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Abstract We consider a numerical method for a fluid-structure interaction problem.
Updated Lagrangian method is used for the structure and fluid equations are written
in Arbitrary Lagrangian Eulerian coordinates. The global moving mesh for the fluid-
structure domain is aligned with the fluid-structure interface. At each time step, we
solve a monolithic system of unknowns velocity and pressure defined on the global
mesh. The continuity of velocity at the interface is automatically satisfied, while
the continuity of stress does not appear explicitly in the monolithic fluid-structure
system. At each time step we solve only one linear system. Numerical results are
presented.

1 Introduction

Fluid-structure interaction problem can be solved numerically using partitioned pro-
cedure or monolithic approaches. Partitioned procedure strategy consists in solving
separately the fluid and structure sub-problems using iterative process as fixed-point
iterations or Newton like methods. Monolithic methods solve the fluid-structure
interaction problem as a single system of equations and, in many cases, the bound-
ary conditions at the interface are included in the global system.

In this work we use a monolithic strategy with the particularity that we employ a
global moving mesh for the fluid-structure domain and the interface is an “interior
boundary” of the global mesh. Since we use continuous finite elements over the fluid-
structure domain, the continuity of velocity at the interface is automatically satisfied.
The continuity of stress at the fluid-structure interface does not appear explicitly in
the monolithic fluid-structure system due to the action and reaction principle.
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2 Setting the Fluid-Structure Interaction Problem

Westudy a two dimensional fluid-structure interaction problem.Wedenote byΩ S
0 the

initial structure domain and we assume that its boundary admits the decomposition
∂Ω S

0 = ΓD ∪ Γ0. We suppose that the initial structure domain is undeformed (stress-
free). At the time instant t , the structure occupies the domainΩ S

t bounded by ∂Ω S
t =

ΓD ∪ Γt . On the boundary ΓD , we impose zero displacements.
Let D be a rectangle of boundary ∂D = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4, with Σ1 the left,

Σ2 the bottom, Σ3 the right and Σ4 the top boundary, (see Fig. 1).
We assume that the structure is completely embedded into the fluid, therefore at

the time instant t , the fluid occupies the domain Ω F
t = D \ Ω

S
t . The boundary ∂Ω S

t
is common of both domains.

We denote byUS : Ω S
0 × [0, T ] → R

2 the displacement of the structure. A parti-
cle of the structure whose initial position was the point X will occupies the position
x = X + US (X, t) in the deformed domain Ω S

t .
We denote by F (X, t) = I + ∇XUS (X, t) the gradient of the deformation, where

I is the unity matrix and we set J (X, t) = det F (X, t).
The first and the second Piola–Kirchhoff stress tensors are denoted by Π and Σ ,

respectively and the following equality holdsΠ = FΣ .We suppose that the material
of the structure is elastic, homogeneous, isotropic.

We have assumed that the fluid is governed by the Navier–Stokes equations. For
each time instant t ∈ [0, T ],wedenote thefluidvelocity byvF (t) = (

vF1 (t), vF2 (t)
)T :

Ω F
t → R

2 and the fluid pressure by pF (t) : Ω F
t → R. Let us remark that the fluid

domain Ω F
t depends on the position of the interface Γt , which is the image of Γ0 via

the map X → X + US (X, t).

Let ε
(
vF

) = 1
2

(
∇vF + (∇vF

)T)
be the fluid rate of strain tensor and let

σ F = −pFI + 2μSε
(
vF

)
be the fluid stress tensor. In order to simplify the notation,

Fig. 1 Geometrical
configuration
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we write ∇vF in place of ∇xvF , when the gradients are computed with respect to the
Eulerian coordinates x.

The problem is to find the structure displacement US , the fluid velocity vF and
the fluid pressure pF such that:

ρS
0 (X)

∂2US

∂t2
(X, t) − ∇X · (FΣ) (X, t) = ρS

0 (X) g in Ω S
0 × (0, T ), (1)

US
(
X, t

) = 0 on ΓD × (0, T ), (2)

ρF

(
∂vF

∂t
+ (vF · ∇)vF

)
− 2μF∇ · ε

(
vF

) + ∇ pF = ρFg, (3)

∀t ∈ (0, T ),∀x ∈ Ω F
t ,

∇ · vF = 0, ∀t ∈ (0, T ),∀x ∈ Ω F
t , (4)

v = vin on Σ1 × (0, T ), (5)

σ FnF = hout on Σ3 × (0, T ), (6)

vF = 0 on Σ2 ∪ Σ4 ∪ ΓD, (7)

vF
(
X + US (X, t) , t

) = ∂US

∂t
(X, t) on Γ0 × (0, T ), (8)

(
σ FnF

)
(X+US(X,t),t)

= − (FΣ) (X, t)NS (X) on Γ0 × (0, T ), (9)

US (X, 0) = US,0 (X) in Ω S
0 , (10)

∂US

∂t
(X, 0) = VS,0 (X) in Ω S

0 , (11)

vF (X, 0) = vF,0 (X) in Ω F
0 . (12)

Here ρS
0 : Ω S

0 → R is the initial mass density of the structure, g is the acceleration
of gravity vector and it is assumed to be constant, NS is the unit outer normal vector
along the boundary ∂Ω S

0 , ρF > 0 and μF > 0 are constants and its represent the
mass density and the viscosity of the fluid, respectively, vin is the prescribed inflow
velocity, hout is prescribed outflow boundary stress, nF is the unit outer normal vector
along the boundary ∂Ω F

t .
For the structure Eqs. (1) and (2), we have used the Lagrangian coordinates, while

for the fluid Eqs. (3)–(7) the Eulerian coordinates have been used. The Eqs. (8) and
(9) represent the continuity of velocity and of stress at the interface, respectively.
Initial conditions are given by (10)–(12). To conclude, the governing equations and
conditions for fluid-structure interaction are (1)–(12).
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3 Total Lagrangian Framework for the Structure
Approximation

Let us introduce VS the velocity of the structure in the Lagrangian coordinates. The
Eq. (1) is equivalent to

ρS
0 (X)

∂VS

∂t
(X, t) − ∇X · (FΣ) (X, t) = ρS

0 (X) g, in Ω S
0 × (0, T ) (13)

∂US

∂t
(X, t) = VS (X, t) , in Ω S

0 × (0, T ). (14)

Let N ∈ N
∗ be the number of time steps andΔt = T/N the time step.We set tn =

nΔt for n = 0, 1, . . . , N . LetVS,n (X) andUS,n (X) be approximations ofVS (X, tn)
and US (X, tn). We also use the notations

Fn = I + ∇XUS,n, Σn = Σ(Fn), n ≥ 0.

The system (13) and (14) will be approached by the implicit Euler scheme

ρS
0 (X)

VS,n+1 (X) − VS,n (X)

Δt
− ∇X · (

Fn+1Σn+1
)
(X) = ρS

0 (X) g, in Ω S
0 (15)

US,n+1 (X) − US,n (X)

Δt
= VS,n+1 (X) , in Ω S

0

(16)

From (16), we get Fn+1 = Fn + Δt∇XVS,n+1 and consequently, Fn+1 and Σn+1

depend on the velocity VS,n+1 but not in the displacement US,n+1. In other words,
we have eliminated the unknown displacement and we have now an equation of
unknown VS,n+1.

The weak form of the Eq. (15) is as follows: find VS,n+1 : Ω S
0 → R

2, VS,n+1 = 0
on ΓD , such that

∫

Ω S
0

ρS
0
VS,n+1 − VS,n

Δt
· WS dX +

∫

Ω S
0

Fn+1Σn+1 : ∇XWS dX

=
∫

Ω S
0

ρS
0 g · WS dX +

∫

Γ0

Fn+1Σn+1NS · WS dS (17)

for allWS : Ω S
0 → R

2,WS = 0 onΓD . Herewe assume that the forcesFn+1Σn+1NS

on the interface Γ0 are known.
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4 Updated Lagrangian Framework for the Structure
Approximation

We follow a similar approach that in [3], where the structure is a Neo–Hookean
material. In the present paper, the structure is governed by the linear elasticity equa-
tions. We denote by Ω S

n the image of Ω S
0 via the mapX → X + US,n (X) and we set

Ω̂ S = Ω S
n the computational domain for the structure.

The map from Ω S
0 to Ω S

n+1 defined by X → x = X + US,n+1 (X) is the compo-
sition of the map from Ω S

0 to Ω̂ S defined by X → x̂ = X + US,n (X) with the map
from Ω̂ S to Ω S

n+1 defined by

x̂ → x = x̂ + US,n+1 (X) − US,n (X) = x̂ + û (̂x) .

With the notations F̂ = I + ∇x̂û and Ĵ = det F̂, J n = det Fn , we obtain

Fn+1 (X) = F̂ (̂x)Fn (X) , J n+1 (X) = Ĵ (̂x) J n (X) . (18)

The relation between the Cauchy stress tensor of the structure σ S and the second
Piola–Kirchhoff stress tensorΣ is the following σ S (x, t) = (

1
J FΣFT

)
(X, t), where

x = X + US (X, t) . The mass conservation assumption gives ρS (x, t) = ρS
0 (X)

J (X,t) ,

where ρS (x, t) is the mass density of the structure in the Eulerian framework.
For the semi-discrete scheme, we use the notations

σ S,n+1 (x) =
(

1

J n+1
Fn+1Σn+1 (

Fn+1)T
)

(X) , x = X + US,n+1 (X)

and ρS,n (̂x) = ρS
0 (X)

Jn(X)
, x̂ = X + US,n (X) .

Let us introduce v̂S,n+1 : Ω̂ S → R
2 and vS,n : Ω̂ S → R

2 defined by v̂S,n+1 (̂x) =
VS,n+1 (X) and vS,n (̂x) = VS,n (X) . Also, for WS : Ω S

0 → R
2, we define ŵS :

Ω̂ S → R
2 and wS : Ω S

n+1 → R
2 by ŵS (̂x) = wS (x) = WS (X) .

Now, we rewrite the Eq. (17) over the domain Ω̂ S . For the first term of (17), we
get ∫

Ω S
0

ρS
0
VS,n+1 − VS,n

Δt
· WS dX =

∫

Ω̂ S

ρS,n v̂
S,n+1 − vS,n

Δt
· ŵS d x̂

and, similarly, ∫

Ω S
0

ρS
0 g · WS dX =

∫

Ω̂ S

ρS,ng · ŵS d x̂.

Using the identity
(∇wS (x)

)
Fn+1 (X) = ∇XWS (X) and the definition of σ S,n+1,

we get ∫

Ω S
0

Fn+1Σn+1 : ∇XWS dX =
∫

Ω S
n+1

σ S,n+1 : ∇wS dx.
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Details about this kind of transformation could be found in [1], Chap. 1.2.
In order to write the above integral over the domain Ω̂ S , let us introduce the tensor

Σ̂ (̂x) = Ĵ (̂x) F̂−1 (̂x) σ S,n+1 (x) F̂−T (̂x) . (19)

Since
(∇wS (x)

)
F̂ (̂x) = ∇x̂ŵS (̂x), see [1], Chap. 1.2 and taking into account (19),

we get ∫

Ω S
n+1

σ S,n+1 : ∇wS dx =
∫

Ω̂ S

F̂Σ̂ : ∇x̂ŵS d x̂.

Now, it is possible to present the updated Lagrangian version of (17). Knowing
US,n : Ω S

0 → R
2, Ω̂ S = Ω S

n and vS,n : Ω̂ S → R
2, we try to find v̂S,n+1 : Ω̂ S → R

2,
v̂S,n+1 = 0 on ΓD such that

∫

Ω̂ S

ρS,n v̂
S,n+1 − vS,n

Δt
· ŵS d x̂ +

∫

Ω̂ S

F̂Σ̂ : ∇x̂ŵS d x̂

=
∫

Ω̂ S

ρS,ng · ŵS d x̂ +
∫

Γ0

Fn+1Σn+1NS · WS dS (20)

for all ŵS : Ω̂ S → R
2, ŵS = 0 on ΓD . We recall that the forces Fn+1Σn+1NS on the

interface Γ0 are assumed known.
Using the identity û (̂x) = US,n+1 (X) − US,n (X) = Δt VS,n+1 (X) = Δt v̂S,n+1

(̂x), we obtain
F̂ = I + Δt∇x̂̂vS,n+1. (21)

Moreover, using (18) and (19), it follows that

Σ̂ = Ĵ F̂−1σ S,n+1F̂−T = Ĵ F̂−1 1

J n+1
Fn+1Σn+1

(
Fn+1

)T
F̂−T

= 1

J n
FnΣn+1 (

Fn
)T

. (22)

For the linear elastic material, we have

Σ(U) = λS(∇X · U) + μS
(∇XU + (∇XU)T

)

where λS and μS are the Lamé coefficients. Therefore,

Σn+1 = Σ(US,n+1) = Σ(US,n) + (Δt)Σ(VS,n+1) = Σn + (Δt)Σ(VS,n+1).

We introduce Σ x̂ (̂u) = λS(∇x̂ · û) + μS
(∇x̂û + (∇x̂û)T

)
and Σ(VS,n+1) could

be approached by Σ x̂ (̂vS,n+1). We can approach the map v̂S,n+1 → F̂Σ̂ by the linear
application
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F̂Σ̂ ≈ 1

J n
FnΣn

(
Fn

)T + Δt∇x̂̂vS,n+1 1

J n
FnΣn

(
Fn

)T + Δt

J n
FnΣ x̂ (̂vS,n+1)

(
Fn

)T

= σ S,n + Δt∇x̂̂vS,n+1σ S,n + Δt

J n
FnΣ x̂ (̂vS,n+1)

(
Fn

)T
.

We define ûS,n (̂x) = US,n(X) and, for the small deformations, we have Fn ≈ I,
J n ≈ 1, σ S,n ≈ Σ x̂ (̂uS,n+1). Finally, we replace the map v̂S,n+1 → F̂Σ̂ by the linear
application

L̂
(
v̂S,n+1

) = Σ x̂ (̂uS,n) + (Δt)Σ x̂ (̂vS,n+1). (23)

The linearized updated Lagrangian weak formulation of the structure is: knowing
US,n : Ω S

0 → R
2, Ω̂ S = Ω S

n and vS,n : Ω̂ S → R
2, find v̂S,n+1 : Ω̂ S → R

2, v̂S,n+1 =
0 on ΓD such that

∫

Ω̂ S

ρS,n v̂
S,n+1 − vS,n

Δt
· ŵS d x̂ +

∫

Ω̂ S

L̂
(
v̂S,n+1

) : ∇x̂ŵS d x̂

=
∫

Ω̂ S

ρS,ng · ŵS d x̂ +
∫

Γ0

Fn+1Σn+1NS · WS dS (24)

for all ŵS : Ω̂ S → R
2, ŵS = 0 on ΓD .

5 Monolithic Algorithm for the Fluid-Structure Equations

We have ∂Ω S
n = ΓD ∪ Γn , where Γn is a approximation of the moving interface Γtn ,

Ω F
n = D \ Ω

S
n and let us introduce the global velocity, pressure and test function

v̂n+1 : D → R
2, p̂n+1 : D → R, ŵ : D → R

2,

v̂n+1 =
{
v̂F,n+1 in Ω F

n
v̂S,n+1 in Ω S

n
, p̂n+1 =

{
p̂F,n+1 in Ω F

n
p̂S,n+1 in Ω S

n
, ŵ =

{
ŵF in Ω F

n
ŵS in Ω S

n
.

Algorithm for fluid-structure interaction
Time advancing scheme from n to n + 1

We assume that we know the mesh T n
h , the velocity vn , the pressure pn , and the

mesh velocity ϑn .

Step 1: Solve themonolithic linear systemand get the velocity v̂n+1 ∈ (
H 1 (D)

)2
,

v̂n+1 = vin onΣ1, v̂n+1 = 0 on ∂D ∪ ΓD and the pressure p̂n+1 ∈ L2 (D), p̂n+1 = 0
in Ω S

n , such that:
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∫

ΩF
n

ρF v̂
n+1

Δt
· ŵd x̂ +

∫

ΩF
n

ρF
(((

vn − ϑn
) · ∇x̂

)
v̂n+1

) · ŵd x̂

−
∫

ΩF
n

(∇x̂ · ŵ) p̂n+1d x̂ +
∫

ΩF
n

2μFε
(
v̂n+1

) : ε (ŵ) d x̂

+
∫

Ω S
n

ρS,n v̂
n+1

Δt
· ŵ d x̂ +

∫

Ω S
n

L̂
(
v̂n+1

) : ∇x̂ŵ d x̂

=
∫

ΩF
n

ρF vn

Δt
· ŵd x̂ +

∫

ΩF
n

f F,n · ŵ d x̂ +
∫

Σ3

hout · ŵ d x̂

+
∫

Ω S
n

ρS,n v
n

Δt
· ŵ d x̂ +

∫

Ω S
n

ρS,ng · ŵ d x̂, (25)

∫

ΩF
n

(∇x̂ · v̂n+1)q̂ d x̂ = 0, (26)

for all ŵ ∈ (
H 1 (D)

)2
ŵ = 0 on ∂D ∪ ΓD and for all q̂ ∈ L2 (D).

Step 2: Compute the mesh velocity such that ϑ̂
n+1 : D → R

2

⎧
⎪⎨

⎪⎩

Δx̂ϑ̂
n+1 = 0 in D,

ϑ̂
n+1 = 0 on ∂D ∪ ΓD,

ϑ̂
n+1 = v̂n+1 on Γn.

(27)

We can replace in (27), the Laplacian by the linear elasticity operator in order to
improve the quality of the mesh.

Step 3: Define the map Tn : D → R
2 by:

Tn (̂x) = x̂ + (Δt)ϑ̂
n+1

(̂x)χΩF
n
(̂x) + (Δt )̂vn+1(̂x)χΩ S

n
(̂x)

where χΩF
n
and χΩ S

n
are the characteristic functions of fluid and structure domains.

The new mesh is Tn(T
n
h ) = T n+1

h .

Step 4: We define vn+1 : D → R
2, pn+1 : D → R and ϑn+1 : D → R

2 by:

vn+1(x) = v̂n+1(̂x), pn+1(x) = p̂n+1(̂x), ϑn+1(x) = ϑ̂
n+1

(̂x)

for all x̂ ∈ D and x = Tn (̂x).

We solve the monolithic system (25) and (26) using globally continuous finite
element for the velocity v̂n+1 ∈ (

H 1 (D)
)2

defined all over the fluid-structure global
mesh. Then the both continuity conditions at the interface hold. For the global pres-
sure p̂n+1 ∈ L2 (D), we have to impose p̂n+1 = 0 inΩ S

n . More precisely, we impose
p̂n+1 = 0 at each node of the structure sub-domain excepting the nodes on the inter-
face Γn .
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This algorithm is similar to [4], where the Newmark method was employed for
the structure, but the actual algorithm is not a particular case of the cited paper. In
addition, the quality of the mesh is augmented in the actual version by solving the
mesh velocity after the resolution of the monolithic linear system. Another improve-
ment is that we use now the facility of FreeFem++ to integrate over a sub-domain,
which is faster that using the characteristic function.

6 Numerical Test. Flow Around a Flexible Thin Structure
Attached to a Fixed Cylinder

Wehave tested the benchmark FSI3 from [5]. The numerical tests have been produced
using FreeFem++ (see [2]).

The structure is composed by a rectangular flexible beam attached to a fixed circle,
seeFig. 1.The circle center is positioned at (0.2, 0.2)mmeasured from the left bottom
corner of the channel. The circle has the radius r = 0.5m and the rectangular beam is
of length � = 0.35m, thickness h = 0.02m.Themass density isρS = 1000Kg/(m3),
the Young modulus is ES = 5.6 × 106 Pa and the Poisson’s ratio is νS = 0.4.

The channel has the length L = 2.5m and the width H = 0.41m. The fluid
dynamic viscosity is μF = 1Kg/(ms) and the mass density is ρF = 1000Kg/(m3).

Wedenote byΣ1 = {0} × [0, H ],Σ3 = {L} × [0, H ] the left and the right vertical
boundaries of the channel and byΣ2 = [0, L] × {0},Σ4 = [0, L] × {H} the bottom
and the top boundaries, respectively.

We have used the boundary condition v = vin at the inflow Σ1, where

vin(x1, x2, t) =
⎧
⎨

⎩

(
1.5U x2(H−x2)

(H/2)2
(1−cos(π t/2))

2 , 0
)

, (x1, x2) ∈ Σ1, 0 ≤ t ≤ 2
(
1.5U x2(H−x2)

(H/2)2 , 0
)

, (x1, x2) ∈ Σ1, 2 ≤ t ≤ T = 8

andU = 2. AtΣ2,Σ4, as well as on the boundary of the circle, we have imposed the
no-slip boundary condition v = 0. At the outflow Σ3, we have imposed the traction
free σ F (v, p) nF = 0. Initially, the fluid and the structure are at rest.

Using FreeFem++ [2], it is possible to construct a global fluid-structure mesh
with an “interior boundary” which is the fluid-structure interface. The global moving
mesh for the fluid-structure domain is aligned with the fluid-structure interface and
changes at at each time step. For the finite element approximation of the fluid-
structure velocity, we have used the triangular finite element P1 + bubble and we
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Fig. 2 Details of the fluid-structuremesh of 9382 triangles and 4859 vertices at t = 0 and t = 6.016
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Fig. 3 Time history of the vertical displacement of the point A in meters for Δt = 0.002 s using
three different meshes and detail in the time interval 5–8s

have employed for the pressure the finite elementP1. The linear fluid-structure system
is solved using the LU decomposition. First, we use three global meshes for the
fluid-structure domain: mesh1 of 9382 triangles and 4859 vertices, mesh2 of 12532
triangles and 6464 vertices, mesh3 of 19318 triangles and 9903 vertices, see Fig. 2,
with the time step Δt = 0.002 s and the number of time steps N = 4000. After
an initial transient period, the system settles into periodic oscillations, Fig. 3. The
average frequency in the time interval [5, 8] is about 5.33Hz. The results are similar
to [5], where the reference amplitude of the periodic oscillations is 0.034, but the
structure is a St. Venant–Kirchhoff material. The pressure in the structure domain
has no physical signification and it is fixed to zero, Fig. 5. Also, we have used three
time steps Δt = 0.001s, Δt = 0.002 s and Δt = 0.004s with the mesh1, see Fig. 4.
We observe that the numerical behavior is more sensitive to the time step.
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Fig. 4 Time history of the
vertical displacement of the
point A in meters for
Δt = 0.001s, Δt = 0.002 s
and Δt = 0.004s in the time
interval 3–6s
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Fig. 5 Velocity (top) and
pressure (bottom) at
t = 6.016

Vec Value
0
0.234633
0.469267
0.7039
0.938533
1.17317
1.4078
1.64243
1.87707
2.1117
2.34633
2.58097
2.8156
3.05023
3.28487
3.5195
3.75413
3.98877
4.2234
4.45803

IsoValue
-4207.88
-3258.11
-2624.93
-1991.75
-1358.58
-725.4
-92.2223
540.955
1174.13
1807.31
2440.49
3073.66
3706.84
4340.02
4973.2
5606.37
6239.55
6872.73
7505.91
9088.85

7 Conclusions

We have used global moving meshes for the fluid-structure domain aligned with the
fluid-structure interface.We solved a linearmonolithic system inwhich the unknowns
are the velocity and the pressure, defined on the global mesh, at each time step. The
continuity of velocity at the interface was automatically satisfied, since we used
continuous finite elements.
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