
Chapter 12
Data Dissemination and Broadcast Disks

12.1 Introduction

Data management is one of the important challenges in mobile applications. Due to
resource constraints, mobile devices are not equipped to run any interesting, non-
trivial stand-alone applications. On the other hand, the enabling technologies such
as cellular communication, wireless LAN, wireless data network and satellite ser-
vices have equipped mobile terminals with capabilities to access data/information
anywhere at any time. Researchers saw immense potentials in combining two fore-
mentioned aspects in complementary roles, for developing a powerful framework for
innovative person centric services. The key idea is to organize a mobile application
as a set of synchronized activities that requires very little computation at a mobile
end host, but capitalizes on globally available resources accessible through networks.
This would allow a mobile user to transact both official business, and financial trans-
actions. The possibilities of creating innovative commercial and financial models for
anytime, anywhere access of person centric services excited research in mobile data
management.

The core problem of data delivery over mobile wireless network became a major
challenge to the database community since the adaptation of the concept of object
oriented databases. In a wireless network, connectivity is not only flaky, but band-
width is also low. Furthermore, there is no control on the number of mobile users
which may appear in an area of cellular coverage. The scale is simply overwhelming.
The conventional data delivery model based on request and response (like HTTP)
cannot just match up to the challenge of scale.

The push based data delivery is considered as the most attractive option that may
allow a server to avoid being flooded by large number of client requests. Some early
work in the area of data dissemination inspired the research for data dissemination
in mobile distributed system. In 1734, broadcast emerged as a dominant theme for
high volume information dissemination by utilizing print media. Around 1898, radio
transmission was introduced, and in 1924 video streaming became a possible with

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_12

375



376 12 Data Dissemination and Broadcast Disks

invention of Television. Electronic transmission media not only served as entertain-
ment channels but also revolutionized dissemination of public information.

Around mid eighties two systems were implemented using broadcast delivery.
The first one is known as BCIS (Boston Community Information System) [8]. It was
a pilot project for dissemination of news and information over FM channel to about
200 clients having personal computers equipped with wireless interfaces. The system
used both push and pull based data delivery methods [3]. The second one called
Datacycle [10], was a high throughput oriented transaction system implemented over
public telephone system. It exploited transmission bandwidth of optical systems to
leverage database as a storage pump, and broadcast records repeatedly on a broadcast
channel. A transaction on a host could request an operation on database using a well
defined interface provided with the associated access manager. The operation was
decomposed into a specification to process records as they appear on the broadcast
channel. To complete a transaction, a host submits update/commit requests to the
access manager. Using a network uplink, the access manager sends the update request
to the update manager, which executes non conflicting updates on the database.

Theoretical results concerning performance of broadcast delivery models were
provided in [14]. Wong’s result, in particular, states that the lower bound of the
bandwidth requirement for the best possible mean response time of a broadcast page
is proportional to square root of its access frequency.

In this chapter our focus is primarily restricted to push based data delivery. How-
ever, it deals with classification of various options for data delivery in a client server
system along with the factors influencing these options. The major part of the chapter
is devoted to the idea behind treating an inherently sequential medium such as a
wireless communication channel organized in the form of logical disks on the air.
Furthermore, it shows that by treating the medium of air as part of a logical memory
hierarchy, data delivery mechanism can be organized extending from an individual
mobile client’s memory to a server’s disk.

12.2 Data Access Issues in Mobile Environment

At an end user’s level, the major concerns are:

1. Energy efficient accesses of requisite data,
2. Management of range of disconnections, and
3. Efficient processing of queries.

Therefore, indexing, caching and replications are as much relevant in mobile envi-
ronment as they are over the wired network with stationary hosts. However, due to
the unique physical characteristics of mobile terminals and wireless communication
medium these issues needed a revisit. In summary, the techniques for data manage-
ment in mobile distributed environment should be able to handle following four main
issues.



12.2 Data Access Issues in Mobile Environment 377

1. Mobility
2. Scaling
3. Disconnection
4. Access/delivery modes.

Data related to mobility may far exceed the complexity of any conventional large
database. It comprises of locating a mobile object, addressing, routing queries and
delivering responses. Some of these issues have been discussed under location man-
agement in the previous chapter. The issues arising out of scaling and disconnec-
tion are mainly handled through replication and caching strategies. Replication and
caching are discussed in Chap. 14. Access and delivery mechanisms are intertwined.
The role of delivery mechanism does not mean just putting loads of bits over commu-
nication channels, but organizing these bits through a structure that can be effectively
exploited to access data. But two most important constraints which come on the way
are:

• Availability of limited bandwidth, and
• Availability of limited battery power.

These constraints severely restrict transfer of large volume data. In a cellular based
network, the number of active mobile users cannot be controlled. If every mobile
uses a back channel to pull data for its own application from a fixed nodes, then
the channel saturates quickly and suffers from congestion too often. Availability of
limited energy in a mobile device is also a possible cause of planned disconnections,
as the user may wish to prolong battery life. So there is a need for energy efficient
access methods.

12.3 Pull and Push Based Data Delivery

A client application is the consumer of data and the server is the producer. In other
words, data and information are generated at the servers. So, the servers are repos-
itories of data/information that the client applications would require from time to
time. A server has to deliver appropriate data which the clients require for the appli-
cations to run. There are broadly two data delivery models as shown in Fig. 12.1. A
client initiated data delivery is essentially pull based. The client sends an explicit
request to a server. The responsibility of fetching data rests exclusively on the client.
On the other hand, when a server takes the responsibility of transferring data, then
transfer takes place in anticipation of a future access. No explicit request are made
from any client. The server estimates the data requirements of the client population
in a global context. A client must be alert during the time when the required data
for its application flows into a broadcast channel from a server. The data delivery
model adhering to this protocol referred to as push-based delivery. The delivery
model is analogous to TV transmission where the viewers tune to specific channel if
they wish to view a TV program. The channel caters to an expected general viewing

http://dx.doi.org/10.1007/978-981-10-3941-6_14


378 12 Data Dissemination and Broadcast Disks

··· ···

P
us

h

P
us

h

P
us

h

R
eq

ue
st

R
eq

ue
st

R
eq

ue
st

R
es

po
ns

e

R
es

po
ns

e

R
es

po
ns

e

Client initiated data delivery Server initiated data delivery

Client1Client1 Client2 Clientn Client2 Clientn

revreSrevreS

Fig. 12.1 Client and server initiated data delivery mechanisms

pattern on the basis of monthly ratings of the different TV shows. TV transmission,
thus, may not necessarily cater to specific individual choices. A similar situation is
witnessed in push-based data transfer. The information is not explicitly sought for,
but broadcast by a server to all or a group of clients. This method of data transfer is
referred to as data dissemination.

Figure 12.2 illustrates an implementation oriented view of data transfer mecha-
nism as applicable to the two data delivery models. In the pull-based data transfer
occurs in a request-response cycle. data transfer. In a push based transfer, data trans-
fer occurs on a broadcast channel. The server must have an idea of data that should
be pushed. Therefore, there may be a back channel through which profile informa-

Wireless channel

Broadcast schedule

Server

Request

Response

P
us

h
M

od
el

P
ul

lM
od

el

Offline collection of user’s profile

Mobile client

Fixed client

Fig. 12.2 Data delivery models



12.3 Pull and Push Based Data Delivery 379

tion of clients can be collected as indicated in the Fig. 12.2. Otherwise, the data
dissemination on broadcast channel can only be organized purely on the basis of a
knowledgeable assessment of the data requirements of the clients.

12.4 Dissemination in Mobile Environment

In mobile environment, there is a built-in asymmetry as mobile devices are resource
poor. Compute-intensive tasks are executed on the servers. Databases and other
storage repositories are also located on the servers. So, data dissemination techniques
in mobile environment are built around push based delivery mechanism, and rely on
broadcast or point to multipoint transmissions.

Pure push and pure pull represent two extreme data delivery methods. Between
the two extremities many delivery methods have been used. These methods were
determined by the varying requirements of data from the applications. On the basis
of design issues faced by applications, data delivery methods can be broadly classified
into four categories.

1. Data oriented,
2. Mechanism oriented,
3. Organization oriented,
4. Bandwidth oriented.

In the data oriented design, a client’s requirement of data can be of three types,
namely,

1. Publish only,
2. Demand driven,
3. Hybrid.

Certain data objects generated by a server assist a client learn about the occurrences
of events. The client does not require to process such data, but needs to know as
and when such data objects get generated. A server’s obligation is limited to publish
such data objects on downlink channel as and when these get generated. A client
accesses the desired data by passive listening and local filtering. Some applications
may require the clients to explicitly fetch certain data from a server and process
them. This requires a pull based delivery, wherein a clients places a demand for its
data requirement explicitly in form of queries over its uplink channel. The server
sends responses that resolve the queries. A hybrid delivery mechanism represents
a combination mechanism, where some data requirements are met by data objects
belonging to publish group and others are met by demand driven group of objects.
Normally, in a hybrid model there will be only a few objects belonging to demand
driven group.

Franklin and Zodnik [6, 7] observed application design spaces can be partitioned
according to mechanisms of data delivery, namely,



380 12 Data Dissemination and Broadcast Disks

1. Delivery initiation,
2. Scheduling strategy,
3. Communication type.

Delivery of data can either be initiated by a client or by a server. When initiated by
a client it represents essentially a pull model. On the other hand, when delivery is
initiated by a server, it represents push model. Scheduling basically deals with the
temporal mechanism of data delivery. The data is delivered on some pre-determined
schedule. Communication type can be: (i) unicast or point to point, (ii) multicast
or point to many points, i.e., one-to-many (iii) broadcast or one-to-all. There is a
difference between multicast and broadcast though both represent the communication
type that transmits data from one source to many destinations. In multicast the number
of recipients are known, whereas in broadcast the recipient can be any one. For
multicast, communication, a list of recipients should be maintained.

The organization of data delivery refers to the way data organized for delivery to
client. Two possible ways data can be organized, namely,

1. Broadcast program,
2. Selective tuning.

Broadcast program requires a server to anticipate the data requirements of its clients.
On the basis of the requirements, the server organizes a push schedule for data on
downlink channel. The data objects may be organized on a push schedule based on
client access priorities or bandwidth minimization or combination of both. We plan
to discuss more about broadcast program subsequently in this chapter as it represents
an important and interesting data dissemination technique specially in the context of
mobile distributed environments. Selective tuning requires a client to create its own
filtering and caching strategies for accessing data from the downlink channel. The
server embeds meta data and/or index along with information when pushing data on
downlink channel. Air indexing schemes are discussed in the next chapter.

Bandwidth oriented data delivery mechanism is concerned with apportioning of
bandwidth for pull and push. Normally, in a mobile environment much of the server
data is pushed on a downlink channel. Only a small fraction of bandwidth is allocated
for uplink communication. The uplink serves as a back channel for the demand
driven data delivery. However, in theory, bandwidth partitioning can be done either
(i) statically, or (ii) dynamically. In static allocation, the bandwidth is split in advance
between downlink and uplink. But this type of allocation may lead to under utilization
when access pattern is dynamic. Dynamic allocation is complex. It requires additional
runtime information about the changes in access patterns.

12.5 Comparison of Pull and Push Models

In a wired network, all the computers share the same physical medium (wire) for
data transfer. Therefore, data transmission capacities in both uplink and downlink
directions are the same. In wireless network, there is an asymmetry in capacity of



12.5 Comparison of Pull and Push Models 381

Table 12.1 Asymmetry in link capacities of wireless networks

Network type Technology Downlink Uplink

Satellite DirecPC 400 kbps 56.6 kbps (thru Tel.)

Cable TV Cable modem 10–30 Mbps 128 kbps (Shared)

Telephone ADSL, VDSL Modem 2 Mbps 9.6–640 kbps

Wireless 802.11 1–10 Mbps 9.6–19.2 kbps

links in two directions. The asymmetry in link capacities in the case of a few recent
examples N/W technologies have been provided in Table 12.1. Even, otherwise, the
asymmetry can occur even in a symmetric client-server setup. The anomalies in
bandwidths occur due to the fact that:

• Either physically different media are used for the uplink and the downlink con-
nections, or

• The same medium is split asymmetrically for uplink and downlink connections.

As the table indicates, depending on the N/W technology, the variations between
the downlink and the uplink capacities can range from 1:8 to 1:500. The asymmetry
can arise not only due to the limitation of N/W technology, but also due to load
asymmetry or data volume asymmetry. The load asymmetry is introduced when a
few machines in the N/W handle most of the messages. In particular, the service load
asymmetry may happen due to following reasons:

• The client-to-server ratio is high, so, the average load on a server is high.
• The updates are too frequent, so, the clients continually poll the servers for new

data.

In some application environments, the asymmetry in volume of data arises due to
mismatch in the volumes of data transmitted in each direction. For example, in
information retrieval type application, a few URLs (a mouse key click) may result
in a huge document to be downloaded. So, the requirements for uplink capacity is
much smaller than downlink. Typically wireless connectivity may offer only uni-
directional connections. So, the clients may be unable to connect by design rather
than just due to technical problems.

In a pull-based system, the clients must have a priori knowledge about what to
ask for. Pull-based data retrieval is typically similar to the RPC protocol. Each data
transfer from the server is initiated explicitly by a request from a client. In response
to the request form a client, the server transfers the requested data. The biggest
drawback to implement a pull-based data transfer system is that a back channel
should be made available to the clients for fetching desired data. The back channel
eats away bandwidth available for data transfer. In a typical environment, where the
clients are mobile, the congestion in back channel can be real bottleneck for fetching
data.

The availability, as well as the use of the back channel for clients is restricted
either because of the security reasons or due to the power problem at the clients, or



382 12 Data Dissemination and Broadcast Disks

both. The saturation of a server due to huge number of client requests may be another
severe problem. Indeed, if the request rate is higher than the service rate, the server
will eventually saturate. However, in traditional applications, it can be controlled.

In summary the scale of mobile computing environment seems to be the most
important factor contributing to the drawbacks of pull based data delivery model
[2, 11, 12].

The major advantages of a push-based data delivery model can be summarized as
follows:

• Efficiency: The transfer of data is needed only when the updates arrive at a server,
or when the new data gets created. Obviously, a client is not expected to know
when the new data gets generated at the server.

• Scalability: The push-based data delivery model translates into greater scalability.
A client need not poll the server in periodic intervals to check for the delivery of
data items it may need.

• Low bandwidth requirement: There is no need for deploying a back channel. The
transfer of data is initiated by the server when some updates are made or some
new data get created. So the utilization of entire bandwidth can be made possible
only via downstream link, and more data can flow on the channel. Furthermore,
the utilization of available bandwidth can be done optimally as it is coordinated at
the server end.

12.6 Classification of Data Delivery Models

In the context client-server paradigm the basic difference between data delivery
models lies in the fact whether the data transfer is initiated by a client or by the
server. Both pull and push based data delivery can be either periodic or aperiodic.

Aperiodic pull is found in traditional systems or request/response kind of data
delivery model. Periodic pull arises when a client uses polling to obtain the data it
is interested in. It uses a regular schedule to request for the data. Polling is useful in
applications such as remote sensing where a client can wait while sending repeated
probes, in periodic intervals, for the arrival of the data. The data by itself, is not
critical for immediate running of application. In summary, if the transfer is initiated
by the client then it can be one of the following types:

(i) Request/response: This is found in the traditional schemes such as RPC. A
client uses aperiodic pull over point-to-point physical link between the server.
Of course, the server may choose to use an one-to-many link for transfer of data.
For the client requesting the data, it appears as point-to-point, while the other
clients can snoop on the link and get data they have not explicitly requested.

(ii) Polling: In some applications such as remote sensing or control applications, a
system may periodically send request to a number of sites to obtain changed
values. If the information is sent over a point-to-point link, it is a pull based



12.6 Classification of Data Delivery Models 383

approach and known as polling. But if the data transfer is over an one-to-many
physical link then other clients can snoop.

The periodic push can be for the transmission of a set of data updates or newly
created data in a regular interval, such as updates in Stock prices. This data delivery
model is useful in situations where clients may not always be available. Since the
delivery is for unidentified clients, availability of some specific client or a set of
specific clients does not matter. The push based model is preferable for various
reasons such as:

• High request processing load or the load asymmetry generated by the clients, or
• A large number of clients are interested for the data being pushed, i.e., high client

to server ratio.

Aperiodic push is viewed as publish and subscribe type of data dissemination.
There is no periodic interval for sending out the data. The biggest problem in aperiodic
push is the assumption that the clients are always listening. In a mobile computing
environment the clients may like to remain disconnected till the exact time of arrival
of the required data for the reason of extending battery life. The clients may also move
to the cells different from where they initially wanted to get the data. The push-based
model is exposed to snooping, and a client may also miss out the required data, if it
is not listening at the opportune time when the data flows on the downlink channel.
So, a mechanism is needed to be in place for a client to be able estimate the time
for tuning to the downstream channel for the required data. Therefore, such a data
delivery model could considered as more appropriate to the situation where what is
sent out is not critical to immediate running of the application. On the positive side,
the push based transfer uses downstream channel more effectively. In summary, push
based data delivery can categorized as follows.

(i) Publish/Subscribe [13]: In this model of data delivery, the flow of data is initiated
by a server and is aperiodic. Typically, one-to-many link is used to transfer data.

(ii) Broadcast disks [1]: Basically, it is a periodic push mechanism. The clients wait
until the data item appears on broadcast. In a sense, it is like accessing of a
storage device whose average latency is half the interval at which the requested
item is repeated on broadcast. The periodic push can use either point-to-point or
one-to-many link; though, one-to-many is more likely.

Figure 12.3 provides a broad classification of data transfer mechanisms based on
the pull and push based delivery models and physical link characteristics as discussed
above.

The characteristics of a link have a role in deciding how the data delivery model
can scale up when there is no control in population of clients. In a point-to-point
communication, data sent from a source to a single client. Clearly, p-to-p (point-to-
point) transfers cannot scale up easily when the number of clients becomes large.
In one-to-many communication data is sent to a number of clients. One-to-many
communication can be either multicast or broadcast. Usually, multicasting is imple-
mented by sending data to a router which maintains the list of the recipients and



384 12 Data Dissemination and Broadcast Disks

Aperiodic

Pull

Request/
response Request/

response
with snoop

one-to-many

Polling
with snoop

one-to-many

Periodic

Triggers

Aperiodic

Push

Publish/
subscribe

one-to-many

Broadcast
disk

Periodic

one-to-many

Data delivery Models

p-to-p p-to-p

p-to-p

p-to-p
Polling

Fig. 12.3 Taxonomy of data transfer

forwards the data to those recipients. So the interests of clients should be known a
priori as opposed to broadcast where clients are unidentified. In one-to-many broad-
cast clients receive data for which they may not be interested at all.

12.7 Broadcast Disk

From the client’s perspective, periodic push is similar to accessing a secondary stor-
age. Therefore, the data delivery should be organized to give the best performance to
the clients as a local disk would. Suppose in a broadcast schedule, every item appears
only once. Then in the worst case, a client may have to wait for one broadcast period
for fetching the data item it requires. In the best case, the access can be immediate,
and it happens if the client tunes in to listen exactly at time when its item appears
in the broadcast channel. It is rarely, the case that all items are accessed equally
frequently. Generally, the access pattern tends to be skewed to a few hot spots. So
it makes sense to capture the pattern of accesses in a broadcast program. Broadcast
disk is a paradigm for organizing the structure of a periodic broadcast program.

12.7.1 Flat Periodic Broadcast Model

A generic broadcast disk model should be able to capture various access patterns. A
flat program is a degenerate case of the generic broadcast disk model. A flat broadcast
program shown in Fig. 12.4, can be considered as a logical disk spinning at a speed
of one spin in a broadcast period.



12.7 Broadcast Disk 385

A

B
C D

E

A

B
CD

E

Broadcast schedule

Server

Client Client Client

Fig. 12.4 A flat broadcast disk

12.7.2 Skewed Periodic Broadcast

Consider the case when the broadcast data is organized into a multiple number of
disks, and each disk spinning with a different speed. The data items are placed
into the fastest to the slowest spinning disks in descending order of frequencies of
accesses. That is most frequently accessed data is placed on the fastest disk. The
least frequently accessed data is placed on the slowest disk.

Depending on whether the broadcast data get updated or not, a periodic broadcast
can be considered static or dynamic. If the sequence of broadcast data remains the
same for every broadcast period, then the broadcast is static, otherwise it is dynamic.
In the case of dynamic periodic broadcast, the period of broadcast may also vary.

Another way to classify periodic broadcasts would be on the basis of the inter
arrival times of two consecutive instances of the same data item. The broadcast is
called regular, if the inter arrival time of two consecutive instances of the same data
item is fixed. The broadcast is irregular, if there is a variance in inter arrival times.

12.7.3 Properties of Broadcast Programs

From an abstract point of view, a broadcast programs visualized as an attempt to
generate a bandwidth allocation scheme. Given the access probabilities of each client,
the job of a broadcast program is to find the optimal fraction of the bandwidth which
may be allocated for an item. Assuming no caching at the clients, it is known that the
optimal bandwidth that can be allocated for an item is proportional to square root of
its access probability [4]. The simplest possible idea would be to generate a random
broadcast schedule according to the square root allocation formula; and then hope
that this broadcast schedule matches the average inter arrival time between any two
instances of same item as expected by the clients. However, the probability is almost



386 12 Data Dissemination and Broadcast Disks

negligible that a random broadcast program may minimize the expected delay due
to the variance in the inter arrival times.

Let us consider an example mentioned in [1]. It illustrates following three different
broadcast programs involving three pages A, B, and C shown in Fig. 12.5. The per-
formance characteristic of the last program (Fig. 12.5c) is identical to the case where
item A is stored on a single-page disk spinning two times faster than a two-page disk
storing items B and C. In this case, the waiting time for accessing page A is either
0 page or 1 pages, assuming that the requirement coincides with the broadcast of a
page boundary. Therefore, average wait is 0.5 page for A. Whereas the average wait
for page B or C is 1.5 pages. Assuming accesses for each page is equally likely, the
total wait (1/3)(0.5 + 1.5 + 1.5) = 7/6 page. In reality the requirement for a page
coinciding with the page boundary of a broadcast is low. So adding 1/2 page to the
total wait, we have the delay as 5/3 = 1.67 pages.

Let us derive the exact expression for the expected delay for an item I from the
point when the request is made. Suppose, a request for the value of I arises at some
point of time t falling in the interval j as shown in Fig. 12.6. If I is scheduled to arrive
during an interval in future, then the maximum waiting time is the interval of time
from the beginning of interval j to the starting of the transmission of I as indicated
in the figure. The time of t may appear any where within interval j. Assuming each
interval to be of unit time, t ∈ [0, 1), the expected delay is given by

N∑

1

∫ 1

0

(
tjmax(I) − t

)
dt =

N∑

1

(
tjmax(I) − 1

2

)
,

where N is the number of intervals. Each interval is the time required to transmit one
data item. Using the above formula, the expected delays for the arrival of different
items on the broadcast channel can be computed as illustrated by the Table 12.2.

Fig. 12.5 Broadcast
programs [1]

A B C
(a) Flat

A B CA
(b) Skewed

CA B A
(c) Multi-disk

Fig. 12.6 Formulation of
maximum waiting time

Request for
Ireceived

Transmission
of I starts

Interval j
tjmax(I)



12.7 Broadcast Disk 387

Table 12.2 Expected delays for arrival of items on channel

Arrival of
requests

Expected delay

tjmax(A) − (1/2) tjmax(B) − (1/2) tjmax(C) − (1/2)

Skewed Multidisk Skewed Multidisk Skewed Multidisk

Interval 1 0.5 1.5 1.5 0.5 2.5 2.5

Interval 2 2.5 0.5 0.5 3.5 1.5 1.5

Interval 3 1.5 1.5 3.5 2.5 0.5 0.5

Interval 4 0.5 0.5 2.5 1.5 3.5 3.5

Average 1.25 1 2 2 2 2

Table 12.3 Expected delays for arrival of items on channel

Access probability Expected delay

A B C Flat Skewed Multi-disk

0.333 0.333 0.333 1.50 1.75 1.67

0.5 0.25 0.25 1.50 1.63 1.50

0.75 0.125 0.125 1.50 1.44 1.25

0.9 0.05 0.05 1.50 1.33 1.10

1.0 0.0 0.0 1.50 1.25 1.00

The expected delays for the arrival of items A, B and C respectively are 1.25, 2,
2, in the case of clustered skewed broadcast, and 1, 2, 2 for the case of multi-disk
broadcast. If the probability of access for each item is equally likely, then the expected
delays for an item in two broadcast methods are:

Skewed broadcast : 1
3 (1.25 + 2 + 2) = 1.75

Multi-disk broadcast : 1
3 (1 + 2 + 2) = 1.67

Table 12.3 gives the computed delays (in terms of page broadcast period) for page
requests corresponding to distribution of access probabilities of the clients. In the
case of uniform page access probabilities, flat disk is the best. Non-flat programs
are better for skewed access probabilities. Obviously, higher the access probability
more is the bandwidth requirement. When page A is accessed with probability 0.5,
according to square root formula [4] the optimal bandwidth allocation works out
to be

√
0.5/(

√
0.5 + √

0.25 + √
0.25) which is 41%. The flat program allocates

only 33% (8% less in) bandwidth. Whereas the multi-disk program (in which page
A appears twice in the schedule) allocates 50% (9% excess in) bandwidth.



388 12 Data Dissemination and Broadcast Disks

12.7.4 Advantages of Multi-Disk Program

A multi-disk program performs better (results in less delay) than the corresponding
skewed program. This problem can be explained by what is known as “bus stop
paradox”. The paradox is explained as follows. Suppose there are buses plying to
different destinations D1 and D2, D3, etc., from a station S. The number of buses
to destination D1 is more than the available other destinations. But all the buses for
destination D1 are clustered in a small window of time tw in a day, whereas buses
to other destination are staggered in more or less in equal intervals throughout the
day. Under this scenario, if a person is unable to be reach S within the interval tw,
cannot get to the destination D1 for the entire day, although the probability of getting
a bus to destinations D1 is higher than the probabilities for other destinations. This
happens due the fact that the buses to other destinations are not clustered.

The probability of arrival of a request during a time interval is directly proportional
to the length of the interval. This implies that if the variance in broadcast rate (inter
arrival rate) of a page is high, then the expected delay increases. If the inter arrival
rate of a page is fixed then the expected delay to satisfy any requests for that page
at any random time is half of the interval between two successive broadcasts of the
same page. The randomness in inter arrival rate can also reduce the effectiveness
of a pre-fetching techniques. The client also cannot go into doze mode to reduce
the power consumption, because the time of arrival of the requested page cannot be
estimated. On the other hand, if interval of arrival is fixed, the update dissemination
can be planned by the server. This predictability helps in understanding of the update
semantics at the client. Therefore, the desirable features of a broadcast program are:

• The inter arrival time of the consecutive copies of a data item should be fixed.
• The length of a broadcast schedule should be pre-defined, after which it should

repeat. Equivalently, the periodicity of a broadcast should be fixed.
• It should use as much bandwidth as possible subject to the above two constraints.

12.7.5 Algorithm for Broadcast Program

Algorithm 26 generates a bandwidth allocation for a periodic push based broadcast
when information related to page usage is available. This algorithm was originally
proposed in [1].

Example
Consider a three disk program in which pages of D1 to be broadcast 2 times as
frequently as D2 and 3 times as frequently as D3. That is, the frequencies are: f1 =
6, f2 = 3 and f3 = 2 and Tmax = LCM(f1, f2, f3) = 6. This implies splitting disks
results in following chunks:



12.7 Broadcast Disk 389

Algorithm 26: Generation of broadcast program

begin
order the pages to be broadcast from hottest to coldest;
group the pages into multiple ranges;
// Each range represents a logical broadcast disk.
// Assume Ndisks disks denoted by D1, . . . ,DNdisk.
foreach (disk Di) do

// fi, must be an integral value.
choose relative frequency fi;

end
split each disk into smaller units called chunks;
Tmax = LCM{fi|1 ≤ i ≤ Ndisk};
foreach (disk Di) do

split Di into equal sized chunk Cij , j = 1, . . . ,Tmax/fi;
end
// Create broadcast program interleaving disk chunks.
for (i = 1; i ≤ Tmax, i + +) do

for (j = 1; j ≤ Ndisks, j + +) do
broadcast chunk Cj,((i−1) mod Tj+1);

end
end

end

Fig. 12.7 Bandwidth
allocation by broadcast
algorithm

1 4 5 1 6 72 31 8 9

1 2 3 4 5 6 7 8 91

12 34 5 6 7 8 91

minor cycle

2 31

major cycle

1
disk 1

2 3
disk 2

C CC11 21 22

4 5 6 7 8 91 2 3

4 5 6 7 8 9

C C C31 32 33

Hot

disk 3

Cold

1. Disk D1: splitting results in one chunk C11.
2. Disk D2: splitting results in two chunks C21,C22, and
3. Disk D3: splitting results in three chunks C31,C32,C33.

Though chunk size of a disk fixed, across the disks the size may be variable.
Figure 12.7 illustrates the broadcast program generated by the applying the above
algorithm. As shown in the Fig. 12.7, disk D1 consists of a single page and only
one chunk. Disk D2 consists of two pages and each chunk has one page. Disk D3

has six pages divided into three chunks, where each chunk has two pages. A minor
broadcast cycle consists of three chunks, one from each disks D1,D2,D3. Therefore,
each minor cycle consists of four pages, one page each from D1 and D2 and two



390 12 Data Dissemination and Broadcast Disks

pages from D3. One major broadcast cycle consist of Tmax = 6 minor cycles. So,
one major cycle consists of 24 pages. The allocation schedule produces three logical
levels of memory hierarchy.

• The first being the smallest and the fastest disk D1.
• The second being the disk D2 which is slower than D1.
• The last being the disk D3 which is slower but larger than both D1 and D2.

12.7.6 Parameters for Tuning Disk Model

Three main parameters to be tuned to particular access probability distribution are:

• The number of disks. It determines the different frequency ranges with which set
of all pages should be broadcast.

• The number of pages per disk. It determines set of pages of identical frequency
range on broadcast.

• The relative frequency of broadcast. It determines the size of disks, and hence the
arrival time.

The thumb rule is to configure the fastest disk to have only few pages. This because,
adding an extra page to the fastest disk adds significantly to the delay of arrival
time for the pages in the slower disks. The constraint requiring frequencies to be
positive integers leads to a broadcast schedule with fixed inter-arrival time for the
pages. A regularity in inter-arrival time substantially eases the maintenance of update
semantics, and the predictability helps the client side caching strategy. All pages in
the same disk get same amount of bandwidth as they are broadcast with the same
frequency.

12.7.7 Dynamic Broadcast Program

The algorithm discussed above generates a static broadcast program. It means there
is no change in the broadcast period, the amount of broadcast data or the values of
data. In other words, there is no dynamicity in broadcast data. But it is possible to
introduce dynamicity as follows.

• Item placement: Data may be moved around in between disks. It means items
of data traverse the levels of disk hierarchy. In other words, some item may lose
importance while other items may gain importance. The movement of items influ-
ences the client side caching strategy for pre-fetching (hoarding).

• Disk structure: The hierarchy of disks itself may be changed. For example, the
ratios of the disk speeds can be modified. An entire disk can be removed or a new
disk may be added.



12.7 Broadcast Disk 391

• Disk contents: The contents of disk may change. Extra pages may be added to a
disk or some pages may be removed from a disk.

• Disk values: Some pages on the broadcast may change in value.

Read-only and update type of broadcasts get affected by the dynamicity involving
Item placement, Disk structure and Disk contents. However, Disk value introduces
dynamicity that is applicable to the update scenario only. The modifications involving
Item placement or Disk structure influences the relative frequencies as well as the
order of the appearances of data items already on broadcast. Whereas the update of
the value of a data item does not alter the relative frequencies. So, in absence of the
updates, the first two types of modifications primarily affect the performance. The
performance of client side caching is affected as caching algorithms need information
about the latency of data items. This results in client side storage to be sub-optimally
used. However, an advance notification may mitigate the problem.

Dynamicity introduced due to Disk Contents does not influence the items that
appear on the broadcast. However, some items which appeared previously may dis-
appear and some new items may appear. It can be viewed an extreme case of the Item
Placement, i.e., the items removed may be assumed have infinite latencies and appear
in another disk. The clients can cache an item before it disappears if an advance warn-
ing is provided. Or even a client can evict the item from the cache to make room for
a new item. Data Value updates introduces the problem of data consistency. To take
care of this situation cached copies at client should be updated or invalidated.

12.7.8 Unused or Empty Slots in Broadcast Disk

The broadcast schedule may consists of many unused slots or pages [5]. It hap-
pens specially when the number of pages in a disk is not an exact multiple of the
number chunks into which the disk is partitioned. These unused slots may be used
opportunistically to enhance the quality of broadcast by including indexes, updates,
invalidations, or even the information pertaining to dynamically emerging situation.
The guiding principle of broadcast based dissemination is that the number of disks
should as small as possible. Normally, in the order of 2–5. However, the number of
pages to be broadcast is often substantially large. Therefore, the number of unused
slots, if any, is expected to be quite small in number. In other words, it may be possible
to tweak the relative frequencies slightly to reduce the number of unused slots.

If unused slots are not used sensibly, it may lead to substantial wastage of band-
width. To understand how it may occur, let us modify the previous example as follows.
Suppose a list of 12 pages are to be placed on the broadcast channel. We divide these
pages into 3 disks:

D1: has 1 page,
D2: has 2 pages, and
D3: has now 9 instead of 6 pages.



392 12 Data Dissemination and Broadcast Disks

Fig. 12.8 Many unused
slots may be generated by
broadcast program

C

12 34 5 6 7 8 9

2

C

3
C CC

4 5
C

6 7
C

8 9
C

11
C C C

10 121

1
disk 1

2 3
disk 2

4 5 6 7 8 9 1011
disk 3

12

2131110121

major cycle

minor cycle

EE EE

E E E E E E EE

empty slots

Hot Cold
4 5 6 7 8 9 10111 2 3 12

11 12 21 22 23 31 32 33 34 35 36

E

D1 is smallest and fastest, D3 is largest and slowest. Let the frequencies of D1, D2

and D3 be 3, 2, and 1 respectively. Since, Tmax = LCM(3, 2, 1) = 6, the chunking
algorithm divides pages of D1 into 6/3 = 2 chunks, the pages of D2 into 6/2 = 3
chunks and the pages of D3 into 6/1 = 6 chunks. The number of pages per chunk in
disk D1, D2 and D3 are �1/2� = 1, �2/3� = 1 and �9/6� = 2 respectively. So, the
chunking requires one empty page each to be padded to each chunk of disks D1 and
D2. In the case of D3, a padding of 3 empty pages is needed. So, at total of 5 empty
pages are inserted as padding to generate integer number of pages for the chunking
of broadcast data. Figure 12.8 illustrates the process of chunking and depicts that
8 empty pages appear in broadcast cycle on a single major cycle consisting of 24
pages. It leads to a wastage of 33% of the broadcast bandwidth.

12.7.9 Eliminating Unused Slot

Unused slots in the chunks in a broadcast schedule are like holes in disk fragmenta-
tion. A broadcast schedule consists of three types of chunks:

1. Fully used chunks: every slots in such a chunk have useful data.
2. Partially wasted chunks: some slots in such chunks have data and the other slots

are free.
3. Fully wasted chunks: all slots in such a chunk are free.

The simple strategy to eliminate unused slots is to compact the holes in the broadcast
schedule. However, the compacting technique applies only under some stringent
assumptions [5]. These assumptions are:

1. The client population do not change,
2. No update is allowed,
3. The clients do not employ pre-fetching or caching,
4. The clients do not use the uplink channel,



12.7 Broadcast Disk 393

5. When a client switches to a public channel, it can retrieve data pages without
wait,

6. Each query result is represented by one page, and the length of each page is the
same.

7. A server uses only one channel for broadcast, and broadcast is reliable.

These assumptions essentially imply that access patterns of the mobile clients remain
unchanged over time.

The compaction algorithm first needs to compute the indices of unused slots in
each wasted chunk of a disk. The computation of the indices turns out to be simple
due to the assumptions presented above. But to concretize the computation formula
a few notations become handy.

NPi : number of pages in disk Di.
NCi : number of chunks in disk Di.
NSi : number of slots in a chunk in disk Di.

The basic idea behind the algorithm is to first determine the schedule by Algorithm 26
of Sect. 12.7.5. According to this algorithm, the number of slots are:

NSi =
⌈
NPi

NCi

⌉
=

⌈
NPi

Tmax/fi

⌉
=

⌈
NPi × fi
Tmax

⌉
,

where Tmax is LCM of the chosen frequencies for the disks.
Consider the example shown in Fig. 12.8. The number of slots in a chunk in three

different disks as determined by the algorithm are:

NS1 =
⌈

1 × 3

6

⌉
= 1,NS2 =

⌈
2 × 2

6

⌉
= 1, and NS3 =

⌈
9 × 1

6

⌉
= 2.

The execution of the original algorithm organizes the broadcast schedule (major
cycle) into chunks consisting of 24 slots. Out of these 8 slots are empty, which implies
only 24 − 8 = 16 slots have useful data. Modified algorithm places a logical cut line
at the end of the slot 16. To the right of this cut line there are 8 slots, out of which only
3 have useful data. Furthermore, there are exactly 3 wasted (empty) slots to the left
the cut line. The modified algorithm moves the data from the right to the left of the
cut line to empty slots preserving their relative order of occurrences. The movement
of data is illustrated by Fig. 12.9. So the strategy of the algorithm is compact the
holes present in partially wasted chunks by moving data appearing to the right of the
cut-line. This action pushes all empty slots to the right of the cut-line

Before formally presenting the modified algorithm, we observe that empty slots
are located either in a fully wasted chunk (all free slots) or a partially wasted chunk
(with some free slots). The indices of fully wasted chunks in Di is given by

FWi = NCi −
⌈
NPi

NSi

⌉



394 12 Data Dissemination and Broadcast Disks

Fig. 12.9 Eliminating
unused slots

C

12 34 5 6 7 8 9

2

C

3
C CC

4 5
C

6 7
C

8 9
C

11
C C C

10 121

1
disk 1

2 3
disk 2

4 5 6 7 8 9 1011
disk 3

12

2131110121

EE EE

E E E E E E EE

Hot Cold
4 5 6 7 8 9 10111 2 3 12

11 12 21 22 23 31 32 33 34 35 36

cut−line

E

Therefore, fully wasted chunks in diskDi areCij where,NCi−FWi+1 ≤ j ≤ NCi.
So, the number of fully wasted chunks in D3 of our running example is:

FW1 = NC1 −
⌈
NP1
NS1

⌉
= 2 − ⌈

1
1

⌉ = 1

FW2 = NC2 −
⌈
NP2
NS2

⌉
= 3 − ⌈

1
1

⌉ = 2

FW3 = NC3 −
⌈
NP3
NS3

⌉
= 6 − ⌈

9
2

⌉ = 1,

Let w be the number of wasted slots in a partially wasted chunk in Di. The value
of w can vary between 1 and NSi − 1, i.e., 1 ≤ w ≤ NSi − 1. There can be only
one partially wasted chunk and it occurs only when NPi �= NCi × NSi, where all
the quantities have integral values. Therefore, the condition for checking partially
wasted chunk is simply: ⌈

NPi

NSi

⌉
−

⌊
NPi

NSi

⌋
= 1.

The index of the partially wasted chunk Cij is j = NCi−FWi. The total number of
wasted slots is NSi −NPi, and the number of fully wasted chunks is FWi. Therefore,
the number of wasted slots in a partially wasted chunk is given by

w = NSi × (NCi − NPi) − FWi × NSi.

So, in chunk Cij, the empty slots are Eijk , where NSi − w ≤ k ≤ NSi.
Once we have identified the indices of empty slots, the compaction algorithm

becomes straightforward. The algorithm creates an array Broadcast[.] which
records the pages to be selected in sequence to appear on the broadcast channel. The
modified algorithm [5] consists of two phases.



12.7 Broadcast Disk 395

1. In the first phase, the required number of empty pages are added to the disk chunks
as needed for the allocation of same integral number of slots in a minor cycle. So
this phase is identical to Algorithm 26.

2. In the second phase, the cut-line is determined and the contents of the occupied
slots after the cut-line are swapped with the corresponding empty slots before
the cut-line. So, the basic compaction step is to find the corresponding sequence
numbers of slots which need to be swapped.

Phase 2 of the algorithm is essentially a compaction step. It does not really make any
additional contribution to the original algorithm for creating a broadcast cycle. Algo-
rithm 27 gives the details of this phase and included here for the sake of completeness.

Algorithm 27: Using empty slots.

begin
// Broadcast cycle created by Algorithm 26
calculate total slots TS in a major cycle;
calculated total wasted slots TWS in a major cycle;
determine cut-line CL = TS − TWS;
find the nonempty slots after the CL;
record these slots in the array Moved.
// Use a sequence number SN to sequence of empty slots in a

major cycle as 1,2,…, TS
find out SN of an Eijk before the cut-line and replace it with a record in Moved array in
sequence.
// Broadcast the contents of the Broadcast array in

sequence.
for (i = 1; i ≤ CL; i + +) do

broadcast Broadcast[i];
end

end

The first step of algorithm computes total number of slots (TS) which is equal to

TS = Tmax ×
S∑

i=1

NSi = Tmax ×
S∑

i=1

⌈
NPi × fi
Tmax

⌉

The next step determines the total number of wasted slots (TWS) in one major
cycle. Then the cut-line is identified. The computation performed is as follows.



396 12 Data Dissemination and Broadcast Disks

TWS =
S∑

i=1

((NSi × NCi − NPi) × fi)

=
S∑

i=1

((
NSi × Tmax

fi
− NPi

)
× fi

)

=
S∑

i=1

(NSi × Tmax − NPi × fi)

The core of the compaction of data which is performed next. The data slots to right
of cut-line are moved into a separate array Moved. The slots from which data have
been placed in Moved array can now be declared as empty. Then data is moved
from Moved array to the empty slots just before the cut-line. Although compaction
algorithm does not disturb chunk orders from disks in minor cycle, it re-orders the
pages that make up a chunk. Hence, using compaction requires the client to change
the order of servicing queries.

12.8 Probabilistic Model of Broadcast

Wong [14] proposed a probabilistic approach for generating cyclic broadcast sched-
ule. The approach appears impractical though it improves the performance of skewed
data access by selecting data items according to their relative access frequencies.
Wong’s result tells that for fixed-sized data objects, access time is minimized if
pi
pj

=
√
qi√
qj

for all i, j. We can simplify the result by summing the denominator over all

j, and get pi = qi∑
j
√
qj

.

The difficulty with the method is that it generates an acyclic broadcast schedule.
The access time of a data item could also be arbitrarily large. It performs poorly com-
pared to other skewed broadcast methods discussed later in the text. But Wong [14]
proposed a heuristic to work around. The heuristic assumes that items are of equal
size. The underlying idea is to convert acyclic broadcast to cyclic one which can give
near optimal results. This method is further refined for variable sized data items and
presented in a neat understandable format in [9, 15]. A few important parameters of
the algorithm are:

1. N items to be broadcast.
2. The length of item i is li.
3. Page access probabilities are qi, for i = 1, 2, . . . ,N .

The algorithm states that optimal latency is achieved when following two conditions
are met.

C1: Copies of each data item are equally spaced, i.e., inter appearance gap between
two copies of same item is constant.



12.8 Probabilistic Model of Broadcast 397

C2: The spacing si of two successive copies of same item is proportional to square
root of its length li, i.e., satisfying Eq. 12.1.

si ∝
√

li
qi

, or s2
i

qi
li

= c, where c is a constant (12.1)

Both conditions cannot be met simultaneously. So, the heuristic only approxi-
mates the optimal results obtained from theoretical analysis. Hameed and Vaidya [9]
introduced a pair of additional variables Bi and Ci for each item i:

1. Bi: is the earliest time when next instance of item i should be transmitted, and
2. Ci = Bi + si.

This essentially means Ci is the worst case completion time of the next instance of
item i. Using the above idea, Hameed and Viadya proposed a technique for generating
cyclic broadcast as provided by Algorithm 28 [9]. The simulation results presented
in [9] shows that this method of broadcast performs close to the analytically obtained
optimal result. For more details on this algorithm the reader can refer to the original
paper.

Algorithm 28: Generating broadcast program.

begin
// Initializations begin.
T = 0; // Represents time parameter.
foreach (i ∈ N) do

Bi = 0; // Earliest time for next instance of item i
Ci = si. // Spacing between two successive copies of i

end
// Initialiations end.
for (i = 1, i < N, i = i + 1) do

compute the optimal spacing si using Eq. 12.1;
end
repeat

determine a set of items S = {i|Bi ≤ T , 1 ≤ i ≤ N};
choose imin such that Cimin = min{Ci|1 ≤ i ≤ N}.
set Bimin = Cimin ;
Cimin = Bimin + simin ;
wait for transmission of item imin to complete;
T = T + limin ; // li is length of item i

until (system is live);
end



398 12 Data Dissemination and Broadcast Disks

12.9 Memory Hierarchy

In a typical client server model, the memory hierarchy consists of

• Client side cache and disk
• Server side cache and disk.

In a push based dissemination system, broadcast introduces an intermediate level of
memory hierarchy between the client and the server [1]. If the client’s cache or disk
does not have an item then broadcast is used to satisfy the request. Otherwise, if a
back-channel is provided then the client puts an explicit request for the item. In such
a case, the client waits for the item and tunes in at the exact time to access it.

Multilevel broadcast disk places a sub-hierarchy within the broadcast.

• The fastest disk is at the top level and the slowest disk is at the bottom level.
• We can view this combination hierarchy in broadcast system as shown in the

Fig. 12.10.

As opposed to traditional memory hierarchy, the sub-hierarchy introduced by
broadcast disks has some distinctive features, namely:

• Tunable access latency: By choosing number of disks it is possible to control
access latency of data items. In fact, it is possible to create arbitrary fine-grained

Fig. 12.10 Memory
hierarchy of broadcast
disks [1]

Application

Client’s cache

Client’s disk

Slowest disk

Fastest disk

...

Server’s cache

Server’s disk

B
ro
ad

ca
st

di
sk
s



12.9 Memory Hierarchy 399

memory hierarchy with more number of disks. The biggest advantage is that the
increasing the number of disks in air does not involve any extra h/w cost.

• Cost variation: Normally the access cost is proportional to the level of the memory
hierarchy. In broadcast system this is true only for the average cost. The instanta-
neous cost can vary from zero to the broadcast period. It may be cheaper to use a
back-channel for fetching the required data than to wait.

12.10 Client Cache Management

In a push based data dissemination, the server uses its best knowledge and the require-
ments of the clients. However, in a mobile environment, the number of clients which
a server may have to serve is very large. So, it is difficult for a server either to gather
knowledge or collate the data requirements of all the clients. Many clients may even
be unidentified. Furthermore, back channels may not available to the clients to upload
their profiles. Thus, the server can possibly determine an expected requirement pat-
tern of an average client which serves a large cross section of clients. Consequently,
many clients may have to wait long time for some data which they want quickly, while
a few others may observer data flowing into the broadcast channel much before they
may actually need it.

In the extreme cases, the average requirement pattern may completely mismatch
the requirements of some clients while it may perfectly match the requirements of
the other clients. In order to optimize an application’s performance, it is important to
filter out mismatches of a client’s profile from that of the average client. The technique
is to employ a client side cache management and use a pre-fetching strategy to store
anticipated requirements of data in the client’s cache.

In general there are two cache management techniques.

1. Demand-driven.
2. Pre-fetching.

In demand driven caching, a cache miss occurs when the data is accessed for the
first time. The data is brought into cache when it is accessed for the first time. On
the other hand, pre-fetching represents an opportunistic use of cache resources. The
data is stored in the cache in anticipation of future use. Therefore, there is no delay
even when the data accessed for the first time. But pre-fetching leads to the wastage
of cache resources if the data is not eventually accessed.

The major issue that needs to be addressed before employing any caching strategy
is victim selection. Replacing a cached page by a new page is the primary concern in a
caching strategy. It is critical to performance. For example, sometimes an immediate
references to the victim page may occur after it has been replaced, while there is
a possibility that no reference is made to a new page which has just been brought
into the cache. This situation may occur due to the locality associated with address
references. So, the replacement policy should be such that a page having the lowest
utility at that moment gets evicted.



400 12 Data Dissemination and Broadcast Disks

In case of a dissemination based information system, the burden of data trans-
fer rests on the server. It introduces certain differences that change the trade-offs
associated with traditional caching. So for the sake of completeness, and for a better
appraisal of the issues involved, a close examination of the problems associated with
of client side caching with relative to push based system is needed.

In a pull-based system, when client faults on a page it can explicitly issue a
request for the required page. In contrast, the absence of back channel in a push-
based system forces a client experiencing a page fault to keep listening until the
required page arrives on the broadcast channel. It essentially represents the fact that
the nature of the communication medium (air) in a wireless communication system
is sequential. Therefore, no random access is possible. Consequently, a client must
wait to access the data in the order it is sent by the server. The access cost, therefore,
is non-uniform. The data is not equidistant from the client’s cache. It happens due
to the multi-disk framework. This is in contrast with a traditional system where the
cost is uniform.

12.10.1 Role of Client Side Caching

The role of any caching strategy is to choose an appropriate cache size that gives
the best response to a client’s applications. A large cache size can provide the best
performance, as it is possible to cache most of the data requirements of the applica-
tions running at the client by liberally caching data from the broadcast channel. But
normally the size of a client’s cache is significantly smaller than the size of database
at the server. The reasons are two-fold: (i) the cost of installing a large cache is
very high, and (ii) a large cache makes the client heavy and thus non-portable. The
smallness of cache size puts constraint on the decision as to what should be cached
and what data should be evicted from the cache.

In a pull-based system, the performance of caching is optimal if it based on access
probabilities. The access time remains uniform for pulling out different items from a
server’s database. It implies that all the cache misses have same performance penalty.
However, this not true in a broadcast system. The server generates a schedule for
the broadcast taking into account the access needs of all clients. This way unlimited
scalability can be achieved by broadcast for data services. However, the attempt to
improve performance for one of the access probability distributions lead to degrada-
tion of performance for another access probability distribution.

12.10.2 An Abstract Formulation

Let us consider an abstract formulation of the problem of client side caching. Sup-
pose, a server S disseminating D pages for n clients C1,C2, . . . ,Cn. Let Ai be the
access profile (data requirement for applications) of Ci. The first step is to gener-



12.10 Client Cache Management 401

ate a global access profile by aggregation of the access requirements of the clients.
Let As = σ(A1, . . . ,An), where σ is an appropriately chosen aggregation function.
Assume that the server has the ability to generate an optimal broadcast schedule for a
given access profile. Let β(As) be the generated broadcast program. Note that β(As)

is optimal iff As ≡ A1. The factors causing broadcast to be sub-optimal are:

• The server averages the broadcast over a large population of clients.
• The access distributions that the clients provide are wrong.
• The access distributions of the clients change over time.
• The server gives higher priority (biased) to the needs of clients with different

access distributions.

From the point of view of an individual client the cache acts as a filter as depicted in
the picture of Fig. 12.11. The client side cache filters accesses by storing certain pages
(not necessarily hot pages) such that filtered access distribution, namely Fi = Ai −ci
matches As, where ci ⊆ D is the set of cached pages. If ci = φ then Fi = Ai. If the
server pattern As is different from client’s access pattern β(As) will be different from
β(Ai). In other words, for the cache-less clients the performance is sensitive to how
close is the access pattern to the average client’s access profile. In general, client
cache should filter accesses to close the gap between As and Fi.

Fig. 12.11 A view of client
side cache

A

B
C D

E

A

B
CD

E

β(As)

Server

A1

An

...

Client 1

Cache

As

As

F1

A1



402 12 Data Dissemination and Broadcast Disks

Fig. 12.12 Cost of
prefetching

Hot Cold

C
old

H
ot 2 1

3 2
Client

Server

12.10.3 Consideration for Caching Cost

The traditional probability based caching at the client is not suitable due to the
sequential nature of the retrieval from the broadcast channel. The cache should act as a
filter selectively permitting those requirements for which the local access probability
and the global access probability are the same. The server allocates bandwidth to
each page based on its global likelihood of access. A client should cache only those
pages which have significantly higher local probability of access. It is possible that
either these probabilities match or they mismatch. So the cost consideration should
take into account the hot and cold categorization of the pages both with respect to
the server and the with respect to the client. What is cold at server may be hot at
client and vice versa. Therefore, from prospective of a client caching those pages for
which the cost of acquisition is significantly higher is an automatic choice. The table
in Fig. 12.12 shows the priority for caching. However, in general, it is not possible to
have a binary categorization of the priorities as suggested in the figure. In a broadcast
disk environment, a client faulting on a page has to wait for the data to appear on
broadcast channel. Therefore, in a broadcast disk environment, an appropriate cost
based caching should be developed.

12.10.4 Cost-Based Caching Scheme: PIX and LIX

The idea of a cost-based caching scheme for broadcast disk is to increase cache hits of
the pages for which the client has high access probabilities. Suppose pi is the access
probability of a page that is broadcast at a frequency xi. Then the ratio pi/xi known as
PIX (Probability Inverse frequency X) can be used for selecting victim for eviction
of items from a client’s cache. If pi is high but xi is low, then the item is hot for client
but not so hot for server, then PIX will be high. On the other hand if pi is low but xi
high, then the item is not hot for client but it is hot for server. So, by using least PIX
as the criterion for the selection of victim (for cache eviction), we can ensure that a
less frequently accessed page which occurs more frequently in broadcast schedule
will be evicted from client cache. For example, consider two page a and b with
access probabilities 0.01 and 0.05 respectively. Suppose the respective frequencies
of occurrence of a and b on broadcast cycle are 2 and 100. Then PIX(a) = 0.005 and
PIX(b) = 0.0005. On the basis of PIX values, b will be the victim page. Although
the probability of access for b at the client is more than that of a, from the server



12.10 Client Cache Management 403

prospective b is hotter than a. The server broadcasts page b more frequently than it
does the page a. Therefore, a is preferred over b for caching. Unfortunately PIX is not
an implementable policy, as it requires advance knowledge of access probabilities.
So, we need to invent a policy which is an implementable approximation to PIX.

Though access probabilities of a page cannot be measured or known beforehand,
we may find an approximate measure of the same. The idea is to find a running
average of the number of times each page is accessed. The running average assigns
importance to the client’s recent access pattern. LIX, as it is known, is an adaptation
of LRU and PIX.

It maintains the cache as a singly linked list. For each broadcast disk a separate
linked list is maintained at the client. When a page is accessed it is moved to the
top of the list. This ensure that the pages accessed recently are not the candidates
for eviction. When a new page enters the cache, LIX evaluates the lix value for the
bottom of each chain. The page with smallest lix value is evicted to allow the new
page to be stored. Although page is evicted with lowest lix value the new page joins
the linked list corresponding to broadcast disk it belongs. The lix value is evaluated by
the ratio of the estimated running average of the access probability and the frequency
of broadcast for the page. For estimating of the running probability of access pi each
page i, client maintains 2 data items, namely, pi value and the time ti of the recent
most access of the pages. It re-estimates pi, when the page i is accessed again. The
probability estimate is carried out according to the following rules.

1. Initialize pi = 0 when page i enters the cache.
2. The new probability estimate of pi is done when page is accessed next using the

following formula

pnewi = λ

currTime − ti
+ (1 − λ)pi,

where λ, 0 < λ < 1, is an adjustable parameter.
3. Set ti = currTime and pi = pnewi .

As pi is known for each page and so are their frequencies, lix values can be calculated
easily. Essentially LIX is a simple approximation of PIX, but it was found to work
well [1].

12.10.5 Pre-fetching Cost

The goal of pre-fetching is to improve the response time for a client application. Pre-
fetching is an optimistic caching strategy, where the pages are brought in anticipation
of future use. The dissemination oriented nature of broadcast system is ideal for pre-
fetching, but it is slightly different in approach compared to a traditional pre-fetching
scheme. In a traditional system, the client makes an explicit request for pre-fetching.
Therefore, it is anadditional burden on resources. But in a broadcast environment



404 12 Data Dissemination and Broadcast Disks

Fig. 12.13 Illustrating
pre-fetch cost

y

x

p =0.5

p =0.5

x
Cache

y

x

the pages anyway flow past. Therefore, the client can pre-cache the selected pages if
these are important. On the flop side, an eager pre-caching results in wastage of cache
slots in respect of pages cached too early. In a traditional system, an improvement
response time at a client can be achieved by

• minimizing the cache miss rate, and
• reducing the cost of a cache miss.

Though the improvement in broadcast environment also depend on the same para-
meters, here the considerable gains can be achieved by reducing the latency when a
cache miss occurs.

Example
Suppose a client is interested in two pages x, y. The server broadcast them on a flat
disk with 180◦ apart. There is a single cache slot at the client. Figure 12.13, illustrates
the scenario. Under a demand-driven strategy, the client caches a page, say x, as a
result of the requirement for the page. In this case, all the subsequent requests for x
can be satisfied without delay, but if there is a requirement for y, then it has to wait till
the page comes by on the broadcast. Then x is replaced y, and it remains resident till
a request for x results in a cache miss when x again is brought into the cache. In this
strategy the expected delay on a cache miss could be one half of the disk rotation.
The cost for accessing a page is given by

Ci = pi ∗ mi ∗ di

where pi is probability of access, mi expected probability of a cache miss, di is the
expected delay before the page i arrives on broadcast. The total expected cost for
access over all pages in demand-driven strategy is:

∑

i∈{x,y}
Ci = 0.5 ∗ 0.5 ∗ 0.5 + 0.5 ∗ 0.5 ∗ 0.5 = 0.25

one quarter of a disk spin time.
Suppose we cache the page x when it arrives on broadcast and replace it with y

when the latter arrives, the strategy is called tag team. The cost will be



12.10 Client Cache Management 405

∑

i∈{x,y}
Ci = 0.5 ∗ 0.5 ∗ 0.25 + 0.5 ∗ 0.5 ∗ 0.25 = 0.125

Therefore, tag team caching can double the performance over demand-driven
caching. The improvement comes from the fact that a miss in tag team strategy
can only be due to some requirement in half the broadcast cycle. In contrast the
cache miss in demand-driven strategy can occur at any time.

12.11 Update Dissemination

In a client-server system update dissemination is a key issue concerning the perfor-
mance versus the correctness tradeoff. A client accesses from its local cache, whereas
the updates are collected at the server. Therefore, keeping the consistency of client’s
cache with the updates is a big problem. Any consistency preserving—by notification
or invalidation—mechanism must be initiated by the server. However, it is possible
that different applications require varying degree of consistency in data. Some can
tolerate some degree of inconsistency. In general, the environment must guarantee
consistency requirement that is no weaker than an application’s requirement. Obvi-
ously, the stronger is the consistency guarantee the better it is for the application.
However, the requirement for a stronger consistency hurts the performance as the
communication and the processing overheads are more.

12.11.1 Advantages of Broadcast Updates

Specially, if there is no back channel, maintaining the consistency client’s cache
becomes entirely the responsibility of the server. On the other hand, there are some
added advantages of a broadcast system, namely,

• The communication overheads are significantly cut-down as the notification of the
updates are initiated by the server. However, in absence of any notification the
client has to poll. Polling is not possible unless there is a back channel.

• A single notification will do, as it is available on broadcast to all the clients.
• The client’s cache is automatically refreshed at least once in each broadcast period.

12.11.2 Data Consistency Models

The notion of data consistency depends on applications. For example, in a database
application, the consistency of data normally tied with transaction serializability.
But many applications may not require full serializability. So we need to arrive at



406 12 Data Dissemination and Broadcast Disks

some weaker forms of the correctness. In a dissemination based system the notion of
consistency is not fully understood till date. Therefore, the focus of our discussion is
on a broadcast disk environment where all updates are performed at the server. The
type access is allowed to the clients is read-only. The examples of such applications
could be stock notification, weather report, etc. The models of data consistency
normally employed are:

• Latest value: The client is interested for accessing the recent most value. The
clients perform no caching and the server always broadcast the updated value.
There is no serializability, i.e., mutual consistency among data items is not impor-
tant.

• Quasi-caching: Defined per-client basis using a constraint specifying the tolerance
of slackness with respect to the Latest value. A client can use cached data items
and the server may disseminate updates more lazily.

• Periodic: Data values change only at some pre-specified intervals. In a broadcast
environment, such intervals can be either be a minor or a major cycle of a broadcast.
If a client caches the values of the broadcast data, then the validity of this data is
guaranteed for the remainder of the period in which the data is read.

• Serializability: The notion serialiability is important for the context of transaction
processing. But serializability can be implemented in the broadcast dissemination
model, using optimistic concurrency control at the clients and having the server
broadcast the update logs.

• Opportunistic: For some applications, it may be acceptable to use any version of
data. Such a notion of consistency allows a client to use any cached value. It is
also quite advantageous for long disconnection.

InLatest valuemodel a client has to monitor broadcast continually to either invalidate
or update the cached data. In contrast Periodic model fits well with the behaviour of
a broadcast disk model. It does not require the client to monitor broadcast, since data
changes only in certain intervals. Quasi-caching and Opportunistic models depend
heavily on data access semantics of specific applications. Serializability model is
applicable in transaction scenarios.

References

1. S. Acharya, M. Franklin, S. Zdonik, Dissemination-based data delivery using broadcast disks.
IEEE Pers. Commun. 2(6), 50–60 (2001)

2. S. Acharya, R. Alonso, M. Franklin, S. Zdonik, Broadcast disks: data management for asym-
metric communication environments. ACM SIGMOD Rec. 24(2), 199–210 (1995)

3. D. Aksoy, M.S.F. Leung, Pull versus push: a quantitative comparison for data broadcast,Global
Telecommunications Conference, 2004. GLOBECOM ’04. IEEE, vol. 3 (2004), pp. 1464–1468

4. M. Ammar, J. Wong, The design of teletext broadcast cycles. Perform. Eval. 5(4), 235–242
(1985)

5. Y.I. Chang, C.N. Yang, A complementary approach to data broadcasting in mobile information
systems. Data Knowl. Eng. 40(2), 181–194 (2002)



References 407

6. M. Franklin, S. Zdonik, Dissemination-based information systems. Data Eng. 19(3), 19–28
(1996)

7. M. Franklin, S. Zdonik, Data in your face: Push technology in perspective. ACM SIGMOD
Rec. 27(2), 516–519 (1998)

8. D.K. Gifford, R.W. Baldwin, S.T. Berlin, J.M. Lucassen, An architecture for large scale infor-
mation systems. SIGOPS Oper. Syst. Rev. 19(5), 161–170 (1985)

9. S. Hameed, N.H. Vaidya, Efficient algorithms for scheduling broadcast. ACM/Baltzer J. Wire-
less Netw. 5(3), 183–193 (1999)

10. G. Herman, K.C. Lee, A. Weinrib, The datacycle architecture for very high throughput database
systems. SIGMOD Rec. 16(3), 97–103 (1987)

11. C.-L. Hu, M.-S. Chen, Adaptive balanced hybrid data delivery for multi-channel data broadcast,
IEEE International Conference on Communications, 2002. ICC 2002, vol. 2 (IEEE, 2002), pp.
960–964

12. Q. Hu, D.L. Lee, W.-C. Lee, Performance evaluation of a wireless hierarchical data dissemi-
nation system, Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (ACM, 1999), pp. 163–173

13. Y. Huang, H. Garcia-Molina, Publish/subscribe tree construction in wireless ad-hoc networks,
Mobile Data Management (MDM’03) (2003), pp. 122–140

14. J.W. Wong, Broadcast delivery. Proc. IEEE 76(12), 1566–1577 (1988)
15. J. Xu, J. Liu, Broadcast Scheduling Algorithms for Wireless Data Dissemination, ed. by Y. Pan,

Y. Xiao. Design and Analysis of Wireless Networks: Wireless Network and Mobile Computing,
vol. 1 (Nova Science Publisher, 2005)


	12 Data Dissemination and Broadcast Disks
	12.1 Introduction
	12.2 Data Access Issues in Mobile Environment
	12.3 Pull and Push Based Data Delivery
	12.4 Dissemination in Mobile Environment
	12.5 Comparison of Pull and Push Models
	12.6 Classification of Data Delivery Models
	12.7 Broadcast Disk
	12.7.1 Flat Periodic Broadcast Model
	12.7.2 Skewed Periodic Broadcast
	12.7.3 Properties of Broadcast Programs
	12.7.4 Advantages of Multi-Disk Program
	12.7.5 Algorithm for Broadcast Program
	12.7.6 Parameters for Tuning Disk Model
	12.7.7 Dynamic Broadcast Program
	12.7.8 Unused or Empty Slots in Broadcast Disk
	12.7.9 Eliminating Unused Slot

	12.8 Probabilistic Model of Broadcast
	12.9 Memory Hierarchy
	12.10 Client Cache Management
	12.10.1 Role of Client Side Caching
	12.10.2 An Abstract Formulation
	12.10.3 Consideration for Caching Cost
	12.10.4 Cost-Based Caching Scheme: PIX and LIX
	12.10.5 Pre-fetching Cost

	12.11 Update Dissemination
	12.11.1 Advantages of Broadcast Updates
	12.11.2 Data Consistency Models

	References


