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Abstract Elasto-plastic models for continuous distributed defects are provided for
materials endowed with Cartan-Riemannian differential geometric structures. The
geometrical measure of defects, dislocations and disclinations, are related to the
incompatibilities of the so-called plastic distortion and plastic connection, respec-
tively. The coupling between defects is described through the non-local evolution
equations which are compatible with the free energy imbalance principle.

1 Introduction

The continuum elasto-plastic constitutive models proposed in this paper describe
the behaviour of crystalline material with microstructural defects in terms of three
configurations:

Let k be a fixed reference configuration of the bodyB, k(B) ⊂ E, andB will be
identified with k(B);
χ(·, t) the deformed configuration at time t , for any motion of the body B, χ :
B × R −→ E, and F(X, t) = ∇χ((X, t) denotes the deformation gradient;
there existsK , a time dependent anholonomic configuration (so- called configura-

tion with torsion), defined by the pair (Fp,
(p)
Γ ), Fp-plastic distortion and

(p)
Γ -plastic

connection.

The reference and deformed (actual) configurations, which are global configura-
tions of the elasto-plastic body, characterize the material within Riemannian geom-
etry, while the local configurations, attached to the material points of the body, are
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anholonomic configuration, and the Riemann-Cartan geometry describes geometri-
cally the measures of defects, see Yavari and Goriely [19]. The geometrical measure
of defects, dislocations and disclinations, are related to the incompatibilities of the
so-called plastic distortion and plastic connection, respectively. The incompatibility
of the plastic distortion, i.e. curl Fp �= 0, which means the presence of dislocations,

and the incompatibility of the so-called plastic connection, i.e.
(p)
Γ �= (Fp)−1∇Fp,

which means the presence of the disclinations, see for instance de Wit [10],
Cleja-Ţigoiu et al. [9], Fressengeas et al. [13]. The interplay between the defects such
as dislocations and disclinations is described through the Cartan torsion attached to
the plastic connection, denoted by Sp. The dislocation density tensor (called also
the geometrically necessary dislocation) and disclination density tensor characterize
non-zero Burgers and Frank vector, defined at the end of this section. The physical
motivations for the defects such as disclinations can be found in [18], see also [4,
13] In the present paper the plastic connection which is Cp-metric compatible has
been considered as in the previous papers [5, 6], apart from the paper by Clayton
et al. [4], devoted to finite miscropolar elastoplasticity, where a connection defined
by Minagawa [15] has been introduced. Let us remark here that when Qu for all
vector u is a skew-symmetric second order tensor, the coefficients of this connection
and our plastic connection coincide.

The energetic arguments are necessary to complete the description of the elasto-
plasticmodels with defects, such as dislocations and disclinations. The balance equa-
tions for the micro forces have been revised in this paper, starting from the basic
hypothesis concerning the expression of the internal dissipation power during the
elasto-plastic material with microstructural defects, in conjunction with the virtual
power assumptions. As the principle of the virtual power expending during the plas-
tic and disclination mechanisms have been formulated in terms of the incompatible
second order virtual rates, contrary to the virtual power principle considered by
Fosdick [12] where the virtual second order velocity field ˜L is compatible, i.e.
L̃ = ∇ṽ, only one balance equation for appropriate micro forces has been provided.
For the macro balance equations similar to those proposed by Fleck et al. [11], see
also [8], have been adopted.

Clayton et al. [3, 4] introduced the balance equations for micro forces similar to
Fleck et al. [11].

Fosdick [12] considered the following example of the principle of virtual power

∫

P
(T̃ · ∇u + J · ∇(∇u)dV =

∫

∂P
(t · u + J · ∇u)d A ∀P ⊂ B ∀u,

where the left hand side represents the internal virtual power and the right hand side
is the external virtual power on P, in which the body force term was neglected.
t and J depend on the normal to the surface, n, and have independent physical
significance, being restricted to different, possible conditions. The principle is valid
for any arbitrary part P of a body and for any arbitrary virtual velocity field u.
Fosdick analyzed all the consequences that can be drawn and remarked that the
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principle of virtual power has been applied for models by considering various length
scales, because of “several major consequences,” that follows from the assumption
that the principle of the virtual work holds for “arbitrary parts of the body,” “have
not been clearly expressed” in certain papers.

The postulate of the free energy imbalance expresses the restriction on the elasto-
plastic material to be satisfied in the configuration with torsion,K , as an imbalanced
free energy condition, see Cleja-Ţigoiu [5, 6], as well as Gurtin et al. [14], for the
initial original ideas related to the free energy imbalance.

List of the Notations:

V -the vector space of translations of the three dimensional Euclidean space E ;
Lin-the set of the linear mappings from V to V , i.e. the set of second order tens-
ors; u · v,u × v,u ⊗ v denote scalar, cross and tensorial products of vectors;
(u, v, z) := (u × v) · z is the mixt product of the vectors from V ;
a ⊗ b and a ⊗ b ⊗ c are defined to be a second order tensor and a third order ten-
sor by (a ⊗ b)u = a(b · u), (a ⊗ b ⊗ c)u = (a ⊗ b)(c · u), for all vectors u;
For any second order tensor A ∈ Lin we use the notations {A}S, {A}a for its symm-
etric and skew-symmetric part;
I the identity tensor in Lin, AT denotes the transpose of A ∈ Lin;
∂Aφ(x) denotes the partial differential of the function φ with respect to the field A;
A · B := tr(ABT ) = Ai j Bi j is the scalar product of A,B ∈ Lin;

curlA, a second-order tensor field, is defined by

(curlA)(u × v) := (∇A(u))v − (∇A(v))u ∀u, v ∈ V and

(curlA)pi = ∈i jk
∂Apk

∂X j
, are the component of curlA given in a Cartesian basis;

∈ and ∈i jk denote Ricci permutation tensor and its components, respectively;
∇A the derivative (or the gradient) of the field A in a coordinate system {xa} (with
respect to the reference configuration), ∇A = ∂Ai j

∂Xk
ei ⊗ e j ⊗ ek;

∇χL ≡ ∂

∂xk
(
∂vi
∂x j

)ei ⊗ e j ⊗ ek, where the dual basis ea, is defined by the inner

product eb · ea = δba .

We also denote:

Lin(V , Lin) = {N : V −→ Lin, linear} - the space of all third-order tensors; an
element of this pspace is given by N = Ni jk ii ⊗ i j ⊗ ik;
N ·M = Ni jkMi jk - the scalar product of third-order tensors expressed in a Cartesian
basis.

The differential of any smooth tensor field F̄, defined on k(B), with respect to
the configuration with torsion K is given by

(∇K F̄)ũ = (∇F̄)(Fp)−1ũ, ∀, ũ ∈ FpV .
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Moreover, Λ1 × Λ2 denotes the third-order tensor generated by the second order
(covariant) tensors Λ j j = 1, 2 defined by

((Λ1 × Λ2)u)v = Λ1u × Λ2v, ∀u, v

and SkwN is the third-order tensor associated with N , defined by

((SkwN )u)v = (N u)v − (N v)u, ∀ u, v, i.e.((SkwN )u)v = −((SkwN )v)u.

Finally, the Frank vector is defined in terms of the disclination tensor (following
the definitions introduced by Cleja-Ţigoiu [7]) by

ωK =
∫

C0

˜ΛFp dX =
∫

A0

curl(˜ΛFp)Nd A.

In the model we consider here, the disclination tensor˜Λ is introduced as indepen-
dent measure of certain defects, and we consider the expression of the disclination
density in terms of the disclination tensor in the anholonomic configuration, i.e.

αΛ
K = 1

detFp
curl(˜ΛFp)(Fp)T .

The Burgers vector associated with the circuit C0 is defined (following Cleja-Ţigoiu
[5]) by

bK =
∫

C0

Fp dX =
∫

A0

(curlFp)Nd A,

see also Acharya [1], Bilby [2] and Fressengeas et al. [13].
The dislocation density tensor αK is expressed by

αK := 1

detFp
(curl Fp)(Fp)T ,

in a configuration with torsion, is called Noll’s dislocation density, and was intro-
duced by Noll [17].

In what follows, the anholonomic basis vectors are related to the crystal and is
defined by e j = FpG j , where {G j } j=1,2,3 is a basis in the reference configuration

and the Christoffel symbols are represented by
(p)
Γ (G j ,Gk) = (p)

Γ

i

jk Gi .
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2 Geometry and Kinematics of Elasto-Plastic Body

The behaviour of the elasto-plastic material with microstructural defects will be
described based on three configurations: the initial, k, and the deformed configura-
tions, χ which are global configurations, and so-called configuration with torsion
associated with any material particle, X , of the body, formally denoted by K .

We assume the multiplicative decomposition

F = FeFp (1)

As a consequence of the multiplicative decomposition of the deformation gradient
(1), we obtain

L = Le + FeLp(Fe)−1, where

L = Ḟ(F)−1, Lp = Ḟp(Fp)−1, Le = Ḟe(Fe)−1,

(2)

L is the velocity gradient in the actual configuration.
The geometrical structure of the configuration K is characterized by the pair of

plastic distortion, Fp, and the so-called plastic connection
(p)
Γ , which is Cp-metric

connection. Following [5] the plastic connection with metric property is represented
under the form

(p)
Γ = (p)

A +(Cp)−1(Λ × I), with

Cp = (Fp)TFp,
(p)
A = (Fp)−1 ∇Fp,

(3)

where the second order tensor Λ is called the disclination tensor and
(p)
A is a Bilby

type plastic connection, see [2].
As a direct consequence of the multiplicative decomposition of the deformation

gradient (1), the material connection Γ is represented in terms of the Bilby type
elastic and plastic connection by

Γ = (Fp)−1
(e)
A K [Fp,Fp]+ (p)

A , with

(e)
A K = (Fe)−1∇K Fe,

(4)

where
(e)
A K represent the Bilby type elastic connection with respect to the configu-

ration with torsion.
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We introduce the notation Sp for the third order Cartan torsion, associated to the

plastic connection
(p)
Γ , which can be expressed as a consequence of (3) by

Sp = Skw
(p)
A + Skw((Cp)−1(Λ × I)), where

(p)
A = (Fp)−1 ∇ Fp. (5)

Let us introduce the notation

S p
K = −FpSp[(Fp)−1, (Fp)−1], (6)

and write the formula

S p
K = Skw

(p)
A K + Skw(˜Λ × I), where

(p)
A K = Fp ∇K (Fp)−1, (7)

which holds for Λ and ˜Λ, related by

˜Λ = 1

detFp
FpΛ(Fp)−1, ρ̃detFp = ρ0. (8)

Remark Skw
(p)
A K can be viewed as a measure of dislocation, motivated by the

relationships between the fields referred to the configurations K and k, which is
expressed under the form

((Skw
(p)
A K )ũ)ṽ = (

(p)
A K ũ)ṽ − (

(p)
A K ṽ)ũ = (curl Fp)(u × v), (9)

∀ ũ = Fpu, ṽ = Fpv.

We put into evidence the rates of the above geometrical fields

d

dt
(Sp

K ) = Skw

{

d

dt
(

(p)
A K )

}

+ Skw

{(

d

dt
(˜Λ) × I

)}

,

d

dt

( (e)
A K

) = (Fp)−1∇K Lp[Fp,Fp] − ∇K Lp+
+Lp

(e)
A − (e)

A K Lp− (e)
A K [I,Lp],

d

dt

(
(p)
A K

) = −∇K Lp + Lp
(p)
A − (p)

A K Lp− (p)
A K [I,Lp].

(10)

The time-derivative of ∇K
˜Λ is expressed by

d

dt

(∇K
˜Λ

) = ∇K

(

d

dt
˜Λ

)

− (∇K
˜Λ)Lp. (11)
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3 Energetic Assumptions

3.1 Micro Balance Equations

Concerning the micro forces we assume that they generate internal power and satisfy
their own balance equations. In order to put into evidence their appropriate balance
equations, we start from the expression of the internal power, expended during the
elasto-plastic process and expressed with respect to the configuration K , at which
level the presence of the defects can be emphasized.

Ax.internal powerThe internal power in the configurationwith torsion is postulated
to be given by the expression

(Pint )K = 1

ρ
T · Le + 1

ρ̃
μK · ((Fe)−1(∇χL)[Fe,Fe] − ∇K Lp) + 1

ρ̃
Υ p · Lp+

+ 1

ρ̃
μp · ∇K Lp + 1

ρ̃
Υ λ · d

dt
˜Λ + 1

ρ̃
μλ · ∇K

d

dt
˜Λ,

(12)

• Υ p and μp denote the plastic micro stress and micro stress momentum, with
respect to the configuration with torsionK , which are power conjugated with Lp

and its gradient ∇K Lp, respectively,
• Υ λ and μλ represent the micro stress and micro stress momentum, which are

related with the disclination mechanism and power conjugated with the rate
d

dt
˜Λ

and the gradient of the appropriate rate ∇K
d

dt
˜Λ, respectively.

Micro balance equations will be derived from the formulated principle of virtual
power relative to the disclination and plastic mechanisms, as independent. Here a
basic role is played by the supposition, (12), concerning the virtual internal power
postulated within the constitutive framework.

Ax.disclination virtual powerWe assume that the virtual internal power related to
the disclination mechanism is equal to the external virtual power, produced by the
virtual variation associated with the disclination

∫

K (Bp,t)
{Υ λ · δ˜Λ + μλ · ∇K δ˜Λ}dVK =

=
∫

∂K (Bp,t)
Mλ(nK ) · δ˜Λ d AK +

∫

K (Bp,t)
ρ̃Bλ · δ˜Λ dVK ,

(13)

holds for any virtual rate associated with the disclination, δ˜Λ, which is an incompat-
ible second order field. Here nK the unit vector of the normal. The integral is taken
over arbitrary part of the plastically deformed domain K (B p, t).
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We can apply “the common tetrahedron argument,” and the linearity of the map-
ping n ∈ V −→ Mλ(n) ∈ Lin follows, namely there exists μ̃ such that μ̃nK =
Mλ(nK ). Using Green’s formula first the equality μ̃ = μλ yields and the following
result can be proved:

Proposition 4.1 The micro balance equation for micro forces associated with the
disclination is written in the configuration with torsionK , under the form

Υ λ = divK μλ + ρ̃Bλ, or

1

ρ̃
Υ λ = div

(

1

ρ̃
μλ (Fp)−1

)

+ Bλ.

(14)

Here ρ̃Bλ is mass density of the couple body force, Υ λ is micro stress and μλ is
micro momentum associated with the disclinations.

Ax.(plastic virtual power) We assume that the virtual internal power related to the
plastic mechanism is equal to the external virtual power, produced by the virtual
variation of the rate of plastic distortion

∫

K (Bp,t)
{(Υ p − ΣK ) · ˜Lp + (μp − μK ) · ∇K

˜Lp}dVK =

=
∫

∂K (Bp,t)
Mp(nK ) · ˜Lp d AK +

∫

K (Bp,t)
ρ̃Bp · ˜Lp dVK ,

where ΣK = (det Fe)(Fe)TT(Fe)−T ,

(15)

holds for any virtual rate of plastic distortion, ˜Lp, which is an incompatible sec-
ond order field. The integral is taken over arbitrary part of the plastically deformed
domain, generically denoted here by K (B p, t).

Remark In the formula (15) theMandel type stress tensor associatedwith theCauchy
stress tensor has been introduced, as a direct consequence of the power expression.

By a similar argument the local form of the balance equation for micro forces
associated with plastic mechanism can be proved.

Proposition 4.2 The micro balance equation for micro forces associated with the
plastic mechanism is written in the configuration with torsionK , under the form

Υ p − ΣK = divK (μp − μK ) + ρ̃Bp, or

1

ρ̃

(

Υ p − ΣK

) = div

(

1

ρ̃
(μp − μK )(Fp)−1

)

+ Bp.

(16)
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Here ρ̃Bp is mass density of the couple body force, Υ p is micro stress and μp is
micro momentum associated with the plastic mechanism, while μK is the macro
stress momentum. The appropriate boundary condition for micro stress momentum
has to be associated.

Remark The virtual principles as they were formulated above, namely (13) and
(15), have been applied for any virtual rates L̃p and δΛ, respectively, which are
described by incompatible second order tensors. Consequently only one balance
equation characterizes the peculiar microstructural mechanism, namely one balance
equation for micro forces associated with disclination mechanism and another one
associated with the plastic mechanism.

We now pass to the reference configuration andwe derive the transformed balance
equation in terms of the micro forces in reference configuration.

Remark We proved here the appropriate micro balance equations for disclination
mechanism. For micro balance equations related with plastic behaviour we make
references toCleja-Ţigoiu [5], or toCleja-Ţigoiu and Ţigoiu [8] in a paper concerning
a strain gradient finite elasto-plasticmodel. Themicro balance equation (13) contains
only the micro forces, a similar point of view appears in Clayton et al. [4], apart
from the micro balance equation (15) which contain the difference between macro
and micro forces (like in the models developed by Gurtin [14], Cleja-Ţigoiu and
Ţigoiu [8]).

An alternative formulation of the internal power in K has been postulated, see
[7, 9], as the free energy has been postulated through an appropriate expression in
the reference configuration, k. In the aforementioned papers the variation in time
of the disclination with respect to the configuration with torsion and its gradient,
respectively, were introduced in terms of the rate of disclination tensor with respect
to the reference configuration, and its gradient, respectively, pushed away to the
configuration with torsion.

3.2 Free Energy Density Function

We introduce now the expression of the free energy density postulated with respect
to the configuration with torsion. We assume that
Ax.1:The free energydensity is postulated to bedependent on the secondorder elastic

deformation, in terms of (Ce,
(e)
A K ), and on the defects through (Sp

K , ˜Λ,∇K
˜Λ),

as

ψK = ψ(Ce,
(e)
A K ,Sp

K , ˜Λ,∇K
˜Λ), Ce = (Fe)TFe. (17)

The elements which enter the free energy density function in K have been repre-
sented in terms of the appropriate expressions.
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Remark In Cleja-Ţigoiu [7] the free energy density was postulated to be dependent

on the second order elastic deformation, in terms of (Ce,
(e)
A K ), and being dependent

on the second order plastic deformation through (SeK , ˜Λ),

ψ = ψK (Ce,
(e)
A K ,SeK , ˜Λ), Ce = (Fe)TFe, (18)

while in [6] the free energy density has been postulated as

ψ = ψK (Ce,
(e)
A K , (Fp)−1,

(p)
A K , ˜Λ,∇K

˜Λ), Ce = (Fe)TFe, (19)

where

(p)
A K ≡ −Fp

(p)
A [(Fp)−1, (Fp)−1]. (20)

In [7] thermomechanic restrictions imposed on the elastic type constitutive functions

show that the macro stress momentum is not vanishing, since
1

ρ̃
μK = ∂A eψ +

∂Seψ. We conclude that the macro stress momentum is involved in the constitutive
models if, for instance, A e is involved in the free energy density function. The
evolution equation for plastic distortion, i.e. Lp, and for the disclination tensor, i.e.
˙̃Λwere defined to be compatiblewith the reduced dissipation inequality. As themicro

momentum related to plastic mechanism is vanishing,
1

ρ̃
μp = 0, then themicroforce

Υ p can be identified with the Mandel stress measure, which is power conjugate with

the rate of plastic strainLp,namely
1

ρ̃
Υ p = 1

ρ̃
Σ p = 1

ρ
(Fe)T {T}S(Fe)−T .Themicro

stress associated with the disclination mechanism remains undefined in the model
performed in Cleja-Ţigoiu [7], ˜Λ can be viewed as internal variable. Consequently,
it is possible to take Υ λ = ρ̃∂Λ̃ ψ, see for instance the discussion concerning this
issue in [16]. To avoid the above mentioned disadvantage the free energy density
function has been reconsidered to be given by (17).

4 The Postulate of the Free Energy Imbalance

Within the constitutive framework developed herein, see [5, 6], the second law of
thermodynamics is formulated as a postulate of the free energy imbalance on isother-
mal processes.

The postulate of the free energy imbalance expresses the restriction on the elasto-
plastic material to be satisfied in the configuration with torsion,K , under the form:
the internal power has to be grater or equal to the rate of the free density energy
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−ψ̇K + (Pint )K ≥ 0, (21)

for an appropriate definition for the internal power (Pint )K and for any virtual
(isothermal) processes, when free energy density, ψK , is given.

In order to investigate the consequences of the free energy imbalance, we proceed
as follows

i. We emphasize a set of independent kinematic variables and their gradients,
namely L,Lp, Λ̇ and ∇χL,∇K Lp,∇Λ̇, respectively;

ii. Under the assumption that no evolution of the plastic distortion and of the discli-
nation mechanism occurs, which means that Lp = 0 and Λ̇ = 0, the elastic type
constitutive equations for macro forces are derived;

iii. The reduced dissipation inequality is derived;
iv. The possible consequences on the evolution for plastic distortion and disclina-

tion tensor and for their derivative are provided and analyzed to ensure their
compatibility with the reduced dissipation inequality.

The time derivative of the free energy density function (17) is expressed through

ψ̇K = ∂Ceψ · d

dt
(Ce) + ∂A e

K
ψ · d

dt
(

(e)
A K ) + ∂Sp

K
ψ ·

(

Skw
d

dt

(p)
A K +

+ Skw

(

d

dt
˜Λ

)

× I
)

+ ∂
˜Λψ · d

dt
(˜Λ) + ∂∇˜Λψ · d

dt
(∇K

˜Λ).

(22)

In (22) the rate of the appropriate fields have to be replaced by the formulae (10),
and the formula

d

dt
(Ce) = 2(Fe)TDeFe, where De = {Le}S. (23)

Proposition 4.3 The free energy imbalance is satisfied for any virtual process, if the
following inequality holds

{

1

ρ
{T}S − 2F∂C̄eψFT

}

· De + 1

ρ̃
Υ p · Lp +

(

1

ρ̃
μp + ∂Sp

K
ψ

)

· ∇K Lp+

+
(

1

ρ̃
μK − ∂A e

K
ψ

)

· ((Fe)−1(∇χL)[Fe,Fe] − ∇K Lp)+

+
(

1

ρ̃
Υ λ − ∂

˜Λψ

)

· ˙̃Λ − ∂Sp
K

ψ · Skw{ ˙̃Λ × I} +
(

1

ρ̃
μλ − ∂∇K ˜Λψ

)

· ∇K
˙̃Λ+

+∂∇K ˜Λψ · (∇K
˜Λ)Lp − ∂A e

K
ψ · (

Lp
(e)
A K − (e)

A K Lp− (e)
A K [I,Lp])−

−∂Sp
K

ψ · (

Lp
(p)
A K − (p)

A K Lp− (p)
A K [I,Lp]) ≥ 0.

(24)
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We introduce three types of second order tensors that can be associated with any pair
of third order tensors, A ,B, following the rules written below

(A � B) · L = A [I,L] · B = Aisk LsnBink

(A r � B) · L = A · (LB) = Ai jk LinBnjk

(A �l B) · L = A · (BL) = Ai jkBi jn Lkn.

(25)

for all L ∈ Lin, in order to put into evidence the linear dependence on Lp in the
dissipation inequality (24).

We use the above representation and we get

∂Sp
K

ψ · Skw( ˙̃Λ × I) = −2(∈ �l∂Sp
K

ψ) · ˙̃Λ. (26)

If we suppose that no evolution of the plastic distortion and of the disclination

mechanism occurs, which means that Lp = 0 and ˙̃Λ = 0, then Le = L, and we
get from the free energy imbalance, (24), that the following inequality holds

{

1

ρ
{T}S − 2F∂CeψFT

}

· L +
(

1

ρ̃
μK − ∂A e

K
ψ

)

· (Fe)−1(∇χL)[Fe,Fe] ≥ 0 (27)

for any virtual process, i.e. ∀ L,∇χL.

Theorem 4.1 1. The thermomechanic restrictions imposed on the elastic type con-
stitutive functions are

1

ρ
{T}S = 2F∂C̄ψFT

1

ρ̃
μK = ∂A e

K
ψ.

(28)

2. The dissipative inequality (24) is reduced to the following inequality

1

ρ̃
Υ p · Lp +

(

1

ρ̃
μp + ∂Sp

K
ψ

)

· ∇K Lp+

+
(

1

ρ̃
Υ λ − ∂

˜Λψ + 2(∈ �l∂Sp
K

ψ)

)

· ˙̃Λ +
(

1

ρ̃
μλ − ∂∇K

˜Λψ

)

· ∇K
˙̃Λ+

+(∇K
˜Λ �l ∂∇K

˜Λψ
) · Lp − 1

ρ̃
μK · (

Lp
(e)
A K − (e)

A K Lp− (e)
A K [I,Lp])−

−∂Sp
K

ψ · (

Lp
(p)
A K − (p)

A K Lp− (p)
A K [I,Lp]) ≥ 0.

(29)
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5 Viscoplastic Type Evolution Equations

Based on the dissipation inequality written in (29), we formulate the constitutive
hypotheses in plastically deformed configuration:

Ax.5 The plastic micro stress momentum and micro stress momentum related with
the disclination mechanism are represented through certain energetic relationships

1

ρ̃
μp = −∂Sp

K
ψ

1

ρ̃
μλ = ∂∇K

˜Λψ.

(30)

Using the definition of the operators introduced by (25) the linear terms in Lp can
be grouped together as follows

1

ρ̃
Υ p · Lp +

(

− 1

ρ̃
μK r�

(e)
A K + (e)

A K �l
1

ρ̃
μK + 1

ρ̃
μK � (e)

A K

)

· Lp+

+
(

1

ρ̃
μp

r�
(p)
A K − (p)

A K �l
1

ρ̃
μp − 1

ρ̃
μp� (p)

A K

)

· Lp+

+
(

1

ρ̃
Υ λ − ∂

˜Λψ + 2(∈ �l∂Sp
K

ψ)

)

· ˙̃Λ + (∇K
˜Λ �l ∂∇K

˜Λψ
) · Lp ≥ 0.

(31)

We introduce now the evolution equation for the plastic distortion, Fp, and for
the disclination tensor, ˜Λ, in the configuration with torsion.
Ax.6 The rate of plastic distorsion in the configuration with torsion is characterized
in terms of micro and macro forces by

ξ1Lp = 1

ρ̃
Υ p − 1

ρ̃
μK r�

(e)
A K + (e)

A K �l
1

ρ̃
μK + 1

ρ̃
μK � (e)

A K +

+ 1

ρ̃
μp

r�
(p)
A K − (p)

A K �l
1

ρ̃
μp − 1

ρ̃
μp� (p)

A K +∇K
˜Λ �l

1

ρ̃
μλ

(32)

Ax.7 The variation in time of the disclination tensor,˜Λ, is characterized by the micro
forces as

ξ2
˙̃Λ = 1

ρ̃
Υ λ − ∂

˜Λψ − 2

(

∈ �l
1

ρ̃
μp

)

(33)

in terms of the micro forces.
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Remark If the viscous parameters ξ1 and ξ2 are scalar positive functions, then the
reduced dissipation inequality (31) is satisfied

ξ2
˙̃Λ · ˙̃Λ + ξ1Lp · Lp ≥ 0. (34)

6 Concluding Remarks

We end our work with the following concluding remarks.

1. The rate of plastic distortion described by (32) is strongly dependent on the
macro stress momentum μK and the micro force related to the plastic mechanism,

(
1

ρ̃
Υ p,

1

ρ̃
μp), as well as on the micro stress momentum related to the disclination

mechanism
1

ρ̃
μλ.

2.Acoupling term in the evolution equation shows that the disclinationmechanism
is influenced by the plastic mechanism.

3. By eliminating the micro stresses from the evolution Eqs. (32) and (33), via the
balance equation for micro forces (14) and (16) in the absence of the mass densities
of the couple body forces, the differential type evolution equations for Fp and ˜Λ

become

ξ1Lp = ΣK + div

(

1

ρ̃
(μp − μK )(Fp)−1

)

+

− 1

ρ̃
μK r�

(e)
A K + (e)

A K �l
1

ρ̃
μK + 1

ρ̃
μK � (e)

A K +

+ 1

ρ̃
μp

r�
(p)
A K − (p)

A K �l
1

ρ̃
μp − 1

ρ̃
μp� (p)

A K +∇K
˜Λ �l

1

ρ̃
μλ

(35)

and

ξ2
˙̃Λ = div

(

1

ρ̃
μλ (Fp)−1

)

− ∂
˜Λψ − 2

(

∈ �l
1

ρ̃
μp

)

(36)

3. The evolution equation for the disclination tensor ˜Λ is characterized by the
micro stress momentum only, i.e. no direct influence of the macro forces has been
emphasized in the proposed model.
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