
Chapter 10
Location Management

10.1 Introduction

The most important problem arising out mobility support is tracking of mobile
objects. A mobile object may represent an automobile, a cellular phone, a PDA,
a laptop or even a piece of software. The location management is concerned with the
ability to track or locate a moving object with an intention to communicate.

At an abstract level, a location management scheme involves two operations:

• Look up or search which locates a mobile object.
• Update which records the new location, each time a mobile object makes a move.

The search and update operations are also basic to a conventional database system.
But there are three significant differences in operation of a database and a location
management scheme:

• A database records only precise data, whereas a location management scheme has
to deal with imprecisions of various kind in location data.

• The update requirements in a database is directly linked with data consistency
problem. An update must be applied to a database as soon as it is received. The
update requirements in maintaining location data, depends on the ability of a
location management scheme to tolerate the degree of imprecision in location
data.

• The number of updates handled by a location management scheme is several times
more than the updates any moderate sized database can handle.

The reason behind large number of updates that any location management is expected
to handle can be explained as follows. There is absolutely no control in proliferation
of mobile devices. In a cell size of about half a kilometer radius, roughly about 1000
mobile devices may be active at any point of time. Assuming every such mobile object
makes just about five moves in a day (in 12-h period), the total number of updates
exceeds 10,000 calculated at the rate of one insertion and one deletion per move

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_10

299

300 10 Location Management

Fig. 10.1 Location space of
all objects

A

B

L
oc

at
io

n
av

ai
la

bi
lit

y

Update
 cu

rre
ncy

Location precision

per mobile object. Suppose a small city has a cellular coverage area of 1000 cells
of the above kind. The active mobile devices operating in this city may potentially
generate up to a minimum of a million location updates in 12-h period. Clearly, no
conventional database can match the scale of updates expected to be handled by a
location management scheme.

The three dimension of the approaches to the management of location information
and its use can thus be identified as

• Availability: Represents the availability of location information at all the network
sites or at a few selected places in the network.

• Imprecision: Represents the exactness of the location information.
• Currency: Represents the regularity of the location updates.

An abstract view of the space of location management problem is depicted in
Fig. 10.1. The position B in the location space refers to the situation when exact
information is maintained for each and every network sites. The location updates is
required for every move and should be disseminated to all the sites. Under this sce-
nario look up becomes immediate. The other extreme case represented by position
A. It refers to the situation where no information about the location of any object
is maintained anywhere in the network. The search for a mobile object under this
situation becomes an exhaustive search of all the network sites. In between the above
two extremities, several combination of approaches regarding location updates and
look ups are possible.

We implicitly assume that location management is supported by a cellular network
architecture acting as the backbone. Furthermore, location management is handled
either in the data link or the network layer. Though cellular architecture is not the only
possibility, it is a good candidate to understand the issues that arise in the location
management. In absence of a infrastructures backbone architecture, an alternative
approach such as global positioning system has to be used to locate mobile objects.

10.1 Introduction 301

10.1.1 Registration and Paging

There are two distinct mobility types involving mobile devices [2].

1. Terminal mobility: Allows a terminal identified by an identity independent of its
point of attachment in the network. It allows a terminal to be attached to different
points of a fixed network at different time. Therefore, allows mobility with respect
to the point of attachment with the fixed network.

2. Personal mobility: It is associated with a user. A user gets a distinct identity
independent of terminal s/he uses. Personal mobility allows the users to receive
or make calls any where through any terminals.

In practice there is no distinction between terminal and personal mobilities in a
mobile network. Since, terminals are portable and carried by the users, a personal
mobility always accompanied by a movement of the terminal carried by the user. In
other words, personal and terminal mobilities occur concurrently.

In order to facilitate location tracking, a mobile user has to explicitly register, and
notify about the location of the terminal to one or more location servers belonging
to the fixed network [2]. The granularity of location data may vary from a single
cell to a group of cells. The paging process is a system initiated polling by sending
signals to the likely locations to track the users. When the exact location of a user is
known, a single paging operation suffice. By changing the size of registration area,
flexibility in combination of paging and registration can be attained.

10.2 Two Tier Structure

In two tier scheme [13], there are two location registers per mobile hosts:

1. home location register (HLR), and
2. visitors location register (VLR).

Every mobile user is associated with a HLR which is located at a network location
prespecified for each user. It is essentially a database for the home location of a user.
Home location is a group of cells in which a user is normally expected to move
around. Initially, a user registers his/her mobile handset in home location to avail the
cellular service. A HLR maintains the current location of an user. The HLR entry
corresponding to a user gets updated every time the user makes a move.

Each zone also maintains a VLR database, each entry in VLR is associated with
a user currently active in that zone. In HLR-VLR scheme, the call setup is quite
straightforward. When a user A in a location area LAIi wants to communicate with
another user B in a cell belonging to LAIj, then the VLR in LAIi is searched first. If
there is no entry for B, the search is then directed to the HLR maintained at LAIb
which is the home location area of B. Thus, the location update process for tracking
movement of an user is as follows:

302 10 Location Management

LAIa

HLRh VLRh

A · · ·

LAIj

HLRj VLRj

· · · A

LAIiHLRi VLRi

· · · A

Fig. 10.2 Move in two-tier scheme

• When a user moves from a cell in LAIi to a cell under LAIj then the HLR of the
user in its home location area gets updated.

• The VLR entry for the user is deleted from VLR database for area LAIi, and an
entry for the user is created in VLR database maintained for area LAIj,

Figure 10.2 illustrates the movement of user A from a cell under LAIi to a cell under
LAIj. LAIa denotes the home location of A.

10.2.1 Drawbacks of Fixed Home Addresses

The home location is permanent. Thus long-lived mobile objects cannot change their
homes. In other words, porting a mobile phone from one neighborhood to a different
neighbourhood is not possible without explicit intervention by the service operators.
The two-tier approach does not scale up too well as a highly distributed system
would. Often the distant home locations may have to be contacted for look up even
in the case of moderately mobile objects. In other words, the locality of the moves
is not captured very well in a two-tier system.

10.3 Hierarchical Scheme

Hierarchical schemes [1, 8] are designed to take advantage of locality of movements.
The location database at an internal node contains location information of users in the
set of zones under the subtree rooted at the node. The information stored may simply

10.3 Hierarchical Scheme 303

Fig. 10.3 Tree-based
organization of location
servers

x 1

2

5 6 7

x 3

x 25

8 9 10x

4

11 12 13

be a pointer to the lower-level location server or the current location. A leaf node
serves a single zone. The organization of location servers in a tree-based hierarchical
scheme is illustrated in Fig. 10.3. A zone can be considered as a location area or a
single cell served by a mobile support station.

The performance of any location management scheme is clearly dependent on
two factors [5, 6], namely,

1. The frequency of the moves made by the users.
2. The frequency of the calls received by each user.

Based on these factors we can define two performance metrics:

(i) local call to mobility ratio, and
(ii) global call to mobility ratio.

Let Ci be the expected number of calls received, and let Ui be the number of location
area crossings made by a mobile user over a duration of time T . The fraction Ci/Ui

is the global call to mobility ratio for time T . If Cij represents expected number of
calls from location LAIj to the user in time T , then the local call to mobility ratio
(LCMR) is the ratio Cij/Ui. Local call to mobility ratio LCMRij at any internal node
j of tree hierarchy can be computed as

∑
k LCMRik , where k is a child of j.

10.3.1 Update Requirements

Typically, location information at internal nodes of in the hierarchy are stored as
pointers. As an MH A moves from a cell in LAIi under location server LSi to a new
location, say to the cell LAIj under location server LSj, the tree paths:

• from LCA(LSi,LSj) down to LSi and
• from LCA(LSi,LSj) down to LSj

should be updated. For example in the Fig. 10.3 each node represents a location
server. Each leaf server store location information of mobile users in one location

304 10 Location Management

area. When a mobile user A moves from a cell in the location area under the server
25 to a cell in location area under the server 26, then updates will be needed at the
nodes 3, 8, 9, 25, 26.

• At 8, 25 entries for A should be deleted.
• At 3, the entry for A should be updated.
• At 9, 26 new entries should be created for A.

If actual information on cell ID is stored at each node from the root to a leaf,
then path from the root to LCA(LSi,LSj) also has to be updated. However, typically
pointers are stored. For example, if A is in a cell under 25, nodes 1, 3, 8 should have
pointers leading to node 25 which indicates that A is in a cell under 25, and the cell
ID information for A would be available in node 25. After a time t, suppose A moves
to cell under 26, then all the nodes 1, 3, 9, 26 must be updated to indicate that A is
now in a cell under 26. The information about location of A from node 25 should
also be deleted.

10.3.2 Lookup in Hierarchical Scheme

The look up operation in hierarchical scheme can start with search for a mobile
object A getting initiated at the neighbourhood, i.e., bottom up in the tree hierarchy.
If A is not found in the current level of the hierarchy then the search process is just
pushed one level up the hierarchy. Since the root maintains information about all
the objects, the look up is bound to succeed at a higher level of the hierarchy. For
example, suppose a search is initiated at a cell under LAIi for the mobile object Om

which is currently located in a cell under LAIj. The look up for Om begins at location
server LSi, until it reaches LCA(LSi,LSj) where an entry for Om will be found. After
that following the pointers to Om, the search traverses down the hierarchy along the
path from LCA(LSi,LSj) to LSj.

10.3.3 Advantages and Drawbacks

The tree-based hierarchical scheme does not require HLR and VLR type databases
to be maintained. It supports locality of call setup process. However, it requires
updates to be done at a number of location servers on different levels of hierarchy.
The location information for each mobile object has to be replicated at each node
on the tree path from the root to the leaf node corresponding to the location area in
which the mobile object is located. The load for updates increases monotonically at
the internal nodes higher up the hierarchy. The storage requirement also increases at
higher levels.

10.4 Caching 305

10.4 Caching

Caching of locations [1, 6] is used primarily to reduce the lookup cost. It also helps
to reduce the delay in establishing links. The idea has its root on the conventional
use of caching.

In the two-tier architecture, when a large number of calls originate from the
coverage area under a specific MSC to a particular mobile belonging to a different
MSC, then the ID of the mobile and the address of its serving VLR can be stored at
the calling MSC. This helps not only to reduce the signaling cost but also to reduce
the delay in establishing the connection. Each time a call setup is attempted, the
overhead associated with caching is as follows:

• First, the cached information of VLR is checked at calling MSC. If a cache hit
occurs, the VLR of the callee is contacted directly.

• When the called mobile moves out of cached VLR, a cache miss occurs. Then the
HLR of the called mobile is contacted to establish the call.

Checking cache at calling MSC adds little to overhead. On the other hand, if cache
hit occurs, then the saving on signaling cost and the call setup latency improves.
However, when called mobile crosses over to a new location area, old cache entry
becomes invalid. So a cache revalidation is made by updating the old entry.

From the point of view of pure location update (no cache), new VLR address
should be registered with HLR [9], and old VLR address should be purged from
HLR. So, a location update cost is:

updatenocache = cost(VLRnew ↔ HLR) + cost(VLRold ↔ HLR)

For establishing a call in absence of a cache, HLR of the called mobile should be
queried to obtain the address of VLR of the new region where the mobile is active.
So, the cost of a lookup in a system without cache is:

searchnocache = cost(VLRcaller ↔ HLR) + cost(HLR ↔ VLRcallee)

If the expected number of calls from a particular MSC to a particular mobile is
ρ, then the cost for establishing calls will be

updatenocache + ρ × searchnocache

Estimation of ρ requires an analysis of the call traces. A study [11] reveals that
a user typically receives 90% of calls from his/her top 5 callers. A location area can
be ranked according to the number of calls a user receives from that area.

Computation of local call to mobility ratio (LCMR) allows us to obtain a theo-
retical estimate of cache placement policy. Let us first model the calls received by a
mobile and its mobility. Calls to a mobile and its movements are unrelated. Let the
call arrival time at a mobile in a service area is exponentially distributed with mean

306 10 Location Management

arrival rate λ. Then probability distribution function is:

λe−λt .

Similarly, let the residence time of a mobile in a location area be exponentially
distributed with mean residence time 1/μ, i.e., the probability distribution function
for the residence time is:

μe−μt .

Let pcache represent the probability that the cached information for a mobile at
a location area is correct. In other words, pcache defines the probability that mobile
has not moved from its current location since it received the last call from the same
location area. So,

pcache = Prob[t < t1] =
∫ ∞

0
λe−λt

∫ ∞

t
μe−μt1dt1dt = λ

λ + μ

In order to know if caching could beneficial, we need to find the relationship
between calls received by a mobile and the number of moves it makes in between
receiving calls. Let,

1. CB represent the lookup cost of connection setup in basic scheme, i.e., if caching
is not used, and

2. CH represent the cost when caching is used.

In other words, CH is the cost of retrieving the address of VLR associated with the
MSC where the called mobile is active directly from the VLR associated with MSC
from where the call originated. Estimation of CB, on the other hand, involves two
things: (i) the cost of accessing HLR entry of the called mobile from VLR of calling
MSC, and (ii) the cost of retrieving VLR address of called mobile and caching the
same at the caller MSC. Hence,

CH = cost(VLRcaller ↔ VLRcallee)

CB = cost(VLRcaller ↔ HLR) + cost(HLR ↔ VLRcallee)

A cost saving is possible in caching scheme, only if

pcacheCH + (1 − pcache)(CB + CH) ≤ CB,

where pcache is the probability of a cache hit. From the above inequality, we find that
pT = min{pcache} = CH/CB. This implies that caching would be useful in saving
cost, if

pcache > pT ≥ CH/CB,

where pT denotes threshold for the cache hit.

10.4 Caching 307

Calling MSC typically uses Local Call to Mobility Ratio (LCMR) for determining
if caching could be cost effective. LCMR is equal toλ/μ. Relating LCMR to threshold
for cache hit, we have

LCMRT ≥ pT/(1 − pT)

10.4.1 Caching in Hierarchical Scheme

In a hierarchical architecture, caching can be deployed to reduce the lookup time.
Combined with forward and reverse bypass pointers, caches can be placed at a higher
level of the hierarchy to service the calls originating from a group of cells rather than
a single cell. The tradeoff of placing cache at a higher level is that the calls have to
traverse a longer path. The idea is illustrated by Fig. 10.4. When a connection setup is
requested from a mobile phone in a location area LAIi to a mobile phone in location
area LAIj, the control message traverses up the tree from LSi to LCA(LSi,LSj) and
then downwards to LSj. The call setup requires an acknowledgement (ack) to be sent
from LSj back to LSi along the same path. All the ancestors of LSi in the hierarchy
overhear this ack message, and one of them, say LSai , can create a forward bypass
pointer to LSj. Likewise, a reverse bypass pointer can be created from an ancestor
of LSj to LSi. A cache can be deployed at LSai for the callees located in the cells
belonging to LAIj. Then subsequent calls from the callers active under coverage area
LAIi may be able to reach the location database LSj via a shorter route through the
forward bypass pointer at LSai . Similarly, the acknowledgement messages originating

reverse bypass pointer

forward bypass pointer

search trail

1

2 2

4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19

Fig. 10.4 Caching in hierarchical location scheme

308 10 Location Management

from the callees under LAIj traverse a shorter path to LSi using the reverse bypass
pointer. If the level of LSai is high then all the callers from its subtree can use the
forward bypass pointers for the callees under the subtree of LSj. But each call have to
traverse a longer path up to LSi, and may incur longer average lookup time, because
the latency for locating the callee in the subtree of LSaj would depend on its size.

10.5 Forwarding Pointers

For a mobile user receiving relatively less calls compared to the moves, it is expensive
to update all the location servers holding the location of the user on every move. It
may be cheaper to leave a forwarding pointer to the new location at the previous
location of the user. Then any call arriving at the old location can be re-routed to
the current location by the forward pointer, and the update to the database entries
holding a user’s location can be made less frequently.

In two-tier architecture, if a user is frequently away from home, and the user’s
moves are mostly localized around the neighborhood of its current locations, then
the location updates to the user’s HLR would require long latencies. In order to
avoid such updates requiring long latencies, forward pointers may be used. It works
as follows. Whenever the user makes a move in the neighborhood of its current
location, a forward pointer for the new location is placed in the VLR of the serving
location. Therefore, when a call to the user reaches its home location server, the
call can be diverted to the present location of the user. The call diversion is possible
because HLR can access the VLR associated with the user’s first location away from
home. The other locations of the user can now be reached by following a chain
of forward pointers starting from the first VLR. The chain of forward pointers are
allowed to grow up to a predetermined length of K . When the user revisits a location,
the potential loop condition in forward pointers chain is avoided by an implicit
compression due to a location update in current VLR on a fresh move by the user.
The approach of forwarding is applied on a per user basis.

Forwarding pointer strategy can also be applied to the hierarchical architecture.
In a simple forwarding strategy, the pointers are placed in the leaf level. No update
is performed up the tree path as a user moves from one location to another. But a
forwarding pointer is left at the previous location to the current location.

In a level forwarding strategy, the forwarding pointer is placed at a higher level
location server in the hierarchy. In this case, more updates are required to delete the
database entries of lower level location servers of the previous location, and also to
insert the current location into lower level ancestor location servers of the current
location. Figure 10.5 illustrate the two schemes for placing the forward pointers. The
dashed pointers illustrate the level forwarding while the ordinary pointers illustrate
simple forwarding. Assuming mobile usermu to be initially located in cell 11 decides
to move to a the cell 14, then simple forwarding places a forward pointer at the old
leaf level location server 11 as indicated by the ordinary pointers. Whereas in the case
of level forwarding, a forward pointer is placed at the ancestor location server 2 at

10.5 Forwarding Pointers 309

1

2

4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19

mu

mu

mu

mu

level forwarding

simple forwarding

3

Fig. 10.5 Forwarding pointers in hierarchical scheme

level 3 which points to the location server 3 which is an ancestor of the new location.
In this case, the updates are more than that required in simple forwarding. This is
because, the entries concerning new location of mu should be made at nodes 3, 6,
and 14 and database entries for mu at nodes 2, 5, and 11 are to be deleted.

10.6 Replication

Replication [5, 8] is another mechanism to reduce the cost for lookup. A high CMR
(call to mobility ratio) value is the guiding principle for replication of the location
of a user at selected nodes in the hierarchy.

In a two-tier architecture, replication may be employed, if the cost of replication
is not more than the cost for non-replication. When many calls originate from a
location area LAIj to a mobile user, it may be cost effective to replicate the location
of the user at the location server LSj. However, if the user moves frequently then
the maintenance of the replica incurs a heavy cost. A replica does not merely have
location information. It also includes service information parameters such as call
blocking, call forwarding, QoS requirements like the minimum channel quality and
the acceptable bandwidth. Thus replicas should not be considered merely as extension
of cache entries. Replicas may maintained both at the caller and the callee. If Cij is
the expected number of calls made from cells in LAIj to a user over a period of time
T , α is saving on replication at LSj, β is the cost per update, and Ui is the number of
updates then

310 10 Location Management

α.Cij ≥ β.Ui (10.1)

should hold in order that the replication of the user at LSj to be cost effective. The
replicas of the user are kept at all the frequent callers areas which satisfy inequal-
ity 10.1. The set of the caller locations where the replica of a user is maintained is
called a working set for that user. Every time a call is made to the user:

• From a member of the user’s working set, no update is needed,
• From a non-member then if inequality 10.1 is found to be true then that cell is

added to the working set of the user.

On the other hand, when the user makes a move:

• Inequality 10.1 is evaluated for every member of the working set,
• If it fails to hold for location area LAIk , then it is removed from the working set.

The storage requirement for a single user’s profile of size F in basic multi-tier
location database having L levels is F + ptr × (L − 1), where ptr is the size of
a pointer (user ID + database ID). If the profiles are replicated then the cumulative
storage requirements should not exceed the storage space available in the database [7].

Apart from storage constraint, the decision to place a replica should also be based
on minimization of network communication cost. In two-tier model, LCMR (local
call to mobility ratio) is used for this purpose. A user i’s profile is replicated a database
j, only if LCMRij exceeds a minimum threshold, say Rmin. In hierarchical database,
it is impossible to arrive at a single parameter for databases at different levels of the
hierarchy. However, by using an additional parameter Rmax, it is possible to arrive at
a decision. The computation of LCMRij for hierarchical database is done by a simple
bottom up summing the LCMR values of its children. Clearly, if high LCMR value is
the criterion for the selection of replication then when a node is selected for placing a
replica, all its ancestor nodes also should be selected for replica placement. Therefore,
this selection process results in excessive updates at higher levels of databases. This
calls for setting a number of constraints including high (Rmax) and low (Rmin) marks
for LCMR values to determine the nodes in the hierarchy which may be selected for
placing replicas. The rules for selecting replication site are as follows [7]:

1. If LCMRij < Rmin, replica of i’s profile is not placed at site j.
2. If LCMRij ≥ Rmax, then always place replica of i’s profile at site j if the constraints

on L and N are satisfied, where L represents hierarchy level, N is the bound on
the number of maximum number of replicas for a user.

3. IfRmin ≤ LCMRij < Rmax, then the decision to place i’s profile at site jwill depend
on database topology.

The other constraints are the level of location server in the hierarchy, and the
maximum number of replicas to be placed. The reader is referred to [7] for details
of analysis and the algorithm for placing replicas.

10.7 Personal Mobility 311

10.7 Personal Mobility

In the context of location management, there is a trade off between search and update.
Most of the location management schemes are based on the approach to balance
between search and update. To what extent the trade off can swing between the two
will depend on the bound on signaling requirements. But the question is how to define
a bound on signaling requirements? Furthermore, even if a bound can be defined, is
it possible to reach the bound? Due to technological limitations, it is difficult to find
satisfactory answers to above questions. However, analyzing problem of location
management from a different track, we notice that terminal mobility and personal
mobility are tightly coupled in a cellular communication network. In reality a mobile
equipment is a portable device, and cannot move on its own. The movement of a
mobile terminal is caused by the movements of the user carrying it. The movement
of a person or the user of a mobile terminal can be considered as a path in some
random process [3, 12].

10.7.1 Random Process, Information and Entropy

Let us explore a bit about the randomness of a process. If the volume of information
content in a random process is high then the unpredictability is low. The probability
of occurrence of an event contains the amount of information about the event. For
example, if the probability of occurrence of an event A is known to be more than
the probability of occurrence of another event B, then the amount of information
available about A is more than that available for B. In other words, A’s occurrence is
more predictable than B’s occurrence. This qualitative measure of information can
be interpreted in terms of surprisal. Shannon [10] formulated surprisal as measure
of information content in a system. It captures the following two important aspects:

1. The extent of randomness is determined by the size of entropy.
2. If randomness of a process is more, its unpredictability is higher.

For example, if an event E is known to happen always, then there is no surprisal in
its occurrence. Equivalently, E’s occurrence carries no information at all. In contrast,
if E is a rare event, the fact that E has occurred is a surprise. So, the information it
provides is high. The relationship between probability p(E) of an event E and the
size of expected information H(E) of E’s occurrence can be expressed as follows:

p(E) → 0 implies H(E) → ∞
p(E) → 1 implies H(E) → 0,

where
p(E): proability of event E
H(E): expected information conent in occurrence of E

312 10 Location Management

In other words, the richness in information varies as the inverse of the probability.
The above connection between p(E) and H(E) is captured by Shannon as follows:

H(E) = p(E) × 1

log p(E)

The reason for using logarithmic function instead of simple inverse is that it
makes entropy an extensive property. In other words, if there are two systems A and
B, then the total entropy should be additive. Any base greater than 1 should work.
Typically, the base of logarithm is taken as 2, since log2 q bits are needed to represent
a quantity q.

The amount of information is measured in number of bits. For example, 3000 bits
are needed in order to transmit the results of 1000 rollings of an unbiased hypothetical
eight sided dice. If the dice is known to be biased, and the probability distribution is
known, then a variable length encoding can be used. Since, the information bits are
transmitted together, the encoding should be such that it is possible to disambiguate
the block of bits representing the results of different rollings of the dice. This implies
that the encoding must have prefix property which ensures that no code is a prefix of
any code.

For example, let the probability distribution for a biased dice be:

p(i) =
{

1/2i, for i ≤ 7

1/2i−1, for i = 8,

Since, half the number of rollings result in 1, the shortest code should be used for
1. On the other hand, the code for the rarest event (a rolling that results in 8) could be
the longest. A possible encoding scheme with the above mentioned properties would
be as illustrated in Table 10.1. The above encoding satisfies the prefix property. The
average number of bits needed for encoding the result of 1000 rollings is

1

2
+ 2 × 1

4
+ 3 × 1

8
+ . . . + 7 × 1

128
+ 8 × 1

128
= 1.984

So, with more information, the average number of bits required for transmitting
the result 1000 rolling of the biased 8 sides hypothetical dice is reduced from 3000
to 1984 bits.

To reinforce our understanding, consider flipping of a biased coin. Suppose head
shows up just once in 1000 flips. Let a 0 represent the fact that the result of a toss

Table 10.1 An encoding scheme with prefix property

Results
of rolling

1 2 3 4 5 6 7 8

Code 0 10 110 1110 11110 111110 1111110 1111111

10.7 Personal Mobility 313

is a head. Similarly, let 1 represent a tail. Suppose the coin is tossed one million
times. Without using any clever encoding, 1 bit will be required for the result of each
toss. So, transmitting the result of one million tosses requires a million bits. Since
a head shows up only once in 1000 flips of the biased coin, we may just record the
sequence number of tosses that resulted in a head. The missing sequence numbers
will then represent tails. Any number between 1 and 106 can be represented by at
most log 106 = 20 bits. Therefore, the information transfer for the result of 1000
flippings of biased coin will need just 20 bits. A total of 20000 bits will be needed
for transmitting the results of one million tosses.

From the above examples, let us try to abstract out the answer to the general
case of information coding for a random event. Consider a conventional dice with
six faces to find an answer to the above question. If the dice is unbiased, the
probability of occurrence of any value is p = 1/6, the number of bits required =
log 6 = − log(1/6) = − log 6. The result of one throw requires log 6 = 2.58 bits.
It is not immediately apparent how the result any particular throw of a dice can be
encoded by less than 3 bits. However, if we group g successive throws, the results
can coded by less than 6g bits. For example, the number of possible outcomes for a
group of three throws = 63 = 216 < 255, and 0–255 can be coded using 8 bits. Thus,
for a biased probability distribution, the number of bits required for the optimal code
is determined by

−
∑

x

p(x) × log p(x).

The examples discussed in this section, point to the fact that a rare event (probabil-
ity of occurrence is low) has a high information content. In the coin toss example, the
information content in occurrence of a head is − log(1/1000) = log 1000 = 9.9658.
So, 10 bits will be needed to represent the occurrence of a head. As against this infor-
mation contents in appearance of a tail is − log(999/1000) = 0.0044 bit. The average
information content is given by:

(1/1000) × 10 + (999/1000) × 0.0044 = 0.0114 bit.

Let us try to generalize the method of determining information content as outlined
in the above example. Suppose, the probability of an outcome Ai of a random event
A is p(Ai). Then the expected value of self information in A

H(A) =
n∑

i=1

p(Ai) × log

(
1

p(Ai)

)

= −
n∑

i=1

p(Ai) × log p(Ai)

According to Shannon [10], H(A) represents the entropy of A.

314 10 Location Management

Suppose X and Y is a pair of discrete random variables with joint probability
distribution p(x, y), where x ∈ X , y ∈ Y . The joint entropy of X and Y is:

H(X,Y) = −
∑

x∈X

∑

y∈Y
p(x, y) log p(x, y)

Assume that the conditional entropy H(Y |X) represents the information content
of a random event Y given that some event X has occurred. H(Y |X) is given by the
formula:

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x) = −

∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x)

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(y|x)

Joint entropy and conditional entropy are closely related. Joint entropy is the sum
of entropy of the first random variable and the conditional entropy of the second
random variable given the first.

H(X,Y) = −
∑

x∈X

∑

y∈Y
p(x, y) log p(x, y)

= −
∑

x∈X

∑

y∈Y
p(x, y) log(p(x)p(y|x))

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(x) −

∑

x∈X

∑

y∈Y
p(x, y) log p(y|x)

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(x) + H(Y |X)

= −
∑

x∈X
p(x) log p(x) + H(Y |X)

= H(X) + H(Y |X) = H(Y) + H(X|Y).

The generalization of the above result, known as chain rule, says:

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi|Xi−1, . . . ,X1).

If the random variables are known to be independent then according to the chain
rule:

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi).

10.7 Personal Mobility 315

10.7.2 Mobility Pattern as a Stochastic Process

In order to capture the personal mobility, a user’s movement is considered as a
random process. In a cellular infrastructure, a user’s mobility can be represented as
a sequence of cells that the user has visited. In a GSM type network, each symbol
represents a Location Area Identity (LAI) consisting of several cells. There is a
possibility that certain substrings of LAIs have repeated occurrences in a string of
LAIs representing a user’s movement. Such repetitions essentially represent locality
of a user’s movements. By characterizing mobility as probabilistic sequence, mobility
can be interpreted as a stochastic process.

At first we need to be clear on two issues:

1. How a user may move in a service area?
2. How the movements may be recorded?

Figure 10.6 illustrates an example for a service area consisting of eight LAIs a,
b, c, d, e, f, g, h. The shapes of actual cell areas are not hexagonal, but
irregular geometric contours. The cell contours are determined by actual field mea-
surement of signal strengths. Multiple cells are grouped into an LAI. The topology
of LAIs in coverage area can be abstracted in form of a graph shown along side. Each
node in the graph represents an LAI. Two nodes are connected with edge if and only
if the corresponding LAIs are adjacent to each other. With the graph abstraction as
explained above, the mobility pattern of a user is represented as a walk in the graph.
A walk is formed by the updates of the user’s locations as a user moves and enters
new LAIs.

The mobiles send their location updates to network subsystem. The frequency of
update is controlled by one of following three possible ways.

• Distance based updates: In the distance based updates, mobile terminals keep track
of the Euclidean distance from the time of the last update. If distance travelled from
the last update crosses a threshold D, the mobile should send an update.

• Movement based: A mobile sends an update if it has performed n cell crossings
since the last update.

• Time based: a mobile sends periodic update.

It is also possible to combine three update schemes in several possible ways. For
example, distance based updates can be combined with movement based updates or

Fig. 10.6 GSM type
location area map
(Source [3])

h a

c

e

d

bg

f

a b c

ef

gh
d

316 10 Location Management

Table 10.2 An example for LAI crossing by a mobile

Crossings in morning

Time 11:04 11:32 11:57

Crossing a → b b → a a → b

Crossings in afternoon

Time 3:18 4:12 4:52

Crossing b → a a → b b → c

Crossings in evening

Time 5:13 6:11 6:33 6:54

Crossing c → d d → c c → b b → a

Table 10.3 Sequence of cells representing movement history

Update scheme Movement history

T = 1 h aaabbbbacdaaa. . .

T = 1/2 h aaaaabbbbbbbbaabcddcaaaa. . .

M = 1 abababcdcba. . .

M = 2 aaacca. . .

T = 1 h, M = 1 aaababbbbbaabccddcbaaaa. . .

time based updates. Similarly, movement based updates can be combined with time
based updates, and so on.

Let us consider an example to understand how different updates schemes would
generate the updates. Suppose the service is started at 9.00 AM. An example of
LAI crossings is provided in Table 10.2. With the movement history, shown earlier
in Table 10.2, the LAI sequences reported by different update schemes may be as
shown in Table 10.3.

In summary, the movement history of a user is represented by a string v1, v2, v3, . . .,
where each symbol vi, i = 1, 2, . . ., denotes the LAI reported by the mobile in ith
update. The symbols are drawn from an alphabet set V representing the set of LAIs
covering the entire service area. The mobility of a user is characterized as a stationary
stochastic process {Vi}, where Vi’s form a sequence of random variables, and each
Vi takes a value vi from set V .

Before proceeding further, let us define a stochastic process.

Definition 10.1 (Stochastic process) A stochastic process is stationary if the joint
probability distribution does not change when shifted in time or space.

If observed over time, a normal mobile user is most likely to exhibit the preference
for visiting known sequence of LAIs in a time invariant manner. Equivalently, the
correlation between the adjacent LAIs in the string of visited locations remains
unchanged over all periods of time. Consequently, personal mobility pattern can be
treated as a stationary stochastic process. Thus,

10.7 Personal Mobility 317

Pr[V1 = v1, V2 = v2, . . . , Vn = vn] = Pr[Vl+1 = v1, Vl+2 = v2, . . . , Vl+n = vn].

The above general model could aid in learning, if a universal predictor can be con-
structed. Let us explore the possibility of evolving a statistical model for a universal
predictor. The common models used for interpreting the movement history are:

• Ignorant Model (IM)
• Identically Independent Distribution (IID)
• Markov Model (MM)

IM disbelieves and disregards past history. So the probability of any LAI residence
is the same, i.e., 1/8 for each of the 8 LAIs for the chosen example.

IID model assumes that the values random variables defining a stochastic process
are Identically and Independently Distributed. It uses relative frequencies of symbols
for estimating the residence probabilities of the LAIs. Assuming time and movement
based scheme the probabilities for the string aaababbbbbaabccddcbaaaa, are:

p(a) = 10/23, p(b) = 8/23, p(c) = 3/23, p(d) = 2/23,

p(e) = p(f) = p(g) = p(h) = 0.

The string consists of 23 symbols. Symbols e, f, g, h do not occur at all.
While the probability of occurrence of any of the remaining symbols is determined
by its relative frequency.

The simplest Markov model is a Markov chain where distribution of a random
variable depends only on distribution of the previous state. So, this model assumes
the stochastic process to be a stationary (time-invariant) Markov chain defined by:

Pr[Vk = vk|V1 = v1, . . . , Vk−1 = vk−1]
= Pr[Vk = vk|Vk−1 = vk−1]
= Pr[Vi = vi|Vi−1 = vi−1]

for arbitrary choices of k and i. Notice that the LAIs e, f, g, h are not visited at
all. This implies each of these four LAIs have zero residence probability or equiva-
lently, the effective state space is {a, b, c, d}. One step transition probabilities
are:

Pi,j = Pr[Vk = vj|Vk−1 = vi],

where vi, vj ∈ {a,b,c,d}, are estimated by relative counts. So, the movement profile
can be represented by the corresponding transition probability matrix:

P =

⎡

⎢
⎢
⎣

2/3 1/3 0 0
3/8 1/2 1/8 0
0 1/3 1/3 1/3
0 0 1/2 1/2

⎤

⎥
⎥
⎦

318 10 Location Management

Fig. 10.7 One step state
transition diagram for
personal mobility

a b c d

2/3
1/2 1/3

1/21/3 1/31/8

3/8 1/3 1/2

Table 10.4 Frequencies of symbols corresponding to three contexts

Order-0 Order-1 Order-2

a(10)|Λ
b(8)|Λ
c(3)|Λ
d(2)|Λ

a(6)|a b(1)|c
b(3)|a c(1)|c
a(3)|b d(1)|c
b(4)|b c(1)|d
c(1)|b d(1)|d

a(3)|aa a(2)|ba a(1)|cb
b(2)|aa b(1)|ba d(1)|cc
a(1)|ab a(1)|bb d(1)|cd
b(1)|ab b(3)|bb b(1)|dc
c(1)|ab c(1)|bc c(1)|dd

Note that a occurs 6 out of 9 times in context of a and 3 times out of 8 times
in context of b. The values of other transition probabilities can be found likewise.
Thus, the state transitions with the respective probabilities can be viewed as shown
in Fig. 10.7. Let Π = [p(a) p(b) p(c) p(d)]T be in steady state probability vector.
Solving Π = Π × P with p(a) + p(b) + p(c) + p(d) = 1, we obtain p(a) = 9/22,
p(b) = 4/11, p(c) = 3/22 and p(d) = 1/11.

To summarize the above discussion, though IID is the first step toward adaptive
modeling, it can never be adaptive. The optimal paging strategy dependents on the
independent probabilities of symbols {a,b,c,d,e,f,g,h}. But, if we already know
that the user has reported the last update as d then neither a nor b should be paged.
So, IID ignore the knowledge of the previous update.

Order-1 Markov model carries information to the extent of one symbol con-
text. For uniformity, IM is referred to as order-(−1) Markov model, and IID
as order-0 Markov model. Order-2 Markov model can be constructed by count-
ing the frequencies of symbols appearing in order-2 contexts for the sequence
aaababbbbbaabccddcbaaaa. Table 10.4 provides frequencies of different sym-
bols for all three contexts.

According to order-1 model the probability of taking the route a → b → c →
b → c → d is:

=(9/22) × (1/3) × (1/8) × (1/3) × (1/8) × (1/3)

=1/4224 = 2.37 × 10−4

It is unlikely that any user will ever take such a zig-zag route. Though the prob-
ability is very low; still it is not zero. However, if order-2 model is used then the
proposed route will be impossible. So, the richness of the information helps.

The question is how much of the past history should be stored so that it could lead
to a good prediction? Storing the movement history for every movement of a user
is not practical. The conditional entropy is known to be a decreasing function of the

10.7 Personal Mobility 319

number of symbols in a stationary process [4], implying that the advantage of higher
order contexts die out after a finite value. To appreciate this fact, we need compare
per symbol entropy rates H(V) for a stochastic process V = {Vi}. This quantity is
defined as

Definition 10.2

H(V) = lim
n→∞

1

n
H(V1, V2, . . . , Vn).

if the limit exists. The conditional entropy rate H ′(V) for the same process is defined
by

H ′(V) = lim
n→∞

1

n
H(Vn|V1, . . . , Vn−1),

if the limit exists.

Using the above definition, let us compute H ′(V) for the three different models
for the example for personal mobility we have used in the text.

• Order-(−1) model:
Vis are independently and uniformly distributed, so p(vi) = 1/8 for all vi ∈
{a,b,c,d,e,f,g,h} in the chosen running example. Due to independence of
events, p(vn|v1, . . . vn−1) = p(vn). Therefore,

H(V) = H ′(V) = −
∑

vi

p(vi) log p(vi)

=
8∑

i=1

(1/8) log 8 = log 8 = 3.

The above equation implies that the per symbol entropy rate is 3 bits for order-(−1)
model.

• Order-0 model:
In this case, Vis are Independently and Identically Distributed. Due to indepen-
dence p(vn|v1, . . . vn−1) = p(vn). Therefore,

H(V) = H ′(V) = −
∑

vi

p(vi) log p(vi)

= (10/23) × log(23/10) + (8/23) × log(23/8)

+ (3/23) × log(23/3) + (2/23) × log(23/2)

≈ 1.742.

Therefore, the per symbol entropy rate for order-0 model is 1.742 bits which is
much better than order-(−1) model.

320 10 Location Management

• Order-1 model:
In this case, Vis form Markov chains. So p(vn|v1 . . . vn−1) = p(vn|vn−1) = Pvn−1,vn .
Substituting steady state probabilities p(a) = 9/22, p(b) = 4/11, p(c) = 3/22
and p(d) = 1/11, we find

H ′(V) = −
∑

vi

p(vi)

⎛

⎝
∑

j

Pi,j logPi,j

⎞

⎠

= 9

22

(
2

3
log

3

2
+ 1

3
log

3

1

)

+ 4

11

(
3

8
log

8

3
+ 1

2
log

2

1
+ 1

8
log

8

1

)

+ 3

22

(

3 × 1

3
log

3

1

)

+ 1

11

(

2 × 1

2
log

2

1

)

≈ 1.194.

Note that 3 bits are sufficient to represent any symbol from a space of eight symbols
{a, b, c, d, e, f , g}. So order-(−1) model cannot resolve uncertainties in any of the
three bits. But both order-0 and order-1 models exhibit richness in information and
gradual decrease in entropy rates. The entropy rates H(V) and H ′(V) are same
in both order-(−1) and order-0 MM due to independence of the events related to
symbols. However, when order-1 MM is used, the per symbol entropy rate is 1.194
bits. It improves the entropy rate substantially over order-(−1) and order-0 models.

A mobile terminal’s location is unknown for the interval between two successive
updates. The approach in LeZi update is to delay the updates, if the path traversed
by mobile is familiar. The information lag does not impact paging, because system
uses prefix matching to predict location with high probability.

10.7.3 Lempel-Ziv Algorithm

LeZi update is based on Lempel-Ziv’s text compression algorithm [14]. The algo-
rithm provides a universal model for variable-to-fixed length coding scheme. The
algorithm consists of an encoder and decoder. The encoder incrementally parses the
text into distinct phrases or words (which have not been observed so far). A dictio-
nary is gradually built as phrases keep coming. LeZi update’s encoder is identical to
the encoder of Lempel-Ziv’s algorithm (see Algorithm 3). It runs at mobile terminal.
The encoding process can be best explained by executing it on a string of symbols.
Let the example string be:

aaababbbbbaabccddcbaaaa

Table 10.5 illustrates how encoding of each phrase is realized. The first incoming
phrase is a, Λ or the null phrase is its prefix. The null phrase is assumed to be a
prefix of any phrase having one symbol, and the index of Λ is set to 0. So, a is coded

10.7 Personal Mobility 321

Algorithm 3: Lempel-Ziv encoder

begin
// Encoder at mobile or compressing algorithm.
dictionary = null;
phrase w = null;
while (true) do

wait for next symbol v;
if (w.v in dictionary) then

w = w.v;
end
else

encode < index(w), v >;
add w.v to dictionary;
w = null;

end
end

end

Table 10.5 Encoding of different phrases

Index Prefix Last symbol Input phrase Output

1 Λ a a (0, a)

2 a a aa (1, a)

3 Λ b b (0, b)

4 a b ab (1, b)

5 b b bb (3, b)

6 bb a bba (5, a)

7 ab c abc (4, c)

8 Λ c c (0, c)

9 Λ d d (0, d)

10 d c dc (9, c)

11 b a ba (3, a)

12 aa a aaa (2, a)

as 0a. The index of an incoming phrase is determined by the position of the phrase
in the dictionary which is largest proper prefix of the current phrase. A proper prefix
excludes the last symbol in a phrase. For example, let us see how the next incoming
phrase aa is encoded. The largest proper prefix of aa is a. Since the position of a
is 1 in the dictionary, the index of the incoming phrase is 1. Therefore, appending
a to 1, we get the encoding of aa as 1a. Therefore using encoding algorithm the
string aaababbbbbaabccddaaaa is encoded as: 0a, 1a, 0b, 1b, 3b,
5a, 4c, 0c, 0d, 9c, 3a, 2a.

A code word consists of two parts (i) an index, and (ii) a symbol. The index
represents the dictionary entry of the phrase which is the prefix of the code word.
The prefix completely matches with the code word symbol-wise except for the last

322 10 Location Management

symbol. Therefore, the decoding consists of finding the prefix and appending the last
symbol to it. The major distinction between LeZi update and Lempel-Ziv’s algorithm
is in the decoder part. In the case of LeZi update, the decoder executes at the network
side. The decoder algorithm is provided in Algorithm 4.

Algorithm 4: Decoder for LeZi update

begin
// Decoder at the system side. It basically decompresses

the string.
while (true) do

wait for the next code word < i, s >;
decode phrase = dictionary[i].s;
add phrase to dictinary;
increment frequency of every prefix of the phrase;

end
end

To see how the decoding process works, we consider code word specified in
terms of tuples <index, last_symbol> and illustrate the decoding with the help of
Table 10.6. When the code word tuple is received, the index part is extracted first. For
example index part in the input tuple (0,a) is 0. The index is then used to retrieve
the phrase from the dictionary. Since, index of Λ is 0, the phrase retrieved is Λ. Then
symbol of input codeword is concatenated with retrieved phrase, i.e. a is appended
to λ. Since Λ+a = a, the decoding of (0, a) outputs the phrase a. Similarly, when
the code word (5, a) is received, the phrase having index 5 is extracted from the
dictionary, and the symbol a is appended to it producing the output bba. Along with

Table 10.6 Decoding of phrases

Input tuple Prefix phrase Last symbol Output phrase

(0, a) Λ a a

(1, a) a a aa

(0, b) Λ b b

(1, b) a b ab

(3, b) b b bb

(5, a) bb a bba

(4, c) ab c abc

(0, c) Λ c c

(0, d) Λ d d

(9, c) d c dc

(3, a) b a ba

(2, a) aa a aaa

10.7 Personal Mobility 323

the decoding, frequency count of all the prefixes are incremented. For example, when
phrases (0, a), (1, a), (1, b), (4, c), and (2, a) get decoded a’s frequency
count is incremented. So, total frequency count for a is 5. Similarly, frequency count
aa is incremented during decoding of (1, a) and (2, a), and total frequency
count of phrase aa is computed as 2.

The decoding process helps to build conditional probabilities of larger contexts
as larger and larger phrases are inserted into the dictionary. So, dictionaries are
maintained at system as well as at each mobile terminal. A mobile terminal sends
the updates only in coded form. It delays sending of update until a pre-determined
interval of time has elapsed. The updates are processed in chunks and sent to the
network as a sequence code words of the form C(w1)C(w2)C(w3) . . ., where each
phrase wi, for i = 1, 2, . . ., is a non-overlapping segment of symbols from the string
v1v2v3 . . . that represents the LAIs visited by the mobile since the time of sending
the last update to the network. So, LeZi update can be seen as a path based update
scheme instead of LAI based update.

10.7.4 Incremental Parsing

The coding process is closely inter-twined with the learning process. The learning
process works efficiently by creating the dictionary and searching it for the existence
of incoming phrases. An input string v1v2 . . . vn is parsed into k distinct phrases
w1,w2, . . . ,wk such that the prefix (all symbols except the last one) of the current
incoming phrase wj is one of the previously occurring phrases wi, 1 ≤ i < j. So,
the context statistics related to all prefixes can be updated during the parsing of the
current phrase itself. In addition, the prefix property also allows to store the history
efficiently in a trie.

Figure 10.8 depicts the trie produced by classical Lempel-Ziv algorithm for the
string in the example. The numbers alongside the symbols represent the frequency

Fig. 10.8 Trie built by
classical Lempel-Ziv
algorithm

Λ

a(5) b(4) c(1) d(2)

a(2)

a(1)

a(1)

a(1)

b(2)

c(1)

b(2) c(1)

a b

c

b

c

a

a

a

b

d
c

a

324 10 Location Management

computed by Lempel-Ziv algorithm. The process of computing frequencies has been
explained in the previous subsection.

A new dictionary entry can be created by appending one symbol to an already
existing phrase in the dictionary. An existing phrase terminates at a node of the trie.
An appended symbol to an existing phrase appears as a label of an edge leading from
terminating node of the phrase to another. As the incremental parsing progresses,
larger and larger phrases are stored in the dictionary. Consequently, conditional prob-
abilities among the phrases starts to build up. Since there is limit to the richness of
higher order Markov model, Lempel-Ziv’s symbol-wise model eventually converge
to a universal model.

As far as personal mobility is concerned, the location updates can be viewed
as that of generating a new symbol for the sequence representing the movement
history of the form v1v2 . . . vn. So, the movement history can be parsed into distinct
substrings and new update can be inserted into a trie which gradually builds the
personal mobility pattern.

However, we cannot use Lempel-Ziv compression based model in a straightfor-
ward way. One serious problem with the above compression model is that it fails to
capture conditional entropy early on due to following reasons:

• It works on one phrase at a time.
• Decoding algorithm counts only the frequencies of the prefixes of a decoded

phrase.
• It is unaware about the contexts that straddle phrase boundaries.

All of the above slow down the rate of convergence. LeZi update uses an enhanced
trie, where frequencies of all prefixes of all suffixes are updated. So instead of using
the decoder of the previous section LeZi update uses a slightly altered decoder as
provide by Algorithm 5. By doing so, it captures the straddling effect.

Algorithm 5: Enhanced decoder for LeZi update

begin
// Works for symbols straddling phrase boundaries.
while (true) do

wait for the next code word < i, s >;
decode phrase = dictionary[i].s;
add phrase to dictinary;
increment frequency of every prefix of every suffix the phrase;

end
end

The revised frequency counting method for phrases in LeZi update is as follow:

• Find all the prefixes of all the suffixes of each incoming phrase.
• Increment the frequency each time a particular prefix is encountered starting from

zero.

10.7 Personal Mobility 325

Fig. 10.9 Enhanced trie Λ

a(10)

a(3)

a(1) c(1)

b(2)

b(8) d(2)

c(1)

c(3)

c(1)b(2)a(2)

a(1)

Let us examine the effect of considering all prefixes of all the suffixes in generating
frequency counts for symbols in the example string. For the phrase aaa:

• Suffixes are aaa, aa and a, so the frequency counts of all prefixes of aaa, aa,
and a are incremented.

• The frequency counts of aa incremented by 2.
• The frequency counts of a incremented by 3.

The total count for a can be found by considering phrases a, aa, ab, ba, abc,
bba, and aaa. The enhanced trie obtained by LeZi update method is provided by
Fig. 10.9.

In order to estimate the effectiveness of the new model for personal mobility
against the model that is based on the classical Lempel-Ziv compression scheme, let
us compute the entropies for each case. The conditional entropy without considering
suffixes (see Fig. 10.8):

H(V1) = 5

12
log

12

5
+ 1

3
log 3 + 1

12
log 12 + 1

6
log 6

≈ 1.784. bits, and

H(V2|V1) = 5

12

(

2 × 1

2
log 2

)

+ 4

12

(
1

3
log 3 + 2

3
log

3

2

)

+ 1

6
log 6

≈ 0.723 bits.

Other two terms of H(V2|V1) being 0 are not included in the expression. The
estimate for H(V) = (1.784 + 0.723)/2 = 1.254 bits. The conditional probabilities
of all order-2 contexts are 0.

When all the prefixes of all the suffixes are considered, the frequency count would
be as shown in trie of Fig. 10.9. With enhanced tries, we still have

326 10 Location Management

H(V1) = 10

23
log

23

10
+ 8

23
log

23

8
+ 3

23
log

23

3
+ 2

23
log

23

2
≈ 1.742. bits, and

H(V2|V1) = 10

23

(
3

5
log

5

3
+ 2

5
log

5

2

)

+ 8

23

(

2 × 2

5
log

5

2
+ 1

5
log 5

)

≈ 0.952 bits.

Therefore, the estimate for H(V) = (1.742 + 0.952)/2 = 1.347 bits when all
the prefixes of all the suffixes are considered, implying that the suggested enhance-
ments carry more information. Hence, location update based on the enhancements
is expected to perform better than the simple Lempel-Ziv compression method.

10.7.5 Probability Assignment

The prediction of a location for mobile terminal is guided by the probability estimates
of its possible locations. The underlying principle behind the probability computation
is PPM (prediction by partial matching). PPM uses the longest match between the
previously seen strings and the current context. Our interest is in estimating the
probability of occurrence of the next symbol (LAI) on a path segment that may
be reported by the next update. A path segment is an LAI-sequence generated when
traversing from the root to a leaf of the sub-tries representing the current context. The
conditional probability distribution is obtained by the estimates of the conditional
probabilities for all LAIs given the current context.

Suppose no LeZi type update is received after receiving aaa and we want to find
the probability of predicting the next symbol as a. The contexts that can be used are
all suffixes of aaa except for itself, namely, aa and a and Λ (null context). PPM
tells that to determine the probabilities only the previously seen phrases should be
considered. Therefore, the possible paths that can be predicted with the contexts aa,
a and Λ are as shown in Table 10.7. Start from the highest order context, i.e., aa. The
probability a in this context is 1/3. The probability of a null prediction in the context
aa is 2/3. It leads to order 1 (with null prediction) context, where the probability of
a’s occurrence is 2/10 = 1/5. Now fall back to order-0 (with null prediction), which
has probability 5/10 = 1/2. The probability of a’s occurrence in order-0 is 5/23. So
the blended probability of the next symbol being a is

1

3
+ 2

3

(
1

5
+ 1

2

(
5

23

))

= 0.5319

To examine a variation, consider the occurrence of phrase bba after receiving
aaa. The phrase bba does not occur in any of the contexts 1 or 2. The probabilities
of escape from the order-1 and the order-2 contexts with null prediction are:

10.7 Personal Mobility 327

Table 10.7 Conditional probabilities of movement prediction

aa (Order-2) a (Order-1) Λ (Order-0)

a(1)|aa
Λ(2)|aa

a(2)|a
aa(1)|a
b(1)|a

bc(1)|a
Λ(5)|a

a(5)|Λ ba(2)|Λ d(1)|Λ
aa(2)|Λ bb(1)|Λ dc(1)|Λ
ab(1)|Λ bba(1)|Λ Λ(1)|Λ

abc(1)|Λ bc(1)|Λ
b(3)|Λ c(3)|Λ

• Order 2 context: (with phrase aa), the probability of null prediction is 2/3 (out of
3 occurrences of aa).

• Order 1 context: (with phrase a), the probability of null prediction is 1/2, because
Λ occurs 5 times out of 10.

In summary, the idea of prediction works as follows. It starts with a chosen highest
order of context, and then escape to the lower orders until order 0 is reached. This
essentially means given a path segment we try to predict the next symbol with high
probability.

Therefore, the blended probability of phrase bba is

0 + 2

3

(

0 + 1

2

(
1

23

))

= 0.0145

Since a occurs once and b occurs twice in the phrase bba, the individual proba-
bilities of symbols a and b respectively are: (1/3) × 0.0145 = 0.0048, and 0.0145×
(2/3) = 0.0097.

10.8 Distributed Location Management

In earlier sections of this chapter, we discussed about various location manage-
ment schemes. Each scheme essentially uses some form of distribution of location
information across the network. The underlying ideas is that location information is
organized in a way such that the cost and latency in determining the exact location
of a mobile device are minimized. Yet, the effect of information distribution on the
performances of lookups and updates could be limited for wide area roaming of the
mobile users. This is due to the fact that the distant network messages have to be
exchanged to support wide area roaming. In this section, we describe a distributed
system for storing and accessing location information.

The scheme grew out of the idea of maintaining the location information of a
user in a single database at a time instead of replicating in several levels of hierarchy
as described in Sect. 10.3. The entire coverage area is divided into several location
areas or regions and consists of three levels of hierarchy. Each region consists of a

328 10 Location Management

Fig. 10.10 The model

A subset of LSsAnother subset
of LSs

Region 4

Region 5 Region 3

Region 2Region 1

number of mobile switching centers (MSC), and the area under coverage of each
MSC consists of a number of cells. Each cell is served by a base station (BS).
Logically all mobile users which visit a region are partitioned into groups. There
will be a Location Server (LS) in a region of coverage corresponding to each group
of the mobile users. The location data of a mobile user is always stored in the LS that
corresponds to its group in the region when the user visits a region. The grouping of
mobile stations and the region division could be unrelated or related in some way.
The matching LSs of the matching groups of mobile users in different regions are
connected to each other. In other words, the model consists of

• LSs partitioned up into subsets.
• The LSs belonging to same subsets are interlinked.
• There is a LS of each subset in every region.
• Each mobile user can map to only one such subset.
• The location data of a mobile host MH visiting a region R is stored at a LS in R

such that the LS is the member of subset of LSs to which the MH is mapped.

The model is depicted in Fig. 10.10. The regions in the figure are demarcated by heavy
lines. Each cell is represented by a hexagonal area. There are two LSs per region, each
belonging to a different subset as indicated by filled blue and red circles respectively.
Each LS serves roughly for the volume of users in 2–3 cells. The LSs belonging to
same subset are fully interconnected. Though the figure does not indicate, each MSC
is connected to all the LSs in the same region. In other words, LSs are part of GSM’s
network subsystem.

10.8 Distributed Location Management 329

10.8.1 The Call Setup Protocol

An MSC initiating a call setup on behalf of a caller sends a request for lookup to
the local LS for the required (callee) mobile host (MH). The identity of the local LS
can be determined by a simple hash function applied to the callee’s ID. The local LS
looks in its own registers. If the entry is found then LS returns the cell location of the
callee. The requesting MSC can then carry out the call switching between the caller
and the callee using the GSM call set up procedures as explained in Chap. 3. If the
entry is not found, then the local LS multicasts a request message for the callee to
the other LSs belonging to the same subset. If the callee is registered (it should be
on) then one of LSs should reply. Following which the call switching is carried as in
the previous case.

10.8.2 Update

When a MH moves from one location to the other its location information should
be updated. It works as follows. The MH reports for registration to an BS under an
MSC in the region where it moves. The MSC applies a hash function to determine
the subset of LSs that maintain the location for MH. The process of update depends
on the type of the move made by the MH. The moves are of the following types.

• Move within the region.
• Move between the regions.

If a MH moves from one cell to another cell under a same MSC then no update
is required. However, if the MH moves from a cell to a cell under a different MSC
in the same region, then an entry will be found in the local LS of the subset. The LS
will update the information and send a de-registration to old MSC.

If the MH did not belong to the current region, i.e., it moved from a different
region, the local LS multicast the information to the other LSs of its own set in the
neighborhood. The new LS would know the possible regions from which the MH
may have come. These regions are those which have common border with the current
region. It depends on the location of the current region and its shape. One of the LSs
of the neighbouring region must have an entry corresponding to MH. The LS having
the entry then delete the same, and sends a delete entry message to the MSC which
was serving the MH in the region. In case the registration message from the mobile
device itself includes the ID of the previous LS or the region, the current LS can send
unicast message to the previous LS.

http://dx.doi.org/10.1007/978-981-10-3941-6_3

330 10 Location Management

10.8.3 Data Structures and System Specification

The important data structures for implementation of the lookup and update protocols
are:

• location[MH_id]. This is the set of data registers available at an LS. The
entry in each register is the Cell_id of the MSC which has the MH with MH_id.
Additionally it may contain entries for all MHs whose hash function map to LS.
This information would help in call setup between the mobiles belonging to the
same LS set.

• LSforRegion[Region]. This is a table to lookup the LSs (other members of
the same subset) which are associated with the LS holding the table. Each MH
must be associated with one LS in each region which would contain the location
of the MH.

• neighborRegion[MSC]. This is an array of neighboring regions for a partic-
ular MSC. If the coverage area of an MSC is completely within the interior of a
region, the array will be empty. On the other hand, the border MSC (whose cov-
erage area forms a part of the region’s border) will have a number of neighboring
regions depending on the shape of the regions.

As shown in Algorithm 6 a simple hash function can be used to determine the index
of the subset of LSs. Hence, the specific LS in the current region associated with a MH
can be found by applying the hash to ID of the MH. The variablenumLSperRegion
defines the number of LSs in a region. This helps in determining the load on each
LS.

Algorithm 6: Method get_LSId(MH_id)

begin
return MH_id mod numLSperRegion; // Apply hash to get LS ID.

end

A MH is expected to send updates about its locations from time to time. The
frequency of update depends on the update protocol. On receiving a location update,
at first a local update is attempted by the current MSC. If the conditions for a local
update are not met, then a remote update is attempted by the MSC. Suppose an MH
moves from a cell under MSCold and joins a cell under another MSC, say, MSCnew,
where both MSCold and MSCnew belong to the same region, then a local update is
needed. Algorithm 7 specifies local update method. However, no update is needed
for the movements of an MH between cells under the same MSC, because GSM
underlay takes care of updating VLR.

The update method in Algorithm 8 is executed by a LS when it is informed
about the movement of mobile host to the current region. As the update method
indicates, in case an MH has moved from a region outside the current region then

10.8 Distributed Location Management 331

Algorithm 7: Method localUpdate(MH_id, MSCold , MSCnew)

begin
// Executed by the MSC on behalf of a MH.
LS_id = get_LSId(MH_id);
LS[LS_id].localUpdate(MH_id, MSCold , MSCnew);

end

remoteDelete method should be executed by the new LS storing location update
from the roaming MH. Algorithm 9 gets invoked to delete entry for MH from the LS
in the neighborhood. Only one of the LSs in the neighborhood may have a entry for
the MH.

Algorithm 8: Method update(MSC, MH_id)

begin
// Executed by LS of the region.
if (exists(location[MH_id]) then

if (location[MH_id] != MSC) then
// MH moved within same region but from one MSC to

another.
replaceEntry(MH_id, MSC);

end
// Do nothing if location is unchanged
return;

end
// MH was not in region under the LS of the current region,

it must have arrived to the current region from a
neighboring region.

for (i ∈ neighborRegions[MSC]) do
// Issues a remoteDelete to delete MH entry from LSs of

the neighborhood region. Only one LS have such an
entry.

remoteDelete(i, MH_id); // See the Algorithm 9.
end
insertEntry(MH_id, MSC); // Update needed in current region.

end

Algorithm 9: Method remoteDelete(region_Id, MH_id)

on receiving (remoteDelete) begin
if (exists(location[MH_id] in LS[region_Id]) then

deleteEntry(MH_id);
end

end

332 10 Location Management

The method remoteDelete is called by an LS when it determines that a MH
has moved from a region outside its own region. It sends remote delete request to LSs
of its own set in the neighboring regions. It is assumed that the methods for inserting,
deleting, or replacing an entry have obvious implementations and the details of these
specifications are not provided here.

A lookup is necessary for paging during call set up. A local lookup is executed
by the MSC of the caller to determine if the callee belong to the same region. A
region based calling mechanism can be useful for modeling tariffs by a GSM service
provider. Algorithm 10 illustrates local lookup method.

Algorithm 10: Method lookup(MH_id, MSC)

begin
LS_id = get_LSId(MH_id);
return LSforRegion[LS_id].localLookup(MSC, MH_id);

end

A local lookup fails in the case the local associated LS does not have an entry for
the callee. In this case, a remote lookup initiated by local LS by sending a multicast
message to the other LSs belonging to the same subset as the local LS in the caller’s
region. Algorithm 11 combines both local and remote lookup into a single method.
One final part of the lookup method is provided by Algorithm 12. It allows a LS to
check the location entries when LS receives a lookup message. If an entry is found
then it returns the entry. Otherwise, it returns NULL indicating a failure.

Algorithm 11: Method localLookup(MSC, MH_Id)

begin
if (exists(location[MH_id]) then

// Local lookup successful.
return location[MH_id];

end
else

// Perform remote Lookup for MH.
for each (region i)
remoteLoc = LSforRegion[i].remoteLookup(MH_id);
if (remoteLoc != NULL) then

return remoteLoc;
end
// All remote lookups fail. MH must be in power off

mode.
return NULL;

end
end

10.8 Distributed Location Management 333

Algorithm 12: Method remoteLookup(MH_id)

on receiving (a lookup message) begin
if (exists(location[MH_id]) then

return location[MH_id];
end
else

return NULL;
end

end

10.8.4 The Cost Model

The cost of each operation required to update the LS entries as MH moves and the
find an MH can be modeled using a set of simple assumptions as listed in Table 10.8.

Local Update Cost.

Using the above cost model, the cost of a local update can be computed by analyzing
the involved steps.

• First, new MSC must find out its associated location server LS. This requires a
simple application hash function. The cost of this step is H.

• New MSC send a message to its local LS for update. This cost is t.
• The LS, on receiving the message, performs a search or register lookup for update

which is RL.
• The new LS must send information of this update to the old LS. This enable old

LS to purge the entry. The cost of sending this message is t.
• After receiving the information the old LS deletes its register entry. The cost for

deletion is MD.

Adding all the cost together, the total update cost: 2t + H + RL + MD

Table 10.8 Notations used for cost analysis

Notation Description

t Time unit for delivery of local network message

X A multiple of cost of the delivery of remote
network message as compared to the delivery
of a local network message

RL Register lookup time at an LS

H Time to perform hash

MD Time to perform delete MSC

LN Lookup time in the neighbouring regions for
the new MSC

334 10 Location Management

Remote Update Cost.

The break-up for the cost computation of a remote update is as follows.

• New MSC hashes to determine LS subset which holds the entry. The cost of
performing hash is H.

• After identifying the LS subset, New MSC must sends a message to LS belong to
subset which is available in local region. The cost of sending this message is t.

• The LS of the local region then determines probable neighbouring regions for the
new MSC. This cost is LN .

• The LS then sends delete MSC message to the all the neighbouring regions incur-
ring a cost of Xt

• The next step is to search remote LS for MH entry which takes time RL
• The remote LS sends message to old MSC for deletion incurring a cost of t.
• Old MSC then deletes the MH entry with a cost of MD.
• Local LS now performs a register lookup for creating a new entry for MH. For

this it incurs a cost of RL.

The overall cost is obtained by adding all the cost mentioned above. It, therefore,
works out as 2t + Xt + H + 2RL + MD + LN .

Similarly, the cost for local lookup time and the remote lookup time can also be
found. These costs are:

1. Local lookup time = 2t + H + RL.
2. Remote lookup time = 2t + Xt + H + 2RL.

References

1. I.F. Akyildiz, J.S.M. Ho, On location management for personal communications networks.
IEEE Commun. Magaz. 34(9), 138–145 (1996)

2. I.F. Akyildiz, J. McNair, J. Ho, H. Uzunalioglu, W. Wang, Mobility management in current
and future communications networks. IEEE Netw. 12(4), 39–49 (1998)

3. A. Bhattacharya, S.K. Das, Lezi-update: an information-theoretic framework for personal
mobility tracking in pcs networks. Wireless Netw. 8, 121–135 (2002)

4. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)
5. J.S.M. Ho, I.F. Akyildiz, Dynamic hierarchical database architecture for location management

in pcs networks. IEEE/ACM Trans. Netw. 5(5), 646–660 (1997)
6. R. Jain, Y.-B. Lin, An auxiliary user location strategy employing forwarding pointers to reduce

network impacts of pcs. Wireless Netw. 1(2), 197–210 (1995)
7. J. Jannink, D. Lam, N. Shivakumar, J. Widom, D.C. Cox, Efficient and Flexible Location

Management Techniques for Wireless Communication Systems, Mobicom ’96 (1996), pp. 38–
49

8. E. Pitoura, G. Samaras, Locating objects in mobile computing. IEEE Trans. Knowl. Data Eng.
13(4), 571–592 (2001)

9. K. Ratnam, I. Matta, S. Rangarajan, Analysis of Caching-Based Location Management in
Personal Communication Networks, The Seventh Annual International Conference on Network
Protocols (ICNP ’99), Washington, DC, USA, 1999 (IEEE Computer Society, 1999), pp. 293–
300

References 335

10. C.E. Shannon, The mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423
(1948)

11. N. Shivakumar, J. Jannink, J. Widom, Per-user profile replication in mobile environments:
algorithms, analysis, and simulation results. Mobile Netw. Appl. 2(2), 129–140 (1997)

12. C. Song, Q. Zehui, N. Blumm, A.-L. Barabási, Limits of predictability in human mobility.
Science 327(5968), 1018–1021 (2010)

13. J.I. Yu, Overview of EIA/TIA IS-41, Third IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC ’92) (1992), pp. 220–224

14. J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans.
Inform. Theory 24(5), 530–536 (1978)

	10 Location Management
	10.1 Introduction
	10.1.1 Registration and Paging

	10.2 Two Tier Structure
	10.2.1 Drawbacks of Fixed Home Addresses

	10.3 Hierarchical Scheme
	10.3.1 Update Requirements
	10.3.2 Lookup in Hierarchical Scheme
	10.3.3 Advantages and Drawbacks

	10.4 Caching
	10.4.1 Caching in Hierarchical Scheme

	10.5 Forwarding Pointers
	10.6 Replication
	10.7 Personal Mobility
	10.7.1 Random Process, Information and Entropy
	10.7.2 Mobility Pattern as a Stochastic Process
	10.7.3 Lempel-Ziv Algorithm
	10.7.4 Incremental Parsing
	10.7.5 Probability Assignment

	10.8 Distributed Location Management
	10.8.1 The Call Setup Protocol
	10.8.2 Update
	10.8.3 Data Structures and System Specification
	10.8.4 The Cost Model

	References

