-

plexity. A number of studies [24, 26–29], have been conducted to tackle this prob-

lem. The main idea is to select some important input features and to reduce the

input dimension. Most of the investigations focus on reducing the original features

by incorporating different feature selection methods into the FLNN model. As an

example, the gain ratio method has been used to select the best subset of features

from the original feature set in [26], and differential evolution method to train the

FLNN weights. In [17] a model called Hybrid-FLNN (HFLNN), has been proposed.

An optimal set of features is selected from the original feature set using the GA. The

HFLNN model is trained using the back-propagation learning algorithm.

A different approach to overcome the problem associated with the high-

dimensional input space in the original FLNN was presented in [28]. The ratio-

nal is to select and optimize the expanded input features, rather than the original

features themselves. An evolutionary algorithm was used for this purpose, and the

network is known as the evolutionary FLNN (or EFLNN). Training of the EFLNN

is accomplished using the back-propagation learning algorithm. In this study, we

further improve the EFLNN [28], such that the need for using the back propaga-

tion algorithm is removed. Specifically, the GA is used for selection of the expanded

input features as well as for training the network. In this case, a new combined search

problem covering both expanded input features and network weights is considered.

The proposed model, known as reduced FLNN (rFLNN), requires fewer functional

links as compared with those in the original FLNN. A number of benchmark clas-

sification problems are used to evaluate rFLNN, and the results are compared with

those published in the literature.

This paper is organized as follows. In Sect. 2, the background knowledge of this

research is given. In Sect. 3, the proposed rFLNN model is described in detail. A

series of experiments is presented in Sect. 4, with the results discussed and analyzed.

Concluding remarks are presented in Sect. 5.

2 Background

In this section, the background for understanding the proposed FLNN-based models

is described.
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Fig. 1 Topology of a

functional link neural

network (FLNN)

2.1 The Functional Link Neural Network

The general topological structure of the FLNN is shown in Fig. 1. Consider that

the FLNN is used to solve a classification task. The training set consists of N
data samples. Each input–output sample pair can be represented by (x, y) where

x = [x1, x2,… , xm] represents an m dimensional input feature vector and y provides

the true class label of that particular input.

The FLNN extends the original m-dimensional input space to an M = (n + 1)m
dimensional space by expanding each input feature to (n + 1) secondary features

using a set of basis functions 𝜙 = [𝜙0, 𝜙1, 𝜙2,… , 𝜙n] as follows:

𝜙(xi) = [𝜙0(xi), 𝜙1(xi), 𝜙2(xi),… , 𝜙n(xi)] (1)

where n is the expansion degree. The set of expansion functions has the following

characteristics:

∙ 𝜙0 is a linear function

∙ 𝜙i, 2 ≤ i ≤ n are linearly independent functions

∙ supn(
∑n

i=2(∥ 𝜙i ∥)2 ≺ ∞

As an example, using the trigonometric basis function, the first feature, x1 is

expended to degree n, as follows:

𝜙(x1) = x1, sin𝜋x1, cos𝜋x1, sin 2𝜋x1, cos 2𝜋x1,… ,

sin n𝜋x1, cos n𝜋x1
(2)

As such, the original feature space grows up to an (2n + 1)m-dimensional space.

A number of FLNN models have been proposed using different basis func-

tions [30]. They include the Chebyshev FLNN [23], Legendre FLNN, and Laguerre

FLNN. Another important choice is polynomial functions upto n degrees. This type

of FLNN which is a type of random vector FLNN has a good mathematical proof
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Fig. 2 Topology of the

FLNN represented by Eq. 4

[14] and is easier to implement. In a polynomial FLNN model, the feature space is

expanded to

(m + n)!
m!n!

(3)

where n is the highest degree of the polynomial function. As an example, in the

case of a two-dimensional input feature, the expanded feature space to a degree of 2
is

[x1, x21, x1x2, x
2
2, x2]. (4)

The corresponding FLNN model is shown in Fig. 2.

Let the expanded input feature vector be represented by X, and the network weight

vector by W, which is found by some learning algorithm, e.g., back-propagation. The

FLNN generates output ŷ by applying an activation function 𝜌, to the weighted sum

of the expanded input feature vector, z as follows:

ŷ = 𝜌(z)

where the weighted sum of the expanded input feature, z, is calculated by following

matrix multiplication:

z = XW

Then, z is propagated to an activation function to generate the output. Different

types of output functions can be used, as shown in Table 1. In this study, we use the

tanh(.) function (Eq. 6) as the activation function of the output nodes. As such, the

output is given by

ŷ = tanh(z) (5)

tanh(z) = 1 − e−2z

1 + e−2z
(6)

Despite its simplicity, the FLNN generates a large number of expanded units,

many of them usually do not contribute toward discriminating different target classes.
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Table 1 Activation

functions for generating the

output

Activation function (𝜌(.))
a + bz
ae−bz

a + b∕z
a + bln(z)
azb

1∕(a + be−z)
aeb∕z

tanh(z) = e2z−1
e2z+1

In the case of the polynomial FLNN, which is used in this study, the expanded fea-

tures grow according to Eq. 3. For most real-world problems, this a large number

even if it is expanded up to a degree of 2. It affects the FLNN performance, as well

as increase its computational burden. This is the issue that we aim to tackle by using

the GA.

2.2 Training Algorithm

The back-propagation learning algorithm is used for the FLNN model in [31]. Train-

ing the FLNN involves finding the weight matrix [W] that minimizes a cost function,

C(.), over the training data set, DN , i.e.,

[W] = argmin
[W]

C(DN , [W])

The mean squared error (MSE) is considered as the cost function

MSE = 1
N

∑
N

e2

where the error e = (y − ŷ) of each data sample is the difference between the target

output and the predicted output of the FLNN for that particular sample. The sum

covers all training samples.

The weights are initialised randomly. Then the back-propagation algorithm [32]

is used to minimize the cost function using the gradient decent method as follows:

wnew
j = wold

j − 𝛼

𝜕C
𝜕wj

Considering Eqs. 1–6, knowing that
𝜕𝜌(s)
𝜕s

= 1 − s2, and applying the chain rule, the

back-propagation algorithm alters every weight according to
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wnew
j = wold

j + 𝛼

N∑
i=1

Xji(1 − ŷ2i )ei

where 𝛼 is the learning rate, between 0 and 1. The process of updating the weights

continues until convergence is achieved.

After completing the learning process, the trained FLNN model can be used for

evaluation.

2.3 Genetic Algorithm

The GA [33, 34] is one of the most prominent evolutionary algorithms introduced

to date. The GA first forms an initial population of candidate solutions to solve a

given problem. It evolves the population for achieving better solutions using opera-

tors inspired by natural genetic operations such as crossover and mutation in accor-

dance with the Darwinian principle of survival of the fittest. The GA is robust and

well-suited for tackling optimisation problems in high-dimensional, discontinuous

search spaces, where conventional search methods like gradient descent algorithms

may fail to find the global optimal solution. The conventional GA operating on fixed

length strings, has been successfully used to optimize neural network structures [35].

The GA has also been used to evolve weights, links, and structures, as well as features

and rules of different machine learning models [36, 37].

The operation of the GA is as follows. It maintains a pool of chromosomes, i.e.,

P = {ch1, ch2,… , chp} where p is the population size. Each chromosome comprises

q number of genes and encodes a solution. The genes can take either binary or real

values as follows:

chi = (chi1, chi2,… , chiq)

The GA can be initialised randomly or by a customized initial population. Each

chromosome is evaluated using a fitness (objective or cost) function f (.). Fitter chro-

mosomes are allowed to bear offspring into the next generation. Crossover and muta-

tion are two reproduction operators that produce a child (offspring) from two selected

parents. Crossover creates a new offspring by swapping certain genes between two

parents, while mutation perturbs certain randomly selected genes in the produced

offspring.

3 Model Description

In this section, the proposed rFLNN model is described. Since rFLNN can be consid-

ered as a modification to the EFLNN in [28], this model is described as well. In gen-

eral, the FLNN structural complexity is proportional to the number of expanded input
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(a) (b)

Fig. 3 Optimizing the FLNN structure by selecting through a the expanded features; b the original

features

features. As mentioned earlier, several studies including [17, 24, 26–28], attempted

to decrease the network complexity using different feature selection strategies to

reduce the original input features before expansion. However, this approach elim-

inates certain original features (Fig. 3b). This is a shortcoming because while an

original feature by itself may not be important in constructing a decision boundary,

its expanded, higher order terms may be useful in building the decision boundary in

the expanded feature space.

On the other hand, since the FLNN expands all features in the same way (e.g.,

Eq. 4), it is possible that a number of expanded features are redundant, therefore

increasing its computational cost and comprising its performance. Moreover, it is

expected that different expanded features have different importance. Embedding a

suitable feature selection method after the expansion process, instead of focusing on

feature selection in the original feature space (Fig. 3a), can tackle the highlighted

shortcomings. As a result, the feature selection algorithm can search through both

the expanded and original features. This allows the expanded features to be used for

constructing the decision boundary, even when their corresponding original features

are eliminated. The EFLNN uses with polynomial expansion functions, in which the

GA is used to select the important features in the expanded feature space, and the

back-propagation learning algorithm is employed to optimize the EFLNN weights.

The GA chromosomes are encoded such that each gene takes the value of either 0
or 1, indicating whether the respective expanded feature is active or inactive. There-

fore, the length of the chromosomes is equal to the number of expanded features. As

an example, in case of the expanded features shown in Eq. 4, each chromosome is

represented by a 5-dimensional binary valued tuple, like chi = ⟨10100⟩. This chro-
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mosome indicates that only x1, and x1x2 are selected to build the EFLNN model.

The selected expanded features then undergo the back-propagation learning algo-

rithm. Finally, the EFLNN model is constructed using the weights adjusted by the

back-propagation algorithm.

The initial GA population is composed of individuals that represent the FLNN

with individual original features (excluding the bias term). This helps the GA to

search more efficiently in identifying the irrelevant features [28].

For the fitness function, a combination of classification accuracy and network

complexity is formulated as in Eq. 7.

f (chi) = Aq − 𝛾

𝜇

M
, (7)

where Aq is classification accuracy of the EFLNN model encoded by chi, and 𝜇 is

the number of selected expanded features. Here, 𝛾 is a trade-off factor set to 0.01 in

order to ensure that classification accuracy is prioritized in the process of achieving

the minimum number of expanded features.

3.1 rFLNN

In EFLNN, the weights are computed using the back-propagation training algorithm.

In essence, it is possible to combine both weight tuning and expanded feature selec-

tion processes as one optimisation task. As stated earlier, one advantage of the FLNN

as compared with other neural networks, especially the MLP network, is that it has

only one layer of tunable weights. By exploiting this advantage, the rFLNN model is

proposed. The GA is employed to undertake both weight tuning and expanded fea-

ture selection processes in one operation. To evolve the rFLNN model, it is required

to introduce an appropriate chromosome structure to encode the weight values, in

addition to indicating the status (on or off) of the expanded features. As an example,

a chromosome with the following structure:

chi = ⟨1, 0, 1, 0, 0, 0.25, 0, 0.7, 0, 0⟩ ,
represents that the first and third features are selected, where their weights are 0.25
and 0.7, respectively.

Accordingly, customized crossover and mutation operators are defined to handle

the reproduction operation in rFLNN. The crossover points are selected randomly

from the weight part of the chromosome, and their corresponding weight values

are exchanged according to the normal crossover operation. The corresponding sta-

tus genes, pertaining to the expanded features are also carried forward to the off-

spring. For the mutation operator, the mutation points are selected from the genes

that encode the status of the expanded features. If the status is flipped from 0 to 1, a
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random value from the feasible range is generated as the corresponding weight. If it

is flipped from 1 to 0, the corresponding weight is set to zero.

Parameters setting Selecting the degree of the polynomial functions is a key ques-

tion. Some studies suggest finding the appropriate degree through evolution, or

defining the fitness function such that it penalizes polynomial functions with higher

degrees [28]. But, as shown in [28, 38], polynomial functions with a degree higher

than 2 lead to the risk of over-fitting in the FLNN. As a result, we keep the poly-

nomial function up to a degree of 2 in this study. The fitness function is the same

as shown in Eq. 7, i.e., it penalizes classification error and the number of network

weights. The population size is set to a few times of the number of expanded fea-

tures given by Eq. 3. Meanwhile, the crossover rate is set to 0.8, after several trials

over the [0 1] range.

4 Performance Analysis

To evaluate the rFLNN model, three benchmark classification problems have been

used. The key characteristics of the data sets are shown in Table 2. All the data sets

are from the University of California at Irvine (UCI) machine learning repository

[39]. For comparative purposes, some of them are extracted from [40]. In all experi-

ments, the data sets are divided into two sets, one for training and another for test. As

the GA and back-propagation methods are stochastic in nature, multiple experiments

are required to evaluate the respective models, so that statistical measurements can

be computed. As such, each experiment has been executed 30 times to compute the

average results. The results are compared with those reported in the literature.

4.1 Datasets

Table 2 shows a summary of the data sets used in this experimental study. A descrip-

tion of the data sets is as follows:

Cancer1: The Wisconsin breast cancer data set has 699 samples of breast cancer

tumors. Each sample has nine real-valued features representing information from

microscopic examination. The samples belong to two classes: benign (65%) and

Table 2 Summary of the data sets used for the experimental study

Dataset Samples Features Classes Samples per class

Cancer1 699 9 2 458/241

Diabetes1 768 8 2 481/252

Ionosphere 351 34 2 225/126
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malignant tumors. This data set has missing values, all in feature 6. In this study, we

use the Cancer1 data set from [40], in which the missing values have been replaced

by the mean value.

Ionosphere: This data set contains 351 samples, each with 34 continuous fea-

tures, collected from a radar system in Goose Bay, Labrador. The target classes are

good or bad ionospheric signals depending on whether the samples show some kind

of structure with respect to the earth ionosphere.

Diabetes1: This data set contains 768 samples pertaining to the diagnosis results

of female diabetes patients (positive or negative). There are 268 (34.9%) samples

in the positive class and 500 (65.1%) samples in the negative class. Each sample is

composed of 8 real-valued clinical information.

4.2 Results

To evaluate different models, their generalization ability and structural complexity,

i.e., test accuracy and number of expanded features selected, are compared. Since

all are binary-classification problems, all FLNN-based models have only one output

unit. Each expanded feature is linked to the output unit though one weight. As such,

the structural complexity is represented by the number of weights. Tables 3, 4, 5, 6,

7 and 8 present all the results. A description is as follows.

Table 3 Test error results for the Cancer1 data set

Model Test error rate (%)

rFLNN Average 1.65

Best 1.15 (0.57)

EFLNN [28] Average 1.15

EPNET [28] Best 1.38

EFNL [28] Best 1.15

FNNCA [28] Best 1.45

HMLP [28] Best 1.15

Table 4 Structural

complexity for the Cancer1

data set

Model Average number of weights

rFLNN 12

EFLNN [28] 11

EPNET [28] 41

EFNL [28] 13

FNNCA [28] 38

HMLP [28] 100
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Table 5 Test error results for the Diabetes1 data set

Model Test error rate

rFLNN Average 24.61

Best 22

EFLNN [28] Average 21.92

Kohonen [28] Average 22.4

BP [28] Average 22.4

RBF [28] Average 24.3

LVQ [28] Average 27.2

Table 6 Structural complexity for the Ionosphere data set

Model Average number of weights

rFLNN 21.5

EFLNN [28] 12

Table 7 Test error results for the Ionosphere data set

Model Test error rate (%)

rFLNN Average 4.68

Best 5.3

EFLNN [28] Average 5.73

HOP [28] Best 5.3

C4.5 [28] Best 6.0

IB3 [28] Best 3.3

Table 8 Structural

complexity for the Ionosphere

data set

Model Average number of weights

rFLNN 29

EFLNN [28] 29.7

HOP [28] 34

Cancer1 In this data set, the first 350 samples are considered for training and the

remaining 175 samples for test. All values are normalized within [0 1]. The average

result and 95% confidence interval, as well as the best result of rFLNN over 30 runs

are given in Table 3. Table 4 shows the average number of selected expanded features

of rFLNN. For comparison, the results from different models in [28] are included in

the respective tables.

Diabetes1 The data set from [40] is used. It has 768 samples. The first 576 samples

are employed for training, and the remaining 174 samples for test. Tables 5 and 6

show the results of rFLNN and those in the literature. They include EFLNN [28]
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and EPNET (an evolutionary neural network) [41], Kohonen self-organizing map

[42], back-propagation, and RBF (radial basis function) neural networks, and LVQ

(learning vector quantization) [43]. It should be noted that the EFLNN and EPNET

results are obtained using the same way as adopted in this experiment, while other

results are obtained using the 12-fold cross-validation method, as reported in [28].

Ionosphere This data set has 34 input features, leading to 629 expanded features

using polynomial functions with a degree of 2. A total of 276 samples are randomly

selected for training, and the remaining 75 samples for test. The results of rFLNN

are compared with different models reported in [28], i.e., EFLNN, C4.5, IB3, and a

higher order perceptron (HOP) model with a constructive method for feature selec-

tion [28, 44].

4.3 Discussion

From the results, it is obvious that all models have used fewer number of features,

as compared with the numbers of original or expanded features, for classification.

In other words, it is useful to apply a mechanism to identify less important features

(either original or expanded) to improve the FLNN performance and computational

load. A common way to achieve this aim is using constructive algorithms. However,

some neural network-based constructive models such as FNNCA [45] or HOP [44]

are prone to the local minima problem. This problem can be mitigated using evolu-

tionary algorithms such as the proposed rFLNN model and EFLNN [28]. In rFLNN,

the training procedure is accomplished during the evolution process, therefore elim-

inating the need for gradient-based training algorithms. From the results it is found

that rFLNN is useful in most classification cases. While the rFLNN performance is

comparable with those from other models, it is inferior as compared with the EFLNN

[28].

This is expected as the search landscape of rFLNN is more complex than that of

the EFLNN, since both selection of expanded features and weight tuning processes

are combined as one optimisation task. This highlights the need for a more efficient

search algorithm to improve the rFLNN performance.

5 Conclusions

In this paper, a modified FLNN model for undertaking data classification tasks have

been described. The rationale is, while the expansion process is vital in the FLNN

model, many redundant expanded features are produced. In the proposed rFLNN

model, fewer than half of the expanded features are selected to build the resulting

structure. The proposed model utilizes the GA for tackling both weight tuning and

selection of expanded features processes as a combined search problem. As a result,
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it is not necessary to use the back-propagation algorithm for weight tuning in rFLNN.

The experiments show that rFLNN performs reasonably well in terms of classifica-

tion accuracy with a less complex network structure. In this study, the polynomial

basis functions are used as the functional expansion links in constructing rFLNN.

However, other basis functions can be used to build the proposed rFLNN model.

In future work, we will carry out more experiments using more complicated prob-

lems. An in-depth theoretical analysis on the scalability of rFLNN will be conducted.

We will also investigate mother evolutionary algorithms for constructing rFLNN. A

comprehensive performance comparison between rFLNN and other FLNN variants,

especially EFLNN [28] and related models, for classification tasks will be conducted.
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Experimental Study of Elman Network
in Temporal Classification

Shih Yin Ooi, Shing Chiang Tan and Wooi Ping Cheah

Abstract Elman network is an extension of multilayer perceptron (MLP), where it
introduces single hidden layer architecture, as well as an additional state table to
store the time units for hidden neurons. This additional state table allows it to do the
sequential prediction which is not possible in MLP. To examine its general per-
formance as a temporal classifier, a Weka version of Elman network is exploited on
11 public temporal datasets released by UCI Machine Repository.

Keywords Elman network ⋅ Temporal classification ⋅ Machine learning

1 Preliminary of Elman Network

Elman network is also known as simple recurrent network (SRN), and was first
published by Jeff Elman in his founding paper on 1990 [1]. The main interest is to
extend the usage of multilayer perceptron (MLP) in language processing. The usage
and robustness of MLP is limited in this context, because the sequence has never
been taken into consideration when classifying an object. Thereafter, Elman pro-
posed a simplified version of MLP with an additional state table to store the time
units for hidden neurons (depicted in Fig. 1), so that each time before they made a
decision, the sequence will be taken into consideration.
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As shown in Fig. 1, an Elman network is formed with only one recursive hidden
layer. The output values as well as its sequence value from the hidden neurons will
be stored in the context layer. With a recursive connection from context layer to
hidden layer with a fixed weight value of 1, the values stored in the context layer
will be additionally fed to the hidden neurons in the next time unit [1]. By doing so,
the network is able to maintain a sequential state table, and allowing them to do
sequential or temporal prediction.

As defined in the founding paper [1], the structure of Elman network algorithm
can be summarized as below:

i. Let wð0Þ denote a weight vector, and is set to a random values within ð1, 1Þ; η
denotes the learning rate; k representing the repetitions counter, and set the
initial point to k=0. Start the context node with the value of 0.5.

ii. When the initialization of epoch = k, the current value of weight vector will
be stored as wcurrent =wðkÞ.

iii. Let the network represented as n=1, 2, 3, . . . ,N:

a. Generate a training sample, tn from the dataset xn; the partial derivatives,
∂En

∂wi
can be obtained through error backpropagration.

b. The new weight (wi) now is equivalent to wi k+1ð Þ=wi kð Þ− η ∂En

∂wi
, where

En represent the square error of this network.
c. Hidden node’s value is stored in context layer.
d. Increment epoch, k= k+1.

iv. The process is recursively performed until the termination value of epoch is
reached.

Elman network was gaining wide attention especially in the field of cognitive
science, because it is the first learner to handle the time-varying structure in the
speech stream. However, the usage of Elman network is not just limited to speech
recognition. It is also used to model the word perception [2], intrusion detection
system [3], chaotic time series prediction [4], hydraulic servo system [5], wind
speed forecasting [6], medical [7], temperature drift of a tuning fork
micro-electromechanical system (MEMS) gyroscope [8], and many more.

Fig. 1 Elman network
architecture
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2 Literature Review of Elman Network

As mentioned earlier, Elman network has been applied to handle different predic-
tion and detection tasks. Liou et al. [2] slightly amended the encoding methodology
of Elman network, so that it can be used to iteratively re-encode and generate a set
of useful semantic (temporal) representations for words. By iteratively merging the
sequence of words, the meaning can be extracted. The proposed method was tested
on Shakespeare’s writing corpus. The promising results showed the positive ability
of this method in discovering the semantic meaning for each tested word through an
inductive learning Elman network. Wang et al. [7] improved the Elman network by
adjusting its self-feedback parameter with a given constant, in the application of
X-ray radiation measurement. The improved Elman network managed to improve
the precision in detecting radiation.

Elman network is also adopted by several researchers to form a hybrid model of
neural network. The main purpose of using Elman network is due to its ability to
bridge the past events to the current prediction and detection. Tong et al. [3]
adopted Elman network in their proposed hybrid neural networks (with an RBF
network) to detect both anomaly network traffics as well as misuse network traffics.
Elman was adopted to learn the past traffic logs, so that the false alarm of intrusion
detection system can be reduced. Tested on DARPA 1999 dataset, this hybrid
model has shown a set of promising results, whereby the detection rates of 93%,
95.3%, 87.5%, and 100% were reported for anomaly detection, misuse detection,
denial-of-service (DOS), and probing, respectively. Ardalani-Farsa et al. [4] also
embedded Elman network with a NARX network in the chaotic time series pre-
diction. Tested on two chaotic systems, Mackey–Glass and Lorenz equations and
one real-life Sunspot time series, this proposed hybrid model managed to give a
more accurate prediction as compared to other in the literature. Liu et al. [5]
amalgamated Elman network with support vector regression (SVR) in predicting
the performance degradation and also to forecast the health state of hydraulic servo
system. Tested on a set of synthetic hydraulic servo data, the Elman network
managed to provide a more accurate output of hydraulic servo system. Liu et al. [6]
provided a hybrid model by using secondary decomposition algorithm (SDA) and
Elman network to predict the wind speed. Elman network was adopted to enable the
multistep wind speed prediction. Tested on five real forecasting cases, this hybrid
model managed to outperform Elman network when it was using alone. Chong
et al. [8] combined the usage of genetic algorithm (GA) and Elman network to
generate a higher precision for temperature drift of a tuning fork
micro-electromechanical system (MEMS) gyroscope.
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3 Elman Network as a Temporal Classifier

While many are adopting it to solve some specific issues, it is even more interesting
to examine its robustness as a general temporal classifier. Hereafter, a Weka version
of Elman network is applied to classify 11 temporal databases, retrieved from UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets). Table 1 pro-
vides brief information of the datasets. All evaluations are conducted on a 10-fold
cross validation.

3.1 D1: Activity Recognition from Single Chest-Mounted
Accelerometer

This dataset was contributed by [9]. The uncalibrated data was collected from a
wearable accelerometer mounted on the chest, with 52 Hz sampling frequency.
Users were required to perform seven different activities during the data collection
period, including: (i) working at computer; (ii) standing up, walking, and going up
and down the stairs; (iii) standing; (iv) walking; (v) going up and down the stairs;
(vi) walking and talking with someone; and (vii) talking while standing. In this

Table 1 Summary of temporal datasets

Temporal dataset # Instances # Attributes #
Classes

D1 Activity recognition from single
chest-mounted accelerometer [9]

402,843 (for
3 users)

5 7

D2 ADL recognition with Wrist-Worn
accelerometer dataset

79,438 4 14

D3 Bach choral harmony dataset [10] 5665 17 72
D4 Daily and sports activities dataset [11] 142,500 46 19
D5 EEG eye state 10,075 15 2

D6 EMG physical action dataset 128,886 9 20
D7 Gesture phase segmentation 19,780 19 (raw)*

33 (processed)*
5

D8 Grammatical facial expressions dataset 27,936 302 18
D9 Ozone level detection 3890 74 2
D10 User identification from walking activity

[9]
149,332 5 22

D11 Wall following robot navigation 16,368 3 (2 sensors)*
5 (4 sensors)*
25 (24 sensors)*

4
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dataset, we have selected 3 out of 15 users for the experimental purposes. The
results are tabled in Table 2.

3.2 D2: ADL Recognition with Wrist-Worn Accelerometer
Dataset

This dataset consists of 14 simple ADL recording from a total of 16 volunteers,
with a single triaxial accelerometer attached to the right wrist of the volunteer. In
this dataset, we have selected five sets from each activity for the experimental
purposes. The results are tabled in Table 3.

3.3 D3: Bach Choral Harmony Dataset

This dataset contains some music information, and all of the chord labels were
manually annotated by a human expert. Full database is used in the experiment, and
the results are tabled in Table 4.

Table 2 Experimental
results for three users in the
database of D1: Activity
Recognition from Single
Chest-Mounted
Accelerometer

User 1 User 2 User 3

Classification accuracy 94.6708% 90.7421% 94.019%
Kappa statistic 0.9183 0.8793 0.9166
Mean absolute error 0.0418 0.0652 0.0449
Root mean squared error 0.1122 0.1516 0.1094
Relative absolute error 22.219% 33.407% 24.8687%
Root relative squared
error

36.5742% 48.5489% 36.3901%

Table 3 Experimental
results for the database of D2:
ADL Recognition with
Wrist-Worn Accelerometer
Dataset

Classification accuracy 94.6708%
Kappa statistic 0.9183
Mean absolute error 0.0418
Root mean squared error 0.1122
Relative absolute error 22.219%
Root relative squared error 36.5742%

Table 4 Experimental
results for the database of D3:
Bach Choral Harmony
Dataset

Classification accuracy 22.6518%
Kappa statistic 0.156
Mean absolute error 0.0167
Root mean squared error 0.0909
Relative absolute error 89.5092%

Root relative squared error 94.0537%
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3.4 D4: Daily and Sports Activities Dataset

This dataset contains 19 activities performed by eight users, collected with a sensor
unit calibrated at 25 Hz sampling frequency. Total signal duration allocated for
each activity is 5 min. All activities performed by a user are used in the experiment,
and the results are tabulated in Table 5.

3.5 D5: EEG Eye State

This dataset contains a set of EEG eye state dataset, and all of them were from one
continuous EEG measurement with the Emotiv EEG Neuroheadset. Full dataset is
used in the experiment, and the results are tabled in Table 6.

3.6 D6: EMG Physical Action Dataset

This dataset contains a set of 10 normal and 10 aggressive human physical actions,
collected using the Delsys EMG wireless apparatus on four subjects. A subject is
used in the experiment, and the results are tabled in Table 7.

Table 5 Experimental
results for the database of D4:
Daily and Sports Activities
Dataset

Classification accuracy 72.6422%
Kappa statistic 0.6885
Mean absolute error 0.0623
Root mean squared error 0.1598
Relative absolute error 62.5142%
Root relative squared error 71.5552%

Table 6 Experimental
results for the database of D5:
EEG Eye State

Classification accuracy 54.6862%
Kappa statistic 0.0397
Mean absolute error 0.485
Root mean squared error 0.5015
Relative absolute error 98.0225%
Root relative squared error 100.8337%

Table 7 Experimental
results for the database of D6:
EMG Physical Action Dataset

Classification accuracy 25.2897%
Kappa statistic 0.1697
Mean absolute error 0.1601
Root mean squared error 0.2818
Relative absolute error 88.9729%

Root relative squared error 93.9478%
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3.7 D7: Gesture Phase Segmentation

This dataset contains the features extracted from seven videos with people gestic-
ulating. Each video is represented by a raw file and a processed file. Full dataset is
used in the experiment, and the results are tabled in Table 8.

3.8 D8: Grammatical Facial Expressions Dataset

This dataset contains a set of grammatical facial expressions from Brazilian Sign
Language (Libras), which were recorded using Microsoft Kinect sensor. Two
subjects are used in the experiment, and the results are tabled in Table 9.

3.9 D9: Ozone Level Detection

This dataset contains two ground ozone level datasets, which are 8 h peak set and
1 h peak set. Both of them were collected at the Houston, Galveston, and Brazoria
area. Full dataset is used in the experiment, and the results are tabulated in
Table 10.

Table 8 Experimental
results for the database of D7:
Gesture Phase Segmentation

Raw Processed

Classification accuracy 58.1759% 29.2236%
Kappa statistic 0.4334 −0
Mean absolute error 0.1865 0.2548
Root mean squared error 0.3046 0.3585
Relative absolute error 73.0368% 99.7159%
Root relative squared error 85.2373% 100.3051%

Table 9 Experimental
results for the database of D8:
Grammatical Facial
Expressions Dataset

User A User B

Classification accuracy 44.9082% 35.7392%
Kappa statistic 0.3982 0.3007
Mean absolute error 0.0778 0.0886
Root mean squared error 0.1928 0.2068
Relative absolute error 75.2769% 85.1636%
Root relative squared error 84.7704% 90.6717%
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3.10 D10: User Identification from Walking Activity

This dataset contains walking patterns 22 participants collected over a predefined
path, with an Android smartphone positioned in the chest pocket. Full dataset is
used in the experiment, and the results are tabled in Table 11.

3.11 D11: Wall Following Robot Navigation

This dataset contains the moving data of SCITOS G5 robot, collected using three
different number of sensors. Full dataset is used in the experiment, and the results
are tabled in Table 12.

3.12 Summary of Results

Classification accuracies plotted by Elman network in the aforementioned 11
temporal datasets are illustrated in Fig. 2. Elman network has shown its capability
to make a classification by considering the sequential patterns, however, its per-
formances are greatly deteriorated in D3, D4, D6, D8, and D10 where the number
of classes is very large. The performance is not stable too when the number of
attributes is large, i.e.: D4, D7-Processed, D8, and D9.

Table 10 Experimental
results for the database of D9:
Ozone Level Detection

One-hour Eight-hour

Classification accuracy 95.572% 93.6859%
Kappa statistic 0 0
Mean absolute error 0.0756 0.1151
Root mean squared error 0.2017 0.2409
Relative absolute error 88.6327% 97.048%
Root relative squared error 98.0227% 99.0564%

Table 11 Experimental
results for the database of
D10: User Identification from
Walking Activity

Classification accuracy 23.4638%
Kappa statistic 0.1529
Mean absolute error 0.0764
Root mean squared error 0.1943
Relative absolute error 91.3236%
Root relative squared error 95.0214%
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4 Conclusion

Elman network has been tested on 11 public temporal datasets to examine its
robustness as a temporal classifier. It demonstrated its ability in handling temporal
classification. From the observation of the experiments, there are still some rooms
to improve the Elman network. The two main challenges facing in Elman network
are its limitation in handling a large number of attributes and large number of
classes.
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Monotone Data Samples Do Not Always
Generate Monotone Fuzzy If-Then Rules

Chin Ying Teh and Kai Meng Tay

Abstract The Wang–Mendel (WM) method is one of the earliest methods to learn
fuzzy If-Then rules from data. In this article, the WM method is used to generate
fuzzy If-Then rules for a zero-order Takagi–Sugeno–Kang (TSK) fuzzy inference
system (FIS) from a set of multi-attribute monotone data. Convex and normal
trapezoid fuzzy sets are used as fuzzy membership functions. Besides that, a strong
fuzzy partition strategy is used. Our empirical analysis shows that a set of
multi-attribute monotone data may lead to non-monotone fuzzy If-Then rules. The
same observation can be made, empirically, using adaptive neuro-fuzzy inference
system (ANFIS), a well-known and popular FIS model with neural learning
capability. This finding is important for the modeling of a monotone FIS model,
because it shows that even with a “clean” data set pertaining to a monotone system,
the generated fuzzy If-Then rules may need to be preprocessed, before being used
for FIS modeling. In short, it is imperative to develop methods for preprocessing
non-monotone fuzzy rules from data, e.g., monotone fuzzy rules relabeling, or
removing non-monotone fuzzy rules, is important (and is potentially necessary)
during the course of developing data-driven FIS models.

Keywords Fuzzy If-Then rules ⋅ The Wang–Mendel method ⋅ ANFIS ⋅
Monotonicity property ⋅ Multi-attribute monotone data ⋅ Monotone fuzzy rule
relabeling ⋅ Interval-valued fuzzy rules

1 Introduction

Fuzzy inference systems (FISs) with fuzzy If-Then rules have been successfully
applied to many real-life applications [1, 2]. Traditionally, fuzzy If-Then rules are
obtained from human experts. Owing to the difficulty in soliciting fuzzy rules from
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human experts, many approaches have been proposed to automatically generate
fuzzy If-Then rules from numerical data, i.e., data-driven FIS models. Most of the
data-driven FIS models involve neural-like iterative learning procedures, or other
rule generation methods, e.g., gradient descent learning [3–6], genetic
algorithm-based method [7], least square method [8, 9], fuzzy c-means clustering
[10], and fuzzy neural method [11]. The focus of this article is on ad hoc data-
driven linguistic rule learning methods [12], which include those by Wang et al.
[13, 14] and Ishibuchi et al. [4]. Ad hoc data-driven linguistic rule learning methods
are easy to understand and simple to implement, and yet they perform with a rapid
learning process, as compared with other methods [3–11]. In [13, 14], Wang et al.
used a table-lookup scheme to generate fuzzy rule bases directly from numerical
examples (hereafter abbreviated as the Wang–Mendel (WM) method). The fuzzy
If-Then rule(s) with the highest firing strength is selected for learning [13, 14]. In
[4] and [12], Ishibuchi et al. presented a heuristic method for generating Takagi–
Sugeno–Kang (TSK) fuzzy If-Then rules from numerical examples. All firing fuzzy
rules are selected for learning [4, 12].

Despite the popularity of data-driven FIS models, investigation on monotone
data-driven FIS models is still new. The importance of the monotonicity property in
FIS modeling has been highlighted in a number of recent publications [15–23], and
a number of studies to preserve the monotonicity property have been proposed.
These include the development of mathematical conditions as a set of governing
equations [15, 18, 21], application of the developed mathematical conditions to
real-world problems [19, 22], as well as extension and synthesis of the mathe-
matical conditions with some advanced FIS modeling techniques [16, 23, 24]. In
this article, we focus on analyzing the monotonicity property of the fuzzy If-Then
rules generated from multi-attribute monotone data using the WM method.
Specifically, convex and normal trapezoid fuzzy sets are used as the fuzzy mem-
bership functions (see Definition 2). Besides that, a strong fuzzy partition strategy is
used (see Definition 3). Our analytical results suggest that the fuzzy If-Then rules
generated do not always monotone, even though the multi-attribute data used are
monotone. A simulated example is used for illustration. The same observation can
be made, empirically, using adaptive neuro-fuzzy inference system (ANFIS) [5], a
well-known fuzzy system with neural learning. Worth mentioning, various studies
pertaining to the monotonicity property and neural-computing have also been
reported in [25–27].

The organization of this article is as follows. In Sect. 2, the background and
related work are described. In Sect. 3, an analysis of the WM method is presented,
and a simulation study is conducted. In Sect. 4, the simulation results using ANFIS
are presented. Finally, concluding remarks are presented in Sect. 5.
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2 Background

Definition 1 Consider an n-dimensional input space, X, and a one-dimensional
output space, Y . Variables x ̄= ½x1, x2, . . . , xn�∈X1 ×X2 ×⋯×Xn and y are the
elements of X and Y , i.e., x ̄ ∈ X, and y ∈ Y , respectively. The lower and upper
bounds of Xi, where i∈ ½1, 2, 3, . . . , n�, are denoted as xi and xi, respectively.
Similarly, the lower and upper bounds of Y are denoted by y and y ̄, respectively.

Definition 2 Consider a trapezoidal fuzzy set, i.e., AXi , on the Xi domain, as follows
(see Fig. 1 as an example).

μXi
xi: ai, bi, ci, dið Þ=

xi − ai
bi − ai

, ai ≤ xi ≤ bi,
1, bi ≤ xi ≤ ci,
di − xi
di − ci

, ci ≤ xi ≤ di,
0. otherwise.

8
>><

>>:
ð1Þ

Definition 3 The Xi domain is divided into ki fuzzy partitions, and represented by
ki normal trapezoidal fuzzy sets. The fuzzy sets are denoted as μXi , ji xið Þ for lin-
guistic term AXi , ji , where ji =1, 2, 3, . . . , ki. A strong partition is used, which is
defined as follows (see Fig. 2 as an example).

Fig. 1 The membership function of a trapezoidal fuzzy set

Fig. 2 Fuzzy sets with ki partitions
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3:1. μXi , 1 xi
� �

=1 and μXi, ki xið Þ=1, are always true.
3:2. All ki trapezoidal fuzzy sets are normal.
3:3 ∀xi ∈ Xi: ∑ki

ji =1 μXi , ji xið Þ=1 is always true (i.e., a strong partition).
3:4 ∀xi ∈ Xi:AXi , ji ≤AXi , ji +1, where ji =1, 2, 3, . . . , ki − 1 is always true. A fuzzy

ordering exists among all ki normal trapezoidal fuzzy sets.
3:5. For any two fuzzy sets, i.e., AXi, ji = ai, ji , bi, ji , ci, ji , di, ji

� �
and AXi , ji +1 =

ai, ji +1, bi, ji +1, ci, ji +1, di, ji +1
� �

on Xi, ci, ji = ai, ji +1 and di, ji = bi, ji +1, where
ji =1, 2, 3, . . . , ki − 1, are always true.

Definition 4 Consider an antecedent in the input space, i.e., X1 ×X2 ×⋯×Xn. It is
denoted as AX1, j1 ∧⋯∧AXn, jn , which is simplified as Aj1, ..., jn . Each antecedent is
mapped to a real value in the output space, i.e., Y and is denoted as bj1, ..., jn . A fuzzy
If-Then rule which maps the input space to the output space is denoted as
Rj1, ..., jn :Aj1, ..., jn → bj1, ..., jn . A collection of Rj1, ..., jn forms the fuzzy If-Then rules, as
follows:

IF x1 isAX1, j1

� �
AND⋯AND xn isAXn, jn

� �
,THEN y is bj1, ..., jn

� �

4:1. For a complete fuzzy If-Then rule, all bj1, ..., jn are known, i∈ ½1, 2, 3, . . . , n�,
ji ∈ ½1, 2, 3, . . . , ki�; otherwise it is incomplete. A complete fuzzy If-Then rule
set should have M rules, i.e., M = ∏M = n

i=1 ki.
4:2. For a monotone fuzzy If-Then rule, bji +1, js ̄ ≥ bji, js ̄ is always true, for

i ∈ ½1, 2, . . . , n�, s ∈ s ̄= 1, 2, . . . n½ � and i∉ s ̄, ji =1, 2, . . . , ki − 1; otherwise
the fuzzy If-Then rule is non-monotone.

3 The WM Method with Multi-attribute Monotone Data

Definition 5 Consider a set of input–output data pairs, i.e.,
xp; ypð Þ, p ∈ 1, 2, 3, . . . , h½ �, where output yp ∈ Y is influenced by n input variables,
xp = ½xp1, xp2, . . . , xpn� ∈ X1 ×X2 ×⋯×Xn. For simplicity, xp; ypð Þ is denoted as
ypxp1, x

p
2, ..., x

p
n
. A data sample, yqxq1, x

q
2, ..., x

q
n
, is further considered, where

q ∈ 1, 2, 3, . . . , h½ � and q≠ p.

5:1 Two notions are defined as follows:

yqxq1, x
q
2, ..., x

q
n
=max ypxp1 ≤ xq1, x

p
2 ≤ xq2, ..., x

p
n ≤ xqn

h i� �
. ð2Þ

yqxq1, x
q
2, ..., x

q
n
=min ypxp1 ≥ xq1, x

p
2 ≥ xq2, ..., x

p
n ≥ xqn

h i� �
. ð3Þ
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5:2 The data set is monotone if yqxq1, x
q
2, ..., x

q
n
≤ yqxq1, x

q
2, ..., x

q
n
≤ yqxq1, x

q
2, ..., x

q
n
, is true,

∀p ∈ 1, 2, 3, . . . , h½ �, ∀q ∈ 1, 2, 3, . . . , h½ � and q≠ p. Otherwise, the data set is
non-monotone.

Definition 6 A dominant rule(s) for xp is denoted as Rj1, ..., jn, p. Rj1, ..., jn, p is the fuzzy
rule(s) with the highest firing strength, i.e., the highest of ∏n

i=1 μXi , ji x
p
ið Þ. If more

than one fuzzy rule have the same firing strength, all fuzzy rules are considered as
the dominant rules.

Using the WM method, bj1, ..., jn can be obtained with Eq. (4) [13, 14]. If
p ∈ Rj1, ..., jn is an empty set, then bj1, ..., jn is unknown.

bj1, ..., jn =
∑p∈Rj1, ..., jn ∏

n
i=1 μXi, ji x

p
ið Þ× yp

∑p∈Rj1, ..., jn ∏
n
i=1 μXi, ji x

p
ið Þ ð4Þ

Proposition 1 Consider a n>1 monotone (see Definition 5.2) input data set.

Remark 1 With Proposition 1, an analysis of the WM method [13, 14] is sum-
marized as follows:

1:1 The lower limit for bj1, ..., jn , denoted as bj1, ..., jn , can be obtained with
bj1, ..., jn =min ypð Þ, for p ∈ Rj1, ..., jn .

Proof From Eq. (4), the lower limit for bj1, ..., jn is equal to min ypð Þ.
1:2 The upper limit for bj1, ..., jn , denoted as bj1, ..., jn , can be obtained with

bj1, ..., jn =max ypð Þ, for p ∈ Rj1, ..., jn .

Proof From Eq. (4), the upper limit for bj1, ..., jn is equal to max ypð Þ.
1:3 Using Eq. (4), the resulting fuzzy rules is not always monotone.

Proof Any two neighboring fuzzy rules, i.e., bji , js ̄ and bji +1, js ̄ for ji =1, 2, . . . , ki − 1
with Eq. (4) are considered. The upper limit for bji, js ̄ is bji, js ̄ =max yji , js ̄

� �
for

yji , js ̄ ∈ Rji , js ̄ . The lower limit for bji +1, js ̄ is bji +1, js ̄ =min yji +1, js ̄

� �
for

yji +1, js ̄ ∈ Rji +1, js ̄ . Therefore, bji +1, js ̄ ≥ bji , js ̄ is not always true.

3.1 Simulation Studies

Example 1 Consider a two-attribute monotone data set with 100 input–output pairs,
i.e., xp; ypð Þ, p ∈ 1, 2, 3, . . . , 100½ �. xp = xp1, x

p
2

� �
∈ X1 ×X2 and single output yp ∈ Y
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is considered. The data set is generated using a simple quadratic function, i.e.,
y= x21 + x22, in the input space of 1, 10½ �× 1, 10½ �, as shown in Fig. 3.

The fuzzy partition illustrated in Fig. 4 is used, i.e., k1 = k2 = 9. With Eq. (4), a
monotone fuzzy rule base, as summarized in Fig. 5, is obtained. In this example,
monotone fuzzy If-Then rules (see Definition 4.2) are produced.

Example 2 A total of 88 data samples from Example 1 are chosen, as depicted in
Fig. 6. The same fuzzy partition, as illustrated in Fig. 4, is used.

The obtained fuzzy If-Then rule set using Eq. (4) is summarized in Fig. 7. In this
example, non-monotone and incomplete fuzzy If-Then rules are produced. As an
example, for A1, 5, bj1 = 1, j2 = 5 = 37.000; for A3, 5, bj1 = 3, j2 = 5 = 34.000; however,
bj1 = 3, j2 = 5 is smaller than bj1 = 1, j2 = 5, i.e., bj1 = 3, j2 = 5 < bj1 = 1, j2 = 5. In short, a non-

Fig. 3 Monotone data for
Example 1

Fig. 4 Fuzzy partition used for simulation
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monotone fuzzy If-Then rule set is obtained. On the other hand, for A2, 3,
bj1 = 2, j2 = 3 =NaN (i.e., bj1 = 2, j2 = 3 is unknown), resulting in an incomplete fuzzy
If-Then rule set.

Fig. 5 Generated fuzzy If-Then rules for Example 1

Fig. 6 Monotone data for
Example 2

Fig. 7 The generated fuzzy If-Then rules for Example 2
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4 Simulation with ANFIS

Example 2 is revisited. The same fuzzy partition, as illustrated in Fig. 4, is adopted.
The obtained fuzzy If-Then rule set using ANFIS [5] is summarized in Fig. 8. In
this simulation, it is observed that the fuzzy MFs at antecedent are not adjusted or
learned. Worth mentioning, ANFIS with fixed MFs can be viewed as a functional
link network [2, 5]. Again, non-monotone fuzzy If-Then rules are produced. As an
example, for A1, 1, bj1 = 1, j2 = 1 = 2.000; for A1, 2, bj1 = 1, j2 = 2 = 1.903, while bj1 = 1, j2 = 2

is smaller than bj1 = 1, j2 = 1, i.e., bj1 = 1, j2 = 2 < bj1 = 1, j2 = 1.

5 Summary

In this article, the WM method [13, 14] has been used to generate fuzzy If-Then
rules from monotone data. A simulated “clean” monotone data set, which is free
from noise, pertaining to a monotone system is considered. The “clean” monotone
data set is used for learning using an FIS model. Our study shows that while a
monotone multi-attribute data set is used, the fuzzy If-Then rules generated using
the WM method may not always be monotone. The same observation occurs when
the ANFIS model is used [5]. This finding is important for modeling a monotone
FIS model, as it shows that even with a “clean” data set, the generated fuzzy
If-Then rules may need to be preprocessed, in order to satisfy the monotonicity
property. Developing useful methods to preprocess non-monotone fuzzy rules from
data samples is, therefore, a key step toward producing data-driven monotone
TSK FIS models.

For future work, we will develop useful methods to preprocess non-monotone
fuzzy rules from data. The possible methods include relabeling non-monotone fuzzy
rules [28] or transforming non-monotone fuzzy rules to monotone interval-valued
fuzzy rules [29].

Fig. 8 The generated fuzzy If-Then rules using ANFIS [5]
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