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Abstract Current research inmetamaterials design is pushing to fill the gap between
mathematical modeling and technological applications. To meet these requirements,
predictive and computationally effective numerical tools need to be conceived and
applied. In this paper we compare the performances of a discrete model already
presented in [1], strongly influenced byHencky approach [2], versus some interesting
experiments on pantographic structures built using the 3D printing technology. The
interest in these structures resides in the exotic behavior that they have already shown,
see [3, 4], and their study seems promising. In this work, after a brief presentation
of the discrete model, we discuss the results of three experiments and compare them
with the corresponding predictions obtained by the numerical simulations. An in-
depth discussion of the numerical results reveals the robustness of the numerical
model but also clearly indicates which are the focal points that strongly influence the
accuracy of the numerical simulation.
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1 Introduction

Current research in metamaterials design is pushing to fill the gap between mathe-
matical modeling and technological applications. Although both evolutionary selec-
tion in living organism and the past engineering scientifically based research have
already promoted the conception of exotic metamaterials (the bone tissue is one
example while woven fabrics gives another one) it is only a recent issue the sys-
tematic research of tailored materials having fixed well-determined a priori uses
and applications. To meet all the requirements imposed by determined and well-
specified applications it is needed to establish a designing procedure which involve
the important step concerning the development of some predictive and computation-
ally effective numerical tools. These tools will be then used to verify experimental
measurements output and subsequently to design specifically adapted materials.

In this paper we focus on a specific, but in our opinion relevant, task: to com-
pare the performances of a discrete model for pantographic lattices, sometimes also
called pantographic sheets, with some interesting experiments. The interest in these
structures resides in the exotic behavior that they have shown [3, 4] and their study
seems promising. In particular pantographic structures:

• are the actual realization of a (often disputed) continuummodel: i.e. second gradi-
ent materials; indeed pantographic sheets are one of the first mechanical structures
which have been proven, see [5], to need a second gradient models at a given
macroscopic length-scale;

• have been proven to have very promising properties in wave propagation, repre-
senting an example of effective wave-guides, see [6];

• have shown promising toughness properties, which suggest that they could be
fruitfully embedded in novel composite materials.

The comparison between an effective discrete model and some experiments
shows, on one side, its robustness and, on the other side, the focus points which
require strong attention when accurate results are desired.

In the following we briefly present the discrete model, Sect. 2, also mentioning
the algorithm used to reconstruct the complete equilibrium path of the mechanical
problem. Successively, in Sect. 3, we thoroughly discuss some experiments and the
comparison with the corresponding numerical simulations. Finally, in Sect. 4, there
are some concluding remarks and future perspectives.

2 Discrete Model for Pantographic Sheets

In this section we shortly describe the discrete Lagrangian model which we consider
here to be possible model for planar pantographic structures. Their predictive per-
formances will be analysed in the following Sect. 3. We limit ourselves to remark
here that:
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Fig. 1 Pantographic structure fabric built by using 3D printing technology

• pantographic structures can be nowadays simply built using 3D printing technolo-
gies (see, e.g., Fig. 1) based on the concept first proposed in [4] where elastic pivots
were realized with small size elastic cylinders interconnecting the two arrays of
beams;

• discrete models, see Fig. 2, are conceived by modelling interconnecting pivots as
nodes linked each other by means of extensional (pairwise interaction, see Fig. 3a)
and rotational springs, i.e. bending springs (triple interaction on a fiber, see Fig. 3b)
and shear springs (triple interaction on a fiber of the same array and also on the
nearest pivots on the other direction, see Fig. 3c).

The kinematical description of the pantographic lattice model involves a finite
configuration space. To be precise, the discrete model involves the introduction of
a set of Lagrangian parameters specifying the position of all the material particles
modelling the pivots. They are initially located in the nodes of the reference con-
figuration and then they displace in the actual configuration. If we limit ourself to
consider planar motions, only a set of 2N coordinates is sufficient (ifN is the number
of considered nodes, the generic of which has referential position given by Pi,j, such
a set of Lagrangian coordinates could be given by the corresponding actual position
pi,j).

The strain energies of the discretemodel are the only kind of energy to be specified
in hard devices deformations (in absence of relevant volume forces). The postulated
expression for the Lagrangian discrete deformation energy Wint (in terms of the
Lagrangian coordinates pi,j) is completely defined specifying the contribution of
each one kind of spring (see Figs. 2 and 3):
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Fig. 2 Hencky-type mechanical model of a pantographic structure

wa = 1
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2 , (1)

wb = b(cosβ + 1) , (2)

ws = 1

2
s(σ − σ0)

2 , (3)

where � and �0 are the actual and the reference length, respectively, of pantographic
bar (i.e. the distance between two consecutive pivots along fibers’ direction), β is
the angle between two consecutive pantographic bars (in the reference configuration
this angle is π ) and σ is the angle between two fibers starting from the same pivot
(in the reference configuration this angle is related to α1 or α2 and σ0). Furthermore,
a, b and s are the axial, bending and shear stiffnesses of each one type of spring,
respectively.

Some remarks:

i. The shear springs used for the discrete model, and depicted in Figs. 2 and 3, are
actually four, having the same stiffness, for each node or pivot, one for each
quadrant and having origin, in the reference configuration, at Pi,j.

ii. The bending deformation energy is expressed bymeans of the cosβ instead of the
corresponding angle β, these two possibilities are equivalent, at least in principle,
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Fig. 3 Kinematics of axial
(a), bending (b) and shear (c)
springs: reference (dashed
line) and actual (continuous
line) configurations
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but the first, avoiding the use of arccos(·) function, results more convenient from
the computational point of view since it produces a more compact and effective
code.

In order to have a complete solution of the considered equilibriumproblem, i.e. the
displacements (from which can be easily evaluated the structural reaction and the
forces or couples exerted by each spring) a step-by-step procedure was implemented
to reconstruct the complete equilibrium path of the pantographic sheet.

We briefly sketch here the basic ingredients of the procedure. The total energy
of the pantographic structure can be computed in a straightforward manner simply
adding the strain contribution of each spring. Formally we can write:

W(d) = Wint − Wext =
∑

e

(wa + wb + ws) − Wext , (4)

where e ranges on all the springs, extensional, bending and shear, andWext is the
work of the external loads and all quantities on the RHS depend on the vector d
which collects the nodal displacements of the pantographic lattice.

The equilibrium problem which we want to consider is a mixed one: we assume
that the displacements of some particles are imposed and that some externally con-
servative forces are applied to the remaining particles. Let us therefore decompose
d into the pair composed by two vectors: the assigned displacements ua and the free
displacements u. For notational aims, we will reorder d to get the decomposition

d = (u,ua) .

Because of our assumption we have that Wext depends only on u.
The nonlinear system of equilibrium equations is obtained by imposing that the

first variation of W vanish:
s(u) − p(u) = 0 , (5)

where p(u) is the vector which collects the Lagrangian components of external
forces (which may be assumed to be dead loads, for instance, so that p becomes
independent of u) and s(u) is the vector of the internal forces (called also, in the
context of structural mechanics, structural reaction), as defined by:

s(u) = dWint

du
, p(u) = dWext

du
. (6)

The tangent stiffness matrix is defined as the derivative of the structural reaction
s(u) with respect to the displacement vector u, in formulas:

KT (u) = ds(u)

du
= d2Wint

du2
, (7)

The solution of the nonlinear equilibrium system of Eq. (5) can be found by
means of an incremental-iterative procedure based on the Newton–Raphson scheme.
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Table 1 Scheme of a basic algorithm to compute a new point of the equilibrium path (λj+1,uj+1)

given the previous (λj,uj)

set

exit := false

KT := KT (uj)
Δu :=Δλū (ū= 0 for free nodes and ū= ua for the assigned ones)

while (loop < maxloop) and (exit=false)

s := s(uj + Δu)

u̇ := K−1
T s

if ‖u̇‖ > η

Δu := Δu − u̇
KT := KT (uj + Δu)

else

exit := true

end

save

λj+1 := λj + Δλ

uj+1 := uj + Δu

We will limit ourselves to the case of equilibrium paths depending only by the
single parameter λ. Starting from an estimated point of the equilibrium path (λj,uj)
verifying that the residue r of Eq. (5) is

∥∥r(uj, λj)
∥∥≤ η , (8)

i.e.with a pair being an η-approximate solution of the equilibrium condition (5),
the iterative scheme, once the step Δλ is fixed, is obtained by constructing the
η-approximate solution (uj+1 =: uj + Δuj , λj+1 := λj + Δλ) by using the iteration
scheme reported in Table1 to compute Δuj.

Further details on the Hencky-type model and on the strategy used to compute
the complete equilibrium path are contained in [1], in addition [7–9] report a com-
parison of numerical simulations, also with second gradient numerical model, with
experimental results in the case of fiber push-out and extensional and bending cases.

3 Comparison with Experiments

The reader will remark that very few parameters are postulated to characterize the
discrete model. On the contrary a wealth of experimental data are nearly perfectly
fitted using these few parameters. In [3] an identification of the parameters of the
continuum model in terms of the discrete model was proposed, see [5, 10, 11].
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Below we consider three experiments performed on specimen built by using 3D
printing technologies. Each one test is characterized by a different orientation of the
fibers. By referring to Fig. 2, the first one considers the caseα1 = π/4, the second one
α1 = π/6 and the last one α1 = π/3. We remark that in the first case the fibers are
orthogonal, contrarily to the second and third case. Another remarkable difference
regards the boundary conditions. More precisely, in the first test the same extensional
displacements have been assigned only on two fibers of the small side (using a small
bridge, see subsection 3.1) whereas in the other cases, see subsections 3.2 and 3.3,
the displacements are assigned on all the fibers which intersect the small side.

3.1 Fiber Push-Out Test

On the basis of the technical drawing reported in Fig. 4, a specimenwas built, by using
the 3D printing technology, in polyamide (PA 2200) by a SLS Formiga P100. The
Young’s modulus for this material was estimated between 1.5 and 1.7GPa following
the rules of EN ISO 527 and EN ISO 178.

This specimenwas tested by clamping the entire left side and assigning an increas-
ing displacement u (parallel to the larger sides) to two fibers of the right side until

Fig. 4 Drawing of the specimen for the fiber push-out test
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Fig. 5 Push-out test: sequence of deformations for λ = 0, 0.5 and 1
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(a) experiments (b) numerical simulation

Fig. 6 Push-out test: particular of the deformation near the push-out fibers

Table 2 Spring stiffnesses consequent to different values of the Young’s modulus

E (GPa) a (N/mm) b1 (Nmm) b2 (Nmm) s (Nmm)

1.6 265.0 238.2 238.2 0.9739

1.2 198.8 178.7 148.9 0.7304

its maximum umax was reached by using the MTS Bionix system strength machine
selecting a velocity of about 5mm/min. From the drawing, it is clear that the assigned
displacement engages only on two fibers thanks to the small bridge on the right side.
We remark the there is a small gap, i.e. 2.2mm, between thefibers and the small bridge
on the right side. The reasons of this gap will be better clarified in the following.

Figure5 reports three pictures taken during the test execution and distinct for the
displacement parameter λ = u/umax. It has to be highlighted the particular effect
reported in Fig. 6a which makes clear the necessity of the gap on the specimen.

Numerical simulation of this test was performed by assuming for the spring stiff-
nesses the same values already used in [7] for similar specimens. These values are
reported in the first row of Table2 and correspond to the value of the Young’s mod-
ulus E = 1.6GPa (an intermediate value of the declared range) estimated by using
the suggestion reported in [12].

In Fig. 7a is reported the comparison between the structural reaction on the left side
of the specimen both for the experiment, in black, and for the numerical simulation,
in red. The uncertainties on E and the awareness that this parameter could hardly
affects all the stiffness parameters, see e.g. [8, 9, 13] for some insights, suggested
us for trying to improve the curve fitting simply modifying the Young’s modulus,
and consequently the stiffness parameters of the springs. A surely better fitting was
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Fig. 7 Push-out test: structural reaction for different values of the Young’s modulus
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on the side x1 = 0 for λ = 1

Fig. 8 Push-out test: energy, structural reaction and its density computed by using the Hencky-type
numerical model

obtained using E = 1.2GPa, see Fig. 7b, and the consequent stiffness parameters of
the springs, see the second row of Table2. For this value of E, and for the consequent
springs stiffnesses, we also report in Fig. 8 both the strain energy, distinct for axial,
bending and shear, as λ increases and the density of the structural reaction on the left
side. Particularly remarkable is the presence of negative (red) values which indicate
compressions on the most of the center of the side.

Figure9 reports the deformations as λ increases, in particular for the cases λ =
0.25, 0.5, 0.75 and 1. In grey is reported the reference configuration whereas colors
shows the density of the achieved energy level.

Finally, we observe that the numerical simulation reproduces, see Fig. 6b, the
same remarkable effect reported in Fig. 6a.
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Fig. 9 Push-out test: deformations by using the Hencky-type numerical model

It has to be remarked that the used springs stiffnesses give quite satisfactory
results for what concerns the structural reaction fitting. Conversely, looking at the
contraction in the central part of the specimen, the numerical simulation appears
more thick than that detected during in the experiment. The reason of this difference
is probably due to a non precise choice of the constitutive parameters used in the
numerical simulations.

3.2 Pantograph with Non-orthogonal Fibers: α1 = π/6

This test concerns the specimen depicted in Fig. 10. In this case the most remarkable
thing is the lack of orthogonality between intersecting fibers.

Also in this case the specimen was built using the polyamide in the 3D print-
ing process. In this case both the left and right side are clamped and an assigned
displacement u, parallel to the larger side of the specimen, was imposed on the
right side until the value umax = 23.7mm. Using the same strength machine and the
same assigned velocity (5mm/min), the three pictures, distinct by the displacement
parameter λ = u/umax, were taken, see Fig. 11.

The experience of the previous test suggested us to choose the springs stiffnesses
using, as a fitting rule, the agreement between the deformations at the final stage
both for the experiments and for the numerical simulations. This choice leads to the
springs stiffnesses reported in Table3.

Using these values for springs stiffnesses we obtained the results reported in
Fig. 12 where we reported the energies and the structural reactions vs λ and the
density of the structural reaction, for λ = 1, on the left side of the specimen. In
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Fig. 10 Drawing of a pantographic structure with non-orthogonal fibers: α1 = π/6

Table 3 Stiffnesses of the springs

a (N/mm) b1 (Nmm) b2 (Nmm) s (Nmm)

165.6 148.9 148.9 0.977

Fig. 12b there is the comparison between the structural reaction evaluated during the
experiment, in black, and that computed by the numerical simulation, in red. The
closeness of the two curves it is remarkable.

The deformation history computed by using the numerical model is reported in
Fig. 13 for λ = 0.25, 0.5, 0.75 and 1.

Finally we reported in Fig. 14 an overlapping of the picture taken at the final
deformation of the experiment and that computed numerically which clearly shows
the quality of the numerical model when an accurate fitting of the spring stiffnesses
is preventively performed.

3.3 Pantograph with Non-orthogonal Fibers: α1 = π/3

The last test concerns again a specimen made by the same polyamide of the previous
tests and with non-orthogonal fibers but this time with a different orientation, see the
drawing reported in Fig. 15.
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Fig. 11 Pantograph with non-orthogonal fibers (α1 = π/6): sequence of deformations for λ = 0,
0.5, 1
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Fig. 12 Pantograph with
non-orthogonal fibers
(α1 = π/6): energy,
structural reaction and its
density computed by using
the Hencky-type numerical
model
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Fig. 13 Pantograph with non-orthogonal fibers (α1 = π/6): deformations by using the Hencky-
type numerical model

Also in this case on the specimenwas applied an assigneddisplacement on the right
smaller side in the direction parallel to the larger sides until the value umax = 74.7mm
was reached. Three pictures were taken in the loading process (the strength machine
and the velocity of the test are unchanged), see Fig. 16, corresponding to λ = 0, 0.5
and 1.

Numerical simulation of this experiment was performed using as springs stiff-
nesses those reported in Table3. The results of the simulation are reported in Fig. 17,
energies, structural reaction and density of structural reaction, and in Fig. 18, defor-
mation history.Wehave to remark that in this case although there is a lack of closeness
between the structural reaction given from the experiment and that computed numer-
ically, mostly for values of λ > 0.7 (see Fig. 17b), the agreement on the whole set of
displacement is again remarkable as can be observed by the overlapping of the two
configurations at the final stage, see Fig. 19.

In our opinion this difference, unexpected if we consider the test with α1 = π/6,
between the structural reaction evaluated in the experiment and computed numer-
ically can be explained if we consider that in the α1 = π/6 test the ratio between
the maximum assigned displacement and the long side, macro-strain, of the speci-
men is about 10% whereas the same quantity for the α1 = π/3 test is 53%. Looking
again at Fig. 17b, if we consider only the first part of the curves (those corresponding
approximatively to λ ≤ 0.4) then there is a remarkable agreement between them.We
highlight that λ = 0.4 corresponds to a macro-strain of about 21% less than half of
that imposed on the specimen (53%).
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Fig. 14 Pantograph with non-orthogonal fibers (α1 = π/6): deformations by using the Hencky-
type numerical model
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Fig. 15 Drawing of a pantographic structure with non-orthogonal fibers (α1 = π/3)

4 Concluding Remarks

In [5, 10, 14] more or less rigorous homogenization results are presented, in the
framework of linear elasticity: i.e. small deformations and quadratic deformation
energies. The model presented here, instead, tries to model the behavior of real pan-
tographic structures undergoing large displacements. In the proposed experiments,
while the majority of the beams constituting the pantographic lattice are in the small
deformation regime, we can however distinguish some boundary layers in which the
involved beam elements undergo very large deformations (more that 5% of elonga-
tions, for instance, as remarked in [3]). These experimental evidence compelled us to
introduce strongly nonlinearmodels in order to be able to design a priori pantographic
sheet having tailored properties.

While the numerical simulations show a surprising agreement with experimental
evidence, we feel that a rigorous basis on the homogenization results presented in
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Fig. 16 Pantograph with non-orthogonal fibers (α1 = π/3): sequence of deformations for λ = 0,
0.5 and 1
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Fig. 17 Pantograph with
non-orthogonal fibers
(α1 = π/3): energy,
structural reaction and its
density computed by using
the Hencky-type numerical
model
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Fig. 18 Pantograph with non-orthogonal fibers (α1 = π/3): deformations by using the Hencky-
type numerical model

[3] needs to be firmly established. We expect that Γ -convergence results can be
now confidently formulated and conjectured, see [15]. Moreover we expect that the
methods exploited in [16] could be adapted to get also a priori error estimates in the
replacement process involved when passing from discrete to continuum models.

A final remark is needed: many cases of out of plane buckling of exotic panto-
graphic sheets were observed. A phenomenological model proposed in [17, 18] has
been successfully used to get qualitative predictions. However to get more general
quantitative predictions an identification procedure involving discrete Lagrangian
models with concentrated springs is needed, which applies to three-dimensional
motion of two-dimensional pantographic sheets.

Future challenges concern:

i. Although pantographic structures were conceived to give an example of second
gradient metamaterial, see e.g. [19–29], the development of 3D printing tech-
nology allowed for the practical synthesis of such metamaterials. It deserves
to be investigated how to improve the design of 3D printed fabrics in order to
fully exploit the exotic behaviour of higher gradient metamaterials. We remark
that, as seen in [3, 30], the behaviour of higher gradient continua shows many
peculiarities which deserve a deeper experimental investigation.

ii. The discrete nature of suitably designed beam lattices may be modelled also
by means of more refined tools, see e.g. [31–38] for an in-depth description of
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Fig. 19 Pantograph with non-orthogonal fibers (α1 = π/3): deformations by using the Hencky-
type numerical model

NURBS interpolation or using the generalized beam theory, see [39, 40], this
in order to design even more complex metamaterials also in the 3D case where
could be efficiently used the Pipkin model described in [41] and in the review
paper [42].
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iii. Another crucial point concerns the modelling of the breakdown evolution of
pantographic sheets. Indeed some evidence has been already gathered about the
onset and the evolution of failure. It is rather evident that have to be considered
ruptures concerning both fibers and pivots. Afirstmodelling effort tomodel such
rupture phenomena was presented in [43] when the attention was limited to the
rupture mechanism initiated by the rupture of a fiber, see also [13] for an insight
on the modelling of fiber defects. In this context, surely deserve models able
to consider the out-of-plane deformations and the related buckling phenomena,
see [44–48] for a quick insight on this argument.

iv. The experimental identification of the parameters of the discrete model, i.e. the
stiffnesses of the springs, require a specific investigation (see [12]). In particular
methods of best fitting must be coupled to those used in extended sensitivity
analysis by adapting, for example, the tools described in [49] and exploited in
[50–56], see also [57, 58] for a more specific application to the description of
huge and innovative structures.

v. Experimental evidence shows the onset of some vibration phenomena in some
specific experimental conditions. Therefore, it is relevant the extension of mod-
elling to dynamic regimes, which can be obtained following the methods pre-
sented in see [59, 60] and also in [61, 62].

vi. The discrete Hencky-type model and the related numerical discretization tech-
nique could also be used to model granular media interactions, see [63], or
generalized and micro-structured continua, see [19, 64–67] and, in particular,
[68, 69] for applications in civil engineering and [70] in biomechanics.

vii. In various experiments the contact between fibers was observed; if this kind
of phenomenon has to be considered they could be interesting the guidelines
reported in [71, 72].

References

1. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic
structures: numerical comparisonwith secondgradient continuummodels. Zeitschrift fürAnge-
wandte Mathematik und Physik 67(4), 1–28 (2016)

2. Hencky,H.:Über die angenäherteLösungvonStabilitätsproblemen imRaummittels der elastis-
chen Gelenkkette. Ph.D. thesis, Engelmann (1921)

3. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar exten-
sible beams and pantographic lattices: heuristic homogenisation, experimental and numerical
examples of equilibrium. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 472(2185) (2016)

4. dell’Isola, F., Lekszycki, T., Pawlikowski,M., Grygoruk, R., Greco, L.: Designing a light fabric
metamaterial being highly macroscopically tough under directional extension: first experimen-
tal evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015)

5. Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy
depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

6. Madeo, A., Della Corte, A., Greco, L., Neff, P.: Wave propagation in pantographic 2D lattices
with internal discontinuities. Proc. Est. Acad. Sci. 64(3S), 325–330 (2015)



308 E. Turco et al.

7. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar
pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian
model. Mech. Res. Commun. 76, 51–56 (2016)

8. Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and
bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift
für Angewandte Mathematik und Physik 67(122), 1–16 (2016)

9. Turco, E., Barcz, K., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for
planar pantographic lattices. Part II: comparison with experimental evidence. Zeitschrift für
Angewandte Mathematik und Physik 67(123), 1–16 (2016)

10. Alibert, J.-J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic
microstructured plates: a rigorous proof. Zeitschrift für Angewandte Mathematik und Physik
66(5), 2855–2870 (2015)

11. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an
heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

12. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the deter-
mination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift fürAnge-
wandte Mathematik und Physik (ZAMP) 66(6), 3699–3725 (2015)

13. Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects:
numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69
(2016)

14. Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets. Part I: asymptotic
micro-macromodels identification.Mathematics andMechanics ofComplexSystems (in press)

15. Braides, A., Solci, M.: Asymptotic analysis of Lennard-Jones systems beyond the nearest-
neighbour setting: a one-dimensional prototypical case. Math. Mech. Solids 21(8), 915–930
(2016)

16. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of micro-
scopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher
gradients metamaterials. Arch. Rational Mech. Anal. (2015). doi:10.1007/s00205-015-0879-
5

17. Steigmann, D.J., dell’Isola, F.:Mechanical response of fabric sheets to three-dimensional bend-
ing, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

18. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets
with parabolic lattices: numerical investigations. Zeitschrift für Angewandte Mathematik und
Physik 67(3), 1–19 (2016)

19. dell’Isola, F., Steigmann,D.,DellaCorte,A.: Synthesis of fibrous complex structures: designing
microstructure to deliver targetedmacroscale response. Appl.Mech. Rev. 67(6), 060804 (2015)

20. Giorgio, I., Grygoruk, R., dell’Isola, F., Steigmann, D.J.: Pattern formation in the three-
dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

21. Scerrato, D., Giorgio, I., Della Corte, A., Madeo, A., Limam, A.: A micro-structural model
for dissipation phenomena in the concrete. Int. J. Numer. Anal. Methods Geomech. 39(18),
2037–2052 (2015)

22. Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiff-
ness on the plane deformation of linear second gradient pantographic sheets. Zeitschrift für
Angewandte Mathematik und Mechanik (2016). doi:10.1002/zamm.201600066

23. D’Agostino,M.V.,Giorgio, I., Greco, L.,Madeo,A., Boisse, P.: Continuumand discretemodels
for structures including (quasi-) inextensible elasticae with a view to the design and modeling
of composite reinforcements. Int. J. Solids Struct. 59, 1–17 (2015)

24. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure
via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. (2017). doi:10.1007/
s10665-016-9856-8

25. Placidi, L., Dhaba, A.E.: Semi-inverse method à la Saint-Venant for two-dimensional linear
isotropic homogeneous second-gradient elasticity. Math. Mech. Solids (2017). doi:10.1177/
1081286515616043

http://dx.doi.org/10.1007/s00205-015-0879-5
http://dx.doi.org/10.1007/s00205-015-0879-5
http://dx.doi.org/10.1002/zamm.201600066
http://dx.doi.org/10.1007/s10665-016-9856-8
http://dx.doi.org/10.1007/s10665-016-9856-8
http://dx.doi.org/10.1177/1081286515616043
http://dx.doi.org/10.1177/1081286515616043


Can a Hencky-Type Model Predict the Mechanical Behaviour of Pantographic Lattices? 309

26. dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2d lattices: a numerical analysis
on static response and wave propagation. Proc. Est. Acad. Sci. 64(3), 219–225 (2015)

27. dell’Isola, F., Della Corte, A., Greco, L., Luongo, A.: Plane bias extension test for a continuum
with two inextensible families of fibers: a variational treatment with Lagrange multipliers and
a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

28. Cuomo, M., dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias test for fabrics
with two families of inextensible fibres. Zeitschrift für angewandte Mathematik und Physik
67(3), 1–23 (2016)

29. dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic
sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. (2017).
doi:10.1007/s10665-016-9865-7

30. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-
local andhigher-gradient continuummechanics: an underestimated and still topical contribution
of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

31. Cazzani, A., Malagù,M., Turco, E.: Isogeometric analysis of plane curved beams.Math.Mech.
Solids 21(5), 562–577 (2016)

32. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the
elastic analysis of historicalmasonry arches. Contin.Mech. Thermodyn. 28(1), 139–156 (2016)

33. Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved
beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

34. Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-
dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26, 1155–1175 (2010)

35. Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff-Love space rods. Comput. Methods
Appl. Mech. Eng. 256, 251–269 (2013)

36. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love
space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

37. Greco, L., Cuomo, M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space
rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

38. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite elements and isoge-
ometric analysis of the whole spectrum of Timoshenko beams. Zeitschrift für Angewandte
Mathematik und Mechanik 96(10), 1220–1244 (2016)

39. Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam
theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8),
900–924 (2014)

40. Piccardo, G., Ranzi, G., Luongo, A.: A direct approach for the evaluation of the conventional
modes within the gbt formulation. Thin-Walled Struct. 74, 133–145 (2014)

41. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a
2D fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik
67(114), 1–24 (2016)

42. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of
pantographic fabrics. Zeitschrift für angewandteMathematik und Physik 67(121), 1–20 (2016)

43. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in
sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Com-
mun. 76, 86–90 (2016)

44. D’Annibale, F., Rosi, G., Luongo, A.: Linear stability of piezoelectric-controlled discrete
mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839
(2015)

45. Rizzi, N., Varano, V., Gabriele, S.: Initial postbuckling behavior of thin-walled frames under
mode interaction. Thin-Walled Struct. 68, 124–134 (2013)

46. Gabriele, S., Rizzi, N., Varano, V.: A 1D higher gradient model derived from Koiter’s shell
theory. Math. Mech. Solids 21(6), 737–746 (2016)

47. AminPour, H., Rizzi, N.: A one-dimensional continuum with microstructure for single-wall
carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

http://dx.doi.org/10.1007/s10665-016-9865-7


310 E. Turco et al.

48. Gabriele, S., Rizzi, N.L., Varano, V.: A 1D nonlinear TWB model accounting for in plane
cross-section deformation. Int. J. Solids Struct. 94–95, 170–178 (2016)

49. Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review
and research perspectives. Eur. J. Environ. Civil Eng. 1–46 (2017). doi:10.1080/19648189.
2015.1134673

50. Lekszycki, T., Olhoff, N., Pedersen, J.J.: Modelling and identification of viscoelastic properties
of vibrating sandwich beams. Compos. Struct. 22(1), 15–31 (1992)

51. Bilotta, A., Turco, E.: A numerical study on the solution of the Cauchy problem in elasticity.
Int. J. Solids Struct. 46, 4451–4477 (2009)

52. Bilotta, A., Morassi, A., Turco, E.: Reconstructing blockages in a symmetric duct via quasi-
isospectral horn operators. J. Sound Vib. 366, 149–172 (2016)

53. Bilotta, A., Turco, E.: Numerical sensitivity analysis of corrosion detection. Math. Mech.
Solids. 22(1), 72–88 (2017). doi:10.1177/1081286514560093

54. Alessandrini, G., Bilotta, A., Formica, G., Morassi, A., Rosset, E., Turco, E.: Evaluating the
volume of a hidden inclusion in an elastic body. J. Comput. Appl. Math. 198(2), 288–306
(2007)

55. Alessandrini, G., Bilotta, A., Morassi, A., Turco, E.: Computing volume bounds of inclusions
by EIT measurements. J. Sci. Comput. 33(3), 293–312 (2007)

56. Turco, E.: Identification of axial forces on statically indeterminate pin-jointed trusses by a
nondestructive mechanical test. Open Civ. Eng. J. 7, 50–57 (2013)

57. Buffa, F., Cazzani, A., Causin, A., Poppi, S., Sanna, G.M., Solci, M., Stochino, F., Turco,
E.: The Sardinia radio telescope: a comparison between close range photogrammetry and FE
models. Math. Mech. Solids 1–22 (2015). doi:10.1177/1081286515616227

58. Stochino, F., Cazzani, A., Poppi, S., Turco, E.: Sardinia radio telescope finite element model
updating by means of photogrammetric measurements. Math. Mech. Solids 1–17 (2015).
doi:10.1177/1081286515616046

59. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models
and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

60. Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced
by large deformations in planar pantographic continua. Nanomech. Sci. Technol.: Int J. 6(2),
161–178 (2015)

61. Cazzani, A., Stochino, F., Turco, E.: On the whole spectrum of Timoshenko beams. Part I:
a theoretical revisitation. Zeitschrift für Angewandte Mathematik und Physik 67(24), 1–30
(2016)

62. Cazzani, A., Stochino, F., Turco, E.: On the whole spectrum of Timoshenko beams. Part II:
further applications. Zeitschrift für Angewandte Mathematik und Physik 67(25), 1–21 (2016)

63. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts
frequency band gaps. Contin. Mech. Thermodyn. 28(1), 215–234 (2016)

64. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates
and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

65. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of
micropolar anisotropic elastic solids.Math.Mech. Solids. 21(2), 210–221 (2016). doi:10.1177/
1081286515582862

66. DosReis, F.,Ganghoffer, J.F.: Construction ofmicropolar continua from the asymptotic homog-
enization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)

67. Elnady, K., Dos Reis, F., Ganghoffer, J.-F.: Construction of second order gradient continuous
media by the discrete asymptotic homogenization method. Int. J. Appl. Mech. (2014)

68. Caggegi, C., Pensée, V., Fagone, M., Cuomo, M., Chevalier, L.: Experimental global analysis
of the efficiency of carbon fiber anchors applied over CFRP strengthened bricks. Constr. Build.
Mater. 53, 203–212 (2014)

69. Tedesco, F., Bilotta, A., Turco, E.: Multiscale 3D mixed FEM analysis of historical masonry
constructions. Eur. J. Environ. Civ. Eng. (2017). doi:10.1080/19648189.2015.1134676

70. Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented
fibres - numerical implementation and application to articular cartilage. IMA J. Appl. Math.
79, 1027–1059 (2014)

http://dx.doi.org/10.1080/19648189.2015.1134673
http://dx.doi.org/10.1080/19648189.2015.1134673
http://dx.doi.org/10.1177/1081286514560093
http://dx.doi.org/10.1177/1081286515616227
http://dx.doi.org/10.1177/1081286515616046
http://dx.doi.org/10.1177/1081286515582862
http://dx.doi.org/10.1177/1081286515582862
http://dx.doi.org/10.1080/19648189.2015.1134676


Can a Hencky-Type Model Predict the Mechanical Behaviour of Pantographic Lattices? 311

71. Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin.
Mech. Thermodyn. 25, 375–398 (2013)

72. Andreaus, U., Baragatti, P., Placidi, L.: Experimental and numerical investigations of the
responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under
harmonic excitation. Int. J. Non-Linear Mech. 80, 96–106 (2016)


	Can a Hencky-Type Model Predict  the Mechanical Behaviour  of Pantographic Lattices?
	1 Introduction
	2 Discrete Model for Pantographic Sheets
	3 Comparison with Experiments
	3.1 Fiber Push-Out Test
	3.2 Pantograph with Non-orthogonal Fibers: α1=π/6
	3.3 Pantograph with Non-orthogonal Fibers: α1=π/3

	4 Concluding Remarks
	References


