
On the Construction and Performance
of LDPC Codes

B.N. Sindhu Tejaswini, Rajendra Prasad Lal and V. Ch. Venkaiah

Abstract Low-Density-Parity-Check (LDPC) codes are excellent error correcting
codes performing very close to the Shannon’s limit, enabling efficient and reliable
communication. Ever since their importance was known, a lot of research has gone
into the construction/designing of efficient LDPC codes. Many different construc-
tion methods have been proposed so far. This paper explores some of these con-
struction methods and includes their performance results on the Additive White
Gaussian Noise (AWGN) channel. In particular, LDPC code construction using
cage graphs and permutation matrices are investigated. Irregular LDPC codes have
been constructed from regular LDPC codes using an expansion method, followed
by their code rate comparison.

Keywords Channel coding ⋅ LDPC code ⋅ Parity-check matrix ⋅ Cage
graph ⋅ Quasi-cyclic LDPC ⋅ Gray code ⋅ Code rate ⋅ SNR-BER plots

1 Introduction

Channel Coding, also called Error-Control Coding (ECC), is a mechanism of
controlling errors in data transmission over unreliable communication channels [1].
The main aim of ECC is to help the receiver detect and correct errors introduced
due to noise. The central idea here is that the message to be communicated is first
‘encoded’ by the sender, i.e. ‘redundancy’ is added to it to make it a codeword. This
codeword is then sent through the channel and the received message is ‘decoded’
by the receiver into a message that resembles the original one. ECC has many

B.N. Sindhu Tejaswini (✉) ⋅ R.P. Lal ⋅ V.Ch.Venkaiah
SCIS, University of Hyderabad, Hyderabad, India
e-mail: sindhu.buddhavarapu@gmail.com

R.P. Lal
e-mail: rplcs@uohyd.ernet.in

V.Ch.Venkaiah
e-mail: vvcs@uohyd.ernet.in

© Springer Nature Singapore Pte Ltd. 2017
H.S. Saini et al. (eds.), Innovations in Computer Science and Engineering,
Lecture Notes in Networks and Systems 8, DOI 10.1007/978-981-10-3818-1_39

355



applications in many real-world communication systems such as in storage devices,
bar codes, satellite communication, mobile networks etc. This paper is about a class
of error correcting codes called LDPC codes, which are one of the best
error-correcting codes today. They have gained huge importance for their practical
advantages over other codes.

This paper is organised as follows. In Sect. 2, a brief explanation of LDPC codes
is given. Section 3 describes the construction of LDPC codes using cubic cages,
and Sect. 4 describes a method to construct regular quasi-cyclic (QC) LDPC codes.
In Sect. 5, we explain the Gray code method of constructing regular LDPC codes
and give a comparison of the above three methods. Section 6 has experimental
results and finally, we conclude the paper in Sect. 7.

2 LDPC Codes—A Brief Overview

LDPC codes were first introduced by Gallager in 1962 [2]. They are a class of linear
block codes which are defined by a sparse parity-check matrix, H. They are highly
efficient and can provide performance very close to the channel capacity. They also
have linear time encoding/decoding algorithms in terms of code length.

Tanner Graph. It is a graphical representation of the parity-check matrix [3].
The Tanner graph has two sets of nodes—check nodes and variable nodes, which
represent the rows and columns of H respectively. See Fig. 1 as example.

The LDPC decoding algorithm is an iterative message-passing algorithm which
is described on the Tanner graph. Performance of this algorithm is affected by the
presence of cycles, especially short cycles, in the graph. Short cycles leave a bad
effect on the decoder, as they affect the independence of the information exchanged
in the decoding process, and prevent the decoder from converging to the optimum
result. Hence, short cycles have to be avoided. The length of the shortest cycle in a
graph is called girth. If the girth is large enough, then the decoder can run a good
number of iterations and decode correctly before it is affected by the cycle. This is
why high-girth codes should be constructed.

Fig. 1 LDPC code matrix
and its tanner graph
(Source [4])

356 B.N. Sindhu Tejaswini et al.



Construction. Construction of a code is the definition of the pattern of con-
nections among the rows and columns of the H matrix [5]. The main objectives of
code construction are good decoding and easier hardware implementation [5].

Performance Evaluation. In order to evaluate the reliability of a digital chan-
nel, a plot showing Signal-to-Noise-Ratio (SNR) versus Bit Error Rate (BER) val-
ues is used. The SNR-BER plot gives the BER values of the channel at different
SNR values. A lower BER value indicates fewer errors and thereby, a better error
correction mechanism.

We now discuss some approaches of LDPC code construction in the next few
sections, which were implemented and analyzed by us.

3 Construction of Column-Weight Two Codes Based
on Cubic Cages

This method [6, 7] produces regular column-weight two LDPC codes. A regular
code has a fixed row-weight and a fixed column-weight. A (k, g) cage graph is a k-
regular graph of girth g having the least possible number of vertices. A cage graph
of degree 3 is called a cubic cage. Cage graphs can also be used to represent the
parity-check matrix of an LDPC code. A procedure to construct cubic cages is as
follows [7].

1. Take a cubic tree T (tree in which each node has a degree of 1 or 3) with
t vertices in it. It has r end or leaf vertices, where r = t/2 + 1.

2. Make n copies of that tree T1, T2, T3…, Tn. The values t and n should be chosen
carefully based on our girth requirement. Now label the vertices of the trees as 1,
2,…, t such that the first r labelling correspond to the r end vertices in each tree.
Labelling should be different for odd-indexed and even-indexed trees.

3. Next, choose r random positive integers h1, h2,…, hr where hi < n/2 for
1 ≤ i ≤ r. Each h-value corresponds to one end vertex of the trees i.e., h1
corresponds to the vertices numbered as 1, h2 corresponds to those numbered as
2 and so on.

4. Map/connect the end vertices of these n trees based to the following rule.

• If the value of any h is x, then its corresponding vertex in the first tree is
connected to that in the tree that is after x − 1 trees from it. Similarly, its
vertex in the second tree is connected to that in the tree that is after x − 1
trees from it and so on.

• Connection should be done in a cyclic manner, wherein vertices of the last
trees are connected to those in the first trees based on the above same rule.
The graph obtained after this procedure is the final (3, g) cage graph.

On the Construction and Performance of LDPC Codes 357



As an example, see Fig. 2, wherein t = 6, n = 4, and the vertices are labelled as
shown. This figure illustrates how connections are made, wherein the vertices
corresponding to two h-values, h1 and h2, are connected. Here, h1 = 1 and h2 = 3.
Note that this figure is only for illustration purposes, and we do not claim that the
graph shown in it is a cage graph. Also, the edges here are shown directed only for
illustration.

Observation and Analysis. This method has been implemented by us and three
cubic cages having girths 14, 15 and 16 respectively were constructed. To check for
the possibility of obtaining higher girth cages, we tried out an experiment in which
girth was calculated for all possible h-value sets. This however, did not give any
higher girth. Other experiments can be carried out varying different parameters like
—number of vertices in the cubic tree T (t), number of copies of the tree (n) etc.,
which may perhaps yield higher girth cages.

4 Quasi-cyclic LDPC Codes Using Quadratic
Congruences

This method [8] constructs a (j, k) regular QC-LDPC code, where j is the
column-weight and k is the row-weight of the code. A quasi-cyclic code with index
s is a code in which the circular shift of any codeword by s positions gives another
codeword. One procedure to construct QC-LDPC is as follows.

1. Select a prime p > 2. Choose the desired j and k values. Now construct two
sequences {a0, a1,…, aj−1} and {b0, b1,…, bk−1} whose elements are randomly
selected from GF(p). Note that every element in a sequence should be unique.
Then form a preliminary j × k matrix Y as follows [8].

Fig. 2 Connection of trees based on two h-values (h1 = 1, h2 = 3)

358 B.N. Sindhu Tejaswini et al.



Y=

y0, 0 y0, 1 . . . y0, k− 1

y1, 0 y1, 1 . . . y1, k− 1

⋮
yj− 1, 0 yj− 1, 1 . . . yj− 1, k− 1

2
664

3
775

where the (u, v) element of Y (0 ≤ u ≤ j − 1 and 0 ≤ v ≤ k − 1) is
calculated using the below equation for a fixed parameter d, d ϵ {1, 2,…,
p − 1}.

yu, v = d au + bvð Þ2 + eu + ev
h i

mod pð Þ

and eu, ev ϵ {0, 1,…, p − 1}.
2. Now, the parity-check matrix H can be written as [8]

H=

Iðy0, 0Þ Iðy0, 1Þ . . . Iðy0, k− 1Þ
Iðy0, 0Þ Iðy1, 1Þ . . . Iðy1, k− 1Þ

⋮
Iðyj− 1, 0Þ Iðyj− 1, 1Þ . . . Iðyj− 1, k− 1Þ

2
664

3
775

where I(x) is a p × p identity matrix whose rows are cyclically shifted to the
right by x positions. The final obtained H matrix will be a jp × kp matrix.
Girths of the codes constructed from this method vary depending on the choice
of p, j, k, d, eu and ev values.

Observation and Analysis. This method has been implemented by us and
regular QC-LDPC codes of various sizes were constructed. Their BER simulations
were run on AWGN channel with BPSK modulation, and were compared to those
of the same-sized random codes. In all cases, QC-LDPC codes had lower error rates
than the random ones. See Sect. 6.1 for results.

5 Gray Code Construction of LDPC Codes

It is a simple method [9] to construct regular column-weight two LDPC codes.

1. Let H be the parity-check matrix of the code, and ρ be the required row-weight.
Now let X be the decimal point set of H (a set consisting of decimal numbers,
whose elements form the parity-check matrix H), having ρ + 1 elements in it
(X = {X0, X1,…, Xρ}), which satisfy one of the equations [9]

Xi+ 1 = 2Xi +1 or
Xi+ 1 = 2i +Xi for i = 0, 1, 2, . . . , ρ

The first element is X0 = 0 in both the cases.

On the Construction and Performance of LDPC Codes 359



2. H can now be constructed from X as follows. The elements of X form the first
row of H. The subsequent rows are obtained by circularly shifting the previous
row by one, until the first row repeats.

3. However, only codes with column-weight one are produced using this method.
To obtain higher-weight codes, H is divided into sub-matrices as shown below.
The number of sub-matrices is equal to the desired column-weight of the code.

H=

H1

H2

⋮
HΥ

2
664

3
775

H1, H2,…, Hϒ are sub-matrices and ϒ is the desired column-weight.

4. Construction of H1 is same as the construction of H as described above. For
constructing H2, we fill the first row of H1 in reverse order to form the first row of
H2. The subsequent rows are formed by cyclically shifting the previous row by
one, either to the left or right, until the first row repeats. The same construction
method is used for all other sub-matrices, in which the first row of H2 is taken in
reverse order to form the first row of H3 and so on. These sub-matrices are then
appended together to form the final H (as shown above) [9].

5. Elements of H are now represented in their Gray code form to obtain the final
binary H matrix of order m × n. The number of bits to be used for Gray code
representation is up to the designer, but must be sufficient enough to represent the
largest element of H. This way, there is flexibility offered in terms of code length.

The Table 1 gives a quick comparison of the above three methods of
construction.

Table 1 Comparison of LDPC construction methods discussed

Parameter Cage graph LDPC QC-LDPC Gray code LDPC

Input Cubic tree T, h-values Prime p, required wc and
wr, a and b sequences, eu,
ev, d

Required wc and
wr, and no. of bits
for gray code
representation

Output Column-weight two
LDPC code

Regular QC-LDPC code Regular LDPC
code

Suitability For constructing
high-girth codes, and also
in cases where the channel
is highly error-prone

When the encoding
complexity has to be less.
Also in long distance
communications like NEC,
and in high data rate
applications

Generally suitable
for simpler
applications

360 B.N. Sindhu Tejaswini et al.



6 Experimental Results

6.1 QC-LDPC Versus Randomly Constructed LDPC

SNR-BER simulations of two QC and random LDPC codes for 25 decoder itera-
tions over AWGN channel are given below (Fig. 3). QC-LDPC outperformed
random LDPC for all code lengths tested.

6.2 Comparing Code Rate with and Without Expansion

In many cases, irregular codes give better BER results than regular ones. But the
construction of irregular codes is more complex. Instead, in order to construct an
irregular code, we first construct a regular code and expand it to make it irregular. The
expansion method for this is given in [10]. Here in our experiment, constructed regular
codeswere expanded by two levels tomake them irregular. The results given in Table 2
show that expansion decreases the code rate. Lesser code rate indicates lesser message
bits and higher parity bits in the codeword. This implies better protection. Hence, codes
having lesser rates have better error correction ability. However, very low rate codes
offer less channel throughput and are not desirable.

Fig. 3 237 × 474 QC versus random LDPC, and 597 × 995 QC versus random LDPC

Table 2 Comparison of code rates with and without expansion (Gray code construction method)

Row
weight

Column
weight

Code length
(before)

Code length
(after)

Code rate
(before)

Code rate
(after)

3 2 36 612 0.77 0.52
3 2 44 732 0.81 0.54
3 2 20 372 0.60 0.48
3 2 80 1272 0.90 0.56

On the Construction and Performance of LDPC Codes 361



7 Conclusion

This paper focused on some of the construction methods of LDPC codes and
included their BER results. Comparison and suitability of these methods was briefly
discussed. Any of these methods can be used to produce both regular and irregular
codes (after expansion). It maybe possible to obtain more efficient and higher girth
codes with any of these methods on further experimentation.

References

1. Wikipedia: https://en.wikipedia.org/wiki/Error_detection_and_correction.
2. R.G. Gallager: Low-Density Parity-Check Codes. MIT Press, Cambridge, 1963.
3. Sarah Johnson: Introducing Low-Density Parity-Check Codes. v 1.1, ACoRN Spring School.
4. http://ita.ucsd.edu/wiki/index.php?title=File:Tanner_graph_example.png.
5. Gabofetswe Alafang Malema: Low-Density Parity-Check Codes: Construction and Imple-

mentation. The University of Adelaide, November 2007.
6. Gabofetswe Malema, Michael Liebelt: High Girth Column-Weight-Two LDPC Codes Based

on Distance Graphs. EURASIP Journal on Wireless Communications and Networking,
Volume 2007, Article ID 48158.

7. Geoffrey Exoo: A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15, and
16. The Electronic Journal of Combinatorics 3 (1996), #R30.

8. Chun-Ming Huang, Jen-Fa Huang, Chao-Chin Yang: Construction of Quasi-Cyclic LDPC
Codes from Quadratic Congruences. IEEE Communications Letters, Vol. 12, No. 4, April
2008.

9. Mrs. Vibha Kulkarni, Dr. K. Jaya Sankar: Design of Structured Irregular LDPC Codes from
Structured Regular LDPC Codes. 978-1-4799-4445-3, 2015, IEEE.

10. Rakesh Sharma, Ashish Goswami: A Robust Approach for Construction of Irregular LDPC
Codes. Proc. of the International Conference on Future Trends in Electronics and Electrical
Engineering - FTEE 2013, ISBN: 978-981-07-7021-1, doi:10.3850/ 978-981-07-7021-1_69.

362 B.N. Sindhu Tejaswini et al.

https://en.wikipedia.org/wiki/Error_detection_and_correction
http://ita.ucsd.edu/wiki/index.php%3ftitle%3dFile:Tanner_graph_example.png

	39 On the Construction and Performance of LDPC Codes
	Abstract
	1 Introduction
	2 LDPC Codes—A Brief Overview
	3 Construction of Column-Weight Two Codes Based on Cubic Cages
	4 Quasi-cyclic LDPC Codes Using Quadratic Congruences
	5 Gray Code Construction of LDPC Codes
	6 Experimental Results
	6.1 QC-LDPC Versus Randomly Constructed LDPC
	6.2 Comparing Code Rate with and Without Expansion

	7 Conclusion
	References


