
Chapter 11
Distributed Algorithms for Mobile
Environment

11.1 Introduction

From the prospectives of the application developers, a mobile computing system
is a distributed systems consisting of thousands of mobile computers and a set of
static computers connected by wireless networks [1]. A major part of the research in
mobile computing system is directed towards establishing and maintaining connec-
tivity between two types of computers through bridges between wireless with wired
networks [2]. Over the years, however, mobile computing has emerged as a distinct
paradigm for problem solving which is characteristically different from conventional
distributed computing.

From an abstract point of view, a mobile computing system can be seen as a graph
that consists of a fixed core of static nodes and a dynamic set of mobile leaf nodes [3].
Structurally, the organization is similar to a cellular mobile telephone network. The
mobile leaf nodes can be viewed as a set of persistent messages moving through
graph. With this underlying graph model, traditional distributed algorithms can be
implemented directly on mobile system. Unfortunately, a direct mapping of distrib-
uted algorithms to mobile environment is not practical due to limited bandwidth,
fragility of wireless links and many other resource specific constraints associated
with mobile nodes.

A commonsense driven approach to design a distributed algorithm for mobile
system will be to assign computing tasks to the fixed part of the system as much
as possible. It intrinsically formulates a logical two-tier approach for computing
in a mobile distributed environment. By offloading compute intensive tasks to the
static computers [4, 5], mobile devices can save critical resources including batteries.
Before we expand on the idea of two-tier approach, let us examine the differences
between a traditional distributed system and a mobile computing system a bit more
in details.

The mobility of a computing node brings up two important new issues in data
delivery [6]:

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_11

337



338 11 Distributed Algorithms for Mobile Environment

1. Locating a node for delivery of message, and
2. Transparent semantic routing of the message to the node.

Consequently, any attempt to map existing distributed algorithms for execution in
mobile computing environment in a simple way is unlikely to meet much success.
Nevertheless, observing the differences between mobile computing and distributed
systems will help in recognizing the issues that may arise in design of distributed
algorithms or restructuring existing distributed algorithms for execution on mobile
computing systems.

11.2 Distributed Systems and Algorithms

A distributed system consists of a set of autonomous computers (nodes) which com-
municate through a wired network. A program which runs on distributed system is
typically organized as a collection of processes distributed over different nodes. A
distributed computation consists of four iterative steps:

1. Broadcasting,
2. Gathering information,
3. Executing joint computation, and
4. Agreeing on coordinated actions.

The last three steps are closely related. Information gathering in a distributed setup
requires the participants to share local information amongst themselves. Similarly,
the progress of a joint computation requires exchange of partial results amongst the
participants. In fact, any coordinated action requires information sharing. Since the
processes are distributed over a set of autonomous computers, all such synchroniza-
tion requirements can be met either through a shared memory or through exchange
of messages over the network among the nodes. A shared memory in a distrib-
uted system is implemented at the software level either transparently by extending
the underlying virtual memory architecture, or explicitly through a set of library
functions. In other words, message passing is the basic interface for sharing and
exchanging of information between computers in a distributed system.

All distributed algorithms are designed with following basic assumptions about
the capabilities of the participating nodes:

1. The nodes are static and their locations (IP/MAC addresses) are known in advance.
No cost is incurred for locating a host.

2. The participating nodes are resource rich, having enough computation power,
memory.

3. The nodes are powered by continuous supply of power, and remain active during
the execution of programs.

4. The inability to receive a message by a node, due to a power failure, is treated as
a failure of the algorithm.



11.2 Distributed Systems and Algorithms 339

5. The message setup cost is fixed, and same for all the messages. The latency due
to message transmission dominates communication cost.

6. The size of a message is limited by size of MTU supported by network, and the
transmission cost of a message between two fixed nodes is fixed.

7. Sufficient bandwidth is available for transfer of messages.
8. Transmission of a large amount of data between two nodes is accomplished by

fragmenting it into several messages, and transmitting each of these messages
separately.

11.3 Mobile Systems and Algorithms

Before dealing with the design of distributed algorithms for mobile environment,
there is need to understand how the efficiencies of such algorithms can be evaluated.
The evaluation criteria influence the design of efficient algorithms. The efficiency
requirements of a distributed algorithm for mobile distributed environment should
focus on:

• Minimization of communication cost,
• Minimization of bandwidth requirement,
• Meeting all the synchronization requirements, and
• Overcoming the resource constraints of mobile hosts.

Bandwidth is usually treated as a resource. Therefore, the impact of poor bandwidth
can be examined along with the other resource constraints.

Synchronization is a key issue for the correct execution of any distributed algo-
rithm. Unlike static clients, mobile clients can appear and disappear in any cell of a
service area at any time. The synchronization techniques have to be adjusted to han-
dle dynamically changing locations of the peers. Thus, there is a need to evolve of a
new model for evaluating the cost of distributed algorithms in mobile environments.
Some of the easily identifiable cost criteria are:

• Computation on a mobile node versus that on a static node,
• Relocating computation to static host, and
• Communication on wireless channels,

There is also a number of other characteristics of a mobile distributed system which
influence the cost computation. In particular, network disconnection and recon-
nection introduce complications in evaluation of the cost. Furthermore, the cost
model applicable to mobile infrastructured network cannot directly be extended to
infrastructureless mobile ad hoc networks. Therefore, separate cost models have to
be evolved for different mobile distributed environments.

Finally, the cost model is of little help unless, algorithm designer adopt appropriate
strategies in design of algorithms. In this connection, two major issues which an
algorithm designer must appropriately address are:



340 11 Distributed Algorithms for Mobile Environment

• How a computation in a mobile environment can be modeled?
• How synchronization and contention problems arising thereof can be resolved?

11.3.1 Placing Computation

Whenever an operation is executed on a remote object, at first a message is sent to
the node that hosts the object. The desired operation is then performed by the remote
node on behalf of the initiating host. It is convenient to assume that the mobile host
logically executes the required set of operations directly on a remote node by sending
a message. Sending a message to a mobile host is a two-step process:

1. The first step is to locate the mobile host.
2. The next step is to actually send the message.

If destination of the message is a fixed host, the above two steps can be carried out
by the base station (BS) of the source mobile node within the fixed network. The BS
being a part of fixed network would be able to forward the message to the destination
node by using the IP forwarding protocol. It does not involve location search. This
implies the first step is unnecessary for a destination which is a static node. Thus,
sending a message to a fixed host is a lot cheaper than sending a message to a mobile
host. Therefore, it is preferable to avoid sending messages to mobile hosts except for
the case when both sender and the receiver are under the same BS. Since a mobile host
should try to avoid sending messages to another mobile host, executing operations
on objects resident in another mobile host should be avoided. So, the first design
principle is:

Principle 1 [7] To the extent possible, all remotely accessed objects should be
resident on the fixed hosts.

In other words, a node which hosts an object, requires both computing power and
bandwidth. Therefore, frequently accessed objects should not be stored in mobile
hosts. The role of a mobile host in a thread of execution is normally restricted to
initiating operations on a remote object by sending message to the fixed node holding
the object.

11.3.2 Synchronization and Contention

Whenever a particular resource is concurrently accessed from a number of remote
agents, the competing agents should follow a well defined contention resolution
protocol. We can treat each resource as an object. A sequence of operations being
initiated from a specific place (a mobile host) can be called a thread of execution.
Thus, an execution scenario is represented by many concurrently running threads
trying to operate on an object. For the moment, let us not make any assumptions



11.3 Mobile Systems and Algorithms 341

about where this object is located (at the risk of violating Principle 1). It may be
either be resident on a fixed host or on a mobile host. The concurrent threads compete
to gain access to the object.

Concurrent operations on an object by the competing threads should not leave the
object in an inconsistent state. In other words, any attempt to access a shared object
should be synchronized by mutual exclusion of competing threads. Let us examine
the issue of object consistency a bit more to understand why mutual exclusion is an
important issue for synchronization in a distributed settings. The execution of distrib-
uted algorithms can be visualised as a repeated pattern of communication followed
by computation. The computation is limited to the individual hosts and during the
execution of a computation, a host may need to communicate with its neighbors or
other nodes for exchanging the results of partial computations. So the progress of a
computation also needs synchronization. The synchronization requirements, among
other things, may involve initialization of parameters for the next phase of compu-
tation. Thus a distributed system of hosts exhibit repeated bursts of communication
in between the periods of local computations.

When hosts become mobile, one additional cost parameter, namely, cost of loca-
tion lookup is introduced. Furthermore, due to resource poorness in mobile hosts,
the cost assignment criteria for computational resources become drastically differ-
ent from that used for fixed host. The communication cost also needs to distinguish
between messaging over the wired and the wireless links. A simple technique, to
avoid the high resource cost at mobile hosts is to relocate compute intensive parts of
an algorithm to the fixed hosts as much as possible. Badrinath, Acharya and Imielin-
ski [7] proposed three different strategies, namely, the search, inform and proxy to
handle the issue of location search cost in the context of restructuring distributed
mutual exclusion algorithm on a logical ring network. The techniques proposed by
them are generic in nature and, therefore, can be used in synchronization require-
ments of distributed algorithms such as executing critical section of a code. We
examine these strategies in this section.

11.3.3 Messaging Cost

The most important complexity measures of any distributed algorithm is the com-
munication cost. It is dependent on the number of messages exchanged during one
execution of the algorithm. But when hosts are mobile, the communication com-
plexity should also include the cost of location search. Location search includes the
messages exchanged to locate a mobile host in the coverage area. We know that
mobile hosts have severe power constraints. They can transmit messages only on
wireless links which require substantial amount of power. Furthermore, wireless
links offer low bandwidth. Therefore, the cost of communication over a wireless
link is more expensive than the cost of communication over a wired link. Badrinath,
Acharya and Imielinski [7] proposed three different measures of cost for counting
the number of messages exchanged during the execution of a distributed algorithms



342 11 Distributed Algorithms for Mobile Environment

Search
initiator

Cf

Total cost = (Nbss + 1)Cf

MN2

MN1

Fig. 11.1 Search cost

in a mobile computing environment. The cost model is specified by defining the units
of cost as follows:

• Cw: cost of sending a message from MH to BS over wireless channel (and also
identical to the cost in the reverse direction)

• Cf : cost of sending a message from a static node to another another static by the
wired N/W.

• Cs: cost of searching/locating the current base station BScur of an MH and for-
warding a message from a source base station BSsrc to BScur .

Cw is assumed to represent a higher multiplicative cost compared to Cf . We may,
therefore, assume Cw to be equivalent to k. Cf , where k > 1 is an appropriately
chosen constant.

The simplest strategy to locate a mobile host is to let the searching base station
query all the other base stations in the coverage area. The base station which responds
to the query is the one which services the mobile host in the cell under it. The
querying base station can then forward the message meant for the mobile host to
the responding base station. So, the messages exchanged for a location search as
illustrated by Fig. 11.1 are:

1. In the first round, all the base stations, except one, receive message from the
querying base station. It requires exchange of (NBS − 1) × Cf messages.

2. The base station, servicing the searched mobile host, responds. It incurs a cost of
Cf .

3. Finally the querying base station forwards a message (data packet) to the respond-
ing base station. This incurs a cost of Cf .



11.3 Mobile Systems and Algorithms 343

Adding all the three costs, the worst case cost for a search:

Cs = (NBS + 1) × Cf .

The cost of transmitting a message from a mobile host (MH) to another mobile
host (MH′) is determined by overhead of search, and the cost of actual message
transfer. The break down of the cost is given below.

1. The source MH sends the message to its own base station BS. The cost incurred
for the same is: Cw

2. BS then initiates a search for the destination MH′ to locate its base station BS′
under whose cell area MH′ is currently active. BS delivers the message to BS′.
The cost of the locating MH′ and delivering message to BS′, as explained, is Cs.

3. After receiving the message from BS, BS′ delivers it to MH′. This action incurs
a cost of Cw.

Now adding all the costs together, the worst case cost of transmitting a message from
a mobile host MH to another mobile host MH′ in the worst case is:

2Cw + Cs.

Figure 11.2 explains how a message from a source mobile can be delivered to a
destination mobile.

The analysis of the cost structure which Badrinath, Acharya and Imielinski [7]
have proposed, is captured by Fig. 11.3. It succinctly explains two aspects, namely,

Fig. 11.2 Mobile to mobile
communication Cw Cw

Cs

MN1 MN2

Fig. 11.3 Summary of cost
model hi

gh
lo

w

Wireless network

cost hgihwol

Fixed network

co
m

pu
ta

tio
n

communication

computation
search cost

computation
communication



344 11 Distributed Algorithms for Mobile Environment

• The major component of the cost in a mobile distributed environment is due to
communication.

• However, the computation is also slow in mobile hosts. So, in the cost due to
computation is relatively high compared to the cost in conventional distributed
system.

Relocating computation on the fixed host makes sense. But, relocation may mean
communication between a fixed host and a mobile host. After computation is over,
the fixed host needs to report the result back to the mobile host. This would need a
search for locating the mobile host.

11.4 Structuring Distributed Algorithms

Attempts to execute distributed algorithms directly without any restructuring for
mobile environment may lead to design of inefficient algorithms. Inefficiencies, in
design of algorithms for mobile distributed environment, as observed in the previous
section arise out of synchronization, the asymmetry in model of the computation, and
the imbalance in communication cost between wired and wireless interfaces. From
the point of view of algorithm design, the problems are dependent on the abstract
notions of coordination and control in distributed algorithms. As an analogy, consider
the issue of quality in software design process. The efficiency of algorithms addresses
the quality in the problem domain. But when algorithms are converted to software
processes, the issue of quality goes beyond the problem domain. It becomes linked
to the choice of technologies for the implementation such as computers and their
capabilities, underlying network, storage, programming tools and languages, etc.

In a distributed computing environment, the control is not exercised by a single
computer. So the efficiency issue, i.e., the issue of quality must consider how control
and coordination are exercised in the execution of distributed algorithms. Therefore,
in order to structure distributed algorithm for execution in a mobile environment we
also need to consider the problem of coordination and control. The class of distributed
systems can be categorized as follows.

• Non-coordinator based systems:
• Coordinator based systems.

11.5 Non-coordinator Systems

In a non-coordinator based system, all the machines are equivalent. Therefor, no
machine can exercise any control on another machine. A non-coordinator system
is known more popularly as a peer-to-peer system. There are two different types of
non-coordinator based systems. In the first type of non-coordinator based system,
each peer execute the same code. In the second type, a few of the machines execute
some specialized code, while the rest execute the same code.



11.5 Non-coordinator Systems 345

11.5.1 All Machines are Equivalent

In such a system, each machine roughly shares the same amount of computational
and communication load. Such systems can easily be modified to work in a mobile
computing environment. We illustrate this with Lamport’s Bakery algorithm [8] for
mutual exclusion. In the Bakery algorithm, a process waiting to enter the critical
section chooses a number. It allows all processes which have chosen smaller numbers
to enter into the critical section before itself. The ties are resolved by process IDs,
allowing the process with the lower ID to enter the critical section. Lamport’s original
algorithm makes use of two shared arrays, each consisting of n elements. One element
is assigned for each process in each shared array. The values in a shared array can be
examined by any process. In a peer to peer settings, no shared arrays can be used. So,
local variables choose and value are maintained by each process. A process uses
message passing mechanism when it needs to examine the values of local variables
of another process. The pseudo code of the algorithm appears in Algorithm 13.

Algorithm 13: Lamport’s bakery algorithm
boolean choosingi = false;
int numberi = 0;
while (1) do

choosingi = true;
set valuei = max {valuej|j �= i, j = 0 . . .NMH − 1} + 1;
choosingi = false;
for (j = 0; j < NMH, j != i; j + +) do

while (choosingj) do
{busy wait ...}

end
while (numberj != 0) && ((numberj, j) < (numberi, i)) do

end
end
.
.
.

{ Critical section code}
.
.
.

numberi = 0;
end

Lamport’s Bakery algorithm requires very little computation, and can be easily
performed on a mobile device. So, ignoring computation we may just focus on the
communication aspects. The execution of the algorithm in a mobile host MH can be
analyzed in three distinct parts.



346 11 Distributed Algorithms for Mobile Environment

1. Choose own number.
2. Wait for the mobile hosts with lower numbers to avail their turns.
3. Execute the critical section.

In the first part of the execution, an MH fetches the numbers chosen by other
NMH − 1 mobile hosts in order to set its own number. So, an MH sends a query to
all other mobile hosts for fetching their respective local numbers. As the end hosts
are mobile, fetching each number involves location search for the other end host.
It is assumed that the requester does not move when it is waiting for the replies to
arrive. So, location search is not required for the delivery of the replies. Therefore,
the message cost incurred for fetching the number chosen by another mobile host
(2Cw + Cs). The overall the message cost incurred by MH for choosing its own
number is, therefore, equal to

(NMH − 1) × (2Cw + Cs).

In the second part of the execution, a requesting mobile host MH waits for all
mobile hosts to choose their numbers. Then subsequently, allow those hosts to execute
the critical section if their chosen numbers are smaller than the number chosen by
MH. The waiting part consists of two steps. It requires communication with other
mobile hosts to allow them choose their respective numbers and then allow the mobile
host having a smaller number to execute critical section. At the worst, a MH has to
wait till all other mobile hosts have finished choosing their respective numbers, and
availed their respective turns to enter the critical section assuming each one of them
has chosen a number smaller than the MH. The message cost involved in waiting
for one mobile host is 2(2Cw + Cs). In the worst case, an MH may have to wait for
NMH − 1 other mobile hosts to take their respective turns before the MH can enter
the critical section. This leads to an overall message cost of:

2(NMH − 1) × (2Cw + Cs).

The execution of code for critical section may perhaps involve some common
resources and possibly subsequent updates of those resources. It does not involve
any communication with other mobile hosts. Adding the message cost of three parts,
the overall communication cost for execution of Bakery algorithm only on mobile
hosts is

3(NMH − 1) × (2Cw + Cs).

Therefore, a straightforward way of mapping Lamport’s Bakery algorithm to mobile
peer to peer distributed system leads to a message cost of the order 6NMH × Cw.

The correctness of the algorithm is heavily dependent on the fact that the messages
are delivered in FIFO order. However, maintaining a logical FIFO channel between
every pair of mobile hosts has to be supported by the underlay network.



11.5 Non-coordinator Systems 347

11.5.2 With Exception Machines

This system similar to the previous category, where most of the machines execute the
same code, except only a few of them, which execute a different code. The machines
which execute a different code are known as exception machines. An example of this
category is Dijkstra’s self stabilizing algorithm [9]. It is a system consisting of a set
of n finite state machines connected in the form of a ring, with a token or privilege
circulate around the ring. The possession of the token enables a machine to change
its state. Typically, for each machine, the privilege state is defined if the value of a
predicate is true. The predicate is a boolean function of a machine’s own state and
the states of its neighbors.

The change of current state of a machine is viewed as amove. The system is defined
to be self-stabilizing if and only if, regardless of the initial state and token selected
each time, at least one token (privilege) is present and the system converges to a legal
configuration after a finite number of steps. In the presence of multiple tokens in the
system, the machine entitled to make the move can be decided arbitrarily. A legal
state of the system has the following properties:

• No deadlock: There must be at least one token in the system.
• Closure: Every move from a legal state must place the system into a legal state. It

means, once the system enters a legal state no future state can be illegal.
• No starvation: During an infinite execution, each machine should possess a token

for an infinite number of times
• Reachability: Given any two legal states, there is a series of moves that change

one legal state to the other.

Let us now look at Dijkstra’s algorithm involving K states where K > n, and system
consists of n+1 machines. Machine 0 is called the bottom machine, and the machine
n is called the top machine. All the machines together form a logical ring, where
the machine i has the machine i + 1 mod (n + 1) as its right hand neighbor, i =
0, 1, . . . , n. The legitimate states are those in which exactly one privilege is present.

For any machine, let the symbols S, L, R respectively denote the machine’s own
state, the state of left neighbor, and the state of the right neighbor. The rules for
change of states for this system are as follows.

• Bottom machine
if L = S then S = (S + 1) mod K .

• Other machines
if L �= S then S = L.

An initial configuration C0 may consists of at most n + 1 different states. At least
K − (n+ 1) states do not occur in C0. Machine 0 increments its state only after n+ 1
steps. Therefore, it reaches a state not in the initial configuration after at most n + 1
steps. All other machines i �= 0, copy states of their respective left neighbors. Hence,
the first time Machine 0 computes its state, such a state becomes unique in the ring.
Machine 0 does not get a chance to compute its state until the configuration reaches
S1 = S2, . . . , Sn = S0.



348 11 Distributed Algorithms for Mobile Environment

The details of how the self-stabilization works is not important for structuring
distributed algorithms to mobile environment. Let us look at the communication
that occurs between two machines. In self-stabilization algorithms, the essential
communication perspective is to access the registers for the left and right neighbors.
Thus, clearly these class of algorithms are very similar to the previous class of
algorithms and the presence of one or more exception machines does not make much
of a difference to the communication costs involved. However, only the neighbor’s
values are needed for the change of state. As most of the neighboring hosts are
expected to be under the same BS except for two at the edges, the overhead of
wireless communication is expected to be low.

In Dijkstra’s exception machine model, a single token or privilege circulates
around the logical ring. In such a ring organization of mobile hosts, the commu-
nication is restricted between a host and its left or right neighbors. If we structure
distributed mutual exclusion algorithm using a logical ring of cohorts, then it should
be possible to reduce the communication cost. The algorithm becomes very sim-
ple, we just let the privileged mobile to access mutual exclusion. If the privileged
machine is not interested, it just passes the privilege to the successor in the logical
ring. This way every mobile host gets one chance to use a critical resource in a
mutually exclusive manner during one full circulation of the token around the ring
of mobile hosts.

The analysis of the message cost of the token ring algorithm outlined above
(referred to as TR-MH) is provided below.

Both the sender and the recipient are mobile hosts. The message is sent first from
the sender to its local base station then from there to the base station under which
the recipient is found. So the cost of messages exchanged on wireless links is 2Cw.
The cost of locating a mobile host and subsequently sending a message to its
current base station is Cs.

Therefore the cost of token exchange between two successive MHs in the logical
ring is 2Cw + Cs. Assuming that the ring consists of NMH mobile hosts, the cost of
one full circulation token on the ring is NMH(2Cw + Cs). This cost does not include
the cost for mutual exclusion requests met during the circulation of the token. Let K
be the number of mutual exclusion requests satisfied during one complete circulation
of token around the ring. The maximum number of mutual exclusion that can be met
in one circulation of token is max{K} = NMH .

Each exchange of a message requires power both at the recipient and at the sender.
Every MH accesses wireless twice (once for acquiring and once for releasing) during
one circulation of the token through it. So, the energy requirement for executing this
algorithm is proportional to:

2NMHCw.



11.5 Non-coordinator Systems 349

11.5.3 Coordinator Based Systems

Many distributed algorithms involve a coordinator. The coordinator bears substan-
tially higher communication overhead compared to other participating nodes. It is
basically responsible for resolving the coordination issues related to synchroniza-
tion. A coordinator may or may not be fixed. In a fixed coordinator based system,
one node is assigned the role of the coordinator for the entire duration of execution
of the algorithm. However, in a moving coordinator based system the role of coor-
dinator can be performed by different hosts at different times. Thus the coordinator
is a function of time.

11.5.3.1 Fixed Coordinator Based System

Apart from the normal optimization for the mobile hosts, the communication pattern
involving the coordinator has to be specifically optimized. Such a strategy yields
better dividends in terms of reducing the communication cost, because most of the
communication load in a coordinator based system is centered around the coordinator.
Apart from increased communication load, it increases the probability of a failure,
as the coordinator is a single point of failure.

An example of the fixed coordinator system is encountered in the case of total
ordered atomic broadcast algorithms. The system consists of N hosts, each wishes
to broadcast messages to the other hosts. After a broadcast message is received, a
host time stamps the message and sends the same to a sequencer. On receiving the
relayed broadcast message from all the nodes, the sequencer sets the time stamp of
the message to the maximum of the received time stamps and then broadcast the
same back to all the hosts. In this way, the coordinator ensures a total ordering of
the broadcast messages. Figure 11.4 illustrates this process in a sequence diagram.
Host 3 in Fig. 11.4 is the sequencer or the coordinator. The execution of the above
atomic broadcast algorithm is mainly dependent on the coordinator. Therefore, in
order to structure the algorithms for execution in a mobile environment, we must first
turn our attention to the role of coordinator in a mobile environment. Obviously, if
the coordinator is mobile then execution of any coordinated action will be expensive.
It is, therefore, recommended that a static host should perform the coordinator’s job.
Since, the other hosts are mobile, search, inform or proxy strategies can be applied
depending on the mobility characteristics of entities in the system.

In the case where the algorithm is directly executed on the mobile hosts without
any change, the total cost incurred for each broadcast will be,

1. The cost of initial broadcast: (NMH − 1) × (Cs + 2Cw),
2. The cost of unicasting received message from the participating nodes to the coor-

dinator: (NMH − 1) × (Cs + 2Cw),
3. The cost of sending time stamped messages back to participants: (NMH − 1) ×

(Cs + 2Cw)

Therefore, the overall messaging cost is



350 11 Distributed Algorithms for Mobile Environment

coordinator

sender

time

host 1

host 3

host 4

host 5

host 2

Fig. 11.4 Atomic broadcast using fixed/moving coordinator

3(NMH − 1) × (Cs + 2Cw).

This can be improved marginally if the location of the coordinator cached by each
base station. The cost in that case would be

(2(NMH − 1) × (Cs + 2Cw) + (NMH − 1) × (Cf + 2Cw)

However, if the coordinator is placed on a BS, the cost is revised as follows:

1. Cost of initial broadcast: Cw + (NBS − 1) × Cf ,
2. Cost of informing receipt timestamps to the coordinator: (NBS −1)×Cf +NMH ×

Cw,
3. Cost of broadcasting coordinator’s final timestamp to participants: (NBS − 1) ×

Cf + NMH × Cw.

This leads to a overall message cost of

(2NMH + 1) × Cw + 3(NBS − 1) × Cf

Thus simple structuring of the atomic broadcast algorithm done by placing the coor-
dinator on a base station leads to substantial savings in the cost of messaging.

11.5.3.2 Moving Coordinator Based System

As shown in Fig. 11.5 the coordinator of the algorithm changes over time. The sender,
the coordinator and the receiver sets are the identical, but shown separately for the
sake of clarity.

In this case normal algorithm execution at mobile hosts again has the same com-
plexity as in the previous case. However, we can modify the system as follows:

1. One of the three strategies, search, inform and proxy, can be used for all the hosts
in the system.

2. As soon as a mobile host becomes a coordinator, the communication load on it
rises drastically in a short space of time. Hence the MH should inform its BS



11.5 Non-coordinator Systems 351

Fig. 11.5 Conceptual model
of a moving coordinator
system

Coordinator set

Sender set Receiver set

about change of status to coordinator, which is then broadcast to all base stations.
Also the MH during its tenure as the coordinator uses the inform strategy, while
other hosts use the search strategy.

Using these modifications, each step of the algorithm now requires

1. Cost of broadcast: Cw + (NBS − 1) × Cf ,
2. Cost of sending to coordinator: (NBS − 1) × Cf + NMH × Cw,
3. Cost of broadcasting back the time stamped message: (NBS−1)×Cf +NMH ×Cw,

and
4. Additional overhead associated with change of coordinator: (NBS − 1) × Cf +

NMH × Cw.

Thus the total cost works out as:

(2NMH + 1) × Cw + 3(NBS − 1)Cf + α(NMH × Cw + (NBS − 1) × Cf ),

where a change of the coordinator occurs every α broadcasts. The cost of executing
the non-structured version of algorithm is: 3(NMH − 1)× (Cs + 2Cw). So, the saving
in cost is significant by simple structuring.

11.6 Exploiting Asymmetry of Two-Tier Model

Most distributed algorithms can be structured suitably for execution on mobile envi-
ronment by reducing communication costs. Still, if we consider the token ring algo-
rithm described in Sect. 11.5.1, two of the key issues are not addressed, viz.,

1. Every mobile in logical ring has to maintain active network connectivity during
the execution of the algorithm.

2. Relocation of computation to balance inherent asymmetry in mobile computing
environment is not possible.

For example, none of the mobile hosts in the token ring algorithm can operate either
in disconnected or in doze mode during the execution. This is because the token
cannot be sent to a disconnected successor node, and also if the mobile, holding



352 11 Distributed Algorithms for Mobile Environment

the token decides to operate in disconnected mode then other mobiles may have to
wait indefinitely to get their turns. The organization of distributed mobile system
point towards a two-tier model with inherent asymmetry in node capabilities. The
fixed nodes do not suffer from any of the resource related problem which the mobile
nodes have. So, in order to balance the inherent asymmetry in the system, if the token
circulation is carried out by fixed hosts, then it may be possible for the mobile hosts
to operate in disconnected or doze mode. Furthermore, it may also be possible to
relocate compute intensive tasks to the fixed hosts. This strategy not only removes
the burden on resources of mobile nodes, but also enhances the performance of
algorithms.

Using the above two-tier approach, Badrinath, Acharya and Imielinski [7] pro-
posed three different variations for structuring of token ring algorithm. Their main
strategy was based on exploiting the inherent asymmetry in computation model as
indicated design Principle 1 of Sect. 11.3.1. The token is assumed to circulate on a
ring in a previously determined sequence among the fixed hosts in infrastructured
part of the network supporting the mobile computation. A mobile host MH wishing
to access the token submits the request to its current BS. When the token becomes
available, it is sent to MH at its current base station, BS′. After using the token MH
returns it to BS′ which in turn returns the same back to BS. The cost of servicing
token depends on the way location of a MH is maintained.

11.6.1 Search Strategy

Pure search strategy scans the entire area under coverage of service to find a MH. The
algorithm consists of set of actions performed by the two component devices, namely,
base stations and mobile hosts. Each base station assumed to maintain two separate
queues: (i) a request queue Qreq, and (ii) a grant queue Qgrant . The token access
requests by mobile hosts at a base station are queued up in Qreq. When the token
is received by a BS from its predecessor in the logical ring, all pending requests
are moved into Qgrant . Then all the requests are serviced from Qgrant , while new
requests get added to Qreq. This implies all the requests made before the time token
arrives are serviced and the requests which arrive subsequently are kept pending
for the next round of servicing. After all requests are serviced, the token is passed
on to the successor base station in the ring. So, the actions of BS are as provided
in Algorithm 14 [7]: As far as a mobile MH is concerned, it can request for token
servicing at any point of time to its base station. Once token is received from the base
station, it uses the critical resource and returns the token after the use. So, the actions
performed by a MH are as indicated in Algorithm 15. The correctness of algorithm
relies on several implicit assumptions.

1. Firstly, all the message channels are assumed to be reliable and received in FIFO
order. FIFO order means that the messages actually arrive and in the order they
are sent. So, a mobile sends only one request at a time.



11.6 Exploiting Asymmetry of Two-Tier Model 353

Algorithm 14: Search strategy: actions of BS

begin
on receipt of (an ME request from MH) begin

add MH’s request to the rear of Qreq;
end
on receipt of (the token from the predecessor in the ring) begin

move all pending requests from Qgrant ;
repeat

remove request from the head of Qgrant ;
if MH which made the request is local to BS then

deliver the token to MH over wireless link;
end
else

search and deliver token to MH at its current cell;
end
await return of token from the MH;

until (Qgrant == empty);
forward token to BS’s successor in the logical ring;

end
end

Algorithm 15: Search strategy: actions of MH

on requirement for (an access of the token) begin
submit request to current local BS;

end
on receipt of (token from local BS) begin

hold the token and use the critical resource;
return the token to local BS;

end

2. Secondly, a mobile cannot make a fresh request at a base station where its previous
request is pending.

3. Thirdly, the algorithm does not handle the case of missing or captured token.
4. Fourthly, a mobile can hold token only for short finite duration of time.

With the above assumptions, it is clear that at any time only one MH holds the token.
Therefore, mutual exclusion is trivially guaranteed. The token is returned to the same
base station from which it was received. So, after the token is returned back, a base
station can continue to use it until all the pending requests before the arrival of token
have been satisfied. The maximum number of requests that can be serviced at any
base station is bounded by the size of the Qgrant at that base station when the token
arrives. No fresh request can go intoQgrant , as they are added only toQreq. So, a token
acquired by a base station will be returned after a finite time by servicing at most all
the requests which were received before the arrival of the token. This number cannot
exceed NMH , the total number of mobile hosts in the system. It implies that the token
will eventually reach each base station in the ring and, therefore, all the requests are
eventually satisfied in finite time.



354 11 Distributed Algorithms for Mobile Environment

It is possible, however, for a mobile to get serviced multiple number of times
during one circulation of token over the ring. It can happen in the following way.
A mobile submits a request at one base station BS and after being serviced by the
token, moves quickly to the successor of BS in the logical ring and submits a fresh
request for the token at the successor. Though it does not lead to starving, a stationary
or slow moving mobile may have to wait for a long time to get its turn. We will look
into a solution to this problem in Sect. 11.6.3.1.

The communication cost of the above algorithm can be analyzed as follows:

1. Cost for one complete traversal of the logical ring is equal to NBS × Cf , where
NBS is the number of base stations.

2. Cost for submission of a request from a MH to a base station is Cw.
3. If the requesting MH is local to a BS receiving the token then the cost of servicing

a request is Cw. But if the requesting MH has migrated to different base station
BS′ before the token reaches BS where the request was initially made, then a
location search will be required. So the worstcase cost of delivering token to the
requesting MH will be Cs + Cw.

4. The worstcase cost of returning the token to BS delivering the token to MH isCw+
Cf . Cf component in cost comes from the fact that MH may have subsequently
migrated from BS where it made request to the cell under a different base station
BS′.

Adding all the cost components, the worstcase cost of submitting a single request
and satisfying is equal to 3Cw + Cf + Cs. If K requests are met in a single traversal
of the ring then the cost will be

K × (3Cw + Cs + Cf ) + NBS × Cf

Since, the number of mobile host requesting a service is much less than the total
number of mobiles in the system, K � NMH .

In order to evaluate the benefit of relocating computation to fixed network we have
to compare it with token ring algorithm TR-MH described earlier in this section where
the token circulates among mobile hosts.

• Energy consumption. The energy consumption in the present algorithm is propor-
tional to 3K as only 3K messages are exchanged over wireless links. In TR-MH
algorithm, it was 2NMH . As K � NMH , it is expected that 3K

2NMH
< 1

• Search cost. For the present algorithm it is K × Cs, whereas in the previous algo-
rithm the cost is NMH × Cs which is considerably more.

11.6.2 Inform Strategy

Inform strategy reduces the search cost. It is based on simple idea that the search
becomes faster if enough footprints of the search object is available before search
begins. In other words, a search is less expensive if more information is available



11.6 Exploiting Asymmetry of Two-Tier Model 355

about the possible locations of the mobile host being searched for. Essentially, the
cost of search increases with the degree of imprecision in locations information.
For example, if a MH reports about every change of its location to the BS, where it
initially submitted a token request, then search is not needed. The difference between
a pure search based algorithm to an inform based algorithm is that Qreq maintains
the location area information along with the request made by a mobile host, and
every mobile host with a pending request informs the change in location to the base
station where the request is made. Algorithm 16 specifies the actions of a BS [7].
The actions to be performed by a mobile host MH are provided in Algorithm 17.

Algorithm 16: Inform strategy: actions of BS

begin
on receipt of (a request from a local MH) begin

add the request < MH,BS > to the rear of Qreq;
end
on receipt of (inform(MH,BS′) message) begin

replace < MH,BS > in Qreq by < MH,BS′ >;
end
on receipt of (token from the predecessor of BS in ring) begin

move Qreq entries to the Qgrant ;
repeat

remove the request < MH,BS′ > at the head of Qgrant ;
if (BS′ == BS) then

deliver the token to MH over the local wireless link;
end
else

forward token to BS′ for delivery to MH;
end
await return of the token from MH;

until (Qgrant == empty);
forward token to BS’s successor in the ring;

end
end

To compare the search and inform strategies, we observe the following facts about
the search strategy:

• An MH makes MOB number of moves in the period between the submission of
request and the receipt of token.

• After each of these moves, a inform() message is sent to BS, i.e. the cost of inform
is MOB × Cf .

• Since the location of MH is known after each move it makes, there is no need to
search for its location.

• When token becomes available at BS and it is MH’s turn to use the token, then it
is directly despatched to BS′ where MH is currently found.



356 11 Distributed Algorithms for Mobile Environment

Algorithm 17: Inform strategy: actions of MH

on requirement of (token access) begin
submit request to its current local BS;
store the current local BS in the local variable req_locn;

end
on receipt of (token from BS req_locn) begin

access the critical resource or region
return token to BS (req_locn);
set req_locn to ⊥; // ⊥ indicates null

end
on a move byMH begin

send join(MH , req_locn) message to local BS
end
on entering (cell under a new BS) begin

if (req_locn �= ⊥) then
send a inform(MH,BS′) to BS (req_locn)

end
end

On the other hand, in the algorithm employing simple search, BS must search for the
current location of MH, incurring a cost Cs. Therefore, the inform strategy is more
cost effective compared to the search strategy provided MOB × Cf < Cs. In other
words if after submitting a request, the frequency of movement of a MH becomes low
then MH should inform BS about every change of location rather than BS searching
for it.

11.6.3 Proxy Strategy

Proxy strategy incorporates the ideas from both search and inform strategies. It
exploits the imbalance between the frequencies of the local and the global moves
made by a mobile host. Usually, a mobile host moves more frequently between cells
that are adjacent and clustered around a local area. Using this knowledge, the entire
coverage area consisting of all base stations is partitioned into contiguous regions,
where each region consists of a cluster of neighboring BSes. BSes within a region
are associated with a common proxy. A proxy is a static host, not necessarily a base
station. The token now circulates in a logical ring comprising of these proxies. Each
proxy, on receiving the token, becomes responsible for servicing the requests pending
in its request queue. So, the proxy strategy is just a minor variation of inform strategy
that can capture locality of moves made by mobile hosts. Only, implicit assumption
is that a mobile host must be aware of the the proxy assigned for handling token
requests originating from its current cell. Since the movements of a mobile host MH
at times can be unpredictable, it may not be possible for MH to pre-store the identity
of its proxy. So, each BS may send out periodic beacons that include the identity of its



11.6 Exploiting Asymmetry of Two-Tier Model 357

associated proxy. The actions executed by a proxy P are provided by Algorithm 18.
Similarly, the actions executed by mobile host MH are provided in Algorithm 19 For
convenience in analysis of proxy strategy, we use following notations [7]:

Algorithm 18: Proxy strategy: actions of proxy

begin
on receipt of (an ME request from MH) begin

// Request is forwarded by a BS within P’s local area
add request < MH,P > to the rear of Qreq;

end
on receipt of (a inform(MH,P′) message) begin

replace request (MH,P) in Qreq by (MH,P′);
end
on receipt of (token from the predecessor in ring) begin

move requests from Qreq to Qgrant ;
repeat

delete request < MH,P′) > from head of Qreq;
if (P′ == P) then

// MH located within P’s area
deliver the token to MH after local search;

end
else

// MH is in a different proxy area
forward the token to P′ which delivers it to MH;

end
await return of the token from MH;

until (Qgrant == empty);
forward token to P’s successor in ring;

end
end

1. Nproxy: denotes the total number of proxies forming the ring.
2. NBS: denotes the number of BSes in the coverage area, which means there are

NBS/Nproxy base stations under a region.
3. MOBwide: denotes the number of inter regional moves made by a MH in the period

between submitting a token request and receiving the token.
4. MOBlocal: denotes the total number of intra regional moves in the same period.

So, the total number of movesMOB is equal toMOBwide+MOBlocal. Before delivering
the token to a MH, a proxy needs to locate a MH amongst the BSes within its region.
This search is referred to as local search with an associated cost Cls. With the above
notations and assumptions, according to Badrinath, Acharya and Imielinsk [7] the
communication costs can be analyzed as follows:

1. The cost of one token circulation in the ring: Nproxy × Cf

2. The cost of submitting a token request from a MH to its proxy: Cw + Cf



358 11 Distributed Algorithms for Mobile Environment

Algorithm 19: Proxy strategy: actions of MH

on requirement (for access of token) begin
submit request < MH,P) > to local BS;
store the identity of local proxy in init_proxy;

end
on the receipt of (token from init_proxy) begin

use the token;
return the token to init_proxy;
set init_proxy to ⊥;

end
on a inter regional move begin

send a join(MH, init_proxy) message to new BS;
if (init_proxy /∈ {P,⊥}) then

// P′ is the proxy of new BS
new BS sends a inform(MH,P′) to init_proxy;

end
end

3. The cost of delivering the token to the MH: Cf + Cls + Cw

Cf term can be dropped from the cost expression above, if MH receives the token
in the same region where it submitted its request.

4. The cost of returning the token from the MH to the proxy: Cw + Cf

The above costs together add up to: 3Cw + 3Cf + Cls

If an inter regional move is made, then the current local BS of MH sends the
identity of new proxy to the proxy where MH submitted the request initially. The
cost for inform is, therefore, Cf . The worst overall cost for satisfying a request from
a MH, including the inform cost, is then

(3Cw + 3Cf + Cls) + (MOBwide × Cf )

If the token gets circulated on the set of proxies instead of the set of BSes, then the
cost of circulation is reduced by a factor of Nproxy/NBS . However, the workload is
comparatively higher on each proxy than the workload on a BS. Assuming all three
schemes service identical number of mutual exclusion requests in one full circulation
of ring,

• NBS static hosts share the load in the search strategy,
• Nproxy static hosts share the load under the proxy method.

The efficiency in handling mobility by each strategy can be compared by estimating
the communication cost in satisfying one token request.

search strategy: 3Cw + Cf + Cs

inform strategy: 3Cw + Cf + (MOB × Cf )

proxy strategy: 3Cw + (3 + MOBwide) × Cf + Cls



11.6 Exploiting Asymmetry of Two-Tier Model 359

The above expressions should be compared against one another in order to determine
which strategy performs better than the other. For instance, proxy strategy performs
better than search strategy, if

(3 + MOBwide) × Cf + Cls < Cf + Cs

≡ MOBwide + 2 < (Cs − Cls)/Cf
(11.1)

Search strategy requires a BS to query all the other BSes within a search region to
determine if a MH is active in a cell. The BS which currently hosts the MH responds.
Then the BS where MH originally submitted the request forwards the token to the
responding BS. The search cost is then equal to (Nregion + 1) × Cf , where Nregion

denotes the number of BSes within a search area. Replacing Cls in Eq. 11.1 by above
expression for search, we find:

MOBwide < NBS − (NBS/Nproxy) − 2

From the above expression, we may conclude that the proxy scheme performs better
than the pure search scheme if the number of inter regional moves is two less than
the total number of BSes outside a given region.

Now let us compare proxy with inform strategy. Proxy strategy is expected to
incur a lower cost provided:

(3 + MOBwide) × Cf + Cls < (MOB + 1) × Cf

≡ Cls < (MOB − MOBwide − 2) × Cf

≡ Cls < (MOBlocal − 2) × Cf

(11.2)

The cost of a local search equals (NBS/Nproxy + 1) × Cf , since all base stations have
to be queried by the proxy in its region and only the local base station of MH will
reply. So, the formula 11.2 above reduces to:

NBS/Nproxy + 2 < MOBlocal

From the above expression, we conclude that if the number of local area moves
performed by a mobile host exceeds the average number of BSes under each proxy
by just 2, then the proxy strategy outperforms the inform strategy.

11.6.3.1 Fairness in Access of the Token

There are two entities whose locations vary with time, namely, the token and the
mobile hosts. So we may have a situation represented by the following sequence of
events:

1. A mobile host MH submits a request to its current local base station BS.
2. It gets the token from the same BS and uses it,



360 11 Distributed Algorithms for Mobile Environment

3. It then moves to the base station BS′ which is the next recipient of the token,
4. The same MH submits a request for the token access at BS′.

The situation leads a fast moving mobile host to gain multiple accesses to the token
during one circulation of the token through the fixed hosts. It violates the fairness
property of the token access among the mobile hosts. So, we need to put additional
synchronization mechanisms in place to make the algorithms fair. Interestingly, the
problem of fairness does not arise in the algorithm TR-MH, which maintains the
logical ring amongst MHs. Therefore, we need to evolve ways to preserve the func-
tionality of fairness of TR-MH algorithm in the token algorithms which maintain
logical ring within the fixed network regardless of the mobility of hosts.

Of course, none of the algorithms, search, inform or proxy may cause starvation.
Because a stationary mobile host is guaranteed to get its request granted when the
token arrives in its local base station. We have already observed that the length of
the pending requests in request queue at a fixed host is always bounded. This means
after a finite delay each fixed host will release the token. Therefore, each requesting
mobile host at a base station will eventually gain an access to the token. In the worst
case, a stationary MH may gain access to the token after every other mobile host has
accessed the token once from every base station, i.e., after (NMH −1)×NBS requests
have been satisfied. A simple fix to the problem of fairness is as follows:

1. The token’s state is represented by loop count (token_val). It represents the
number of complete circulations performed by token around the logical ring.

2. A local count access_count is attached to each MH. It stores the number of
successful token accesses made by the MH.

3. When making an access request each MH provides the current value of access
count.

4. When a BS (or the proxy) receives the token, only requests withaccess_count
less than the token_val are moved from the request queue to the grant queue.

5. MH after using the token, copies the value of token_val to its local
access_count.

A MH reset its access_count to token_val after each access of the token.
Therefore, a MH may access token only once in one full circulation of the token
around the logical ring, even if the MH has a lower access_count. With the
modified algorithm, the number of token accesses, K , satisfied in one traversal of the
ring is limited to NMH (when the ring comprises of all BSes), while the value of K
could be at most NBS ×NMH otherwise. So the difference between the above modifi-
cation and the original scheme essentially represents a trade-off between “fairness”
of token access among the contending MHs and satisfying as many token requests
as possible in full circular traversal of the token.

Of course one can devise an alternative definition of “fairness” as in Defini-
tion 11.1.

Definition 11.1 (Fairness [7]) A mobile host, MH, having a low access count may
be allowed multiple accesses to the token during one traversal of the ring, with the



11.6 Exploiting Asymmetry of Two-Tier Model 361

limitation that the total number of accesses made by the MH does not exceed the
current token_val.

The above definition of fairness implies that if a mobile host MH has not availed
its share of token access for a number of token circulations, then MH can access
token multiple number of times bounded above bytoken_val -access_count.
The above fairness criterion can be easily implemented by simply incrementing
access_count of a MH on every access.

11.7 Termination Detection

There is a clear evidence that the generic design principle of exploiting asymmetry
in two-tier model would be very effective in structuring distributed algorithms for
mobile environment. However, the scope of discussion in the previous section was
restricted. It is just centered around design of mutual exclusion algorithm. Therefore,
we need to examine further how the design principle built around the asymmetry
approach could be useful for other problems as well. In this section we focus on
termination detection.

Termination of a distributed computation represents one of the global states of
the computation. Recording a global state of a distributed systems is known to be
difficult [10]. Therefore, it is difficult to record the termination state of a distrib-
uted computation. However, the termination, being one of the stable properties of
a distributed computation, can be observed. When a computation terminates, there
can be no messages in transit. Therefore, it is possible to design an algorithm which
does not interfere with the main computation but is able to detect termination of
the computation. More precisely, the termination detection algorithm determines
whether a distributed computation has entered a state of silence. In a silent state no
process is active and all the communication channels are empty, taking into account
unpredictable delays in message delivery.

An implicit assumption made by most termination detection algorithms is that the
main computation never enters an incorrect state. In the case of a mobile distributed
system, termination detection is more complex. The complexity is due to the fact
that the detection algorithm should also handle the issues arising out of many mobile
hosts operating in disconnected mode. Mobile hosts in disconnected mode should
not be disturbed. Of course, voluntary disconnection can be planned so termination
algorithm can handle them. But, in the cases of involuntary disconnections, mobile
hosts may not regain connectivity due to failure. In other words, an incorrect state at
times is indistinguishable from a correct state of the computation in mobile distributed
systems.



362 11 Distributed Algorithms for Mobile Environment

11.7.1 Two Known Approaches

In a termination state the channels are empty. Therefore, no message can reach any
of the process and consequently, no processes can become active ever again under
this state. There are two fundamentally different approaches to detect termination:

• Diffusion.
• Weight throwing.

A convenient model to visualize a distributed computation is a directed graph that
grows and shrinks as the computation progresses [11]. If such a graph contains an
edge from a node n1 to another node n2, then n2 is known as a successor of n1,
and n1 a predecessor of n2. Every node in a distributed computation starts with a
a neutral state. Dijkstra and Scholten [11] define that a diffusion based distributed
computation is initiated in a neutral state when the environment on its own generates
a message and sends it to its successor. After the first message has been sent, an
internal node is free to send messages to its successor. So, a diffusion computation
grows as a directed graph. After an internal node has performed its node specific
computation, it signals completion to its predecessors. In practice, though a two-
way communication is possible, the flow of computation messages is only in the
direction from a predecessor to a successor. The completion event can be viewed as
an acknowledgement for some computation message received earlier by the node. So
when completion event is eventually signaled back to environment, the distributed
computation is assumed to have terminated.

In weight throwing scheme [12–14], environment or starting process in neutral
state has a weight credit of 1 with it. Every message sent by any node is associated
with a weight. The sending node partitions the weight available with it into two
parts. One of the part is attached to the message before sending it while the other
part is retained by the sending node. The computation is started by the environment
generating a message of its own and sending it to its successor. Thereafter the internal
nodes send messages to their successors as in a diffusion computation. When the node
specific computations at a node is over, it signals completion of computation by a
weight reportage message to its predecessor besides setting its local weight to 0.
The weight reportage message carries the total weight left at a node at the time of
completion of the local node specific computation.

11.7.2 Approach for Mobile Distributed Systems

Termination detection in mobile distributed system follows a a hybrid approach [15].
It consists of running a simplified diffusion based termination detection algorithm
for the mobile part and a weight throwing based algorithm for the fixed part. The
base stations act as bridges between the two parts.

Let us first introduce a few notations which will be convenient to understand the
above protocol. A mobile distributed computation can be described by:



11.7 Termination Detection 363

1. A special process Pc called weight collector.
2. A set of base station processes denoted by Pi, for i = 1, 2, . . ..
3. A set of mobile processes, Pm

i , for i = 1, 2, . . ..
4. A set of messages.

The computation is started by the weight collector process. However, this does not
necessarily represent a limitation of the model. A computation may also be triggered
by a mobile process. In that case the weight collection will be performed by the
static process representing the current base station for the initiating mobile process.
In effect, the starting base station process becomes the environment node.

A mobile process can roam and execute handoff from one base station to another.
When a mobile process moves, the distributed computation on that process is sus-
pended. If a mobile process moves away from its current base station and unable to
find a new base station to which it can connect, then the mobile process is said to
be temporarily disconnected. Further, it is assumed that mobile process cannot carry
out any basic computation as long as it remains disconnected.

11.7.3 Message Types

Six different types of messages are needed for the algorithm. These are:

1. Mb: a basic message. If Mb is tagged with a weight w, then it is denoted by Mb(w).
2. Mwr(w): a reporting message with a weight w.
3. Mack(k): an acknowledgement for k basic messages.
4. MHF : handoff message. It contains four subtypes: MHF.req, MHF.ind , MHF.rep and

MHF.ack .
5. MDIS: message for temporary disconnection. It contains two subtypes: MDIS.req,

MDIS.ind

6. MJOIN : messages connected with rejoining of a disconnected mobile node. It
consist of two subtypes: MJOIN .ind and MJOIN .rep

Termination detection in a mobile distributed system is of two types:

(i) Strong termination, and
(ii) Weak termination.

A strong termination state is reached when all processes have turned idle, there are no
disconnected mobile process or any basic message in transit. In a weak termination
state all processes except disconnected mobile processes have reached the state as in
strong termination.

The protocol for termination detection in mobile systems should allow for a dis-
connected process to rejoin the computation at a later point of time. It is possible that



364 11 Distributed Algorithms for Mobile Environment

a mobile may be disconnected due to failure. In that case the mobile may not join
back. If the termination detection protocol does not have a provision to handle such
a situation, and then it will not work. Weak termination is an important indication of
anticipated system failure due to disconnected mobile processes. So, roll back and
recovery protocols can be planned around conditions involving weak termination.

The termination detection algorithm proposed by Tseng and Tan [15] divides the
protocol into several parts and specifies it in form of the actions by a mobile process,
a base station process and the weight collector process. Before we discuss these
algorithms it is necessary to understand how the mobile processes communicate
with static processes and while mobile hosts roams.

A mobile process always receives a message from a base station. But it can send
a message either to its local base station or to another mobile process. The message,
however, is always routed through the base station to which the mobile is connected.

When a mobile moves to another base station while being active then it requires a
handoff. A handoff is initiated by sending a MHF.req message. The responsibility for
carrying out the rest of the handoff process lies with the static part. Apart of sending
handoff, a disconnected mobile node may send a rejoin message on finding a suitable
base station to connect with. The rejoin message, denoted by MJOIN .req, is sent to the
base station with which mobile node attempts to connect. The only other message
that a mobile node could send is a signal for completion of local computation. This
message is sent to base station. After sending this the mobile turns idle. So the
relevant message types handled by a mobile host (MH) are:

• Mb: a basic message which one MH sends to another. Mb is always routed through
the base station of the sender MH. A base station after receiving a message Mb

from a mobile host (MH), appends a weight w to Mb and sends Mb(w) to the base
station of the receiving MH.

• MHF.req: This message is sent by an MH to its local base station for a handoff
request.

• MJOIN .req: This message is sent by a disconnected MH when it is able to hear radio
beacons from a base station of the network.

A base station can send a basic message either to a mobile node or to another
base station on behalf of a connected mobile. The base stations are also involved in
handoffs to facilitate roaming of mobiles. A disconnected mobile may rejoin when
it hears beacons from a base station over its radio interface. In order to perform
its tasks, a base station has to process and send different types of messages. These
message and intended use of these messages can be understood in the context of the
protocol discussed later.



11.7 Termination Detection 365

11.7.4 Entities and Overview of Their Actions

The termination detection protocol is carried out by actions of following three entities:

• Mobile nodes,
• Base stations, and
• Weight collector.

The termination detection protocol requires support at protocol level for roaming
and disconnected mobile processes. A roaming of mobile process is managed by
handoff protocol. Handoff protocol handles the transfer of weights associated with
basic computation messages to appropriate base station. Similarly, the concerned
base stations transfers associated weights of disconnected mobile processes to the
weight collector. The transfer of weights as indicated above ensures that every base
station can correctly transfer the weights to the weight collector when completion of
basic computation is signalled.

The protocol distinguishes between two sets of mobile processes:

• MPi: set of active mobile processes under base station BSi.
• DP: set of disconnected mobile processes in the system.

Each active mobile processes is associated with an active mobile node while each
disconnected process is associated with one disconnected mobile nodes. The set of
mobile processes involved in the computation is given by the union DP ∪ {∪iMPi}.

11.7.5 Mobile Process

A mobile process (which runs on a mobile host) can either receive a basic message
from a base station or send a basic message to another mobile process. All messages
either originating or terminating at a mobile host (MH) are routed through the current
base station of MH. When a mobile process receives a basic message it keeps a count
of the number of unacknowledged message received from the concerned base station.
So, mobile process knows the number of acknowledgements to be sent to the base
station when it has finished computation.

A mobile process Pm
j always routes a basic message Mb through its current base

station process Pi to another mobile process Pm
k . The process Pi attaches a weight

wi/2 to Mb and sends Mb(wi/2) to the base station hosting Pm
k . Pi also keeps track

of the acknowledgements it has received from all mobile processes. So no additional
protocol level support is required at Pm

j for sending a basic message to any other
process Pm

k .
Pm
j increments the number of unacknowledged messages by 1 when it receives a

basic message from Pi. A local counter in is used by a mobile process to update the
count of unacknowledged messages. So, Pm

j knows that it has to send acknowledge-
ments for in messages. Therefore, before turning idle, Pm

j signals the completion of



366 11 Distributed Algorithms for Mobile Environment

basic computation by sending an acknowledgement for in number of messages to
Pi. After the acknowledgement has been sent, in is set to 0. The summary of the
actions executed by a mobile node in the termination detection protocol is specified
in Algorithm 20.

Algorithm 20: Actions of a mobile process Pm
j

begin
// For sending a basic message to another process no

additional operation is needed.
on receipt of (a basic message from BS) begin

// Increment number of messages with pending acks.
in = in + 1;

end
on turning (idle from active) begin

// Send all the pending acks.
send Mack(in) to current base station;
in = 0;

end
end

11.7.6 Base Stations

Every message to and from a mobile process Pm
j is routed always through Pi, its

current base station process. Pi attaches a weight x from its available weights to
every message Mb from Pm

j before sending to the base station process Pl for the
destination. Pl receives Mb(x) = Mb + {x}. It extracts the weight x from Mb(x)
and adds x to its the current weight. After this, the message Mb = Mb(x) − {x} is
forwarded to Pm

k . This way any base station process can control the weight throwing
part of the protocol on behalf of all the mobile processes it interacts with.

In order to control the diffusion part, a mobile process Pi keeps track of the
messages it has sent to every mobile process Pm

j under it. Pi expects Pm
j to send

acknowledgement for each and every message it has received. The completion of
computation is signaled by sending the acknowledgements for all the messages of
Pi. When all the mobile processes Pm

j s involved in a computation have sent their final
acknowledgements to Pi, the termination in diffusion part is detected.

The rules for termination detection executed by a base station process Pi are as
specified by Algorithm 21.

Before we consider handoff and rejoin protocols, let us examine two important
properties of the protocol specified by actions of three entities we have described
so far.



11.7 Termination Detection 367

Algorithm 21: Actions of a BS process Pi

begin
on receipt of (Mb(x) for Pm

j from fixed N/W) begin
wi = wi + x; // Update local weight
Mb = Mb(x) − {x}; // Remove weight from Mb(x)
outi[j] = outi[j] + 1; // Record number of messages sent to Pm

j .
forward Mb (without appending x) to Pm

j ;

end
on receipt of (Mb from Pm

j for Pm
k ) begin

if (Pm
k ∈ MPi) then
// Pm

k is local mobile process under Pi
outi[k] = outi[k] + 1;
forward Mb to Pm

k ;
end
else

// Destination Pm
k is non local

Mb(wi/2) = Mb + wi/2; // Attach weight to Mb.

wb
i = wb

i /2; // Reduce current weight held.
locate MHk’s base station BS�; // BS process P�

send Mb(wi/2) to P�;
end

end
on receipt of (Mack(k) from Pm

j ∈ MPi) begin
outi[j] = outi[j] − k; // Decrease number of pending acks by k
if (outi[k] == 0 for all Pm

k ∈ MPi) then
sends Mwr(wi) to Pc;
wi = 0;

end
end

end

Property 1 If outi[j] = 0 then Pm
j is idle and there is no in-transit basic messages

between Pi and Pm
j .

Proof When outi[j] = 0, all basic messages sent by Pi to Pm
j have been acknowl-

edged. So Pm
j must be idle. As every channel is assumed to be FIFO, if message M is

sent before M ′ over a channel, then M must be received before M ′ at the other end.
When Pm

j turns idle it sends acknowledgement for all the messages it has received
from Pi. So when this acknowledgement (which the last among the sequence of mes-
sages betweenPi andPm

j ) is received byPi there can be no message in-transit message
on the channel because the acknowledgement would flush all other messages before
it.

Property 2 If wi = 0 then all mobile processes Pm
j ∈ MPi are idle and there is no

in-transit basic message within Pi

Proof Ifwi = 0, then the weights held byPi on behalf of all mobile processPm
j ∈ MPi

have been sent back to Pc. This can happen only if outi[j] = 0, for all Pm
j ∈ MPi. By



368 11 Distributed Algorithms for Mobile Environment

Property 1, it implies Pm
j is idle and there is no in-transit basic message between Pi

and Pm
j . Hence the property holds.

11.7.7 Handoff

When a mobile process Pm
j moves from its current cell under a base station BSi to a

new cell under another base station BSk then handoff should be executed. As a part
of the handoff process, the relevant data structure and the procedure for managing
termination detection protocol concerning Pm

j should be passed on to BSk .
Pm
j makes a request for handoff to BSk and waits for the acknowledgement from

BSk . If the acknowledgement is received then Pm
j starts interacting with BSk for ini-

tiating transfer of the data structure related Pm
j from BSi to BSk . If handoff acknowl-

edgement is not received within a timeout period, Pm
j retries handoff. The handoff

procedure is a slight variation from layer-2 handoff. In a cellular based wireless
network, when a handoff is initiated, old base station BSold sends handoff request
to mobile switching center (MSC). MSC then forwards the request to the new base
station BSnew (determined through signal measurements). BSold then accepts the
request and handoff command is executed through BSold . So, for the protocol level
support for handoff execution, the mobile process should send MHF.req to BSi iden-
tifying BSk . BSi accepts the request and also sends MHF.ack to Pm

j . After this Pm
j

starts communicating with BSk . BSi, before sending MHF.ack to Pm
j , also transfers

the needed data structure to BSk . The negotiation for transfer of link between BSi

and BSk may involve messages like MHF.ind and MHF.rep between BSi and BSk . The
handoff process has been illustrated in Fig. 11.6. To keep the protocol simple, Pm

j has
been shown to directly approach BSk for executing handoff. In response to handoff
indication message from BSk , process at BSi sends a message to BSk that includes:

• Count of the number of unacknowledged messages in respect of mobile process
Pm
j . These are the basic messages for which BSi was expecting acknowledgements

at the time Pm
j sought a handoff.

• A weight w = wi/2.

Fig. 11.6 Illustration of
handoff process

MN BSk BSi

HF.req

HF.ind

HF.reply

HF.ack

Start
communication

No weight
is attached



11.7 Termination Detection 369

The base station process Pi at BSi should check if Pm
k is the last mobile process under

it. In that case Pi should itself turn idle. But before turning idle, it should send its
existing weight credit to the weight collector process.

Once M(wi/2) has been received at BSk , it should update its own data structure
for keeping track of mobile processes. Thus the summary of the protocol rules for
handoff execution are as mentioned in Algorithm 22.

Algorithm 22: Handoff protocol

begin
// Actions of Pm

j

on detection of (Handofff conditions) begin
// BSk is the new BS for Pm

j

// Assume Pk in BSk handles the request
send MHF.req message to Pk and wait for MHF.ack ;
if (M.HF.ack received from Pk) then

start communicating with Pk ; // process Pk in BSk
end
else

after time out retry handoff;
end

end
// Actions of Pi of BSi
on receipt of (MHF.ind(Pm

j ) from Pk) begin
send a MHF.rep(Pm

j , outi[j],wi/2) to Pk ;

MPi = MPi − {Pm
j }; // Pm

j no longer under Pi.
wi = wi/2;
if (outi[l] = 0 for all l ∈ MPi) then

// Pm
j is the last mobile process under Pi

send Mwr(wi) to Pc;
wi = 0;

end
end
// Actions of Pk of BSk
on receipt of (MHF.req from Pm

j ) begin
sends a MHF.ind(Pm

j ) to Pi; // No weight attached.

end
on receipt of (MHF.rep(Pm

j , outi[j],wi/2) from Pi) begin
MPk = MPk ∪ {Pm

j };
outk[j] = outi[j];
wk = wk + wi/2;
send a MHF.ack to Pm

j ;

end
end



370 11 Distributed Algorithms for Mobile Environment

11.7.8 Disconnection and Rejoining

It is assumed that all the disconnections are planned. However, this is not a limitation
of the protocol. Unplanned disconnection can be detected by timeouts and hello
beacons. When a mobile process Pj

j is planning a disconnection it sends MDISC.req

message to its current base station BSi. Then BSi suspends all communication with
Pm
j and sends MDISC.ind(Pm

j , outi[j],wi/2) to Pc. It will allow Pc to detect a weak
termination condition if one arises.

The rules for handling disconnection are, thus, summarized in Algorithm 23.

Algorithm 23: Disconnection protocol

begin
// Actions of Pm

j

before entering (disconnected mode) begin
send MDISC.req message to Pi;
suspend all basic computation;

end
// Actions of Pi of BSi
on receipt of (MDISC.req from Pm

j ) begin
suspend all communication with Pm

j ;
send a MDISC.ind(Pm

j , outi[j],wi/2) to Pc;
MPi = MPi − {Pm

j };
wi = wi/2;
if (outi[k] == 0 for all Pm

k ∈ MPi) then
send Mwr(wi) to Pc;
wi = 0;

end
end
// Actions of weight collector Pc
on receipt of (MDISC.ind(Pm

j , outi[j],wi/2) from Pi) begin
DP = DP ∪ {Pm

j };
outc[j] = outi[j];
wDIS = wDIS + wi/2;

end
end

Final part of the protocol is for handling rejoining. If a mobile process can hear
the radio of signals from a base station it can rejoin that base station. For performing
a rejoin Pm

j has to execute Algorithm 24.

11.7.9 Dangling Messages

There may be messages in system which cannot be delivered due to disconnection or
handoff. Such dangling messages should be delivered if the mobile process recon-



11.7 Termination Detection 371

Algorithm 24: Rejoining protocol

begin
// Actions of Pm

j

on rejoining (a cell in BSi) begin
send MJOIN .req message to Pi and wait for reply;
if (MJOIN .ack is received from Pi) then

starts basic computation;
end
else

after timeout retry JOIN;
end

end
// Actions of Pi in BSi
on receipt of (MJOIN .req from Pm

j ) begin
send a MJOIN .ind(Pm

j ) to Pc; // No weight attached.

end
on receipt of (MJOIN .rep(Pm

j , outc[j],wDIS/2) from Pc) begin
MPb

i = MPb
i + {Pm

j };
outi[j] = outc[j];
send a MJOIN .ack to Pm

j ;
restart communication with Pm

j ;

end
// Actions of weight collector Pc
on receipt of (MJOIN .ind(Pm

j ) from Pi) begin
if (Pm

j ∈ DP) then
sends a MJOIN .rep(Pm

j , outc[j],wDIS/2) to Pi;
DP = DP − {Pm

j };
if (DP = Φ) then

wc = wc + wDIS ;
end

end
end

end

nects at a later point of time. So, care must be taken to handle these messages. When
a mobile process is involved in a handoff it cannot deliver any message to static
host or base station. So, the mobile process hold such undelivered messages with it
until handoff is complete. This way message exchange history is correctly recorded.
Dangling messages at base stations are those destined for mobile processes involved
in handoff or disconnection. These messages are associated with weights which is
ensured by weight throwing part of the algorithm. So, handling dangling messages
becomes easy. All dangling messages from base station processes are sent to weight
collector. The weight collector process holds the messages for future processing.
This protocol is specified by Algorithm 25



372 11 Distributed Algorithms for Mobile Environment

Algorithm 25: Handling dangling messages

begin
// Actions of weight collector Pc
on receipt of (Dangling message with weight x) begin

wDIS = wDIS + x;
end
on completion of (Reconnection of Pm

j ) begin
// Let Mb be a dangling message for Pm

j
Mb(wDIS/2) = Mb + wDIS/2;
wDIS = wDIS/2;
// Assume Pm

j reconects under BSi
send Mb(wDIS/2) to Pi;
if (dangling message list == Φ) then

// No disconnected mobile exists
wc = wc + wDIS ; // Reclaim residual weight
wDIS = 0;

end
end

end

11.7.10 Announcing Termination

The termination is detected by Pc when it finds wc + wDIS = 1. If wc = 1 then it is
a case of strong termination, otherwise it is case of weak termination. In the case of
weak termination wDIS > 0.

References

1. M.H. Dunham, A. Helal, Mobile computing and databases: anything new? SIGMOD Rec.
24(4), 5–9 (1995). December

2. G. Liu, G. Maguire Jr., A class of mobile motion prediction algorithms for wireless mobile
computing and communication. Mob. Networks Appl. 1(2), 113–121 (1996)

3. A.L. Murphy, G.C. Roman, G. Varghese, An algorithm for message delivery to mobile units, in
The 16th ACM Symposium on Principles of Distributed Computing (PODC’97), pp. 292–292,
1997

4. K. Kumar, Lu Yung-Hsiang, Cloud computing for mobile users: can offloading computation
save energy? Computer 43(4), 51–56 (2010)

5. K. Yang, S. Ou, H.H. Chen, On effective offloading services for resource-constrained mobile
devices running heavier mobile internet applications. IEEE Commun. Mag.46(1), 56–63 (2008)

6. S. Acharya, M. Franklin, S. Zdonik, Dissemination-based data delivery using broadcast disks.
IEEE Pers. Commun. 2(6), 50–60 (2001)

7. B.R. Badrinath, A. Acharya, T. Imielinski, Designing distributed algorithms for mobile com-
puting networks. Comput. Commun. 19(4), 309–320 (1996)

8. L. Lamport, A new solution of dijkstra’s concurrent programming problem. Commun. ACM
17, 453–455 (1974)

9. E.W. Dijkstra, Self-stabilizing systems in spite of distributed control. Commun. ACM 17,
643–644 (1974)



References 373

10. K.M. Chandy, L. Lamport, Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst. (TOCS), 3(1), 63–75 (1985)

11. E.W. Dijkstra, C.S. Scholten, Termination detection for diffusing computations. Inf. Process.
Lett. 11, 1–4 (1980)

12. S. Huang, Detecting termination of distributed computations by external agents, in The IEEE
Nineth International Conference on Distributed Computer Systems, pp. 79–84, 1989

13. F. Mattern, Golbal quiescence detection based on credit distribution and recovery. Inf. Proc.
Lett. 30, 95–200 (1989)

14. Y.C. Tseng, Detecting termination by weight-throwing in a faulty distributed system. J. Parallel
Distrib. Comput. 25, 7–15 (1995)

15. Y.C. Tseng, C.C. Tan, Termination detection protocols for mobile distributed systems. IEEE
Trans. Parallel Distrib. Syst. 12(6), 558–566 (2001)


	11 Distributed Algorithms for Mobile Environment
	11.1 Introduction
	11.2 Distributed Systems and Algorithms
	11.3 Mobile Systems and Algorithms
	11.3.1 Placing Computation
	11.3.2 Synchronization and Contention
	11.3.3 Messaging Cost

	11.4 Structuring Distributed Algorithms
	11.5 Non-coordinator Systems
	11.5.1 All Machines are Equivalent
	11.5.2 With Exception Machines
	11.5.3 Coordinator Based Systems

	11.6 Exploiting Asymmetry of Two-Tier Model
	11.6.1 Search Strategy
	11.6.2 Inform Strategy
	11.6.3 Proxy Strategy

	11.7 Termination Detection
	11.7.1 Two Known Approaches
	11.7.2 Approach for Mobile Distributed Systems
	11.7.3 Message Types
	11.7.4 Entities and Overview of Their Actions
	11.7.5 Mobile Process
	11.7.6 Base Stations
	11.7.7 Handoff
	11.7.8 Disconnection and Rejoining
	11.7.9 Dangling Messages
	11.7.10 Announcing Termination

	References


