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Abstract The contribution is concerned with reliable and computable bounds of
the limit (or safety) load in the deformation theory of perfect plasticity. We consider
truncation and indirect incrementalmethods of limit analysiswhich canbe interpreted
as penalization techniques. Further, convergence for higher order finite elements
is shown. The efficiency of the proposed approaches is illustrated on numerical
experiments with the von Mises and Drucker–Prager yield criteria.

1 Introduction

The paper is focused on reliable and easily computable bounds of limit loads in
elastic-perfectly plastic problems. We summarize and slightly extend the results
presented in [2, 7, 8, 12]. In particular, we extend the finite element analysis to
higher order elements to reduce the observed locking effect.

The paper is organized as follows. Section2 contains preliminaries from the gen-
eralizedHencky plasticity and the related limit analysis. The vonMises andDrucker–
Prager yield criteria are mentioned as particular cases. Section3 is devoted to the
truncation method where unbounded yield surfaces are approximated by bounded
ones. The indirect incremental method is introduced in Sect. 4. Both methods are
firstly defined for the continuous setting of the problem in order to demonstrate their
independency of the problem discretization. The discretized problem is analyzed in
Sect. 5. Section6 summarizes our strategy how to find computable and reliable lower
and upper bounds of λ∗. The lower and upper bounds of the limit load λ∗ for two
model examples with the above mentioned yield criteria are established. Unlike [8],
we consider P2-elements and different meshes, geometries or elastic parameters in
order to improve the bounds.
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2 Generalized Hencky Plasticity Problem

2.1 Basic Definitions and Properties

The classical Hencky plasticity model of the deformation plasticity theory is based
on the von Mises yield law. Since an abstract yield criterion is used we rather write
“generalized” Hencky plasticity model in order to stress this fact. This static model
is usually completed by a parametric study in order to be close to the incremental
(quasistatic) theory of elasto-plasticity. The parametrized model is sufficient to treat
the limit load analysis. For more details, we refer to, e.g., [6, 7, 14].

The space of admissible displacement fields has the form

V = {v ∈ H1(Ω;R3) | v|ΓD = 0},

where Ω is a bounded domain with the Lipschitz continuous boundary ∂Ω and
ΓD, ΓN are open and nonempty parts of ∂Ω such that ΓD ∩ ΓN = ∅ and Γ̄D ∪ Γ̄N =
∂Ω . Further, f ∈ L2(ΓN ;R3), F ∈ L2(Ω;R3) denote the density of surface and vol-
ume forces, respectively, and

L(v) =
∫

Ω

F · v dx +
∫

ΓN

f · v ds, v ∈ V, ‖F‖L2(Ω;R3) + ‖f ‖L2(ΓN ;R3) �= 0.

(1)
Stress and strain tensors are represented locally by symmetric matrices, i.e., elements
of R3×3

sym . In particular, we consider the infinitesimal small strain tensor represented
by a symmetric part of the displacement gradient:

ε(v) = 1

2
(∇v + (∇v)T ).

The biscalar product and the corresponding norm inR3×3
sym will be denoted by e : η =

eijηij and ‖e‖2 = e : e for any e, η ∈ R
3×3
sym , respectively.

Let B be a closed, convex subset of R3×3
sym containing a vicinity of the origin. This

set represents plastically admissible stresses and it is defined by a plastic criterion,
see Sects. 2.2 or 2.3. To formulate the constitutive stress-strain relation we introduce
the function ΠB which is a generalized projection of R3×3

sym onto B (in the sense
of [11]):

ΠB : e 
→ ΠB(e), ‖Ce − ΠB(e)‖C−1 = min
τ∈B ‖Ce − τ‖C−1 , e ∈ R

3×3
sym ,

where C : R3×3
sym → R

3×3
sym is a linear, positive definite, fourth order elasticity ten-

sor characterizing the elastic material response, C−1 is the corresponding inverse
and ‖τ‖2

C−1 := C
−1τ : τ for any τ ∈ R

3×3
sym . The potential j : R3×3

sym → R+ of ΠB is
defined by
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j(e) = sup
τ∈B

{
τ : e − 1

2
‖τ‖2

C−1

}
, e ∈ R

3×3
sym . (2)

It is a convex, continuously Fréchet differentiable function, and

ε

2
‖e‖C − ε2

8
≤ j(e) ≤ 1

2
‖e‖2

C
, ‖e‖2

C
:= Ce : e, ∀e ∈ R

3×3
sym , (3)

where ε > 0 is such that the ball {τ ∈ R
3×3
sym | ‖τ‖C−1 ≤ ε} belongs to B. Thus, only

a linear growth of j at infinity is guaranteed.
The generalizedHencky plasticity problem (in terms of displacements) for a given

value of the load parameter λ ≥ 0 reads as follows:

(P)λ inf
v∈V Jλ(v), Jλ(v) =

∫
Ω

j(ε(v)) dx − λL(v).

Notice that Jλ need not be bounded from below for all λ > 0 due to the lower bound
of j in (3). Moreover, even if Jλ is bounded from below, problem (P)λ need not have
a minimizer belonging to V. For the existence analysis, it is necessary to use the
relaxation of the problem including the extension of V to the BD-space of functions
with bounded deformations, see, e.g., [10, 14]. This space allows discontinuities of
displacements along surfaces in 3D and thus the model is capable to predict possible
failure zones in the investigated body. This fact will be illustrated in Sect. 6.

In order to decide whether Jλ is bounded from below in V or not, it is natural to
introduce the limit load parameter

λ∗ = sup

{
λ ≥ 0 | inf

v∈V
Jλ(v) > −∞

}
. (4)

This definition also admits the value λ∗ = +∞, however λ∗ is usually finite in
meaningful settings of the problem. One can easily check that the function φ(λ) =
infv∈V Jλ(v) is decreasing on (0, λ∗) and thus Jλ is bounded from below for any
λ < λ∗. Other straightforward but useful consequences of (4) are introduced in the
following lemma.

Lemma 1 (Basic bounds of λ∗.)

(i) Let j1, j2 : R3×3
sym → R+ ∪ {+∞}, 0 ≤ j1 ≤ j2, be two convex and proper func-

tions. Then the corresponding limit load parameters λ∗
1, λ

∗
2 defined by (4) satisfy

λ∗
1 ≤ λ∗

2.
(ii) Let K be a subset ofV and λ∗

K := sup {λ ≥ 0 | infv∈K Jλ(v) > −∞}. Then λ∗ ≤
λ∗
K .

For the limit analysis, it is very useful to introduce a specialminimization problem.
Following [8], we firstly consider the function
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jα(e) = 1

α
j(αe) ∀e ∈ R

3×3
sym , α > 0. (5)

As for j, one can define the corresponding limit parameter λ∗
α . By substitution, we

have:

inf
v∈V

[∫
Ω

jα(ε(v)) dx − λL(v)

]
= 1

α
inf
v∈V

[∫
Ω

j(ε(v)) dx − λL(v)

]
∀α > 0.

Hence, λ∗
α = λ∗ for any α > 0. Next, define the function

j∞ : R3×3
sym → R+, R+ := R+ ∪ {+∞},

j∞(e) = lim
α→+∞ jα(e) = sup

τ∈B
τ : e, e ∈ R

3×3
sym . (6)

Clearly, j∞(0) = 0 and j∞ is a proper, convex function inR3×3
sym which is also positively

1 - homogeneous. Further, it holds:

j ≤ jα ≤ j∞ ∀α ≥ 1. (7)

The limit load parameter associated with j∞ is defined as follows:

ζ ∗ = sup

{
λ ≥ 0 | inf

v∈V

[∫
Ω

j∞(ε(v)) dx − λL(v)

]
> −∞

}
. (8)

It is readily seen that
λ∗ ≤ ζ ∗, (9)

making use of (7) and Lemma 1, i.e., ζ ∗ is in an upper bound of the limit load
parameter λ∗. The properties of j∞ enable us to derive a more convenient definition
of ζ ∗ than (8), see, e.g., [8].

Lemma 2 It holds:

ζ ∗ = inf
v∈V

L(v)=1

J∞(v), J∞(v) =
∫

Ω

j∞(ε(v)) dx, v ∈ V. (10)

Remark 1 The inf-problem (10) is termed the problem of limit analysis using the
terminology of perfect plasticity [4, 14]. This minimization problem is important
from several reasons:

• It enables us to estimate λ∗ by a straightforward manner (minimization), see e.g.,
in [1, 4]. Moreover, the values J∞(v), where v ∈ V, L(v) = 1 and v ∈ dom J∞, are
the guaranteed upper bounds of λ∗.

• The inf-problem (10) is in a certain sense dual to the sup-problem (4) defining λ∗.
Using the duality approach, one can prove that λ∗ = ζ ∗ for some sets B.
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• It is well-known that the additional constraint v ∈ domJ∞ = {w ∈ V | J∞(w) <

+∞}may cause locking effect in perfect plasticity. For example, ifB represents the
vonMises yield criterion then the divergence free constraint appears, see Sect. 2.2.

• The limit load parameters λ∗ and ζ ∗ are independent of the elasticity tensor C.
For ζ ∗ this fact follows from the sup-definition of j∞ in (6) and for λ∗ from the
duality approach. This simple observation is useful mainly for soil materials with
the Poisson ratio close to the critical value 0.5 when significant rounding errors of
numerical solutions arise.

• The formation of failure zones producing discontinuities of displacements is typi-
cal for the limit load. From (10), it seems to be natural that values of j∞ vanish far
from the expected failure during the minimization. On such subdomains, one can
expect rigid body displacements. This will be illustrated on numerical examples
in Sect. 6. In particular, in Sect. 6.3, we will study the slope stability benchmark
where the failure is localized only in a vicinity of the slope.Moreover, the expected
rigid body displacements far from the slope vanish due to prescribed boundary
conditions. This leads to a simple observation that the limit parameter remains
unchanged when we use a much smaller domain than in [5, 8, 13].

In the subsequent parts of this section, we introduce the von Mises and Drucker–
Prager yield criteria as particular examples of B.

2.2 The Von Mises Yield Criterion

The set B defined by the von Mises yield criterion has the form

B = {
τ ∈ R

3×3
sym | ‖τD‖ ≤ γ

}
, (11)

where ‖τD‖2 := τD : τD, τD = τ − 1
3 (tr τ)ι is the deviatoric part of τ , tr τ = τii is

the trace of τ , ι = diag(1, 1, 1) is the unit matrix, and γ > 0 represents an initial
yield stress. Notice that B is the unbounded cylinder with the (hydrostatic) axis {τ ∈
R

3×3
sym | τ = aι, a ∈ R}. If the elastic stress-strain relation is isotropic and expressed

in terms of the bulk (K > 0) and shear (G > 0) moduli, i.e.,

τ = Ce = K(tr e)ι + 2GeD ∀e ∈ R
3×3
sym , (12)

then j defined by (2) can be written as

j(e) =
{ 1

2K(tr e)2 + G‖eD‖2, if 2G‖eD‖ ≤ γ
1
2K(tr e)2 + γ ‖eD‖ − γ 2

4G , if 2G‖eD‖ > γ
, ∀e ∈ R

3×3
sym ,

see, e.g., [14]. It is readily seen that
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j∞(e) = lim
α→+∞

1

α
j(αe) =

{
γ ‖eD‖, if tr e = 0

+∞, if tr e �= 0
, ∀e ∈ R

3×3
sym

and the corresponding problem of the limit analysis (10) becomes:

ζ ∗ = inf
v∈V, div v=0

L(v)=1

∫
Ω

γ ‖ε(v)‖ dx. (13)

This is a non-smooth optimization problem involving the divergence-free constraint.
Further, it is known that λ∗ = ζ ∗ (see [14]).

2.3 The Drucker–Prager Yield Criterion

The set B of the admissible stresses for the Drucker–Prager yield criterion reads as
follows:

B =
{
τ ∈ R

3×3
sym | a

3
tr τ + ‖τD‖ ≤ γ

}
, a, γ > 0. (14)

B is an unbounded cone with the hydrostatic axis and the apex τ = γ

α
ι. For the shape

of the yield surface in the Haigh-Westergaard coordinates we refer to [5]. Assume
that C is the same as in (12) and denote

qs(e) := Ka(tr e) + 2G‖eD‖ − γ, qa(e) := Ka(tr e) − Ka2‖eD‖ − γ, e ∈ R
3×3
sym .

Notice that qs ≥ qa. Then

j(e) = K

2
(tr e)2 + G‖eD‖2 − 1

2(Ka2 + 2G)

{[
(qs(e))

+]2 + 2G

Ka2
[
(qa(e))

+]2}

=

⎧⎪⎨
⎪⎩

K
2 (tr e)2 + G‖eD‖2, if qs(e) ≤ 0,

− γ 2

2Ka2 + γ

a tr e + G
Ka2(Ka2+2G)

qa(e)2, if qs(e) ≥ 0 ≥ qa(e),

− γ 2

2Ka2 + γ

a tr e, if qa(e) ≥ 0,

where g+ denotes the positive part of g. Another form of j can be found in [9] as well
as the proof of the equality λ∗ = ζ ∗ which holds for sufficiently small values of the
parameter a and under appropriate assumptions. Further,

j∞(e) =
{

γ

a tr e, if tr e ≥ a‖eD‖
+∞, if tr e ≤ a‖eD‖

and

ζ ∗ = inf
v∈V, L(v)=1
div v≥a‖εD(v)‖

∫
Ω

γ

a
div v dx, div v = tr ε(v).
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Unlike the von Mises yield criterion, the problem of limit analysis leads to mini-
mization of a linear functional but subject also to the inequality constraint.

3 Truncation Method

The von Mises and Drucker–Prager yield criteria lead to the unbounded sets B. The
same holds also for the Tresca or Mohr-Coulomb yield criteria. For the Cam-Clay
or capped Drucker–Prager criteria, the set B is bounded. On the other hand, mod-
els with bounded yield surfaces are usually accompanied by internal variables like
hardening/softening or damage and so they are not perfectly plastic. The mentioned
yield criteria and many others are presented, e.g., in [5].

The aim of this section is to emphasize that the limit analysis is much simpler
for bounded than for unbounded B. Using this fact, it is quite natural to consider the
truncation method for unbounded B. This section summarizes the results presented
in [8].

3.1 Limit Analysis for Bounded B

Assume thatB is bounded. Owing to this fact, one can derive the following additional
results:

• From (6), it is readily seen that j∞ is everywhere real-valued:

j∞(e) = sup
τ∈B

τ : e < +∞ ∀e ∈ R
3×3
sym (15)

• The load assumption (1) yields ζ ∗ < +∞.
• From the definitions of j and j∞, i.e., (2) and (6), we have:

j∞(e) − c ≤ j(e) ≤ j∞(e) ∀e ∈ R
3×3
sym , c := sup

τ∈B
1

2
C

−1τ : τ. (16)

• It holds:
λ∗ = ζ ∗, inf

v∈V
Jλ∗(v) < +∞. (17)

• The following criterion for λ to be admissible or not holds:

λ > λ∗ ⇐⇒ ∃v ∈ V : Jλ(v) < −c|Ω|, c := sup
τ∈B

1

2
C

−1τ : τ. (18)

Notice that the constant c is usually a priori known. This criterion leads to a
guaranteed and easily computable upper bound of λ∗. Indeed, one can easily
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construct a minimization sequence {un} of Jλ in V or in its subspace since Jλ is
convex and differentiable. If Jλ(un) < −c|Ω| for some n then λ is an upper bound
of λ∗. We use this criterion to verify numerical results in Sect. 6.

3.2 Truncation Method for Unbounded B

For unbounded B, the assertions (15)–(18) do not hold, in general. For this reason,
we consider truncations of B using an appropriate system {Bk}, ⋃

k>0 Bk = B of
bounded subsets of B. With any Bk , we associate the functions jk , jk,∞ and the limit
load parameters λ∗

k , ζ
∗
k analogously to j, j∞, and λ∗, ζ ∗ for unboundedB, respectively.

From Lemma 1, (2), and (6), it follows that

jk ≤ j, jk,∞ ≤ j∞,

ζ ∗
k = λ∗

k ≤ λ∗ ≤ ζ ∗,
lim

k→+∞
jk,∞(e) = j∞(e) ∀e ∈ R

3×3
sym .

⎫⎪⎬
⎪⎭ (19)

Therefore, λ∗
k is a lower bound of λ

∗ for any k > 0. Knowledge of a reliable lower
bound of λ∗ is important since it presents a safety parameter. The truncation method
can be also interpreted as a penalty approach in the problem of limit analysis making
use of (19)3. Sufficient conditions ensuring λ∗

k → λ∗ as k → +∞ are presented in
[8].

The truncated B for the von Mises yield criterion can be defined as follows:

Bk =
{
τ ∈ R

3×3
sym | 1

3
|tr τ | ≤ kγ, ‖τD‖ ≤ γ

}
, k > 0. (20)

The functions jk and jk,∞ associated with such Bk are derived in [8] and the criterion
(18) reads:

λ > λ∗ ⇐⇒ ∃v ∈ V :
∫

Ω

jk(ε(v)) dx − λL(v) < −γ 2

2

(
k2

K
+ 1

2G

)
|Ω|.

(21)
A similar truncation can be also used for the Drucker–Prager yield criterion:

Bk =
{
τ ∈ R

3×3
sym | a

3
tr τ ≥ −kγ,

a

3
tr τ + ‖τD‖ ≤ γ

}
, k ≥ 1. (22)

The functions jk and jk,∞ associated with this Bk are derived in [8] and the criterion
(18) reads:

λ > λ∗ ⇐⇒ ∃v ∈ V :
∫
Ω
jk(ε(v)) dx − λL(v) < −γ 2

2

(
k2

Ka2
+ (1 + k)2

2G

)
|Ω|.
(23)
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4 Indirect Incremental Method

By enlargingλ up to its limit valueλ∗, one can define the direct incrementalmethod of
the limit analysis. Notice that λ must be enlarged adaptively since λ∗ is unknown. In
[2, 12], another parameter α → +∞ has been introduced together with an auxiliary
minimization problem enabling an indirect control of the loading process for λ → λ∗
in a discretized version of the problem. This technique has been extended in [7] for
the continuous setting of the problem using the duality approach in terms of stresses.
Now, we present a more straightforward derivation.

To this end, we use the sequence {jα}, α > 0, of functions defined by (5) which
pointwisely converges to j∞ as follows from (6). Define the function ψ̄ : R+ → R+
by the following penalization of the limit analysis problem:

(P)α ψ̄(α) := inf
v∈V

L(v)=1

∫
Ω

jα(ε(v)) dx, α > 0. (24)

Problem (P)α is a smooth convex program with just one linear constraint. Numer-
ically, it is not difficult to solve it, however, it is worth mentioning that minimizers
need not belong to V similarly as for problem (P)λ. Further, it holds:

ψ̄(α)
(17,5)= 1

α
inf
v∈V

L(v)=α

∫
Ω

j(ε(v)) dx = 1

α
inf
v∈V

sup
λ∈R

{∫
Ω

j(ε(v)) dx − λ(L(v) − α)

}

= 1

α
sup
λ∈R

inf
v∈V

{∫
Ω

j(ε(v)) dx − λ(L(v) − α)

}

= sup
λ∈R

[
1

α
inf
v∈V

{∫
Ω

j(ε(v)) dx − λL(v)

}
+ λ

]

= sup
λ∈R+

[
1

α
inf
v∈V

Jλ(v) + λ

]
= sup

λ∈R+

[
1

α
φ(λ) + λ

]
∀α > 0, (25)

where φ(λ) = infv∈V Jλ(v). The properties of φ has been derived in [7]. Under the
assumption (1), it holds that φ is negative, strictly concave, decreasing and continu-
ous in (0, λ∗). Further, φ has at least quadratic decrease at infinity when λ∗ = +∞.
Otherwise, φ(λ) = −∞ for any λ > λ∗. These properties of φ ensure that the func-
tion λ 
→ 1

α
φ(λ) + λ has a unique maximizer in R+ for any α > 0. This enables us

to introduce the function

ψ(α) = arg max
λ∈R+

[
1

α
φ(λ) + λ

]
, α > 0. (26)

From [7], we know:
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(i) ψ is nondecreasing, continuous, limα→0+ ψ(α) = 0, and limα→+∞ ψ(α) = λ∗;
(ii) if there exists a minimizer uα ∈ V in problem (P)α then αuα solves (P)λ for

λ = ψ(α) =
∫

Ω

ΠB(ε(αuα)) : ε(uα) dx. (27)

Moreover, the right hand side in (27) does not depend on the choice of uα with
the above mentioned properties;

(iii) conversely, if uλ is a solution to (P)λ then
uλ

L(uλ)
solves (P)α for α = L(uλ).

From (i), we see that knowledge ofψ enables us to introduce the indirect incremental
method of limit analysis which corresponds to α → +∞. Moreover, the valuesψ(α)

approximate λ∗ from below. From (ii), we see that the values ψ(α) can be computed
solving problem (P)α . Formula (27) is more convenient from the numerical point
of view than (26). Due to (iii), one can interpret the parameter α as the complience
or the work of external forces. Notice that the inverse mapping ψ−1 : λ 
→ α need
not be singlevalued unlike ψ .

Remark 2 Using (24) and (25) it is not difficult to show that the function ψ̄ has the
same properties as ψ , i.e. ψ̄ is nondecreasing, continuous, limα→0+ ψ̄(α) = 0, and
limα→+∞ ψ̄(α) = λ∗. Moreover, ψ̄(α) = 1

α
φ(ψ(α)) + ψ(α) < ψ(α) ∀α > 0.

5 Finite Element Approximation

In this section, classical finite element approximations are considered for computing
bounds of the limit load in the generalized Hencky plasticity. Let {Vh} be a system of
finite element subspaces ofVwhich is limit dense inV. For the sake of simplicity, we
will not consider influences of a domain approximation and numerical integration.
Due to this simplification, most of the results from [7, 8] proven for the linear
simplicial elements (P1-elements) can be straightforwardly extended for higher-order
elements. We summarize them.

The discrete forms of (P)λ and (P)α read as follows:

(Ph)λ inf
vh∈Vh

Jλ(vh), Jλ(vh) =
∫

Ω

j(ε(vh)) dx − λL(vh), λ > 0,

(Ph)
α ψ̄h(α) = inf

vh∈Vh
L(vh)=1

∫
Ω

jα(ε(vh)) dx, jα(e) = 1

α
j(αe), α > 0.

Unlike the continuous setting, one can find minimizers in Vh of these problems for
any α > 0 and any λ < λ∗

h, where

λ∗
h = sup{λ ≥ 0 | inf

vh∈Vh

Jλ(vh) > −∞} (28)
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is the discrete limit load parameter. Solutions to (Ph)λ and (Ph)
α are related each

other as in Sect. 4. Therefore, the discrete counterpart ψh of ψ can be defined as
follows:

ψh(α) =
∫

Ω

ΠB(ε(αuh,α)) : ε(uh,α) dx = arg max
λ∈R+

[
1

α
φh(λ) + λ

]
, α > 0, (29)

where uh,α ∈ Vh is a solution to (Ph)
α , φh(λ) = infvh∈Vh Jλ(vh), again using that the

value ψh(α) is independent of the choice of the solution to (Ph)
α . The function ψh

is continuous, nondecreasing, and ψh(α) → λ∗
h as α → +∞.

The discrete problem of limit analysis reads: determine ζ ∗
h such that

ζ ∗
h = inf

vh∈Vh,
L(vh)=1

J∞(vh), J∞(vh) =
∫

Ω

j∞(ε(vh)) dx. (30)

If there exists vh ∈ Vh, L(vh) = 1, such that J∞(vh) < +∞ then problem (30) has
a minimizer uh,∞ and any sequence {uh,α}α of the solutions to (Ph)

α is bounded
in Vh for any h > 0. It is possible to show (see [8]) that any accumulation point
of {uh,α}α minimizes (30), and it holds that λ∗

h = ζ ∗
h . If such vh does not exist, then

λ∗
h = ζ ∗

h = +∞.
From Lemma 1 we see that λ∗

h ≥ λ∗. Further, it is known from [7] that if B is
bounded then

λ∗
h → λ∗, h → 0+. (31)

If B is unbounded, then (31) does not hold, in general. For unbounded B, one can
apply the truncation technique from Sect. 3 to the discretized problems. Let {Bk} be
a system of bounded, closed and convex subsets of B. As in Sect. 3 we associate
with any Bk the functions jk , Jk,λ and the limit values λ∗

k , ζ
∗
k . The discrete limit load

parameters associated with Bk and Vh are denoted as λ∗
k,h and ζ ∗

k,h. Then λ∗
k,h = ζ ∗

k,h
and the following criterion holds:

λ > λ∗
k,h(≥ λ∗

k) ⇐⇒ ∃vh ∈ Vh : Jk,λ(vh) < −ck|Ω|, ck = 1

2
sup
τ∈Bk

‖τ‖2
C−1 .

(32)
In [7], pointwise convergence ψh → ψ has been established for Vh constructed

by P1-elements. However, just this result cannot be straightforwardly extended to
higher order elements as the ones mentioned above. Therefore, we sketch another
proof based on the function ψ̄ and its discretization.
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Lemma 3 It holds:
lim
h→0+

ψ̄h(α) = ψ̄(α) ∀α > 0. (33)

Proof For any v ∈ V, L(v) = 1, there is a sequence {vh}, vh ∈ Vh, L(vh) = 1, such
that vh → v in V. Hence,

ψ̄h(α) ≤
∫

Ω

jα(ε(vh)) dx →
∫

Ω

jα(ε(v)) dx ∀α > 0.

At the same time, from the definitions of ψ̄h and ψ̄ it follows that ψ̄h(α) ≥ ψ̄(α) for
any α > 0. Therefore, (33) holds.

Theorem 1 It holds:
lim
h→0+

ψh(α) = ψ(α) ∀α > 0. (34)

Proof (Sketch). It is possible to show that the sequence {uh,α}h of solutions to (Ph)
α

is bounded inV for any α > 0. Therefore, (29) implies boundedness of the sequence
{ψh(α)}h for any α > 0. Then there exist: λ̄ ∈ R+ and a subsequence {ψh′(α)} such
that ψh′(α) → λ̄ as h′ → 0+. From [7], it follows that φh′ (λ) → φ(λ) for any λ ∈
R+. Using the continuity of ψh, we arrive at φh′ (ψh′(α)) → φ(λ̄) and

ψ̄h′(α) = 1

α
φh′ (ψh′(α)) + ψh′(α) → 1

α
φ(λ̄) + λ̄

(17,33)= ψ̄(α) = 1

α
φ(ψ(α)) + ψ(α).

From the definition of ψ(α), it follows that λ̄ = ψ(α) proving (34).

Remark 3 Observe that the only one assumption on {Vh} is needed: namely that this
system is limit dense in V.

6 Computable Bounds of λ∗ and Numerical Experiments

Since λ∗ is a safety parameter, reliable computable bounds of this quantity are impor-
tant. Unlike [2, 7, 8, 12], we now use the P2-elements with a 7-point numerical inte-
gration formula instead of the P1-elements in order to reduce strong dependence on
the mesh density observed just for the P1-elements and unbounded yield surfaces.
We use similar benchmarks for the von Mises and Drucker–Prager yield surfaces
as in [7, 8]. The computational experiments presented below were implemented in
MatLab.
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6.1 Computable Bounds of λ∗ and Numerical Methods

Notation λ∗, λ∗
h, ψ , ψh, (Ph)

α will be related to unbounded B while λ∗
k , λ∗

k,h, ψk ,
ψk,h, (Pk,h)

α , and (Pk,h)λ will be associated with a bounded subset Bk of B. For
unbounded B, two kinds of lower bounds were mentioned:ψ(α), α > 0, and λ∗

k , k >

0. Convergence ψh(α) → ψ(α) and λ∗
k,h → λ∗

k as h → 0+ hold for the bounds but
λ∗
h → λ∗ need not hold, in general. Values λ∗

k,h can be approximated from below by
ψk,h(α) where α is sufficiently large. Moreover, the guaranteed upper bound (32) of
λ∗
k,h and λ∗

k is at our disposition. This bound should be close toψk,h(α) for verification
of numerical results. Further, λ∗ will be estimated from above by λ∗

h ≈ ψh(α), where
α is sufficiently large.Wewill compare numerically thementioned bounds for several
meshes.

The functions ψh and ψk,h can be assessed solving (Ph)
α and (Pk,h)

α , respec-
tively. To this end, we use the semismooth Newton method with damping or as a
case may be with regularized tangent stiffness matrices. In the latter case the tangent
stiffness matrix is replaced by a convex combination of the tangent and elastic stiff-
ness matrices to get positive definiteness. Damped parameters belong to (0, 1] and
guarantee a decrease of minimized functions in the Newton direction. In context of
the minimization problem, the method can be interpreted as a sequential quadratic
programming approach. The load constraint is enforced by the Lagrangemultiplier in
each Newton’s iteration. For convergence analysis and numerical experiments with
the variants of the semismooth Newton method we refer to [2]. We use the relative
tolerance 1e − 10 in a termination criterion of the Newton-like method.

This enables us to construct the loading λ − α curve to estimate λ∗
h. Firstly, a

constant increment δα > 0 is considered. If the computed increment δλ is less than
the prescribed threshold (we use 0.001) then we enlarge δα twice. So the values of
α can growth exponentially in a vicinity of the limit load. The loading process is
terminated when either α > αmax or δλ � 0.001.

Denote ᾱh as the maximal value of α obtained in this way for given Th and B.
For the truncation Bk , we write ᾱk,h to emphasize also dependence on k. We use the
values ψh(ᾱh) and λ̄k,h = ψk,h(ᾱk,h) as an approximation of λ∗

h and as a lower bound
of λ∗

k,h, respectively. In order to find the guaranteed upper bound of λ∗
k,h, we contruct

a minimization sequence of problem (Ph,k)λ using the damped semismooth Newton
method. We observed that the value λ = λ̄k,h + δλ, where δλ = 0.001, is usually
sufficient to satisfy criterion (32). Otherwise, we enlarge δλ.

6.2 Numerical Example with the Von Mises Criterion

We consider a benchmark used in [7, 8] and many other papers, namely a plane
strain problem with Ω depicted in Fig. 1: Ω is a quarter of the 10 × 10 (m) square
with the circular hole of radius 1 (m) in its center. The constant traction of density
f = (0, 450), (0, 0) (MPa) acts on the upper, and the right vertical side, respec-
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f

Ω

1 9

10

Fig. 1 Geometry and triangulation

Fig. 2 Loading paths
(zoom) for B

tively. The volume forces are neglected. This load corresponds to λ = 1. On the
rest of ∂Ω the symmetry boundary conditions are prescribed. The material parame-
ters are set as follows: E = 206900MPa (Young’s modulus), ν = 0.29 (Poisson’s
ratio) and γ = 450

√
2/3 MPa. Hence, the values of K and G needed in (12) are

K = E
3(1−2ν)

andG = E
2(1+ν)

. To obtainmore accurate bounds than in [7, 8],weuse the
P2-elements, a different mesh structure depicted in Fig. 1, and the truncation coeffi-
cient k = 0.7 for defining Bk .

The loading paths represented by the graphs of ψh and ψk,h are computed and
compared for three different triangulations Th with 10,137, 40,205, and 160,017
nodes (including the midpoints). Notice that the mesh in Fig. 1 has 2,585 nodes.
Zoom of the resulting loading paths in a vicinity of the limit load is depicted in Fig. 2
for B and in Fig. 3 for Bk .
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Fig. 3 Loading paths
(zoom) for Bk , k = 0.7

Table 1 Lower and upper
bounds of λ∗

k,h, k = 0.7
No. of nodes 10,137 40,205 160,017

Lower bound 1.0391 1.0388 1.0387

Upper bound 1.0401 1.0398 1.0397

One can observe that for any α > 0 fixed, the sequences {ψh(α)}h and {ψk,h(α)}h
are decreasing and converging. Moreover, the curves are almost constant for suf-
ficiently large values of α. In Fig. 2, this is visible only for the finest mesh (black
color) due to the zoom. From the black curve, we obtain the value close to 1.040 as
a reliable upper bound of λ∗. The curves for Bk are less dependent on the number of
nodes of Th than for B. The computed values ψk,h(ᾱk,h), i.e., the lower bounds of
λ∗
k,h are shown in Table1 and compared with the guaranteed upper bounds of λ∗

k,h.
The bounds practically coincide for the used meshes. This confirms that our results
are reliable. From Table1 we see that λ∗

k ≈ 1.038.
We arrive at the following bounds of λ∗: 1.038 ≤ λ∗ ≤ 1.040. Further, it is useful

to have a look at Figs. 4 and 5 where the displacements in the horizontal and vertical
directions (solution to (Ph)

α) at the end of the loading process (i.e. α = ᾱh) are
depicted for B and the finest mesh.

We observe a significant jump of the values along the same thin diagonal band.
Far from it, the material is rigid (constant displacements) which is in accordance
with Remark 1. Moreover, the vector field depicted in these figures can be simply
approximated by the function vδ = (vδ,1, vδ,2), where δ > 0, δ << 1,

vδ,1(x, y) =
⎧⎨
⎩

0, if y − x + 1 ≥ δ
a
δ
(y − x + 1 − δ), if 0 ≤ y − x + 1 ≤ δ

−a, if 0 ≥ y − x + 1
,
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Fig. 4 Horizontal
displacements for B

Fig. 5 Vertical
displacements for B

vδ,2(x, y) =
⎧⎨
⎩

a, if y − x + 1 ≥ δ
a
δ
(y − x + 1), if 0 ≤ y − x + 1 ≤ δ

0, if 0 ≥ y − x + 1
, a = 1

4500
.

It is easy to see that vδ ∈ V, div vδ = 0 inΩ , and L(vδ) = 1 for any δ � 1. Therefore,
from (13), we have:

λ∗ ≤
∫

Ω

γ ‖ε(vδ)‖ dx = γ
a

δ

√
2|Ωδ| = 9

5
√
3

+ O(δ)
.= 1.0392 + O(δ),
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where Ωδ = {(x, y) ∈ Ω | 0 ≤ y − x + 1 ≤ δ} and |Ωδ| = 9δ + O(δ2). Hence, the
value 1.0392 is a guaranteed upper bound of λ∗ which is fully in accordance with our
numerical results. Notice that the sequence {vδ} is converging to a function which
belongs to BD(Ω;R2) \ V.

In [7, 8], a much more pessimistic upper bound was obtained for the P1-elements.
Moreover, the corresponding curves for B strongly depended on the mesh. On the
other hand, for Bk , the results for P1 and P2-elements are similar. So, it seems that the
truncation limit analysis is useful for P2-elements and necessary for P1- elements.

6.3 Numerical Example with the Drucker–Prager Criterion

The second example is a slope stability benchmark considered as a plane strain
problem [3, 5, 13]. In comparison to [5, 8, 13], we use much smaller geometry and
the Poisson ratio ν = 0.25 instead of ν = 0.49. From Remark 1, it follows that the
limit load parameter should be independent of these settings. The shape and sizes
of 2D domain Ω with a uniform triangular mesh are shown in Fig. 6. The slope
inclination is 45◦. On the bottom we assume that Ω is fixed and the zero normal
displacements are prescribed on both vertical sides. The remaining part of ∂Ω is
free. The load L is represented by the gravity force F. We set the specific weight
ρg = 20 kN/m3 with ρ being the mass density and g the gravitational acceleration.
The Drucker- Prager parameters a and γ appearing in (14) are computed from the
friction angle φ and the cohesion c as follows [5]:

a = 3
√
2 tan φ√

9 + 12(tan φ)2
, γ = 3

√
2c√

9 + 12(tan φ)2
.

Fig. 6 Geometry of the
problem and the mesh for
h = 0.5m
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Fig. 7 Loading paths for B

Fig. 8 Loading paths for Bk ,
k = 3.9

Finally, E = 20 000 kPa, φ = 20◦ and c = 50 kPa. The bulk and shear moduli are
computed as in Sect. 6.2. The discretization of (Ph)

α is done by P2-elements using
three uniform triangulationsTh of Ω̄ with h = 0.05, 0.1, 0.2meters, where h stands
for the length of the leg of the isosceles right triangles creating Th.

The loadingpaths for all thesemeshes are depicted inFigs. 7 and8 forα ∈ [0, 1e5].
In Fig. 7 we see the loading paths for the original set B defined by (14). Again, one
can observe that the curves converge to some limit curve. Since the paths are almost
constant for α > 2e4 the respective values of ψh at α = 1e5 can be considered to be
equal to λ∗

h. Consequently, λ
∗
h=0.05 = 4.03 is a reliable upper bound of λ∗.

To get a lower bound of λ∗ we use the truncation approachwithBk defined by (22).
Figure8 depicts the resulting loading paths for Bk=3.9. The curves are less dependent
on the number of the nodes of Th than for B. The computed values ψk,h(ᾱk,h), i.e.,
the lower bounds of λ∗

k,h are displayed in Table2 and compared with the guaranteed
upper bounds of λ∗

k,h. The bounds practically coincide for the used meshes. This
confirms the reliability of our results. From Table2, we see that λ∗

k ≈ 4.00.
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Table 2 Lower and upper
bounds of λ∗

k,h, k = 3.9
No. of nodes h = 0.20 h = 0.10 h = 0.05

Lower bound 4.016 4.008 4.003

Upper bound 4.017 4.009 4.005

Based on this experiment we may conclude that the values 4.00 and 4.03 could
serve as reliable lower and upper bounds to λ∗, respectively. The analytical estimate
to this problem for theMohr-Coulomb yield function presented in [3] gives the value
λ∗ ≈ 4.045 which is close to the computed bounds.

7 Conclusion

The paper completes our research presented in [2, 7, 8, 12]. Unlike these papers,
some results are extended to P2-elements. For quadratic elements and unbounded
yield surfaces, the loading paths are not so much dependent on the number of mesh
nodes as for P1-elements. On the other hand, for bounded yield surfaces, P1 and
P2-elements, we obtain more or less the same results. We also illustrated using the
slope stability benchmark that the limit load parameter is independent of the elastic
parameters and the size of the geometry. These facts enable us to significantly improve
estimates of λ∗ in comparison to [7, 8].
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