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Abstract We use a simple discrete system in order to model deformation and frac-
ture within the same theoretical and numerical framework. The model displays a rich
behavior, accounting for different fracture phenomena, and in particular for crack
formation and growth. A comparison with standard Finite Element simulations and
with the basic Griffith theory of fracture is provided. Moreover, an ‘almost steady’
state, i.e. a long apparent equilibrium followed by an abrupt crack growth, is obtained
by suitably parameterizing the system. Themodel can be easily generalized to higher
order interactions corresponding, in the homogenized limit, to higher gradient con-
tinuum theories.

1 Introduction

1.1 Motivation and Basic Ideas

Modeling fracture in an effective way has always been a major challenge for solid
mechanics.Many sophisticated theoretical and numerical tools have been developed,
and considerable progresses have been obtained in recent years in the framework of
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both classical and generalized continuum models (see [1–5]). However, the rich-
ness of the phenomenology is leading to theoretical formulations that are becoming
increasingly complex and may be computationally expensive and/or involve a sto-
chastic approach in order to capture the peculiar characteristics displayed by real
fractures. The idea behind the present work is to explore a very simple discrete sys-
tem characterized by a centroid-based propagating interaction, and evolving through
actual configurations connected by virtual (i.e., not visible) ones; the system, in
its basic version and without including fracture, was introduced in [6], while some
preliminary results on fracture have been shown in [7]. The model presents some
similarities with Molecular Dynamics (MD) but, as it will be shown, its specific
features cannot be recovered within standard MD models.

The potential advantages of the proposed approach are mainly linked to the sim-
plicity of the model. First of all this results in a significantly low computational
cost; moreover, deformation and fracture are covered here within the same sim-
ple model; finally as we will see, more general continuum theories can be easily
numerically investigated by means of slight modifications of the algorithm. Since
generalized continua are one of the most promising and rapidly evolving areas in
modernmechanics, this last feature of the proposedmodelmaybeparticularly appeal-
ing (for a theoretical coverage on higher gradient theories, see e.g.: [8–11], and
specifically for an approach combining higher gradient theories with lattice models,
see [12]). A closely related topic is that of micromorphic/microstructured continua
(see [13–16] for classical references and [17–22] for interesting applications), which
can be viewed as a generalization of higher gradient theories and may benefit as well
from the development of new discrete approaches. What is making these subjects
critical, in the opinion of the authors, is the advancements in manufacturing pos-
sibilities in the last years, as 3D printing and other computer-aided manufacturing
techniques, which are resulting in new metamaterials requiring a suitable theoreti-
cal description (and related numerical techniques) for objects whose richness at the
micro-scale cannot be captured by classical continuum models (see e.g.: [23] for a
review of recent results).

Discrete systems are, of course, very frequently studied in order to address the
aforementioned problems. In particular, Molecular Dynamics (MD) is by now a very
large research area with specific methods and very sound results (see e.g.: [24–27]).
The model presented herein, while sharing certain basic features with MD ones, is
characterized by some relevant differences in the approach. MD is indeed based on
the numerical study of systems constituted by a very large number N of elements. The
numerical computation of the trajectories of particles in the ordinary 6N -dimensional
phase space of positions and momenta employs the classical mechanics laws of
motion (for a sample of the numerical method the reader can see: [28–30]). The
system investigated in the present paper, on the other hand, does not consider any
explicit equation of motion. Instead, in order to simplify the model to the maximum,
the elements of our discrete system move according to an interaction law which:
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• is purely geometrically based;
• propagates along square frames centered in special elements (the ‘leaders’ of the
system);

• drives the elements through virtual configurations which are needed for the com-
putation of the evolution, but are not visible in the final output.

An important class of discrete systems for continuous deformable bodies, and in
fact a particular case of MD models, is given by masses-springs or beads-springs
models, which can be characterized in different ways by changing the geometry
of the springs and their type (extensional, torsional). The mass-spring systems are
common tools in Computer Graphics for the simulation of soft bodies [31, 32].

There are several relevant differences between these systems and the proposed
model. The two probably most important ones are the following:

i. In case of mass-spring system, a uniform motion of the leaders results in a global
motion r(t) = r∗(t) + r∗∗(t), with r∗∗(t) being a periodic function and r∗(t) a
transient term such that ||r∗(t)|| → 0 as t → ∞ [33]. As we will see, no such
decomposition makes sense in case of the proposed system. For instance, it can
be proven that a uniform motion imposed to a leader results, asymptotically, in a
rigid motion of the system.

ii. It can also be proven that uniformly accelerated motion of a set of leaders results
in our case in a disaggregation of the system (i.e. there is no R ∈ R such that for
every t ∈ [0,∞[ the system is contained inBR(x, y) for some x, y ∈ R

2).

The characteristics of our model have, as we will see, several advantages, but
at the same time make harder a standard variational formulation. As we will show,
energy-based investigations are possible in the discrete context here considered, but
the identification of an explicit Lagrangian whose minimization leads to the exact
dynamics displayed by the discrete system is far from trivial, and will be one of the
main objectives of future investigations. One of the main checks we will perform
will concern the systematyc comparison with Finite Element simulations. Nowadays
FE analysis is indeed probably the most reliable tool for the numerical simulation of
the behavior of deformable bodies, also thanks to the possibility of adapting it to the
features of the problem studied. Isogeometric analysis (see for instance [34–37]), in
particular, can be especially convenient for shape optimization problems that easily
arise in the study of multi-agent systems moving in unbounded domains and starting
form arbitrary configurations, as is the case in our context.

1.2 A Summary of the Algorithm and of the Formalism
Employed

In this section, we will briefly describe the model studied in the present chapter. The
algorithm and the formalism will be summarized in their most relevant features; the
reader can find a fully detailed description in [6].
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Let us consider a discrete systemS constituted by a finite number of points which
are characterized by their position in the real plane; we will call them the ‘elements’
ofS . The elements are set, in the initial configuration C0, in the nodes of a squared
grid sized L × L . We consider a set of discrete time steps Tm = {0, t1, ..., tm, ...}
and an orthonormal reference system with axes parallel to the sides of the system,
the unit length being equal to the cell side in C0. Each Lagrangian element (i, j) of
S , placed in (x1i j , x

2
i j )(tm), has a set of neighbors

Nn(ī, j̄) := {
(i, j) ∈ C0 : ρ[(ī, j̄), (i, j)] = n

}

where ρ is the R2-Chebyshev distance, i.e. the distance in R
2 given by

ρ((x1, x2), (y1, y2)) = max
{|x1 − y1|, |x2 − y2|} .

With this definition, selecting n = 1 and n = 2, we have respectively the first and
second neighbors as shown in Fig. 1.

Let us select a leader elementL whose actual position is defined by a prescribed
motion M : tm ∈ Tm −→ (x1

ī j̄
, x2

ī j̄
)(tm) ∈ R

2. We are now ready to describe the
interactions between the elements. We will consider virtual steps in between two
actual states, i.e. states that are invisible in the real displacements of the system
but are necessary for computing its evolution. Let us consider a configuration V t1

0
such that the leader L is positioned in M (t1): this is defined as the first virtual
configuration. Then, recalling that by centroid of a set of points P1(x11 , ..., x

1
n ), ..., Pm

Fig. 1 Graphical
representation of neighbors:
the first and second
neighbors of the red element
are the ones respectively in
yellow and green
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(xm1 , ..., xmn ) ∈ R
n one means the point P(

∑m
i=1

xi1
m ,

∑n
i=1

xi2
m , ...

∑n
i=1

xin
m ), the next

virtual configuration V t1
1 will be defined as the one in which:

i. the leader L remains in V t1
0 ;

ii. every one of its first neighbors N1(ī, j̄) moves to the centroid of its own first
neighbors in V t1

0 ;
iii. all others elements remain in the position they had in V t1

0 .

Iterating and generalizing to the n-th virtual step, V t1
n will be the virtual configu-

ration in which:

i. the leaderL together with its first (n − 1)-th neighbors are in the same position
they had in V t1

(n−1);
ii. every one of the n-th neighbors of L has moved to the centroid of its own first

neighbors in V t1
(n−1);

iii. all others elements are in the same position they had in V t1
(n−1).

We will get the actual configuration Ct1 when n equals the maximum Lagrangian–
Chebyshev distance of the elements from the leader (see Fig. 2).

It is easy to see that in the model so described edge effects will arise, since spon-
taneous shrinking will concern boundary elements because of the non-symmetric
placement of their neighbors. In order to overcome this problem several standard
possibilities can be considered. Choosing probably the most simple one, we intro-
duce a ‘fictitious’ boundary constituted by an external frame of elements which
simply follow, at a fixed distance and always in the same direction, their closest
‘true’ element. The fictitious elements move only in a specific virtual time step
which follows the other ones. In this way, every true element will have a complete

Fig. 2 Graphical representation of the virtual configurations. In red the elements which are already
in the position they will have in Ct1
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Fig. 3 Graphical
representation of fictitious
elements. Every fictitious
element (empty red dots)
moves in rigid translation
with the closest true one
(blue dots); every vertex true
element carries in rigid
translation the vertex
fictitious one and also its two
fictitious neighbors

set of 8 neighbors (see Fig. 3 for a graphical representation. An explicit description
of the motion of the fictitious elements is in [6]). The distance at which the fictitious
elements are positioned represents a key characteristic length, determining the lat-
tice step of the system in the equilibrium configuration. In the following numerical
simulations, unless differently specified, this length is equal to 1 length unit for all
the fictitious elements.

The previous algorithm can be easily generalized to the case of second and, in
general, n-th neighbors interaction, by simply computing the centroid of sets of
points having maximum Lagrangian–Chebyshev distance of 2 (in general, n). In this
case, additional sets of fictitious elements have also to be introduced in order to
have, for every element of the system, a full set of neighbors. In [6] the system is
also generalized to the case of multiple leaders, which will be used throughout the
present paper.

The geometric centroid of a given set of points P1, ..., Pn minimizes the sum of
the squared distances, i.e. the function:

f (P) =
n∑

i=1

||Pi − P||2. (1)

It is therefore possible to see that for a first-(second-)neighbor interaction, a natural
deformation energy density can be written as a function of first-(second-)order finite
differences of the placement χ for a given point, and therefore, as the step length
goes to zero, a second gradient homogenized energy E [∇χ(P),∇∇χ(P)] can be
conjectured for second neighbors interaction systems (for more details see again [6]).
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The algorithm described before has much in common with theoretical models
conceived for describing collective behaviors (e.g. the evolution of swarms, flocks
etc.). Such models have already been used for mechanical investigations, in cases
in which the potential energy of a mechanical system is minimal in correspondence
with stable equilibrium positions of a swarm system [38, 39]. However, in the present
work we prefer not to use the name ‘swarm’ system, since one usually associates
that name, and in particular the expression Particle Swarm Optimization (PSO), to
cases in which each particle of the swarm represents a potential solution of a given
(a priori formulated) optimization problem [40–42]. Our aim, in fact, is not the
study of numerical tools for the solution of well defined optimization problems, but
rather the development of a new model directly accounting for the description of
the phenomenology; other features distinguishing the proposed discrete model from
PSO ones is the presence of leaders (whereas PSO models are usually anarchic) and
the absence of any randomness.

It should also be pointed out that some basic features of our model (in particu-
lar the Lagrangian character of the neighborhood) are quite different from standard
swarm robotic modeling. In modeling swarms, flocks and schools dynamics, a topo-
logical concept of neighborhood (rather than a metric one) is emerging as one of the
most promising in order to account for the observed phenomenology (see [43, 44]).
The model proposed in the present paper mixes these two ideas, since it is based
on a concept of neighborhood which depends on the topological distance between
the elements, while the way in which the interaction works depends on the met-
ric (Euclidean) distance in the actual configuration. Finally, another feature of the
proposed model which is often met in swarm modeling is that the elements, due
to the presence of the fictitious boundary, do not behave all in the same way; this
has been proposed as one of the possible discriminating factors between crowds
and swarms/flocks/schools models (see e.g. [45, 46]), but also in this case it can
be pointed out that the property of being (or not) a boundary element, in the model
considered herein, is Lagrangian, i.e. it is preserved during the time evolution of the
system.

1.3 Short Summary of Preliminary Numerical Results

We summarize in this section the numerical results obtained in [6]. With the aim
of comparing the discrete models characterized by (respectively) first and second
neighbor interaction (FNI andSNI)withfirst and secondgradient continuum theories,
some simple cases were investigated.

Two squared systems FNI and SNI were considered, in which the leaders L ,
situated in a vertex of the square, were pulled outside (or pushed inside) in the
diagonal direction at 45 degrees with respect to the sides of the system in C∗ with a
uniform motion. The numerical results obtained were compared with Finite Element
simulations of a 2D continuous squared body, at the vertex of which a prescribed
displacement was imposed. Two cases were considered: a standard energy (for the
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Fig. 4 A comparison between FE simulation of first (a) or second (b) gradient continua and first
(c) or second (d) neighbors interaction with a similar external action

first gradient case) and theMindlin general form [15] for the second gradient case. In
Fig. 4 we can appreciate one of the similarities between the continuum models and
the discrete system here described (for other features see [6]). As we can see, in the
FNI/first gradient continuum cases a loss of boundary convexity around the vertex
is observed, whereas this behavior is not present in SNI/second gradient continuum
cases; this is highlighted in Fig. 5.

Releasing the vertex at a certain time step, i.e. letting the system evolve while the
leader is stopped, one observes the return to the original configuration, in agreement
with the behavior expected in elastically deformed bodies. As can be seen in Fig. 6,
the return to the initial configuration is not instantaneous, which implies the presence
of inertia effects even if no explicit variable accounting for the elements mass was
introduced. It is possible to prove that actually we have an asymptotic convergence,
which means that some viscous effect has to be considered if one want to identify the
Lagrangian system exactly corresponding to the evolution of the proposed system [6].

These results (among others) suggest that the evolution of the presented discrete
system resembles that of elastic deformable bodies, and that varying the order of the
interaction, specific characteristics of higher gradient theories are also recovered. In
the following we will see a more direct comparison with 2D continuum simulations
performed with COMSOL.
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Fig. 5 Zoom on the loss of convexity in first gradient (a) and first neighbors interaction (b) cases

(a) t = 1 (b) t = 100 (c) t = 200 (d) t = 300

(e) t = 400 (f) t = 500 (g) t = 600 (h) t = 700

Fig. 6 Imposing a stop to the leader (at t = 150) the system tends to return to the original config-
uration

Finally, we want to devote a few words to the nonlinear character of the evolution
of the system. In the following sections, a fracture algorithm (obviously entailing
nonlinearities) will be introduced, but even the basic form of the model as described
up to this point exhibits a nonlinear behavior. In Fig. 7, we compare two identical
systems in which different actions are imposed to one single leader. In the left panel,
a speed of 1 length units per unit time is imposed for a total of 10 time steps; in the
right panel, we imposed a speed of 0.001 length units per unit time for a total of
10000 time steps. As one can see, the resulting configurations are clearly different,
thus implying the nonlinearity with respect to the imposed external action.
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Fig. 7 Nonlinearity of the system: in a, a speed s = 1 length units per time step is imposed to
the leader for an interval I of 10 time steps; in b, the s = 0.001 and I = 10000. The two resulting
configurations are different

1.4 Further Comparison with Finite Element Simulations

In this section we want to directly compare the results of our discrete model with the
ones obtained by standard Finite Element simulations.

In Fig. 8 we show the superposition of:

• a simulation with an imposed external action consisting in pulling in opposite
directions two opposed vertexes of our system;

• a standard FE simulation (performed with COMSOL) in which a similar action
(imposed displacement) is applied on a squared 2D continuum.

For the continuous simulation, we considered both a classical Cauchy continuum
(left) and a second gradient one (right). In color map themodulus of the displacement
is shown. The corresponding discrete simulation involve first- (left) and second-
neighbors (right) interaction. As it can be seen, in both cases the shape of the sample
is accurately approximated by the discrete system, in the specific case employing
only a very limited number of elements (12 × 12 = 144 elements in total). This
means that our system produces reliable results with a very limited computational
cost, at least with this kind of external action.
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Fig. 8 Superposition of the discrete system with a standard FE continuum simulation involving
first gradient/first-neighbors (left) and second gradient/second neighbors models (right)

2 Spontaneous Evolution and Discrete Energy Equivalent

The previously described algorithm can be adapted to the case of a spontaneously
evolving system, i.e. systems in which we do not impose a particular motion to any
of the elements. To do so, we start from an arbitrary initial configuration C0, in
which in general the elements do not lie in the centroid of their neighbors. We apply
the algorithm starting from a selected element P (which we will call the ‘pseudo-
leader’) and then proceeding through concentric square frames. The only difference
with the case of a ‘true’ leader is that the pseudo-leader P does not obey to an
imposed motion, but simply goes, in the first virtual step, in the centroid of its first
neighbors as all other elements do.

The observationsmade at the end of Sect. 1.2 suggest the introduction of a quantity
E D(t), which we will call Discrete Energy Equivalent (DEE), defined on a geometri-
cal basis. The DEE will represent a measure of the deformation energy stored in the
actual configuration of the system in case of first neighbors interaction. Due to the
minimum property of the centroid above recalled (see Eq. (1)), and considering that
an (Euclidean) distance equal to 1 or to

√
2 corresponds to the pairs of first neighbors

elements in the equilibrium configuration C∗, it is natural to define E D as follows:

E D =
∑

S1

(dt − 1)2 +
∑

S2

(dt − √
2)2

2
. (2)

Here the sums are extended over all the pairs of first neighbors ‘true’ elements.
The sets S1 and S2 contain the pairs that in C∗ lie respectively orthogonally or
diagonally with respect to the sides. A unit length is subtracted from dt (

√
2 in
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case of diagonal pairs) because the step length is unitary; more precisely, because
the fictitious elements are at a fixed unitary distance from the true boundary. Since
the sums have the dimension of an area, a coefficient α having the dimension of a
force unit over a length unit has to be introduced to define the energy of the system:
E = αE D .

The first set of numerical simulations will concern the study of the DEE decay in
systems evolving without leaders, and since in our simulations E D(C0) �= 0, C0 can
be seen as a pre-stressed configuration. A basic case, in which the center element is
selected as the pseudo-leader, is represented in Fig. 9. A sharper case in which the
initial configuration is more stressed is shown in Fig. 10. In both cases, the energy
decay is well interpolated by an exponential behavior; in Fig. 11 the interpolation of
the form eax

b
, with a ≈ −0.59 and b ≈ 0.52 is shown. This behavior is well known

for several elastic systems in which viscous dissipation occurs in both linear and
nonlinear cases (see e.g. [47–50]).

Onemaywonderwhether the system always asymptotically converges to the same
limit configuration (i.e., the one with E D = 0) independently on the choice of the
pseudo-leader. This seems a rather natural request if the system is intended to model
the behavior of a deformable body. In the Appendix (see 4) we prove that in the
1D case the answer is yes. In 2D, the conjecture that the asymptotic configuration is
independent on the pseudo-leader choice remainsmore than reasonable, but the proof
is more difficult, since in this case it is not true anymore that the total discrete energy
decreases in every virtual step. Numerical evidence of this somewhat surprising
statement is shown in Fig. 12, where one can observe that, after a first approximately
exponential phase, the energy increases slightly before its eventual decay.

We want now to perform some quantitative analysis in order to evaluate some
magnitudes concerning the evolution of our system on the basis of the DEE above
defined. Let us first consider a very simple case in which uniaxial motion is imposed
to a set of leaders constituted by the elements belonging to two opposite sides of
the system. In particular, the fictitious elements relative to the left side are treated as
leaders, as they are motionless by definition (from a mechanical point of view, the
side has an imposed displacement equal to zero). Moreover, we impose a motion to
the elements belonging to the right side; the motion is uniform and directed along
the x axis up to a certain time ts , after which they stop. The system is then left
evolving until equilibrium is achieved. The result, with relative energy versus time
plotting, is shown in Fig. 13 (here and in all the following simulations, the leaders
are represented by red dots). Since our external action is an imposed motion, it is not
immediate to derive from it a discrete version of the applied uniaxial force σ D . We
can however reasonably define it in various equivalent ways; for instance, we can
use the identity

(σ D)
2
A

2E
= E = αE D

where A is the area of the system at the equilibrium, E is Young’s modulus and α the
previously introduced constant. We will not lose generality by selecting the unit for
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(a) t = 1 (b) t = 30

(c) t = 60 (d) t = 100

(e)

Fig. 9 a–d Spontaneuos evolution of the system from a prestressed configuration; the pseudoleader
is the central element. e Time history of the Discrete Energy Equivalent
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(a) t = 1 (b) t = 30

(c) t = 60 (d) t =100

(e)

Fig. 10 a–d The same simulation of Fig. 9 with a more stressed initial configuration. e time history
of the Discrete Energy Equivalent
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Fig. 11 Exponential energy decay: in red it is represented the curve e−0,5912x0,5155

σ D so as to have 2E = 1, and therefore we get (σ D)2 = αE D

A . The numerical data
for A and E D give:

(σ D)2 = αE D

A
≈ 12.5α

382
≈ 0.03α. (3)

Using the reasonable assumption that a certain imposedmotionwill approximately
correspond to the same σ D if only small and local changes are considered in C∗, we
will employ the value now obtained in the simulations on the crack formation and
growth considered below.

3 Fracture and Crack Formation and Evolution

3.1 Introduction of the Fracture

In the proposed model, the fracture is intended as a loss of interaction between
neighboring elements. Specifically, when the Euclidean distance (evaluated in actual
configurations) between two interacting elements overcomes a certain threshold s f ,
the two elements do not interact anymore. Obviously, when this happens, the com-
putation of the centroid relative to the considered elements is ill defined, in the same
sense as intended for what concerns boundary elements, as seen in Sect. 1.2. We
solve the problem in a similar way as done before. Indeed, we introduce for every
bond break a new pair of fictitious elements evolving in the same way as the ficti-
tious boundary elements introduced above, i.e. each of them following one of the
two elements whose bond has been broken. In this way, the two elements among
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(a) t = 1 (b) t = 30

(c) t = 60 (d) t = 100

(e)

Fig. 12 Spontaneous evolution starting from a severely prestressed configuration: the energy is not
a monotonically decreasing function
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(a) t = 1 (b) t = 330

(c) t = 660 (d) t = 1000

(e)

Fig. 13 Uniaxial imposedmotion to the leaders. The leaders (solid red dots) have a uniformmotion
parallel to the x axis and then are stopped at t = 180.An equilibrium configuration is reached around
t = 450. We use empty red dots to indicate that the fictitious elements relative to the left side have
an imposed null velocity, i.e. the left side has an imposed displacement equal to zero
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which the fracture occurred become boundary elements in the same sense as the
preexisting ones.

The fracture algorithm works as follows: we introduce a prescribed order in the
n-th neighbors of a given non-fictitious element starting, for example, from the neigh-
bors in the left upper corner of the frame square centered in the considered element
and proceeding clockwise. The labeling of neighbor elements allows the introduc-
tion of an adjacency matrix J , that in this case is a tensor of boolean variables Ji jk ,
the first two indexes determining the particle (i, j) of the system, and the third one
k, ranging from 1 to 8 in FNI, identifying one of its neighbors. When the distance
between two elements is larger than s f , the value of the corresponding element of J
is set toFALSE = 0 (otherwise it is TRUE = 1).When the centroid is computed, each
neighbor coordinate is multiplied by the relative element of J . Moreover, another
term is considered in the centroid computation, consisting in the coordinate of ficti-
tious elements, each multiplied by J̄ (where the bar indicates logical complement).
It is clear that in this way, when the centroid is evaluated, a true or a fictitious element
enters the calculation according to the fact that the interaction is present or broken.
The irreversibility of the fracture, which is a desirable feature when modeling solid
bodies, is verified since once an element of J is set to 0, it can not become 1 anymore.

Another degree of freedom of the model, concerning the fictitious elements
appearing after the fracture, naturally emerges form the described algorithm. Indeed,
one can choose to place the new fictitious elements at a distance ρ f that does not
correspond to the lattice step in C∗ (more precisely, we should say that it would
not correspond to the fixed distance at which the fictitious boundary is from the
true elements. It is indeed this last distance that determines the lattice step at which
the system is in equilibrium). In this way, as we will see in the following, relevant
features of fracture phenomena can be modeled.

3.2 Basic Fracture and Crack Evolution

A well known variational approach to the fracture was developed by Griffith in the
’20. From Griffith’s model (in 2D case), we have at the equilibrium:

ET OT = 2γ a + σ 2

2E
A − σ 2

2E
βa2 (4)

where γ represents the energy per unit line required to break atomic bonds, E the
Young Modulus, A the area of the sample, a is the crack length, σ the stress and β

an non-dimensional parameter accounting for the measure of the part of the surface
relaxing as a consequence of the crack opening.

The most relevant qualitative aspect of Griffith’s theory is that the dependence of
the energy on the crack length forecasts that below a critical value of a the system is
stable, and a crack growth is possible only providing additional energy to the system.
If this critical value is reached, the system becomes unstable and the crack evolves
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spontaneously. In the next groups of simulations we selected two leaders belonging
to the bottom side (red elements) and imposed to them a uniform velocity, with
components (0.03, 0.03) and (−003, 0.03) respectively. The leaders were stopped
at t = 80. In Fig. 14 we set the fracture threshold s f = 1.17 length units; we can see
that the crack keeps growing even after the leaders have stopped, that means that
the crack length is reaching the equilibrium value for the given imposed action. The
crack length equilibrium value is reached around t = 160, after which the cracks
remain stable while the system keeps relaxing and releasing deformation energy.

In Fig. 15 the same simulation was performed with the fracture threshold set at
s f = 1.12. It can be seen that the crack growth does not stop and indeed goes up to
the complete split of the system, which is reached around t = 250. This means that
stopping the motion at t = 80 is sufficient for furnishing to the system the energy
needed to reach the length threshold after which the crack grows spontaneously.

3.3 Uniaxial External Action

The previous results indicate that qualitative features of Griffith’s theory are recov-
ered through our discrete model. However, in order to be able to compare quantita-
tively our numerical results with Griffith’s theory, we need to apply a simpler external
action, i.e. a uniaxial one, as done in the simulation shown in Fig. 13. Let us first
formulate Eq. (4) by means of the discrete variables considered here. In our model,
the energy can be written as:

ET OT = 3α(se f f )
2l + (σ D)2A − (σ D)2βl2 (5)

where se f f = s f − 1 is the DEE lost when a single bond is broken, A represents the
area of the system (in squared unit lengths) and l is the number of broken pairs of
elements in the crack.

In the simulation shown in Fig. 16 we imposed to the leaders the same external
action used in the simulation of Fig. 13, i.e. we imposed an uniaxial displacement
of the leaders in the x direction up to 180 time steps followed by a stop, and a
zero displacement to the fictitious elements relative to the left vertical side. In order
to see a crack formation and evolution we created a ‘defect’ by removing 6 bonds
close to the middle points of the bottom side. We can observe that a crack indeed
opens in correspondence with the defect, and that it reaches a stable length already
at t = 1000.

The DEE E D that we obtained as an output (≈5) times the dimensional constant
α is the discrete estimate of the deformation energy of the system, and therefore
represents the quantity given by the last two terms in the right hand side of Eq. (5).
This allows us to provide an estimate for β. Indeed, substituting the value for σ D

taken from the simulation shown in Fig. 13, we have:
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(a) t = 1 (b) t = 80 (c) t = 160

(d) t = 240 (e) t = 1000 (f) t = 2000

(g)

Fig. 14 Crack growth as a consequence of two leaders pushing from inside at 45 degrees with
uniform velocity; with s f = 1.17 the crack length stabilizes around t = 160
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(a) t=1
(b) t=100

(c) t=200 (d) t=300

(e)

Fig. 15 The same simulation of Fig. 15 is performed with s f = 1.12; in this case, the critical length
is overcome and the crack growth keeps up to the complete split of the system
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(a) t = 1 (b) t = 1000

(c) t = 2000 (d) t = 3000

(e)

Fig. 16 Uniaxial external action imposed to a set of boundary leaders with a defect consisting in
the removal of six bounds around the middle elements of the bottom side (s f = 2.62). The leadres
stop at t = 180; a crack opens in correspondence with the defect and reaches a stable length (as
before, we use empty red dots to indicate that the fictitious elements relative to the left side have an
imposed null velocity, i.e. the left side has an imposed displacement equal to zero)

β = (σ D)2μn2 − αE D

(σ D)2l2
≈ 25.7. (6)

According to the standard interpretation in Griffith’s fracture theory, this means
that an area measuring approximately β × l2 = 25.7 × 9 is relaxed as a consequence
of the crack formation; this area corresponds to a fraction of approximately 0.58 of
the total area.
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Fig. 17 Graphical
representation of the bonds
broken in the simulation
shown in Fig. 16

Let us now consider the first term in the right hand side of Eq. (5). The numerical
output tells us that a total of 9 bonds, in Fig. 16, are stretched beyond the fracture
threshold (see Fig. 17 for a graphical representation). As we recall, we introduced a
‘defect’ consisting in removing six interactions close to the edge; this means that a
total of three elementary bonds were broken by applying the external action. Since
the thresholdwas set at s f = 2.62, the correspondingDEE, i.e. the energyEb required
to break the bonds can be estimated by:

Eb = α(s f − 1)2 × 6 = 7.68α. (7)

The sum Eb + αE D ≈ 12.68α is an estimate of the total energy in the system. As one
can see, it is very close to the total deformation energy (≈12.5α, see Eq. (3)) with the
same external action in case no fracture threshold is considered. This is consistent
since, in the proposed model, no additional dissipated energy is associated to the
break of the interactions, and therefore the total energy should coincide with the
deformation energy. The small difference has to be related with the fact that we
introduced a local defect in the simulation shown in Fig. 16; since we imposed an
external action consisting in imposed displacements, this means that, assuming the
same value for σ D as the one measured in the simulation of Fig. 13, we are slightly
overestimating it. Actually, the ratio 12.68−12.5

12.68 ≈ 0.014 is very close to the ratio
between the number of removed bonds over the total bonds present in the system
( 6
520 ≈ 0.012).

3.4 Almost-Steady State

In the next simulation we want to underline a peculiar behavior shown by the model
which can be seen as an ‘almost steady’ state followed by a catastrophic evolution
of the crack. We considered the same system of the previous section, making only
a small change in the fracture threshold s f . Tuning very finely the threshold (i.e.
setting s f = 2.5741), one can obtain that a significantly long almost steady phase is
followed by a nearly spontaneous crack opening around 1000 time steps (Fig. 18).
We recall that the leaders were stopped at t = 180, which means that the abrupt
opening of the crack around t = 900 is a consequence of an internal evolution of the
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(a) t = 1 (b) t = 215 (c) t = 530

(d) t = 745 (e) t = 860 (f) t = 980

(g) t = 1030 (h) t = 1050 (i) t = 1075

(j)

Fig. 18 ‘Almost steady’ state followed by a quick and spontaneous evolution of the crack; s f =
2.5741, leaders are stopped at t = 180. Between t ≈ 500 and t ≈ 1000 the energy plot is almost
flat, then an abrupt crack opening occurs (as before, we use empty red dots to indicate that the
fictitious elements relative to the left side have an imposed null velocity, i.e. the left side has an
imposed displacement equal to zero).

system, though it is hardly visible since only very tiny changes in the positions of the
elements (invisible at the ‘macro’ level) occur for a long time. In the opinion of the
authors, this behavior, which is experimentally well known [51], is quite interesting,
especially considering the simplicity of the discrete model employed.
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The sensitivity of the model with respect to very fine changes in the parameters
suggests that non trivial instability issuesmay arise from the study of its homogenized
form. This can be a very interesting aspect to be investigated, useful theoretical
tools being available in recent literature (the interested reader can see, for instance,
[52–56]).

4 Conclusion and Further Objectives

Herein a new simple discrete system (introduced in [6]) with a centroid-based prop-
agating interaction has been used in order to account for fracture phenomena in
deformable bodies. Some results on pure deformation including a direct compari-
son with standard Finite Element simulations are presented. A discrete equivalent
of the deformation energy is also defined and used to prove the independence of
the asymptotic configuration on the choice of the element from which the algorithm
starts in case of spontaneous evolution. A fracture algorithm is then introduced, with
the definition of a suitable adjacency matrix specifying the pairs of elements among
which no interaction exists anymore because the two elements overcame a prescribed
threshold in the actual distance. The discrete equivalent of an external stress is also
defined in the uniaxial case, and used to compare the numerical results with Griffith’s
theory of fracture. Different examples of crack formation and growth are considered.

The results indicate that the proposed model is promising for developing new and
computationally advantageous tools for the study of fracture, and that the model is
rich enough to produce interesting behaviors such as a spontaneous crack evolution
after a long almost steady state.

Future investigations will concern how, by suitably weighting the contribution of
the neighbors in the computation of the centroid, one can obtain different material
models, and in particular different kinds of anisotropies. Moreover, one may try to
generalize the model by suitably coupling the coordinates in order to account for
Poisson’s ratios different from 0 (while using directly the centroid-based algorithm
we described this is the only possible value). Also interesting will be the study
of more cases in which higher order interactions, reproducing behaviors typical of
higher order continua, are considered. Finally theoretical results, among which the
investigation of the homogenized limit of the considered system and the relative
variational formulation, are needed in order to make further and sound progresses in
the subject.

Proof of the Independence of the Asymptotic Behavior on the Choice of the
Pseudo-leader for 1D Systems

In Sect. 2 we considered the problem of the uniqueness of the asymptotic configura-
tion of the system evolving spontaneously (i.e., without leaders), independently on
the selected pseudo-leader. As this represents an important objectivity requirement
for the model, in the present appendix we deserve a more formal treatment to the 1D
case.
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Let us consider a 1-dimensional system S constituted by N elements mathe-
matically represented by points in the real line, and an infinite set of discrete time
steps T = {t0, t1, ..., tm, ...}. The system will evolve exactly as explained in the 2D
case, with the set of first neighbors being constituted, for every element, by the
two closest ones. We call configuration of S a strictly increasing function C map-
ping i into xi ∈ R, with the integer i : 0 < i ≤ N indicating the Lagrangian label
of the elements of the system. We indicate by Ctj the configuration at time t j ∈ T ,
and by Sī the system evolving with the chosen pseudo-leader (ī). We say that Sī
asymptotically converges to the configurationCt∞ , and writeSī → Ct∞ , if for every
ε > 0 there exists a positive integer M such that |xtmi − xt∞i | < ε for every integer
i : 0 < i ≤ N and every tm ∈ T : m > M (we can notice that the given definition,
which is natural when considering finite systems, would correspond in the homoge-
nized limit to a uniform functional convergence). Let C ∗ be the set of configurations
in which |xi+1 − xi | = 1 for every integer i such that 0 < i < N ; obviously one has
E D(C∗) = 0 for every C∗ ∈ C ∗ (see Eq. (2)), and the representative C∗ is unique
up to a translation. We have the following result.

Proposition A systemSi evolving spontaneously tends to an asymptotic configura-
tion Ct∞ ,and it is Ct∞ ∈ C ∗ ∀i ∈ N : 1 ≤ i ≤ N .

Proof Let us first prove that the limit configuration exists. Then we will prove the
Lemmaby showing that, ifCt∞ is the asymptotic configuration, one hasE D(Ct∞) = 0
(the thesis follows then immediately).

We start by noticing that in every virtual time step one element or two ele-
ments which are not neighbors move to the centroid of their first neighbors, while
all other elements do not move. Since the centroid locally minimizes the discrete
energy, this means that E D(Vh, t j ) ≥ E D(Vh+1, t j ) and E D(Vh, t j ) ≥ E D(Vk, t j+1)

for all integers j , and for all h and k for which virtual configurations are defined.
Since actual configurations of the system are a subset (preserving the order rela-
tion) of the virtual configurations, one has that E D(Ctj ) (t j ∈ T ) is a monoton-
ically decreasing function of j . Since E D is non negative, this means that there
exists limm→∞ E D(Ctm ) = E D(Ct∞). Let us now enumerate all virtual configura-
tions (including the ones identified by definition with actual ones): V1, V2, ...Vn, ....
Since E D converges, one has:

ΔE D(Vh) := E D(Vh) − E D(Vh + 1) → 0 for m → ∞ (8)

LetΔsh be the sumof themoduli of the displacements of the elements thatmove in the
virtual time step Vh . SinceΔE D(Vh) is a continuous function ofΔsh vanishing if and
only if Δsh = 0, Eq. (8) implies that limh→∞ Δsh = 0, i.e. all virtual displacements
of the elements (and thus the actual ones) tend to zero as time goes to infinity.
Therefore, there exists a limit configuration Ct∞ .

Let us now suppose by contradiction that E D(Ct∞) = Ẽ > 0 for some element ī
chosen as the pseudo-leader.
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Let now dmax and dmin be respectively the maximum and minimum distance
between (non fictitious) elements which are first neighbors in Ct∞ . Since Ẽ > 0,
one has that at least one between the two inequalities dmax > 1 and dmin < 1 holds;
without losing generality, we select the first possibility. Let ĩ and ĩ + 1 be the two
Lagrangian elements such that

lim
m→∞(|xtm

ĩ+1
− xtm

ĩ
|) = dmax (9)

Recalling that the centroid algorithm moves the element ĩ to the centroid of its
neighbors, it easily follows from Eq. (9) that:

lim
m→∞(|xtm

ĩ
− xtm

ĩ−1
|) = dmax (10)

Let xtmF be the coordinate of the left fictitious element of the system at time tm .
Iterating the previous reasoning, one gets eventually

lim
m→∞ |xtm0 − xtmF | = dmax > 1 (11)

and since by definition |x0 − xF | = 1 at every time, the contradiction completes the
proof.

Remark The result is easily generalized to system with second or higher order
interaction. As mentioned in the paper, however, the generalization to 2D systems is
not straightforward as in that case it is not true that the energy is decreasing.

References

1. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem.
J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

2. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–
3), 5–148 (2008)

3. Ching, W.Y., Rulis, P., Misra, A.: Ab initio elastic properties and tensile strength of crystalline
hydroxyapatite. Acta Biomaterialia 5(8), 3067–3075 (2009)

4. Kulkarni, M.G., Pal, S., Kubair, D.V.: Mode-3 spontaneous crack propagation in unsymmetric
functionally graded materials. Int. J. Solids Struct. 44(1), 229–241 (2007)

5. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter
of quasi-brittle heterogeneous lattices. ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik 94(10), 862–877 (2014)

6. Della Corte, A., Battista, A.: Referential description of the evolution of a 2D swarm of robots
interacting with the closer neighbors: perspectives of continuum modeling via higher gradient
continua. Int. J. Non-Linear Mech. 80, 209–220 (2016)

7. Battista, A., Rosa, L., dell’Erba, R., Greco, L.: Numerical investigation of a particle system
comparedwith first and second gradient continua: Deformation and fracture phenomena.Math-
ematics and Mechanics of Solids (2016). doi:10.1177/1081286516657889

http://dx.doi.org/10.1177/1081286516657889


86 A. Della Corte et al.

8. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids
Struct. 1(4), 417–438 (1965)

9. dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32(1),
33–52 (1997)

10. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient
materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences (pp. rspa-2008). The Royal Society. (2009)

11. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum
damage model. Contin. Mech. Thermodyn. 27(4–5), 623–638 (2015)

12. Sunyk, R., Steinmann, P.: On higher gradients in continuum-atomistic modelling. Int. J. Solids
Struct. 40(24), 6877–6896 (2003)

13. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer
Science & Business Media (2012)

14. Germain, P.: The method of virtual power in continuum mechanics. Part 2: Microstructure.
SIAM J. Appl. Math. 25(3), 556–575 (1973)

15. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78
(1964)

16. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative
elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)

17. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates
and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

18. Placidi, L., Faria, S.H., Hutter, K.: On the role of grain growth, recrystallization and polygoniza-
tion in a continuum theory for anisotropic ice sheets. Ann. Glaciol. 39(1), 49–52 (2004)

19. Eremeyev, V.A., Ivanova, E.A., Morozov, N.F., Strochkov, S.E.: The spectrum of natural oscil-
lations of an array of micro-or nanospheres on an elastic substrate. In: Doklady Physics, vol.
52, pp. 699–702. MAIK Nauka/Interperiodica (2007)

20. Madeo, A., Placidi, L., Rosi, G.: Towards the design of metamaterials with enhanced damage
sensitivity: second gradient porous materials. Research in Nondestructive Evaluation 25(2),
99–124 (2014)

21. Eremeyev, V.A.: Acceleration waves in micropolar elastic media. In: Doklady Physics, vol. 50,
pp. 204–206. MAIK Nauka/Interperiodica (2005)

22. Chang, C.S., Misra, A.: Application of uniform strain theory to heterogeneous granular solids.
J. Eng. Mech. 116(10), 2310–2328 (1990)

23. Dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of Fibrous Complex Structures:
Designing Microstructure to Deliver Targeted Macroscale Response. Appl. Mech. Rev. 67(6),
21 (2016)

24. Thiagarajan, G.,Misra, A.: Fracture simulation for anisotropic materials using a virtual internal
bond model. Int. J. Solids Struct. 41(11), 2919–2938 (2004)

25. Koh, S.J.A., Lee, H.P., Lu, C., Cheng, Q.H.:Molecular dynamics simulation of a solid platinum
nanowire under uniaxial tensile strain: temperature and strain-rate effects. Phys. Rev. B 72(8),
085414 (2005)

26. Misra, A., Roberts, L.A., Levorson, S.M.: Reliability analysis of drilled shaft behavior using
finite difference method andMonte Carlo simulation. Geotech. Geol. Eng. 25(1), 65–77 (2007)

27. Kim, S.P., Van Duin, A.C., Shenoy, V.B.: Effect of electrolytes on the structure and evolution of
the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study. J. Power
Sources 196(20), 8590–8597 (2011)

28. Tuckerman, M.E.: Ab initio molecular dynamics: basic concepts, current trends and novel
applications. J. Phys.: Conden. Matter 14(50), R1297 (2002)

29. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization
techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.
Rev. Mod. Phys. 64(4), 1045 (1992)

30. Allen, M.P.: Introduction to molecular dynamics simulation. Comput. Soft Matter Synth.
Polym. Proteins 23, 1–28 (2004)



Modeling Deformable Bodies Using Discrete … 87

31. Levitan, E.S.: Forced Oscillation of a Spring-Mass System having Combined Coulomb and
Viscous Damping. J. Acoust. Soc. Am. 32(10), 1265–1269 (1960)

32. Kot, M., Nagahashi, H., Szymczak, P.: Elastic moduli of simple mass spring models. Vis.
Comput. 31(10), 1339–1350 (2015)

33. Bishop, R.E.D., Johnson, D.C.: The Mechanics of Vibration. Cambridge University Press
(2011)

34. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry andmesh refinement. Comput.MethodsAppl.Mech. Eng. 194(39), 4135–4195
(2005)

35. Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric structural shape optimization. Comput.
Methods Appl. Mech. Eng. 197(33), 2976–2988 (2008)

36. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love
space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

37. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the
elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28(1–2), 139–156
(2016)

38. Toklu, Y.C.: Nonlinear analysis of trusses through energy minimization. Comput. Struct.
82(20), 1581–1589 (2004)

39. Temür, R., Türkan, Y.S., Toklu, Y.C.: Geometrically nonlinear analysis of trusses using particle
swarm optimization. In: Recent Advances in Swarm Intelligence and Evolutionary Computa-
tion, pp. 283–300. Springer International Publishing (2015)

40. Kaveh, A., Talatahari, S.: Hybrid algorithm of harmony search, particle swarm and ant colony
for structural design optimization. In: Harmony Search Algorithms for Structural Design Opti-
mization, pp. 159–198. Springer Berlin Heidelberg (2009)

41. Clerc, M.: Particle Swarm Optimization, vol. 93. John Wiley & Sons (2010)
42. Vaz Jr., M., Cardoso, E.L., Stahlschmidt, J.: Particle swarm optimization and identification of

inelastic material parameters. Eng. Comput. 30(7), 936–960 (2013)
43. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte,

V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior
depends on topological rather than metric distance: Evidence from a field study. Proc. Natl.
Acad. Sci. 105(4), 1232–1237 (2008)

44. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as
complex systems. Math. Models Methods Appl. Sci. 22(supp01), 1140006 (2012)

45. Bellomo, N., Dogbe, C.: On the modelling crowd dynamics from scaling to hyperbolic macro-
scopic models. Math. Models Methods Appl. Sci. 18(supp01), 1317–1345 (2008)

46. Bellomo, N., Knopoff, D., Soler, J.: On the difficult interplay between life, “complexity”, and
mathematical sciences. Math. Models Methods Appl. Sci. 23(10), 1861–1913 (2013)

47. Berrimi, S., Messaoudi, S.A.: Exponential decay of solutions to a viscoelastic equation with
nonlinear localized damping. Electron. J. Differ. Eq. 88(2004), 1–10 (2004)

48. Berrimi, S., Messaoudi, S.A.: Existence and decay of solutions of a viscoelastic equation with
a nonlinear source. Nonlinear analysis: theory. Methods Appl. 64(10), 2314–2331 (2006)

49. Messaoudi, S.A., Tatar, N.E.: Exponential and polynomial decay for a quasilinear viscoelastic
equation. Nonlinear analysis: theory. Methods Appl. 68(4), 785–793 (2008)

50. Liang, F., Gao, H.: Exponential energy decay and blow-up of solutions for a system of nonlinear
viscoelastic wave equations with strong damping. Bound. Value Prob. 2011(1), 1 (2011)

51. Sih, G.C.: Mechanics of Fracture Initiation and Propagation: Surface and Volume Energy
Density Applied as Failure Criterion, vol. 11. Springer Science & Business Media (2012)

52. Luongo,A.:Aunified perturbation approach to static/dynamic coupled instabilities of nonlinear
structures. Thin-Walled Struct. 48(10), 744–751 (2010)

53. Luongo, A.: On the use of the multiple scale method in solving ‘difficult’bifurcation problems.
Mathematics and Mechanics of Solids (2015). doi:10.1177/1081286515616053

54. Luongo, A.: Mode localization by structural imperfections in one-dimensional continuous
systems. J. Sound Vib. 155(2), 249–271 (1992)

http://dx.doi.org/10.1177/1081286515616053


88 A. Della Corte et al.

55. Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena:
critical conditions and post-critical behavior. Contin. Mech. Thermodyn. 27(1–2), 261–285
(2015)

56. Rizzi, N.L., Varano, V., Gabriele, S.: Initial postbuckling behavior of thin-walled frames under
mode interaction. Thin-Walled Struct. 68, 124–134 (2013)


	Modeling Deformable Bodies Using Discrete Systems with Centroid-Based Propagating Interaction: Fracture and Crack Evolution
	1 Introduction
	1.1 Motivation and Basic Ideas
	1.2 A Summary of the Algorithm and of the Formalism Employed
	1.3 Short Summary of Preliminary Numerical Results
	1.4 Further Comparison with Finite Element Simulations

	2 Spontaneous Evolution and Discrete Energy Equivalent
	3 Fracture and Crack Formation and Evolution
	3.1 Introduction of the Fracture
	3.2 Basic Fracture and Crack Evolution
	3.3 Uniaxial External Action
	3.4 Almost-Steady State

	4 Conclusion and Further Objectives
	References


