
Chapter 7
Routing Protocols for Mobile Ad Hoc
Network

7.1 Introduction

A Mobile Ad hoc NETwork (MANET) is a multihop wireless network consisting
of a number of mobile devices forming a temporary network. No established wired
infrastructure or centralized network administration exists to support communication
in a MANET. A MANET differs from a wired network in many ways. Some of these
are attributable to general characteristics of wireless networks, while the others are
due to the characteristics specific to MANETs [4]. Some of the typical characteristics
a MANET are:

• The users in a MANET may neither wish nor be in a position to perform any
administrative services needed to set up or to maintain a network.

• The topology of a MANET changes dynamically due to mobility of the nodes.
• Each node in a MANET is completely autonomous and acts both an ordinary node

and a router.
• A node in a MANET has relatively less resources compared to a node in wired

network.
• All nodes have similar capabilities and identically responsible for communication

in a MANET.
• Any mobile node may either join, or leave MANET at any point of time.

The problems associated with wireless connectivity combined with the limitations of
MANET create a number of difficulties in designing routing protocols. In particular,
these protocols are expected to address and resolve the following important issues.

1. Communication in a MANET is broadcast based. Unless carefully designed,
routing protocols may generate high volume of unnecessary traffic in the network
leading to flooding and congestion.

2. In order to participate in discovery and maintenance of the routes, the nodes in a
MANET should be in active mode. However, no node should be forced to wake
up when it is operating in low energy mode to save its battery power.
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Fig. 7.1 Ad hoc network
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3. The processing load due to discovery and maintenance of routes should be dis-
tributed as much evenly as possible among the nodes in a MANET.

4. Many redundant paths have to be maintained between every pair of source and
destination. This may causes unnecessary increase in the size of routing updates
that must be sent over the network.

Each node in a MANET has a fixed wireless range. Any mobile host which
appears inside the range of a transmitting host can listen/capture the messages being
transmitted. In a MANET, every active node is expected to participate in forwarding
a message towards the destination node. If a destination host is not directly reachable
from a source then all hosts which receive the transmission from the source, forward
the same to their respective neighbors. The neighbors, in turn, repeat the same until
the message finally reaches the destination. For example, consider Fig. 7.1 where A,
B andC represent three mobile hosts. The wireless ranges of these hosts are indicated
by the respective circles having centers at A, B and C. The figure indicates that A and
B are within the wireless range of each other, so are B and C. But C cannot receive
any transmission directly from A, as it is not in the range of A. If A were to send a
message to C then B must cooperate to forward the same to C. Thus, the design of
an efficient routing protocol in MANET poses a number of difficulties depending on
the degree of severities of the constraints mentioned above. This explains why the
area offers a rich source of problems for research.

A number of routing schemes have been proposed [1, 8, 9, 11, 12, 14–16] for
mobile ad hoc networks. Most of these algorithms based on existing Internet routing
algorithms. The performance evaluations of the routing algorithms can be based on
a set of common parameters, namely,

• Distributiveness in execution.
• Ability to find loop-free paths between a source and a destination.
• Ability to find cheaper routes between a source and a destination.
• Ability to restrict flooding the network with broadcast transmission during route

discovery.
• Ability to quickly establish a route between a source and a destination.
• Ability to avoid congestion at nodes by providing alternative routes between a

source and a destination.
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• Ability to maintain or repair a route between a source and a destination quickly, by
localizing the route maintenance, when the network topology undergoes a change.

• Ability to provide quality of service (QoS).

An exhaustive study of the routing algorithms could be a book by itself. An
interested reader may refer to an excellent collection of selected articles on ad hoc
network [13]. Only a few important and widely cited routing schemes are the subject
of our discussion here.

7.2 Classification of Routing Protocols

Routing in any network can be viewed abstractly as finding and maintaining the
shortest-path between two communicating nodes in a weighted graph. Each node
maintains a preferred neighbor, which is the next hop on the path to reach a des-
tination. Each data packet should have the address of the destination in its header.
An intermediate node forwards a data packet to the next hop closer to destination
by consulting the locally maintained table known as route table. The routing proto-
cols differ in the manner in which the routing tables are constructed and maintained.
Based on characteristics of the routing protocols, Royer and Toh [17] have suggested
a classification scheme. As shown in Fig. 7.2, the routing schemes can be classified
into two broad classes, namely,

• Table driven or proactive, and
• Source initiated on-demand or reactive

Examples of distance vector based table driven protocols are Destination Sequenced
Distance Vector (DSDV) [14], Wireless Routing Protocol (WRP) [10] and Cluster
Gateway Switch Routing (CGSR) [2]. DSDV is a distributed version of Bellman-
Ford shortest path algorithm which relies on destination sequence numbering scheme
to avoid loops. CGSR protocol is a logical descendant DSDV protocol. But, it uses
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Fig. 7.2 Classifying routing algorithms
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a clustered multihop organization scheme for network instead of a flat structure.
WRP [10] does not use sequence number, but uses second-to-last hop information
for each destination. It forces each node to check consistency of its predecessor’s
information to avoid count-to-infinity problem. Fisheye State Routing (FSR) [12]
protocol is a direct descendant of Global State Routing (GSR) [1] protocol. GSR is
a link state routing algorithm it exchanges vector of link states among the neighbors
during route discovery.

Examples of source initiated reactive protocols are Ad hoc On-demand Distance
Vector (AODV) [15], Dynamic Source Routing (DSR) [8], Lightweight Mobile Rout-
ing (LMR) [7] and Associativity-Based Routing (ABR) [18]. AODV [15] is inspired
by DSDV protocol. Instead of proactively maintaining routes, AODV reactively dis-
covers routes when needed. Like DSDV, it uses destination sequence number to avoid
formation of loops. In DSR [8], each source provides the complete path to a chosen
destination for routing a packet. Each node maintains a route cache for the routes
to other nodes that it is aware of. The route cache of a node is updated as the node
learns about new routes to more destinations. Location Aided Routing (LAR) [9] uses
location information to reduce flooding during route discovery. The major problem
in LAR is that it requires nodes to be aware of their location information. Route
discovery and establishment is similar to AODV and DSR.

LMR [7] is a link reversal based routing scheme based on Gafni-Bertsekas [6]
algorithm. The objective of LMR is not to find shortest path but to find any path
between a source and destination pair. Temporarily Ordered Routing Algorithm
(TORA) [11] is a direct descendant of LMR. The key feature of TORA is local-
ization of control messages in the neighborhood where the topology changes occurs
in the network. In order to accomplish it, the nodes maintain routing information
about immediate neighbors. ABR [18] obtains stable route by selecting routes on
the basis of degree of association stability among mobile nodes. Every node sends
out periodic beacons to notify its existence which is used to update the respective
associativity ticks of the current node with the beacon dispatch nodes. Association
stability of one node with another is defined by connectivity over time and space.
Signal Stability Routing (SSR) [5] is a logical descendant of ABR. It chooses route
based on signal strength and location stability.

In this chapter our attempt is not to give a full review, but focus discussion on
a few interesting protocols which exposes the characteristics and the abstraction of
routing problem in a network with dynamic topology.

All MANET routing protocols are based on existing Internet routing protocols.
Primarily three design approaches are used for Internet routing protocols, namely,

• Distance vector,
• Link state, and
• Link reversal.

Our discussion in this chapter is restricted only to distance vector based routing
algorithms. Focusing only on distance vector algorithms may appear to be an incom-
plete exploration of the area. However, the reasonbehind this decision is to introduce
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the problem domain to the reader rather than just throwing up research challenges.
Furthermore, we believe that ad hoc networks are mostly low diameter and small
sized networks. Therefore, the research efforts made in design of multihop, scalable
routing algorithms have only theoretical value with no practical utility.

7.2.1 Distance Vector Routing

The abstract model of an underlying ad hoc network is a graph. Every node v main-
tains the table of distances dxvw for each destination node x, where w ∈ Lv (adjacency
list of v). In order to send a message from a source v to a destination x the next hop is
selected among the neighbours of v which returns the minimum value of the metric
dxvw. At an intermediate hop, the same rule is applied to forward the message to the
next hop. The process is repeated till the destination is reached. The message is,
thus, forwarded from a source to a destination by a sequence of hops via the shortest
possible path between the two nodes.

A major problem that may arise in formation of a route using a distance vector
routing scheme is referred to as count-to-infinity. Figure 7.3 provides an illustration
of the problem. Initially, A knows distance to C via B to be 2 units. Suppose the
link B to C breaks (e.g., timer expires). But before B can advertise its own routing
table, it receives update from A indicating there is a path of 3 units to C available
through A. B updates the distance to C as 3 not knowing the fact that route via A
includes itself. B then sends the update to A. After receiving the update from B, A
updates distance to C as 4. The cycle of update exchanges keep continuing resulting
in count-to-infinity problem.

7.3 Destination-Sequenced Distance Vector Routing

Destination Sequenced Distance Vector (DSDV) is a distance vector based routing
protocol. It is essentially a distributed version of the classical Bellman-Ford [3]
shortest path algorithm modified for dynamically changing network topology. The
fundamental problem in employing the distance vector routing algorithm in a mobile
environment is formation of loops. Since, the nodes are mobile, the change in network
topology occurs rapidly. Consequently, the information maintained at each node
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quickly becomes stale. It may, therefore, not only introduce loop but may also exhibit
count to infinity problem.

DSDV maintains routing tables at each node for routing packets from a source to
a destination. Each routing table contains a list of destinations with the number of
hops to reach a destination. Each entry of a routing table is tagged with a sequence
number assigned by the corresponding destinations. The source node consults its
routing table for the destination and sends the data packet to the next hop in the path
to the desired destination. The next hop repeats the actions and forwards to the node
which is the next nearest hop to the destination and so on, until the destination is
reached. The major issue in DSDV is the maintenance of the routing tables.

7.3.1 Advertisement of Routes

All nodes periodically transmit the route updates, or as soon as any new information
about the change in topology is available. However, there is no fixed time interval
for the propagation of updates. This follows from the fact that the mobile hosts are
not expected to maintain any kind of time synchronization in movements.

Each mobile node advertises its own routing table to its current neighbors. Since
the routes may change frequently due to movement of mobile nodes, the advertise-
ment of routing table is carried out on a regular basis. The regular advertisement of
routes allows the mobile hosts to continue in doze mode and resume as they wish.
So, even if a node (not in active mode) misses out the current route advertisements,
it receives a route advertisement on turning to active mode.

Forwarding a message from a source to a destination requires support from other
mobile hosts. However, the nodes operating in doze mode should not be forced to
participate in forwarding of a message. A route advertisement packet broadcast by a
node consists of the following important information.

1. The recent most destination sequence number of the route to a destination as
known to the source.

2. The address of the destination.
3. The number of hops required to reach the destination.

A node on receiving a new route information should broadcast the same to its neigh-
bors. Apart from adding a new broadcast sequence number, the transmitting node
increments the number of hops by one to indicate that the new route to destination
includes itself as a hop. The broadcast sequence number is different from the desti-
nation sequence number. A broadcast sequence number helps to eliminate repeated
forwarding of the same route advertisement. Unless stated otherwise, a sequence
number always means a destination sequence number.

For the purpose of forwarding a data packet, the route with most recent sequence
number is used though the same is not typically used for route re-advertisement.
The route re-advertisement is held back to allow some settling time for a new route
information.
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Two different route updates are advertised: (i) incremental update, and (ii) full
update. The incremental updates are small and advertised more frequently than the
full updates. An incremental update typically needs less than a single NPDU (Net-
work Protocol Data Unit). As number of updates grows, due to increased mobility
of nodes with time, just sending incremental updates do not work. The number of
entries in the forwarding table becomes large to fit into a single NPDU. In this sit-
uation it is preferable to go for a full dump. Full dumps are transmitted relatively
infrequently and may require a number of NPDUs. The interval of time between two
full dumps will depend on the frequency of movements of the mobile hosts.

7.3.2 Propagation of Link Break Information

When a node N detects a broken link to a neighbor M, then N generates a fresh
sequence number and modifies the distance of each destination to ∞ for which M
was an intermediate hop. This is the only instance in DSDV where a sequence number
for a route table entry is generated by nodes other than the destinations. The sequence
numbers for real (finite) routes are always even numbers. The sequence numbers of
the routes with broken links (with route metric ∞) are always odd numbers. A broken
link is, thus, easily identified as the one tagged with an odd sequence number.

7.3.3 Stability of Requirements

DSDV requires a stability time for propagation of route information. It helps to
absorb fluctuations in the route tables during the period of quick changes of network
topology. It also eliminates the need to rebroadcast the route updates that arrive with
the same sequence number. The new information about topology received at a node
is allowed to settle for a while, before being advertised by the node.

It is possible that during the interval of route settling time, the network experiences
further changes in topology after the arrival of the latest route update. The reason
behind this can be attributed to continuity of node movements. If a node has just
began to move then it is expected to continue move for some time before it pauses
at a place for a while. By employing a delay in route advertisement, the problem
re-advertisement of the routes in quick successions (which may lead to a broadcast
storm) is controlled. If the stability delay is not employed, flooding can occur even
when a destination does not move. Such a scenario can be constructed as follows as
depicted in Fig. 7.4 adopted from the example from the original DSDV paper [14].
The route update for the destination node M8 reaches a node say M6 from both
M5 and M7. The collection of nodes in the network is such that paths reaching M6
from M8 can be grouped into two classes. One set of these paths is such that every
path in it passes through M5 and do not intersect any of the paths from the second
set each of which passes through M7. Suppose M6 receives the route update from
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Fig. 7.4 Flooding due to
fluctuations in routes
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M7 eight seconds earlier than that from a path via M5. Also let the number of hops
in a path via M5 is 20 and that in a path through M7 is 19. Suppose this happens
every time a new sequence is issued by M8. Then the path information for M8 at M6
fluctuates back and forth every time a new sequence number is issued at M8. If any
new route information gets propagated without stability delay, the receiving node
propagates the routes with new metrics in quick succession to its neighborhood. It
causes flooding in the network.

7.3.4 Guarantee for Loop Free Paths

Assume that system is in steady state. All tables of all nodes have converged to actual
shortest paths. Then the collection of next hops for any destination D is logically an
inverted rooted tree with the root at D.

Consider an inverted tree for one destination, say x, and examine the changes that
occur due to movements of the nodes. Let G(x) be the directed graph of x defined
by the edges of the form (i, ni(x)), where ni(x) is the next hop for destination x at
node i.

Lemma 7.1 The operation of DSDV ensures at every instant G(x) is loop-free.

Proof Potentially a loop may be introduced if ni(x) changes. If ni(x) is set to nil, it
implies a link break. Therefore, a loop cannot be formed.

Assume that ni(x) is changed to a non-null next hop. There are two ways in which
ni(x) at i can change when i receives an update about a new route to x from a neighbor,
say k with sequence number sk(x), namely
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1. sk(x) > si(x), where si(x) is the sequence number for destination x in the route
table at i.

2. sk(x) = si(x), but metric dk(x) < di(x).

In the first case i cannot introduce a loop. Because i propagates the sequence
number si(x) to its downstream neighbors only after receiving it from any of its
current neighbors. Therefore, the sequence number stored at any of the neighbors of
i is always greater or equal to that stored at the node i. In fact, the set of sequence
numbers stored at intermediate nodes upstream from any node i to the destination x
forms a non-decreasing series. If indeed, k were to introduce a loop, then it would
mean sk(x) ≤ si(x) which contradicts the assumption sk(x) > si(x).

The loop-free property in the second case follows from the fact that in the presence
of static or decreasing link weights, the algorithm always maintains loop-free paths.

7.3.5 Forwarding Table and Update Propagation

A forwarding (routing) table stored at each node is used to forward packets from
the node to the next hop along a route to a destination. A basic routing table entry
consists of the following fields:

• Destination: the address of the destination node.
• Next hop: the next node along the path from the current node to destination.
• Metric: the number of hops required to reach the destination.
• Sequence number: the sequence number assigned by the destination to the current

table entry.
• Install time: the time when the current entry was made. It helps to determine when

the stale routes are to be deleted.
• Stable data: is a pointer to a structure holding information of a new route which

is likely to supersede the current route after sometime.

If all links on a route to a destination are live then the corresponding sequence
number for that destination must be even. Install time is used to detect if any route
has become stale (expired). However, install time is not very critical for working of
DSDV algorithm, because detection of a link breakage is propagated through the ad
hoc network immediately.

The stable data is a pointer to a structure that stores the information about the
stability of routes to a destination. The stability information is used to dampen fluc-
tuations routes. The fluctuations may happen due to continuity of the node movements
that has not yet settled. The stable data records the last and the average settling time
for every route. Therefore, when a node, say N , receives a new route R, N does not
immediately advertise R unless it is a route to a previously unreachable destination.
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A new route to an existing destination is advertised only after 2*(average settling
time). Essentially, DSDV keeps two routing tables. One table is used for forwarding
the packets, and the other one is used for advertising of the route updates. The adver-
tised route table of a node is constructed from its stable data, and has the following
structure:

destination

metric

sequence_number

For advertising routes, a node places the route to itself as the first entry. Then all
the nodes which have experienced significant change in topology, since the previous
advertisement, are placed. A change in route metric is considered as a significant
change. The rest of the advertised route table is used to include all nodes whose
route sequence numbers have changed. If too many updated sequence numbers are
advertised then a update cannot be included in a single packet. To get around this
problem, a fair selection policy may be used to transmit the updates in round-robin
fashion by several incremental update intervals.

7.3.6 Example

Consider the snap shot of the routes in an ad hoc network shown in Fig. 7.5. This
figure is adopted from the original paper [14]. Prior to the movement of a mobile
host MH1 to a new position as indicated in the figure, the forwarding table [14] for
a node, say MH4, could be as shown in Table 7.1. The above table does not include

MH3 MH4

MH2 MH6

MH5

MH6

MH8

MH1

MH1

Moves to

Fig. 7.5 An example for execution of DSDV
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Table 7.1 Forwarding table of MH4

Destination Next hop Metric Flag Sequence
number

Install time

MH1 MH2 2 S180_MH1 T001_MH4

MH2 MH2 1 S384_MH2 T001_MH4

MH3 MH2 2 S444_MH3 T001_MH4

MH4 MH4 0 S236_MH4 T001_MH4

MH5 MH6 2 S352_MH5 T002_MH4

MH6 MH6 1 S278_MH6 T001_MH4

MH7 MH6 2 S232_MH7 T002_MH4

MH8 MH6 3 S190_MH8 T002_MH4

Table 7.2 Advertised route table for node MH4

Destination Metric Sequence number

MH4 0 S236_MH4

MH1 2 S180_MH1

MH2 1 S384_MH2

MH3 2 S444_MH3

MH5 2 S352_MH5

MH6 1 S278_MH6

MH7 2 S232_MH7

MH8 3 S190_MH8

information concerning stable data. However, the advertised route table for the node
MH4 may be as the one shown in Table 7.2. Suppose now MH1 moves to a new
position as shown in Fig. 7.5 by a dashed line; the direction of movement is indicated
by the arrow head. The new position is within the neighborhood of nodes MH7 and
MH8. The old link betweenMH1 andMH2 gets snapped. The new route to destination
MH1 is advertised and a new metric is finally received by node MH4 after sometime.
The internal forwarding table at node MH4 changes as indicated by Table 7.3. Notice
that the flag for MH1 has been set to M indicating that the route entry has changed.
The install time of the entry also has changed. The advertised route table also changes
at MH4. This table has new information as illustrated by Table 7.4. Except for the
node MH1 the metrics for all other nodes remain unchanged.
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Table 7.3 Change in forwarding table of node MH4

Destination Next hop Metric Flag Sequence
number

Time instal

MH1 MH6 3 M S580_MH1 T500_MH4

MH2 MH2 1 S486_MH2 T001_MH4

MH3 MH2 2 S634_MH3 T001_MH4

MH4 MH4 0 S856_MH4 T001_MH4

MH5 MH6 2 S502_MH5 T002_MH4

MH6 MH6 1 S378_MH6 T002_MH4

MH7 MH6 2 S358_MH7 T002_MH4

MH8 MH6 3 S390_MH8 T002_MH4

Table 7.4 Change in forwarding table of node MH4

Destination Metric Sequence number

MH4 0 S856_MH4

MH1 3 S580_MH1

MH2 1 S486_MH2

MH3 2 S634_MH3

MH5 2 S502_MH5

MH6 1 S378_MH6

MH7 2 S358_MH7

MH8 3 S390_MH8

7.4 Dynamic Source Routing

Dynamic source routing [8] is a reactive protocol. DSR uses source routing to route
the messages. In other words, the entire sequence of hops from a source to a destina-
tion is embedded with message packets that gets exchanged between the two nodes.
This is in contrast with the other reactive routing protocols such as TORA [11], or
AODV [15], where the sender just has to know the next hop to the destination. The
advantages of keeping the route information with the source are as follows.

• The requirement for periodic route advertisement is eliminated.
• In a less dynamic environment DSR provides valid routes more often than not.
• DSR finds a route also when links are unidirectional.
• DSR initiates a route discovery in the case when route becomes invalid.

Periodic route advertisement not only consumes bandwidth, but also requires the
nodes to be in connected state in order to receive the route advertisements. So, DSR
by eliminating periodic route advertisements enables wireless devices to conserve
battery power when no significant node movements take place, i.e., network topol-
ogy remains mostly static. If the routes between source and destination pairs are
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known, DSR can almost always provide valid routes. In the wireless environments,
the quality of message transmission between hosts may not exactly be the same in
both directions. DSR may initiate a route discovery in order to send a route reply.
More specifically, DSR approach to routing does not require the network links to be
bidirectional.

The basic assumptions for DSR to work properly are as follows.

• The hosts can move without notice, but they do so with a moderate speed with
respect to packet transmission latency.

• The speed of movement of nodes is also moderate with respect to the wireless
transmission latency of the underlying network hardware in use.

• The hosts can turn into promiscuous mode to listen to the activities within their
respective wireless range to learn about new routes.

7.4.1 Overview of the Algorithm

Each node in the network maintains a route cache. The routes learned by a node are
stored in its route cache. In order to send a packet, a node first checks the route cache
for a valid route to the desired destination. If no route can be found, then a route
discovery is initiated to discover a route to the destination. The normal processing at
the node continues, pending the route discovery. The packets meant for the desired
destination may be buffered at the sending node till such time when a route to
the destination has been determined. Alternatively, the packet may be discarded and
retransmitted after the path to the destination has been discovered. This eliminates the
need to buffer the packet. Each entry in route cache is associated with an expiry time,
after which the route entry is purged from the cache. It is possible that a route may
become invalid due to any node (the source, the destination or an intermediate node)
on the path moving out of wireless transmission range, failing or being switched
off. Monitoring the validity of the route is called route maintenance. When route
maintenance detects a problem of the kind mentioned above, route discovery may
be called again to discover a fresh route to the destination.

7.4.2 Route Discovery

The route discovery scheme works by flooding a Route REQuest (RREQ) packet.
An RREQ packet contains source ID, destination ID, route record and a unique
request ID, set by the source. The request ID allows intermediate nodes to discard
the duplicate RREQ and to prevent network flooding.

The RREQ processing is quite straightforward. When an intermediate node N
receives a RREQ, it should first ensure that either the same RREQ or a RREQ for
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Algorithm 1: DSR algorithm.

begin
if source ID and request ID matches with any recent RREQ packets then

discard the packet // Duplicate RREQ.
end
else

if address of target ID matches with any recently seen RREQs then
discard the packet // RREQ for same target from a different

source.
end
else

if target ID matches with the ID of the processing node then
extract the route record from the request packet; // Accumulated in

the route record of RREQ packet
Unicast a reply back to source by using the extracted route;

end
else

// Processing node is an intermediate node.
append address of self with the route record of RREQ packet;
re-broadcast RREQ;

end
end

end
end

the same destination has not been forwarded by it earlier. In both these cases N is
awaiting a route reply to arrive from the destination. So, it need not forward another
copy of the RREQ. The processing of RREQ has been described in Algorithm 1.
There is also a slight anomaly in sending a unicast reply. When a route reply has to
be sent to the initiator of the route discovery, the possible alternatives are:

• If the destination has an entry for the source in its own route cache, this route may
be used to send the reply packet.

• Otherwise, it is possible to use the reverse of route record extracted from the request
packet. In this case we consider that the route is bidirectional (with symmetric
links).

• The third possibility is to let the reply packet ride piggyback to source on a RREQ
packet initiated by the destination for the discovery of a route to source.

7.4.3 Route Maintenance

Since, DSR is a source initiated routing scheme, route maintenance is basically
limited to monitoring link breaks along a route at the time of message transmission.
There are three ways of monitoring the error in route.
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1. Hop-by-hop acknowledgement.
2. Passive acknowledgement.
3. End-to-end acknowledgement.

In hop-by-hop acknowledgement, at each hop, the node transmitting the packet
can determine which link of the route is not functioning, and sends an error packet
to the source. But the hop-by-hop acknowledgement would require a low level (data
link layer) support. If the underlying network does not support such a low level
acknowledgement mechanism, passive acknowledgement can be utilized to discover
the route in error. The passive acknowledgement works as follows. After sending a
packet to next hop a node promiscuously listens to the transmission of the packet
by the next hop to the subsequent hop. If no transmission could be detected then
the it may be assumed that there is a break in link between next hop and the hop
following it. The other straightforward technique could be to seek explicit end-to-
end acknowledgement by setting a bit in forwarding message packet itself, which
indicates an acknowledgement should be sent to the source. The problem of sending
explicit acknowledgement back to the source is quite similar to the problem of sending
a corresponding route reply packet back to the original sender of a route request. If
the wireless transmission between two hosts works equally well in both directions
the acknowledgement can be sent in the reverse direction using the same route as
the one used by the original message. Otherwise, the host detecting a broken link,
sends the error packet back to the source if the former has an entry for the latter in
its route cache. When there is no unicast route to the source, the error packet can
be sent by the detecting host by piggybacking the error on a RREQ packet for the
original sender.

7.4.4 Piggybacking on Route Discovery

When the links are unidirectional, the concept of piggybacking of data along with
the route discovery can be used to amortize the message delivery time with route
discovery delay. If a RREQ is propagated all the way upto a destination, piggybacking
has no problem except that the size of piggybacked data must be small. However,
the piggybacked data is lost if some intermediate node on the route that has a cached
route to the destination sends a route reply from the cached data and discards the
RREQ packet.

Without the loss of generality, let us examine the problem for the case that a route
discovery from source to destination is over and a route reply should now be sent from
the destination back to the source. As shown in Fig. 7.6, a route S → G → H → D
has been detected after a route discovery was initiated by S for D. Now a route reply
(RREP) should be unicast to S by D. But suppose no such unicast route from D to
S is known. Then D must now initiate a route discovery for the target S, but it sends
RREP as piggyback data on RREQ for S. Suppose (an intermediate) node B on the
route from D to S has a route, say B → A → S, in its route cache. So B can unicasts
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Fig. 7.6 B unicasting
piggyback data (D’s RREP)
to S

S D

A

C
B

G H
E

RREQ with piggyback RREP 
RREP for S to D route from D

RREP for D to S route from B

RREQ for the route from D to S, via B → E → H → D. But piggybacked data
(RREP) from D to S will be lost unless B unicasts to S the RREP being piggybacked
by D with its RREQ to S. The blue arrows represent unicasting of RREP from D
for S to D path by the intermediate node B. The green arrows represent unicasting
of RREP from B for D to S route. The red arrows indicate the RREQ from D for
destination S which carries piggyback RREP from D for the S to D path.

7.4.5 Handling Route Replies

Problems may arise when several mobile hosts receiving RREQ from an initiator
send RREPs from their respective local route caches. Two noticeable problems arise
due to asynchronous and autonomous operations of mobile hosts.

1. A number of hosts may send replies creating a flooding problem.
2. It is possible that the reply reaches the initiator from a host which is at a longer

distance slightly ahead of time than that from a host at a shorter distance from
the destination.

In order to avoid the problem of simultaneous replies and to eliminate replies indi-
cating longer routes, following simple mechanism may be employed. Every node
with a cached route to the destination delays the sending of RREP. The delay is set
as d = H ∗ (h − 1 + r), where, H is a suitably chosen small constant, 0 < r < 1
a randomly generated number, and h is the number of hops to reach the destination
from the node sending the route reply. The delay d in sending route replies takes
care of the situation where a reply with a poor route metric being sent earlier to the
initiator than a reply with a better route metric. By operating in promiscuous mode a
host may listen to all route replies reaching at any of its neighbours during the delay
period. The host will not transmit the RREP packet if it listens to any RREP for the
same target (the destination address for the RREQ packet) of a route request.

The more serious problem in using route cache for route reply is formation of a
loop. Though the cached data for route entries themselves may not include loops,
a loop may appear when a route gets established during the route discovery phase.
For example, consider Fig. 7.7 where A has a cached route to destination D when
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Fig. 7.7 Loop formation in
using cached data for route
reply

A B C D

path B A B C D has a loop

node B initiates a route discovery for D. Node A sends the route to D from its cached
data to B, which is A → B → C → D. So the source route from B to D will become
B → A → B → C → D. This route contains a loop, any message from B to D has
to traverse A → B path once in backward direction and once in forward direction.
To avoid such a loop formation, a possible approach could be as follows. If a route
reply from cached data also includes the initiator, then this route is spliced into two
parts. The first part is from the host that sent reply to the initiator and the second part
is from the initiator to the target. The latter part is cached locally at the initiator. So,
the entire path B → A → B → C → D is spliced at A and the part B → C → D
is sent to B in route reply. However, DSR prohibits any node from sending a RREP
for the route where the node itself does not appear. There are two reasons why this
is not allowed.

1. Firstly, if a node N is a part of the route it returns, the probability of route’s
validity increases. This is due to the fact, that N will get a RERR if the route
were invalid.

2. Secondly, if and when a route becomes invalid then N , which originally sent the
RREP, also gets the RERR when the route is invalidate. This ensures that stale
data is removed from N’s route cache in a timely manner.

7.4.6 Operating in Promiscuous Mode

As discussed earlier in the previous subsection, the problem of receiving several
route replies and the routes longer than the shortest route to the destination can be
eliminated by turning into promiscuous receive mode. Operating in promiscuous
receive mode is found to be advantageous in reflecting shorter route updates, spe-
cially in mobile environment. Consider the situation as depicted in Fig. 7.8. Node
N1 transmits a packet to some destination through the nodes N2 and N3 with N2
being the next hop and N3 being the second hop on the route. Since nodes operate
in promiscuous receive mode, N3 receives the packet being sent from N1 to N2, and
infers that the actual route can be shortened by eliminating the hop N2. This situation

Fig. 7.8 Reflecting shorter
route updates N1 N2 N3
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can occur when N1 moves closer to N3. In this case N3 sends an unsolicited RREP to
N1 which can then update the local route cache. But the major problem in operating
in promiscuous receive mode is that the nodes must be power-on most of the time.

7.5 Ad hoc On-demand Distance Vector Routing

Ad hoc On-demand Distance Vector (AODV) [15] routing is an adaptation of the
classical distance vector routing algorithm to the mobile case. It is a distributed
routing algorithm, and like DSDV algorithm employs a sequence number for each
entry in the routing table maintained by a node. The sequence number is created
either by the destination or by the leader of the group in a multicast group. A node
always uses the route with the highest sequence number from among the available
alternatives routes to a destination.

AODV uses three basic types of messages:

1. Route REQuest (RREQ),
2. Route REPly (RREP) and
3. Multicast route ACTivation (MACT).

The first two types of messages have obvious meanings. MACT message is used
along with RREQ and RREP to maintain multicast route trees. The significance of
MACT message will be clear when multicast routing is discussed.

Each node along a route from a source to a destination maintains only the next
hop entry in AODV. Therefore, the size of route table at each node is small. AODV
reduces the need for system wide broadcasts by localizing the propagation of changes
in the network topology. For example, if a link status does not affect the ongoing
communication or the maintenance of a multicast tree then no broadcast occurs. A
global effect is observed only when a distant source attempts to use a broken link.
One or more nodes that are using a link are informed when it breaks.

AODV also maintains a multicast tree for group communication. Hence multicast,
broadcast and unicast all are integrated into a single protocol. The route tables also
create or update the reverse route as a RREQ is being pushed progressively from the
source towards the destination. So any node, on a path along which RREQ has been
forwarded, can reach the source node by using the reverse pointers.

7.5.1 Design Decisions

Some of the design decisions in AODV are as follows.

• The routes not used are expired and discarded.
• After the primary route has expired, an alternative route is used, if one is available
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• If available, an alternative route can be used to bypass a broken link on the primary
route.

By expiring the unused routes, maintenance of stale routes can be avoided. However,
managing simultaneous aging process of multiple routes between a source and a
destination is not easy. Although in theory, the use of alternative routes is possible,
the same may also become invalid by the time primary route expires. Furthermore,
bypassing broken link may not always be possible if all alternative routes use the
same broken link.

7.5.2 Route Tables

AODV does not attempt to maintain routes. The routes are discovered as and when
needed, and maintained as long as they are used. AODV uses sequence number
to eliminate loops. Every node maintains its own sequence number. The sequence
number of a multicast group is maintained by the leader of the group. A route table
and a multicast route tables are maintained at each node.

The four important parts of a route table entry are: next hop, destination
sequence number, hop count, and life time. A typical entry in a route
table consists of the following fields:

Source and destination IP addresses

Destination sequence number

Hop count

Next hop

Expiry time

Routing flags

Last hop count

List of precursors

Each intermediate node N along a route maintains a list of active nodes which use
N as the next hop to forward data packets to a given destination D. All such nodes
are called precursors of N . A node is considered active if it originates or forwards
at least one packet for the chosen destination within active_timeout period.
The active_timeout period is typically 3000 ms. The precursor list is required
for route maintenance when a link breaks. The routes to a destination from all the
precursors of a nodeN become invalid if and when the route fromN to the destination
becomes invalid.

The entries in a multicast route table are similar to route table except for the
following additional information:

• More than one next hops are stored.
• Each hop associated with activated flag and a direction.
• A route can be used only after activated flag has been set.
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• Direction is either upstream or downstream relative to the group leader.

The requirement for maintaining these extra fields will become clear when the dis-
covery and the maintenance of multicast routes are discussed.

7.5.3 Unicast Route Discovery and Maintenance

A node which needs a route to a destination broadcasts a RREQ. Any intermediate
node with a current route destination can unicast a RREP to the source. The infor-
mation obtained by RREQ and RREP messages help to build routing tables. The
sequence numbers are used to eliminate the expired routes.

7.5.3.1 Creating a RREQ

A node wishing to send a packet to some destination, first searches the local routing
table for a matching entry. If the source has a route then it forwards the packet to
the preferred next hop. Otherwise a route discovery is initiated by creating a RREQ.
The required fields for a RREQ are:

Src_ID

Dest_ID

Src_seqNo

Dest_seqNo

Broadcast_ID

The Src_seqNo number is used to refresh the reverse routes to a source. The
Broadcast_ID and Src_ID pair uniquely identify a RREQ. After forwarding a
RREQ, a node stores the same in a RREQ cache for sometime. It helps to restrict
flooding. For example, if an old RREQ arrives again at a node possibly through
an alternative path, then the node by examining RREQ cache can determine it, and
discard the RREQ. It prevents an RREQ from looping around.

Since AODV assumes bidirectional links, a RREQ is also used for constructing
a reverse path to a source. By storing the reverse next hop, an intermediate node
can unicast a received RREP to the source. The source broadcasts the RREQ and
sets a time out for the reply. Timeout for the reply ensures that a node does not wait
indefinitely for receiving a RREP. Dest_seqNo is the sequence number of the last
known path to the destination.
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7.5.3.2 Processing a RREQ

On receiving a RREQ, a node first checks its RREQ cache to determine if the cur-
rent RREQ was an old RREQ already seen by the node. If the source ID and the
broadcast ID match a RREQ present in the cache, the recipient node discards the
RREQ. Otherwise it sets up a reverse route entry for the source node in the route
table. The reverse route entry consists of <src_ID, src_seqNo, hop_cnt,
nbr_ID>, where nbr_ID is the ID of the neighbor from which the RREQ was
received. Thus, for the reverse path nbr_ID becomes the next_hop. As and when
a RREP is received for the RREQ, the current node can forward the RREP to the
source through the downstream neighbor on the reverse route towards the source. An
intermediate node, receiving a RREQ, can also unicasts a RREP back to the source
if it has an unexpired entry for the destination, and the sequence number of this entry
is greater than or equal to the destination sequence number (the last known sequence
number) carried by the RREQ packet. Note that the unexpired path means that the
path is active.

AODV provides a loop free route from a source to destination by employing
sequence numbers like DSDV. A formal proof for the fact that AODV avoids forma-
tion of a loop is provided in Lemma 7.2.

Lemma 7.2 AODV provides a loop free paths between source and destination pairs.

Proof The key idea behind the proof is that a route from a source to a destination
imposes a logical ordering of the nodes along the path, based on the destination
sequence numbers and hop count. The proof is based on the following two key
assumptions:

• A higher sequence number has precedence over hop count, and
• For the same sequence number, lower hop count has the precedence.

AODV forces discovery of loop-free route from a source to destination by imposing
the above conditions on the sequence numbers. According these, a node v can select
w as its next hop on the path to a destination D provided

• The destination sequence number at v is less than the destination sequence number
at w, or

• The destination sequence numbers are same but DIST(v,D) < DIST(w,D)

We can rephrase the sequence number conditions using the notion of downstream
and upstream nodes on a path. If on a path from v to D, w is closer to D than v, then w
is considered as downstream to v with respect to D. The loop freedom is guaranteed
because AODV never finds a path to a destination from a downstream node (w) via
an upstream node (v). Let us assume that a loop exists as shown in the Fig. 7.9. The
table shows the sequence number and the next hop for the route to destination D
corresponding to the intermediate nodes I1, I2 and I3. The loop is represented by the
links I1 → I2, I2 → I3 and I3 → I1. According to the sequence number condition:

T1 ≤ T2,T2 ≤ T3, and T3 ≤ T2 so, T1 = T2 = T3 (7.1)
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Fig. 7.9 A possible loop
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Let Hi the number of hops from Ii → Ii+1 mod 3. Now applying the sequence
number condition with relations 7.1 we must have Hi = Hi+1 + 1. But for our
example, H1 = 1, H2 = 1 and H3 = 1. So H3 �= H1 + 1, which is a contradiction.
Therefore, a loop cannot exist.

7.5.3.3 Expanding Ring Search

By localizing the search area for route discovery, it is possible to restrict flooding.
For localizing the search, the trick is to use an expanding ring search by setting a
TTL (time to live) value. The TTL specifies the diameter of the subsection of N/W
in which RREQ must be flooded. If a route to the target not found in that subsection
of the N/W, a new RREQ with an increased TTL is launched. The TTL value is
recorded in the route table. For subsequent route discovery to the same destination,
the starting TTL is set to the value in the route table. This approach progressively
enlarges the section of the network in which route request packet is to be flooded. It
localizes the route request to a portion of the network where the destination is most
likely to be found.

RREP processing
An RREP packet has five fields:

Src_ID

Dest_ID

Dest_seqNo

Hop_cnt

Lifetime

When any node receives a RREQ, it can generate and send RREP for the RREQ
provided that:
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Fig. 7.10 Intermediate node
unicasting a RREP
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1. The node has an active route to the destination, and
2. The destination sequence number of the route currently being used by the node

equal to or greater than the destination sequence number carried in the RREQ
packet.

If an intermediate node generates an RREP, then it should include hop count to the
destination, lifetime for the expiry of the current route, and the destination sequence
according to the information available in its own routing table.

The scenario where an intermediate node can send RREP is illustrated in Fig. 7.10.
Node I sets the hop count to 3 as it is 3 hops away from the destination node D. When
no intermediate node along the path from source to destination has any active path,
the RREQ eventually will reach the destination. On receiving RREQ, the destination
node will generate and send a RREP.

An intermediate node sets up the forward path to destination when it receives a
RREP. At first, it creates a local route entry for the forward path as follows.

• Takes the node ID from RREP to define the next hop to destination.
• Takes the ID of destination for indexing the route table.
• Adds 1 to hop count and stores the same in the entry.
• Takes the lifetime from RREP and places it in the entry.

After a route table entry has been created, the hop count carried by RREP is incre-
mented by one. This ensures that if the route to destination were to pass through the
current intermediate node, then the hop count would also include the current node.
Finally, the RREP is forwarded towards the source by using the next back hop or the
next hop of the reverse route entry. Finally the RREP reaches the source and a route
entry corresponding to destination is created. Clearly, RREP is a targeted unicast
packet, because it is forwarded by using the next hop entries available in the routing
tables of the nodes upstream towards the source.

Each time a route is used, its life time is updated. The route discovery process
is explained in Fig. 7.11. The flooding of RREQ is shown by solid lines, the arrows
denote the direction of flooding. The dashed lines with arrows indicate the direction
in which RREP traverses. The time outs received by the source, from the nodes not
having routes to the destination are also indicated in the figure.
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Fig. 7.11 Route discovery
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7.5.3.4 Route Maintenance

A route is maintained as long as it is needed. The movements of the nodes affecting
active paths are only considered. The route maintenance is responsible primarily for:

1. Detecting link breaks on active paths, and
2. Building alternative paths when node movements occur.

Routes may become invalid due to movement of nodes. For example, if the source
node moves, a route discovery should be re-initiated if the path to destination is
still needed. Every node must maintain its neighborhood information to detect any
movement as soon as it happens.

Neighborhood information
Typically, the neighborhood information at a node is maintained by periodic broad-
cast of hello messages from its neighbors. If a node N has not sent anything (either a
message or a hello message) within the last hello_interval, N sends a hello
packet to inform the neighbors that it is still in the vicinity. Hello packet is in reality
an unsolicited RREP. Hello packet is not rebroadcast, as it carries a TTL = 1. A
change in neighborhood of a node N is indicated if N fails to receive consecutive
allowed_hello_loss of packets from another node, which was previously in
the neighborhood of N . The typical value of allowed_hello_loss = 2. On
receiving a hello message from a neighbor, a node updates the lifetime of that neigh-
bor. If an entry for the neighbor does not exist, then the node creates one.

Link breaks
A link break on a route from a source to a destination is detected when the
downstream neighbors of that link on the route fails to receive consecutiveallowed_
hello_loss hello packets in the usual hello interval. Link break is propagated
upstream by sending a RERR packet. The RERR packet originates from the upstream
end node detecting the break. As explained earlier, every node maintains a list of
precursors for each destination. A precursor is an upstream neighbor of the node
that uses the current node as the next hop for a valid route to a chosen destination.
For each broken link, the upstream end node (the end node closer to the source)
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Fig. 7.12 Route
maintenance
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sends RERR to all the nodes in its list of precursors. These precursors are exactly
those nodes which use the upstream end node as the next hop for a valid route to the
destination.

A source re-initiate route discovery when it receives a RERR packet from each
of its downstream neighbors has next hop entry for an active route to the destination.
Figure 7.12 shows an active path from source S to destination D passes through four
intermediate nodes N0, N1, N2, N3. After a while node N3 moves away to a new
position. Due to breakage of links (N1,N2) and (N2,N3), the route from S to D
is no longer valid. The route has to be invalidated by sending a route error packet
(RERR) from N2 which is the farthest upstream intermediate node on the route. The
dashed arrows indicate the path that RERR traverses using precursors on the route
from N2 to S.

7.5.4 Multicast Route Discovery and Maintenance

A multicast route discovery is essentially an extension of unicast route discovery. A
node N initiates a multicast route discovery if

• Either N wants to send data to a group, or
• N wants to join a multicast group.

N initiates a multicast route discovery by creating a RREQ with destination IP address
of the group. If N knows about the group leader G and has a valid path to G then
it can unicast the RREQ by including the IP address of G, the last known sequence
number of the group, and a join flag if N is interested to join the group.

If RREQ is marked join then only members of group can respond. Otherwise,
any node with fresh enough path to group can respond. A RREQ with join is
processed by a node N as follows:

• If N is not a member of the multicast group, it creates a reverse entry for the source
and rebroadcasts the RREQ.

• If N is a group member then it responds to RREQ by adding an unactivated entry
for the source in its multicast table.
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If N receives a RREQ (without join flag) for a group then RREQ is processed as
follows:

• If N is not a member of the group and does not have a route to the group it creates
a reverse entry to the source and rebroadcasts RREQ.

The source waits for a time out to receive a reply. It can rebroadcast RREQ increment-
ing the broadcast ID by one. The source continues rebroadcast RREQ till it receives
a reply or the number of broadcast becomes equal to rreq_retries after which
it declare itself as the leader. Figure 7.13a illustrates how RREQ with join flag gets
flooded in the network and a new tree branch is grafted into the multicast tree. The
nodes labeled by R are not members of the multicast group, but are routers for the
group. The new node N which wants to join the multicast group sends RREQ with
join flag on. After RREQ has spread through the network RREPs originate from
two router nodes and two group members. Then RREPs spread in the network as

(a) Spreading RREQ.

G

R

R

(b) Sending RREPs.
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R

R newly added
group member

addition of
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N

(c) Adding a new branch.
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Group
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Group
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Fig. 7.13 Grafting a new branch to multicast tree
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illustrated by Fig. 7.13b. Finally, Fig. 7.13c shows that the new tree branch consisting
of a new router node and N are added into the tree.

After a tree branch is added to the multicast tree, the nodes in the newly grafted
branch should be activated by sending an explicit activation message on the branch.
The reasons for requirement of an explicit activation are:

• RREPs for join request should trace out the path to the source so that one of the
potential tree branches can be grafted into multicast tree.

• Besides forwarding of the RREP with join request, the RREPs for non-join requests
may also be forwarded in order to set up paths to multicast tree. Grafting a tree
branch for non-join request is not warranted.

• Multicast data packets are sent as broadcast traffic. So, all the nodes which for-
warded the RREPs to the source node have fresh routes to multicast tree. If explicit
activation were not needed, potentially, all these nodes which sent RREPs for a
branch can forward data packets to multicast group.

The last point is particularly important, as it may lead to inefficient use of bandwidth
when all nodes involved may potentially create large amount of network traffic.
Therefore, only one of possible branches should be allowed to forward data to mul-
ticast group.

The source waits for the length of the interval for route discovery before it can
use the path. At first, the source unicasts a MACT message to the node from which it
received the RREP. The upstream neighbour sets active flag against the source in
its own route table before forwarding the same to the next hop upstream towards the
originator. Each node on the route sets active flag for hop, and forwards MACT
to the next upstream neighbor until it reaches the originator of RREP.

MACT message is used also for deactivating an existing path if it is not needed any
more. The deactivation proceeds as follows. If a leaf node (of the multicast group)
wishes to leave the group, then the node may just prunes itself from the multicast
tree. The next upstream hop deletes the entry corresponding to the deserter. But if a
non-leaf node wishes to leave the group, it cannot detach itself from the tree. Such
nodes must continue to serve as a router for the multicast group. On receiving a
MACT with prune flag, a node N deletes the entry corresponding to the source of the
current MACT. If N is a router and the deletion of the previous hop turns into N a
leaf node, then N would initiate its pruning by sending a MACT with prune flag. But
if the N is a group member, then it may not want to revoke its group membership.
The deletion of branch using MACT is shown in Fig. 7.14.

7.5.4.1 Maintenance of Multicast Routes

A unicast route is maintained only as long as it is required. However, in the case of
musticast routes, a multicast tree should be maintained for the entire lifetime of the
existence of the group. Every link requires maintenance so that each group member
can access the multicast group. A link is assumed to have a lifetime which is equal to

hello_lifetime = (1 + allowed_hello_losses) × hello_interval).
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Fig. 7.14 Pruning after a
member node leave the
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If no data packet is sent within a fixed interval calledhello-interval, each node
must receive a broadcast from its next hop neighbor in multicast tree. The broadcast
may either be a RREQ, or a group hello or a hello packet. The hello packet, as stated
earlier, is a RREP with TTL value 1.

If a link M → N breaks, then the downstream node N of the broken link initiates
a route discovery for the multicast group. The upstream node of the broken link M
may just be a router for the multicast tree. If M becomes a leaf node after link break,
it tries to detach itself. It does so, by sending a MACT with prune flag to its upstream
node in the tree. However, MACT is sent only after prune_timeout. The idea
behind allowing a timeout is that M may still be available nearby N . If N initiates
a route discovery to multicast tree, it may get connected to the multicast tree by an
alternative path through M. For repairing the route, N sends a RREQ packet with a
small TTL value, which includes also its distance of N from the group leader. The
reason for a small TTL is that M may still be available nearby. Any node X, having
an active route to multicast group, can respond to RREQ provided X is as close to
the group leader as N . The above restriction prevents any node in the same side of
break as N from responding. If this check is not enforced then a loop can occur if
route replies were received from the nodes on both side of the link break. Figure 7.15
illustrates the route repair process. After N is able to add its subtree to multicast
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Fig. 7.15 Repairing link breakage in AODV

tree, it sends a MACT message to its next hop for activating the link. N also sends
a MACT with update flag to its downstream neighbors. This message includes the
new depth of N from the group leader. The downstream descendants in N’s subtree
update their respective depths from the group leader when they receive the MACT
with update flag.

If node initiating repair does not receive any RREP after rreq_retries, then
it is assumed that network is partitioned. Under this scenario, the partitioned nodes
must also declare a new group leader. If N is a member of the multicast group then
it can declare itself as the group leader. It sends then MACT message with update
flag to its downstream neighbors. If N is not a group member and becomes a leaf
node after link break, then it can decide to prune itself by sending a prune message
to next hop downstream. This action is also repeated at the downstream successor
if N has only one neighbor. However, if N has more than 1 downstream successors
then it selects one of the successors and sends a MACT with the group leader flag
indicating the next node which is a member of the group receiving the MACT should
become the new group leader. After the group leader is selected the multicast group
has more than 1 group leaders due to partition.

Topological changes over time may reconnect the two network partitions. The
nodes in a tree partition learn about connectivity status when a GRouP Hello (GRPH)
message is received from another partition. The ID of the group leader they receive
will be different from known ID of the group leader. If a group leader receives
GRPH message for the group for which it is the leader, then the leader with lower
IP address GL1 initiate a reconnection by unicasting a RREQ with repair flag to the
other group leader GL2 using the node from which it received GRPH. The RREQ
also includes GL1’s multicast group sequence number. Every node in GL2’s tree
which receives this RREQ forwards it towards GL2. When RREQ reaches GL2, it
updates the group sequence number by taking the maximum of two and adding 1
to it. Then a RREP is sent back to GL1. This RREP also should have repair flag.
As the RREP traverses back on the path from GL2 to GL1 every link along the
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path is oriented towards GL1, the nodes update their routing tables, activate the link.
The tree partitions are connected when RREP reaches GL1 with GL2 becoming
the leader. Every node is updated about the new group leader’s identity by GRPH
message. GRPH is periodically broadcast from the group leader as an unsolicited
RREP with TTL value larger than the diameter of the network. It reaches every node
in the tree which update their sequence number and the group leader’s ID.

7.6 Zonal Routing Protocol

Zonal Routing Protocol (ZRP), proposed by Haas and Perlman [16], is a dynamic
zone based hybrid routing scheme. The scope of proactive scheme is restricted to
a local neighborhood of each node called its zone. A route to a distant node is
determined by querying a subset of nodes in the network. The protocol relies on the
following important observation.

• Routing can be efficient if the topology changes in network can be quickly dis-
seminated in the local neighborhood.

The above basic idea of restricting the propagation of changes in network topology
only to the local neighborhood where the changes take place is also used by fishey
state routing (FSR) [12]. However, the granularity of propagation in FSR is controlled
only by varying the periodicity of update propagation according to distance. FSR
distributes information about topology changes over the whole network at some
regular though larger time interval compared to DSDV.

ZRP combines the characteristic of creating a route on-demand as in reactive rout-
ing schemes with the property of fast convergence that is typical to proactive routing
algorithms. It restricts the propagation of topology changes to the local neighbor-
hoods of the involved nodes, and creates a route between a pair distant nodes on-
demand. Only active routes between distant nodes are maintained as the topology
changes. Topology changes are not propagated over the entire network.

7.6.1 Routing Zones

A node maintains routes to all destinations within its local neighborhood called its
routing zone. In other words, a node’s routing zone consists of all nodes which may
be reached from it by a fixed number of hops, say 1 to 2. This fixed number, denoted
by ρ, defines the routing zone is called zone radius. For example, in Fig. 7.16 the
routing zone for s consists of nodes {a, b, c, e, h, i, j, k} which are within two hops
from s. The nodes {e, f , g, h, i, k} are peripheral nodes of the routing zone of s. The
radius ρ of a routing zone is adjustable, and usually a small constant. Since it is not
possible to control or predict the presence of the number of mobile nodes in an area,
the number of nodes in a routing zone may potentially be very large if ρ is not small.
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A large routing zone would generate a large amount of update traffic. This apart, the
diameter of an ad hoc network usually does not exceed 5 or 6. Consequently, the
very purpose of ZRP is defeated if a large zone radius is selected. In other words,
with large zone radius, ZRP no longer remains a hybrid protocol.

Each node proactively maintains information about the routes to all other nodes
within its routing zone. Therefore, the updates are propagated locally. Periodic rout-
ing updates do not flood the entire network, and full dumps for routing updates are
not needed. The nodes use a proactive protocol called IntrAzone Routing Protocol
(IARP) to maintain the routing information in its routing zone. It is interesting to
observe that nothing prevents a node from using a different proactive schemes from
other nodes. However, the problem in this approach is that different control packets
of varying length and structures will be needed to maintain intrazone routes. Usually
DSDV [14] is used for IARP.

7.6.2 Interzone Routing

An IntErzone Routing Protocol (IERP) is used for discovery of route on-demand
to the destinations beyond a source’s own routing zone. Theoretically, IERP can be
based on any reactive protocol. It does not matter which reactive protocol is chosen
for IERP as long as that protocol is able to exploit the information about local
routing zone topology maintained by IARP to guide the query for route discovery.
This is achieved by delivering the route request queries from a receiving node to the
peripheral nodes in its routing zone. The delivery service is called bordercasting.
The bordercasting is illustrated by Fig. 7.17. The source labeled S has a zone radius
ρ = 2. The nodes {a, b, c, d, e, h, i} belong to its routing zone. If S were to send
a datagram to D and does not have a valid route to D then a route discovery is
initiated by S. Since, D does not belong to routing zone of S, S bordercasts a route
request to the peripheral nodes {e, f , g, h, i} of its routing zone. Each node receiving
bordercast checks for availability of the destination in their respective zones before a
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Fig. 7.17 Bordercasting and operation of IERP

repeat bordercast of the query in their own zones. So g bordercasts the request to J .
Since, D does not belong to J’s routing zone, J again bordercasts route discovery to
n, x, o and p. Node o’s bordercast finally reaches Q. Since, D belongs to routing zone
of Q, the route discovery is over. The bordercasts collectively construct a tree. The
branches of the tree are indicated in Fig. 7.17 by solid links labeled T. The forwarding
path S → g → J → Q, thus, gets created. The discovery process is complete when
a route reply is sent back to the source. The procedure for route discovery by a source
S to a destination D is summarized below:

• S first checks its own routing zone to find D. If D is found, then S sends the packet
to D using local routing table of S.

• Otherwise (D does not belong to routing zone of S), S bordercast (unicasts to
border nodes) RREQ to peripheral nodes of its zone.

• If any of the peripheral nodes finds D in its zone, then it responds by sending
RREP to S. If a peripheral node does not have a path to D then it re-bordercasts
the RREQ.

In Fig. 7.17, the dotted circles represent the routing zones of the respective nodes
S, J and Q. Routing zones of g, o, and other involved nodes have not been shown
as these zones are not relevant to the route. Node Q finds D in its routing zone, so
it sends RREP to S. The routing zones of other nodes involved in route discovery
procedure are not explicitly shown as it will clutter the figure. However, the reader
can imagine how a bordercast is carried out.
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7.6.3 Bordercast Tree and Query Control

A bordercast tree is defined by a root node r and the peripheral nodes of r’s routing
zone. The root of the tree appends complete forwarding path map in a RREQ packet.
For example, node S include the path map as shown below.

Query message
Border node Relay node
e c
f c
g b
h d
i d

The overhead of including forwarding path in RREQ grows linearly with the size
of routing zone. Therefore, the number of hops defining a routing zone should be a
small constant ρ. Bordercast effectively introduces an exponential path multiplying
scheme into route discovery procedure. Therefore, though the route discovery is
expected to be fast, control of flooding remains an issue.

ZRP supports a distributed construction of bordercast tree. This allows an interior
node of a routing zone to participate in construction of bordercast tree. Each node
proactively tracks topology of a region extending beyond its own routing zone. An
interior node x of a bordercast tree constructs an entire tree ρ hop tree from the root
node by proactively tracking a topology of the region consisting of ρ+ρ−1 = 2ρ−1
hops away from it. Figure 7.18 depicts extended routing zone for relay interior node
c of S’s routing zone. Maintaining an extended routing zone adds overhead to IARP,
because router re-advertisements should include information about extended zone.
However, it helps interior nodes to save on query traffic overhead in the reactive
route discovery (IERP). So there is a trade-off between overhead of maintaining an
extended routing zone and saving in RREQ traffic.

The main motivation of query control mechanism is to ensure that search for
destination is guided from the source in all outward directions. It serves to reduce
flooding, and also to guide the query reaching the destination quickly. The implemen-
tation framework is to prevent a query from re-entering a covered zone. Figure 7.19
illustrates how the query should be dispersed from a source node in all directions [16]
so that it reaches targeted destination and prevented from re-entering already covered
regions.

Two types of advance query detection techniques QD1 and QD2 are used for early
termination of route discovery queries [16]. QD1 is concerned with direct relay of
bordercast messages. When an interior node relays a bordercast message, it prevents
messages flowing over downstream branches leading to peripheral nodes inside the
covered region of the network. As Fig. 7.18 demonstrates, node c has full knowledge
of S’s routing zone. Therefore, c can terminate re-bordercast of S’s query back to
its routing zone from a node belonging to the uncovered region in c’s extended
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Fig. 7.20 Detection of route
discovery query
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zone. The query detection technique QD2 is used by the nodes of a routing zone
which have overheard a route discovery query. These nodes can terminate the query
if a re-bordercast is received directly from any node in the uncovered region. In a
single channel transmission, QD2 can be detected by any node in transmission range
of a relaying node. The capability for QD2 can be implemented through IP and
MAC layer broadcasts. For example, as illustrated in Fig. 7.20 node k in S’s routing
zone overhears query from a, and participates in preventing the same query from
re-entering S’s region. The other nodes in S use QD1 as all of these node participate
in forwarding the query.

7.6.4 Random Delay in Query Processing

Random query processing delay introduces asynchronicity in forwarding queries.
The idea behind the approach is to ensure that the same query does not reach a
node simultaneously by different paths. Each node waits for a random time before
it constructs the bordercast tree. As the nodes waits to send the query, it could also
detect queries from other bordercasting nodes and prune the overlapping branches
in the bordercast tree. For example, as shown in Fig. 7.21 nodes a and b both receive
query at the same time. If they both rebroadcast the query simultaneously, they will
later come to know that both were spreading the same query in overlapping regions
and wasting bandwidth. But using the random delay approach, bwithholds the query,
while a schedules its query much in advance. Furthermore, a uses QD1 to know about
the same query from b when it launches its own query. Therefore, a can prune its
downstream branches belonging to b’s zone.
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7.6.5 Route Caching

Active routes are cached at intermediate nodes. The route cache can be used to
reduce frequency of route discovery. When the nodes on an active route move, that
route becames invalid. If the link breaks occur upstream towards the destination then
instead of initiating a fresh discovery of route, it will be less expensive to repair the
existing route locally with the help of route cache. A local repair works by patching
the invalid route to the destination from the nearest upstream node from the first link
break. Thus the local repair constructs a bypass to avoid the first broken link on the
existing path. In theory a route may be patched up many times. But in practice, the
route may deviate appreciably from a shortest route after one or two such patchings.
Therefore, after a few local repairs, the source may decide to initiate a fresh route
discovery. This scheme follows the approach similar to that we found in use of
forward pointer for location update schemes described earlier.
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