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Abstract In the present contribution we show that the relaxed micromorphic model
is the only non-local continuum model which is able to account for the descrip-
tion of band-gaps in metamaterials for which the kinetic energy accounts separately
for micro and macro-motions without considering a micro-macro coupling. More-
over, we show that when adding a gradient inertia term which indeed allows for the
description of the coupling of the vibrations of the microstructure to the macroscopic
motion of the unit cell, other enriched continuum models of the micromorphic type
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may allow the description of the onset of band-gaps. Nevertheless, the relaxedmicro-
morphic model proves to be yet the most effective enriched continuum model which
is able to describe multiple band-gaps in non-local metamaterials.

1 Introduction

In the last years, a lot of interest has been raised from a class of microscopically
heterogeneous materials which show exotic behaviors such as that of “stopping”
the propagation of elastic waves. In some cases, the waves lose some of the energy
due to micro-diffusion phenomena (Bragg scattering) or even local resonance of the
microstructure (Mie resonance). These effects can be exploited to design innovative
materials whose dynamical behavior differs completely from the classical materials
usually employed in engineering sciences.

As a matter of fact, classical Cauchy continuum theories, are not always well
adapted to cover the wealth of experimental evidences on the dynamical behavior
of real materials. As a first point, in fact, real materials commonly show dispersive
behaviors, which means that the speed of propagation of the traveling wave changes
when considering smaller wavelengths. Such phenomenon is not astonishing if one
thinks that the structure of matter changes when observing it at smaller scales. It
suffices to go down to the scale of the crystals or molecules to be aware of the hetero-
geneity of matter. It is for this reason that waves with wavelengths which are small
enough to “sense” the presence of the microstruture will propagate at a different
speed than other waves with higher wavelengths. Cauchy continuum theories are not
able in any case to account for dispersive phenomena and are a good approximation
of reality only for thosematerials which do not exhibit their heterogeneity at the scale
of interest. As far as one wants to model dispersive behaviors, Cauchy continuum
theories are no longer adapted and more refined models need to be introduced. One
possibility is to introduce second or higher order theories so allowing the description
of dispersion for the acoustic modes (see e.g. [4, 21]). Nevertheless, if second gra-
dient theories may, on the one hand, be of use for the description of some dispersive
behaviors, on the other hand they are often insufficient to describe more complex
behaviors of metamaterials in which the microstructure can have its own vibrational
modes independently of the motion of the unit cell. In order to describe the complex
dynamical behavior of such metamaterials in a continuum framework, the intro-
duction of continuum models with enriched kinematics (micromorphic models) is a
mandatory requirement [5, 7, 8, 11, 13]. Continuum models of the micromorphic
type, in fact, allow for the description of microstructure-related vibrational modes
thanks to the introduction of extra degrees of freedom with respect to the displace-
ment field alone.

The insufficiency ofCauchy continuum theories becomes evenmore evidentwhen
consideringmore complexmetamaterials which are able to inhibit wave propagation,
i.e. so called band-gap metamaterials. To catch the complex dynamical behavior of
such materials, even some of the available micromorphic models are not sufficiently



A Review on Wave Propagation Modeling in Band-Gap … 91

adapted. Indeed, it has been shown in previous contributions that the relaxed micro-
morphic model is the only continuum model of the micromorphic type which is able
to account for the description of band-gaps when considering a kinetic energy in
which the macroscopic and microscopic motions are completely uncoupled [7, 8,
11, 12]. In this contribution we will show, following what done in [10], that the addi-
tion of kinetic energy terms which couple the motions of the microstructure to the
macro-motions of the unit cells may have a deep impact on the ability of describing
band-gaps behaviors.

1.1 Notations

In this contribution, we denote by R
3×3 the set of real 3 × 3 second order tensors,

written with capital letters. We denote respectively by · , : and 〈·, · 〉 a simple and
double contraction and the scalar product between two tensors of any suitable order.1

Everywhere we adopt the Einstein convention of sum over repeated indices if not
differently specified. The standard Euclidean scalar product on R

3×3 is given by
〈X,Y〉R3×3 = tr(X · YT ), and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉R3×3 .
In the following we omit the index R

3,R3×3. The identity tensor on R
3×3 will be

denoted by 1, so that tr(X) = 〈X, 1〉.
We consider a body which occupies a bounded open set BL of the three-

dimensional Euclidian spaceR3 and assume that its boundary ∂BL is a smooth surface
of class C2. An elastic material fills the domain BL ⊂ R

3 and we refer the motion of
the body to rectangular axes Oxi.

For vectorfields vwith components inH1(BL), i.e. v = (v1, v2, v3)
T , vi ∈ H1(BL),

we define ∇ v = (
(∇ v1)T , (∇ v2)T , (∇ v3)T

)T
, while for tensor fields P with rows in

H(curl ;BL), resp. H(div ;BL), i.e. P = (
PT
1 ,PT

2 ,PT
3

)
, Pi ∈ H

(curl ;BL) resp. Pi ∈ H(div ;BL) we define CurlP = (
(curlP1)

T , (curlP2)
T ,

(curlP3)
T
)T

, DivP = (divP1, divP2, divP3)
T .

A subscript ,t will indicate derivation with respect to time and, analogously a
subscript ,tt stands for the second derivative of the considered quantity with respect
to time.

As for the kinematics of the considered micromorphic continua, we introduce the
functions

χ(X, t) : BL → R
3, P(X, t) : BL → R

3×3,

which are known as placement vector field andmicro-distortion tensor, respectively.
The physical meaning of the placement field is that of locating, at any instant t,
the current position of the material particle X ∈ BL, while the micro-distortion field
describes deformations of the microstructure embedded in the material particle X.

1For example, (A · v)i = Aijvj , (A · B)ik = AijBjk , A : B = AijBji, (C · B)ijk = CijpBpk , (C : B)i =
CijpBpj , 〈v,w 〉 = v · w = viwi, 〈A,B 〉 = AijBij etc.
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Table 1 Values of the elastic parameters used in the numerical simulations (left), characteristic
lengths and inertiae (center) and corresponding values of the Lamé parameters and of the Young
modulus and Poisson ratio (right), for the formulas needed to calculate the homogenized macro-
scopic parameters starting from the microscopic ones, see [1]

As it is usual in continuum mechanics, the displacement field can also be introduced
as the function u(X, t) : BL → R

3 defined as

u(X, t) = χ(X, t) − X.

In the remainder of the paper, the following acronyms will be used to refer to the
branches of the dispersion curves:

• TRO: transverse rotational optic,
• TSO: transverse shear optic,
• TCVO: transverse constant-volume optic,
• LA: longitudinal acoustic,
• LO1-LO2: 1st and 2nd longitudinal optic,
• TA: transverse acoustic,
• TO1-TO2: 1st and 2nd transverse optic.

If not differently specified, the results presented in this paper are obtained for
values of the elastic coefficients chosen as in Table1 (see Eqs. (1), (2), (5), (8), (11)
and (14) for their definition).

1.2 The Fundamental Role of Micro-Inertia in Enriched
Continuum Mechanics

As far as enriched continuum models are concerned, a central issue which is also an
open scientific question is that of identifying the role of so-called micro-inertia terms
on the dispersive behavior of such media. As a matter of fact, enriched continuum
models usually provide a richer kinematics, with respect to the classical macro-
scopic displacement field alone, which is related to the possibility of describing the
motions of the microstructure inside the unit cell. The adoption of such enriched
kinematics (given by the displacement field u and the micro-distortion tensor P, see
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e.g. [5–9, 11, 12, 14, 19]) as we will see, allows for the introduction of constitutive
laws for the strain energy density that are able to describe the mechanical behavior
of some metamaterials in the static regime. When the dynamical regime is consid-
ered, things become even more delicate since the choice of micro-inertia terms to be
introduced in the kinetic energy density must be carefully based on

• a compatibility with the chosen kinematics and constitutive laws used for the
description of the static regime,

• the specific inertial characteristics of the metamaterial that one wants to describe
(e.g. eventual coupling of the motion of the microstructure with the macro
motions of the unit cell, specific resistance of the microstructure to independent
motion, etc.).

In the present paper, we will suppose that the kinetic energy takes the following
general form (see [10]):

J = 1

2
ρ

∥∥u,t
∥∥2

︸ ︷︷ ︸
Cauchy inertia

+ 1

2
η

∥∥P,t
∥∥2

︸ ︷︷ ︸
free micro-inertia

+ 1

2
η1

∥∥ dev sym ∇u ,t
∥∥2 + 1

2
η2

∥∥ skew ∇u ,t
∥∥2 + 1

6
η3 tr

( ∇u ,t
)2

︸ ︷︷ ︸
new gradient micro-inertia

,

(1)

where ρ is the value of the average macroscopic mass density of the considered
metamaterial, η is the free micro-inertia density and the ηi, i = {1, 2, 3} are the
gradient micro-inertia densities associated to the different terms of the Cartan-Lie
decomposition of ∇u . We will be hence able to explicitly show which is the specific
role of the gradient micro-inertia on the onset of band-gaps in continuum models of
the micromorphic type. More precisely, we will highlight which is the effect of the
introduction of gradient micro-inertia terms on different enriched continuummodels,
namely:

• the classical relaxed micromorphic model,
• the relaxed micromorphic model with curvature ‖DivP‖2+‖CurlP‖2,
• the relaxed micromorphic model with curvature ‖DivP‖2,
• the standard Mindlin-Eringen model,
• the internal variable model.

2 The Classical Relaxed Micromorphic Model

Our relaxed micromorphic model endows Mindlin-Eringen’s representation with
the second order dislocation density tensor α = −CurlP instead of the third order
tensor∇P.2 In the isotropic case the energy of the relaxedmicromorphic model reads

2The dislocation tensor is defined as αij = − (CurlP)ij = −Pih,kεjkh, where ε is the Levi-Civita
tensor and Einstein notation of sum over repeated indices is used.
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W = μe ‖ sym ( ∇u − P)‖2 + λe

2
(tr ( ∇u − P))2

︸ ︷︷ ︸
isotropic elastic − energy

+ μc ‖ skew ( ∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

(2)

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2

︸ ︷︷ ︸
micro − self − energy

+ μeL2
c

2
‖CurlP‖2

︸ ︷︷ ︸
isotropic curvature

,

where the parameters and the elastic stress are analogous to the standard Mindlin-
Eringen micromorphic model. The model is well-posed in the static and dynamical
case including when μc = 0, see [6, 18].

Here, the complexity of the classical Mindlin-Eringen micromorphic model has
been decisively reduced featuring basically only symmetric gradient micro-like vari-
ables and the Curl of the micro-distortion P. However, the relaxed model is still gen-
eral enough to include the full micro-stretch as well as the full Cosserat micro-polar
model, see [19]. Furthermore, well-posedness results for the static and dynamical
cases have been provided in [19] making decisive use of recently established new
coercive inequalities, generalizing Korn’s inequality to incompatible tensor fields [2,
3, 15–17, 20].

The relaxedmicromorphic model counts 6 constitutive parameters in the isotropic
case (μe, λe,μmicro, λmicro,μc, Lc). The characteristic length Lc is intrinsically related
to non-local effects due to the fact that it weights a suitable combination of first order
space derivatives of P in the strain energy density (2). For a general presentation
of the features of the relaxed micromorphic model in the anisotropic setting, we
refer to [1].

The associated equations of motion in strong form, obtained by a classical least
action principle take the form (see [7, 8, 12, 18])

ρ u,tt − Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s − Curlm, (3)

where

I = η1 dev sym ∇u ,tt + η2 skew ∇u ,tt + 1

3
η3 tr

(∇u ,tt
)
,

σ̃ = 2μe sym (∇u − P) + λe tr (∇u − P) 1 + 2μc skew ( ∇u − P) , (4)

s = 2μmicro sym P + λmicro tr (P) 1,

m = μeL
2
c CurlP.

The fact of adding a gradient micro-inertia in the kinetic energy (1) modifies the
strong-form PDEs of the relaxed micromorphic model with the addition of the new
termI . Of course, boundary conditions would also be modified with respect to the
ones presented in [9, 12]. The study of the new boundary conditions induced by
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Fig. 1 Dispersion relationsω = ω(k) of the relaxedmicromorphicmodel for the uncoupled (left),
longitudinal (center) and transverse (right) waves with vanishing gradient micro-inertia η̄ = 0. One
complete band-gap is possible

Fig. 2 Dispersion relations ω = ω(k) of the relaxed micromorphic model for the uncoupled
(left), longitudinal (center) and transverse (right) waves with non-vanishing gradient micro-inertia
η̄ 	= 0. Two band-gaps are possible

gradient micro-inertia will be the object of a subsequent paper where the effect of
such extra terms on the conservation of energy will also be analyzed (Fig. 1).

As it has been shown in previous contributions [7, 8, 11], the relaxed micromor-
phic model is able to capture band-gap behaviors thanks to the fact that the acoustic
branches have a horizontal asymptote. We show in Fig. 2 the dispersion relations
obtained in previous work which are recovered here setting the gradient micro iner-
tia to be vanishing (η = 0).

Things are different when adding a gradient micro-inertia η 	= 0. Surprisingly,
the combined effect of the free micro-inertia η with the gradient micro-inertia can
lead to the onset of a second longitudinal and transverse band gap, due to the fact that
the first longitudinal and transverse acoustic branches (LO1 and TO1) are flattened.
Moreover, it is possible to notice that the addition of gradient micro-inertiae η1,
η2 and η3 has no effect on the cut-off frequencies, which only depend on the free
micro-inertia η (and of course on the constitutive parameters).
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Fig. 3 Dispersion relations ω = ω(k) of the relaxed micromorphic model for longitudinal (left)
and transverse (right) waves with increasing gradient micro-inertia. The markers indicate the main
mode of vibration considering: black triangle u1, black circle PS , black square PD, empty triangle
uξ , empty circle P(1ξ) and empty square P[1ξ ] with ξ = 2, 3.When twomarkers are present it means
that there is no clear main mode

In Fig. 3 we show more explicitly the flattening effect of the gradient inertia
parameters on longitudinal and transverse waves. In the same Figure we indicate the
mainmode of vibration associated to each branch of the dispersion curves. In contrast
to Cauchy models, the modes of vibration change when changing the wavenumbers.

In particular, it is possible to notice that the main mode of the acoustic branches
is the longitudinal or transverse displacement (as it is the case for Cauchy media)
only for very small wavenumbers k (large wavelengths). Increasing the wavenumber
(decreasing the wavelength), the longitudinal and transverse vibrations are charac-
terized by a coupling of the modes PS and PD, and P(1ξ) and P[1ξ ], respectively.
Moreover, it can be seen that the optic branches are characterized by one main
microstructure-related vibrational mode until relatively high values of the wavenum-
ber k. The coupling occurs for higher values of k and it is strongly influenced by the
effects of the gradient micro-inertia.

3 The Micromorphic Model with Curvature
‖DivP‖2+‖CurlP‖2

We consider now an extension of the relaxed micromorphic model obtained consid-
ering the energy (see [11]):
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W = μe ‖ sym (∇u − P)‖2 + λe

2
(tr (∇u − P))2

︸ ︷︷ ︸
isotropic elastic − energy

+μc ‖ skew ( ∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

(5)

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2

︸ ︷︷ ︸
micro − self − energy

+ μeL2
c

2

(‖DivP‖2 + ‖CurlP‖2)
︸ ︷︷ ︸
augmented isotropic curvature

.

The dynamical equilibrium equations are:

ρ u,tt − Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s − M, (6)

where

I = η1 dev sym ∇u ,tt + η2 skew ∇u ,tt + 1

3
η3 tr

(∇u ,tt
)
,

σ̃ = 2μe sym (∇u − P) + λe tr (∇u − P) 1 + 2μc skew (∇u − P) , (7)

s = 2μmicro sym P + λmicro tr (P) 1,

M = −μeL
2
c (∇ (DivP) − Curl CurlP)︸ ︷︷ ︸

=Div∇P=ΔP

.

Note that the structure of the equation is equivalent to the one obtained in the standard
micromorphic model with curvature 1

2‖∇P‖2, see Eq. (12) in Sect. 5.
We present the dispersion relations obtained with a vanishing gradient inertia

(Fig. 4) and for a non-vanishing gradient micro-inertia (Fig. 5). We conclude that
when considering the model with micromorphic medium with ‖DivP‖2 + ‖CurlP‖2
with vanishing gradient micro-inertia, there always exist waves which propagate
inside the considered medium independently of the value of frequency even if

Fig. 4 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature
‖DivP‖2+‖CurlP‖2 for the uncoupled (left), longitudinal (center) and transverse (right) waves
with vanishing gradient micro-inertia. No band-gap is possible
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Fig. 5 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature
‖DivP‖2+‖CurlP‖2 for the uncoupled (left), longitudinal (center) and transverse (right) waves
with non-vanishing gradient micro-inertia. One band-gap is possible

considering separately longitudinal, transverse and uncoupled waves. On the other
hand, switching on the gradient inertia it is possible to obtain a total band-gap.

4 The Micromorphic Model with Curvature ‖DivP‖2

The isotropicmicromorphicmodelwith‖DivP‖2 is yet another variant of the classical
relaxed micromorphic model (see [11]) with energy:

W = μe ‖ sym (∇u − P)‖2 + λe

2
(tr ( ∇u − P))2

︸ ︷︷ ︸
isotropic elastic − energy

+ μc ‖ skew (∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

(8)

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2

︸ ︷︷ ︸
micro − self − energy

+ μeL2
d

2
‖DivP‖2

︸ ︷︷ ︸
isotropic curvature

.

The dynamical equilibrium equations are:

ρ u,tt − Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s − M, (9)
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where

I = η1 dev sym ∇u ,tt + η2 skew ∇u ,tt + 1

3
η3 tr

(∇u ,tt
)
,

σ̃ = 2μe sym (∇u − P) + λe tr (∇u − P) 1 + 2μc skew ( ∇u − P) , (10)

s = 2μmicro sym P + λmicro tr (P) 1,

M = −μeL
2
c ∇ (DivP) .

We present the dispersion relations obtained with a non-vanishing gradient iner-
tia (Fig. 7) and for a vanishing gradient inertia (Fig. 6). In the Figures we consider
uncoupled waves (a), longitudinal waves (b) and transverse waves (c). Even in this
case, when considering the micromorphic model with only ‖DivP‖2 with vanish-
ing gradient inertia, there always exist waves which propagate inside the considered
medium independently of the value of the frequency and the uncoupledwaves assume
a peculiar behavior in which the frequency is independent of the wavenumber k. On
the other hand, when switching on the gradient inertia, a behavior analogous to the
relaxed micromorphic model appears: it is possible to model the onset of two com-
plete band-gaps. The uncoupled waves remain unaffected by the introduction of the
gradient micro-inertia and they keep their characteristic of being independent of the
wavenumber in strong contrast to what happen for the relaxed micromorphic model
in which the uncoupled waves are dispersive.

Fig. 6 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature
‖DivP‖2 for the uncoupled (left), longitudinal (center) and transverse (right) waves with vanishing
gradient micro-inertia. No band-gap is possible
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Fig. 7 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature
‖DivP‖2 for the uncoupled (left), longitudinal (center) and transverse (right) waves with non-
vanishing gradient micro-inertia. Two band-gaps are possible

5 The Standard Mindlin-Eringen Model

In this section. we discuss the effect on the Mindlin-Eringen of the addition of the
gradient micro-inertia η‖∇u ,t‖2 to the classical terms ρ‖u,t‖2 + η‖P,t‖2. We recall
that the strain energy density for this model in the isotropic case takes the form:

W = μe ‖ sym ( ∇u − P)‖2 + λe

2
(tr (∇u − P))2

︸ ︷︷ ︸
isotropic elastic − energy

+ μc ‖ skew ( ∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

(11)

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2

︸ ︷︷ ︸
micro − self − energy

+ μeL2
c

2
‖∇ P‖2

︸ ︷︷ ︸
isotropic curvature

.

The dynamical equilibrium equations are:

ρ u,tt − Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s − M, (12)

where

I = η1 dev sym ∇u ,tt + η2 skew ∇u ,tt + 1

3
η3 tr

( ∇u ,tt
)
,

σ̃ = 2μe sym ( ∇u − P) + λe tr ( ∇u − P) 1 + 2μc skew (∇u − P) , (13)

s = 2μmicro sym P + λmicro tr (P) 1,

M = −μeL
2
c Div∇P︸ ︷︷ ︸

=ΔP

.
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Fig. 8 Dispersion relations ω = ω(k) of the standard Mindlin-Eringen micromorphic model
for the uncoupled (left), longitudinal (center) and transverse (right) waves with vanishing gradient
micro-inertia. No band-gap is possible

Fig. 9 Dispersion relationsω = ω(k) of the standardMindlin-Eringenmicromorphicmodel for
the uncoupled (left), longitudinal (center) and transverse (right) waves with non-vanishing gradient
micro-inertia. One band-gap is possible

Recalling the results of [7], we remark that when the gradient micro-inertia is van-
ishing (η1 = η2 = η3 = 0) theMindlin-Eringenmodel does not allow the description
of band-gaps (see Fig. 8), due to the presence of straight acoustic waves. On the other
hand, when switching on the parameters η2 and η3 , the acoustic branches are flat-
tened, so that the first band-gap can be created (see Fig. 9). The analogous case for the
relaxed micromorphic model (Fig. 1) allowed instead for the description of 2 band
gaps.

As already pointed out and as shown in [11], the classical Mindlin-Eringen model
can be considered to be equivalent to the relaxedmicromorphic model with curvature
‖DivP‖2+‖CurlP‖2.
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6 The Internal Variable Model

Figure10 shows the behavior of the addition of the gradient micro-inertia η‖∇u ,t‖2
in the internal variable model. We recall (see [19]) that the energy for the internal
variable model does not include higher space derivatives of the micro-distortion
tensor P and, in the isotropic case, takes the form:

W = μe ‖ sym ( ∇u − P)‖2 + λe

2
(tr (∇u − P))2

︸ ︷︷ ︸
isotropic elastic − energy

+ μc ‖ skew ( ∇u − P)‖2︸ ︷︷ ︸
rotational elastic coupling

(14)

+ μmicro ‖ sym P‖2 + λmicro

2
(trP)2

︸ ︷︷ ︸
micro − self − energy

.

The dynamical equilibrium equations are:

ρ u,tt − Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s, (15)

where

I = η1 dev sym ∇u ,tt + η2 skew ∇u ,tt + 1

3
η3 tr

( ∇u ,tt
)
,

σ̃ = 2μe sym ( ∇u − P) + λe tr ( ∇u − P) 1 + 2μc skew (∇u − P) , (16)

s = 2μmicro sym P + λmicro tr (P) 1.

We present the dispersion relations obtained for the internal variable model with a
non-vanishing gradient inertia (Fig. 11) and for a vanishing gradient inertia (Fig. 10).
We start noticing in Fig. 10 that the internal variable model with vanishing gradi-
ent micro-inertia allows for the description of two complete band-gap even if it is
not able to account for the presence of non-localities in metamaterials. Moreover,
by direct observation of Fig. 11, we can notice that, when switching on the gradi-
ent micro-inertia, suitably choosing the relative position of ωr and ωp, the internal
variable model allows to account for 3 band gaps. We thus have an extra band-gap
with respect to the case with vanishing gradient inertia (Fig. 10) and to the analogous
case for the relaxed micromorphic model (see Fig. 2), but we are not able to con-
sider non-local effects. The fact of excluding the possibility of describing non-local
effects in metamaterials can be sometimes too restrictive. For example, flattening the
curve which originates from ωr and which is associated to rotational modes of the
microstructure is nonphysical for the great majority of metamaterials.
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Fig. 10 Dispersion relations ω = ω(k) of the internal variable model for the uncoupled (left),
longitudinal (center) and transverse (right) waves with vanishing gradient micro-inertia. Two band-
gaps are possible but non-local effects cannot be described

Fig. 11 Dispersion relations ω = ω(k) of the internal variable model for the uncoupled (left),
longitudinal (center) and transverse (right) waves with non-vanishing gradient micro-inertia. Three
band-gap are possible but non-local effects cannot be described. The overall trend of the dispersion
curves is unrealistic for the great majority of metamaterials

7 Conclusions

In this paper we make a review of some of the available isotropic, linear-elastic,
enriched continuum models for the description of the dynamical behavior of meta-
materials. We show that the relaxed micromorphic model previously introduced by
the authors is the only non-local enriched model which is able to describe band-gaps
when considering a kinetic energy independently accounting for micro and macro
motions. As far as an inertia term which couples the micro-motions to the macro-
scopic motions of the unit cell is introduced, also other non-local models exhibit
the possibility of describing band-gap behaviors. Nevertheless, the relaxed micro-
morphic model is still the more effective one to describe (multiple) band-gaps and
non-local effects in a realistic way. In fact, even with the addition of the new micro-
inertia term, the relaxedmodel is able to account for the description of two band-gaps,
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in contrast with to the single band-gap allowed by the Mindlin-Eringen model. The
micromorphic model with curvature ‖DivP‖2 also allows for the description of two
band-gaps when considering an augmented kinetic energy, but the uncoupled waves
are forced to be non-dispersive: this fact can be considered to be a limitation for the
realistic description of a wide class of band-gap metamaterials. Finally, the internal
variable model with the new kinetic energy terms allow for the description of up to
three band gaps. Nevertheless, the overall trends shown by the dispersion curves turn
to be quite unrealistic due to the fact that all the branches of the dispersion curves
show very low or no dispersion at all.
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