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Abstract The present paper deals with the identification of the nine constitutive
parameters appearing in the strain energy density of a linear elastic second gradient
D4 orthotropic two-dimensional continuum model accounting for an external bulk
double force mext . The aim is to specialize the model for the description of pan-
tographic fabrics, which show such a kind of anisotropy. Analytical solutions for
model problems, which are here referred to as the heavy sheet, the non-conventional
bending and the trapezoidal cases are recalled from a previous paper and further
elaborated in order to perform gedanken experiments. We completely characterize
the set of nine constitutive parameters in terms of the materials the fibers are made of
(i.e. of the Young’s modulus of the fiber materials), of their cross section (i.e. of the
area and of the moment of inertia of the fiber cross sections), of the internal rotational
spring positioned at each intersection point between the two families of fibers and
of the pitch, i.e. the distance between adjacent pivots. Finally, the remarkable form
of the strain energy, derived in terms of the displacement field, is shortly discussed.

1 Introduction

Generalized continuum theories represent nowadays one of the most promising
research fields in continuum mechanics. Sound theoretical results are already pro-
vided in the literature (see [8, 18, 21, 35, 38, 41, 49] for general results in higher
gradient theory, [1, 22, 40, 42, 44–46] for pantographic and fibrous materials and
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[7, 19, 20] for second gradient fluids) together with interesting results concerning
the more general field of microstructured/micromorphic continua (see for instance
[28, 29, 32, 34, 47, 48], and in particular [2–5] for application to carbon nanotube
and [6, 23, 25, 26] for biological application; a general introduction for the partic-
ular case of micropolar continua is [33]). In this framework pantographic structures
represent, in the opinion of the authors, an ideal starting point for the theoretical
understanding of generalized continua. In fact, they represent the simplest possible
2D continuum in wich second gradient effects naturally arise from the geometry
of the microstructure. Moreover, availability of technologies such as 3D printing
and other computer-aided techniques, allows a ready experimental comparison that
reveals very fruitful in boosting the modeling process for pantografic sheets and for
microstructured continua in general. In order to have this strict interaction between
theoretical and experimental research properly working, suitable numerical tools
should be provided since, with the exception of some particular cases (such as the
examples presented in this work), it is in general impossible to provide closed-form
solutions. The numerical tools employed are often borrowed from well-established
techniques based mainly on Finite Element Method [9–12, 24, 39, 43], but some-
times high-regularity elements ensuring suitably strong continuity conditions needed
by higher gradient models are required (e.g. [13–16, 27]).

The work is organized as follows. In Sect. 2 we recall the derivation of governing
PDEs, obtained in [50] for a homogeneous D4 anisotropic two-dimensional second
gradient elastic material. In this case, explicit form of stress and hyper stress com-
ponents have been derived in terms both of the strain (and of its gradient) and of
the displacement field (i.e., of first, of second and of third derivatives of its compo-
nents). Thus, the stress divergence and the hyper stress double divergence vectors
have been derived, so that the final form of the PDEs, that were first exposed in
[50], have been re-obtained. In Sect. 3, the analytical solutions of the heavy sheet, of
the non-conventional bending and of the trapezoidal cases, that have been shown in
[50], will be analyzed. In particular, the strain, the strain-gradient, the stress and the
hyper stress components will be derived. Besides, contact force and double force,
for each of the four sides of the rectangular body, will be given, as well as the contact
vertex forces for each of its four vertexes. In Sect. 4 the pantographic case has been
analyzed, generalizing the results of [37] to the case where in the pantographic sheet
springs are present instead of perfect hinges. In particular, we will show how the
analytical solutions of the heavy sheet, of the non-conventional bending and of the
trapezoidal cases, that have been obtained in [37], can be achieved with the presence
of these internal rotational springs by applying a system of external couples, able
to annihilate the effects of the internal rotational springs. Such a system of exter-
nal couples will be identified with out-of-diagonal components of the external bulk
double forces. Finally, the identification between the pantograph with internal rota-
tional springs (the micro-model) and the continuous homogeneous D4 anisotropic
two-dimensional elastic second gradient rectangular body (the macro-model) will
give an explicit identification of the nine constitutive parameters of the macro-model
in terms of constitutive characteristics of the micro-model. In Sect. 5 a simple form
of the internal energy, in terms of the displacement field and of its first and second
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gradient components, will be shown. This form includes not only the contributions
of both families of fibers, for axial and for bending deformations of the micro-beams,
but also of the internal rotational springs. In Sect. 6 some conclusions will be driven.

Finally, a linguistic remark: in this paper (as well as in [36]) we use the expression
“gedanken experiment” in order to describe the type of reasoning that allows us to
find the constitutive parameters we search for. Since this linguistic choice has been
argued sometimes,wewould like to point out the following.According to theStanford
Encyclopedia of Philosophy [51], a gedanken experiment is a thought experiment,
i.e. a device of the imagination used to investigate the nature of things. Gedanken
experiments are used for diverse reasons in a variety of areas. The experiments should
be imagined and schematically described, regardless of any possibility of practical
realization. As model cases one can consider the well known experiments on the
concept of simultaneity in Special Relativity or the EPR experiment by Einstein,
Podolsky and Rosen (see for instance [52]). Our line of reasoning, though of course
simpler, is nonetheless exactly of this type, and therefore we stick to our previous
choice.

2 Outline of the Model

In this Section we briefly recall the main facts about the linear elastic second gradient
D4 orthotropic two-dimensional continuummodel employed in this paper, which can
be found in more detail in [50].

B is a 2-dimensional body that is considered in the reference configuration, where
X denotes the coordinates of its material points. U (G,∇G) is the internal energy
density functional, that is a function of the deformation matrix G = (

FT F − I
)
/2

and of its gradient ∇G. Here, F = ∇χ , where χ is the placement function, FT is
the transpose of F , and ∇ is the gradient operator. The energy functional E (u (·))
depends on the displacement u = χ − X and includes two contributions: the internal
and the external energies,

E (u (X)) =
∫

B

[
U (G,∇G) − bext · u − mext · ∇u

]
d A (1)

−
∫

∂B

[
t ext · u + τ ext · [(∇u) n]

]
ds −

∫

[∂∂B]
f ext · u.

Here, n is the unit external normal and the dot the scalar product between vectors or
tensors. bext and mext are (per unit area) the external body force and double force,
respectively; t ext and τ ext are (per unit length) the external force and double force;
f ext is the external concentrated force, that is applied on the vertices [∂∂B]. The
boundary ∂B is assumed to be the union of m regular parts �c (with c = 1, . . . ,m)
and the so-called boundary of the boundary [∂∂B] is assumed to be the union of the
corresponding m vertex-points Vc (with c = 1, . . . ,m) with coordinates Xc.
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It is worth noting that the new contribution of [50] with respect to [36] is in
the tensor mext . This term will be crucial for the identification that we are going to
perform.

It is well-established that in the general second gradient linear case we have

U (G,∇G) = Û (ε, η) = 1

2
CI JεI εJ + 1

2
Aαβηαηβ (2)

where the indices I and J go from 1 to 3 and the indices α and β go from 1 to
6. In [50], Eqs. (14), (16), (17), (19), ε, η, C and A are reported component-wise,
respectively.

In [50], the computation of the minimum of E is performed and (see Eq. (21)
therein) the system of PDEs for anisotropic D4 elastic second gradient materials has
been deduced in terms of the displacement field.

We now shall show some explicit computations which are instrumental for the
identification procedure. Referring to the notation introduced in [50], Eqs. (5)–(8),
the stress components read:

S11 = ∂U

∂G11
= ∂U

∂ε1
= C1I εI = C11ε1 + C12ε2 + C13ε3 = c11G11 + c12G22, (3)

S12 = S21 = 1

2

∂U

∂G12
=

√
2

2

∂U

∂ε3

=
√
2

2
C3I εI =

√
2

2
C31ε1 +

√
2

2
C32ε2 +

√
2

2
C33ε3 = c33G12, (4)

S22 = ∂U

∂G22
= ∂U

∂ε2
= C2I εI = C21ε1 + C22ε2 + C23ε3 = c12G11 + c11G22. (5)

The hyperstress components read:

T111 = ∂U

∂G11,1
= ∂U

∂η1
= A1αηα = a11G11,1 + a12G22,1 + √

2a13G12,2, (6)

T112 = ∂U

∂G11,2
= ∂U

∂η5
= A5αηα = a12G22,2 + a22G11,2 + √

2a23G12,1, (7)

T121 = T211 = 1

2

∂U

∂G12,1
=

√
2

2

∂U

∂η6

=
√
2

2
A6αηα =

√
2

2
a13G22,2 +

√
2

2
a23G11,2 + a33G12,1, (8)

T122 = T212 = 1

2

∂U

∂G12,2
=

√
2

2

∂U

∂η3

=
√
2

2
A3αηα =

√
2

2
a13G11,1 +

√
2

2
a23G22,1 + a33G12,2, (9)
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T221 = ∂U

∂G22,1
= ∂U

∂η2
= A2αηα = a12G11,1 + a22G22,1 + √

2a23G12,2, (10)

T222 = ∂U

∂G22,2
= ∂U

∂η4
= A4αηα = a11G22,2 + a12G11,2 + √

2a13G12,1. (11)

It is worth to be noted that, by replacing the components of the strain and of the strain
gradient tensors

G11 = u1,1, G12 = G21 = 1

2

(
u1,2 + u2,1

)
, G22 = u2,2, (12)

G11,1 = u1,11, G11,2 = u1,12, G22,1 = u2,12, G22,2 = u2,22, (13)

G12,1 = G21,1 = 1

2

(
u1,12 + u2,11

)
, G12,2 = G21,2 = 1

2

(
u1,22 + u2,12

)
, (14)

into (3)–(11), we obtain, respectively, the stress and the hyperstress components in
terms of the displacement fields,

S11 = c11u1,1 + c12u2,2, (15)

S12 = S21 = 1

2
c33

(
u1,2 + u2,1

)
, (16)

S22 = c11u2,2 + c12u1,1, (17)

T111 = a11u1,11 + a12u2,12 + a13√
2

(
u1,22 + u2,12

)
, (18)

T112 = a12u2,22 + a22u1,12 + a23√
2

(
u1,12 + u2,11

)
, (19)

T121 = T211 =
√
2

2
a13u2,22 +

√
2

2
a23u1,12 + 1

2
a33

(
u1,12 + u2,11

)
, (20)

T122 = T212 =
√
2

2
a13u1,11 +

√
2

2
a23u2,12 + 1

2
a33

(
u1,22 + u2,12

)
, (21)

T221 = a12u1,11 + a22u2,12 + a23√
2

(
u1,22 + u2,12

)
, (22)

T222 = a11u2,22 + a12u1,12 + a13√
2

(
u1,12 + u2,11

)
, (23)

so that the first component of stress divergence in terms of the displacement field is

S11,1 + S12,2 = c11u1,11 + c12u2,12 + 1

2
c33

(
u1,22 + u2,12

)
. (24)

Besides, keeping in mind that
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T111,11 = a11u1,1111 + a12u2,1112 + a13√
2

(
u1,1122 + u2,1112

)
,

T112,21 = a12u2,1222 + a22u1,1122 + a23√
2

(
u1,1122 + u2,1112

)
,

T121,12 =
√
2

2
a13u2,1222 +

√
2

2
a23u1,1122 + 1

2
a33

(
u1,1122 + u2,1112

)
,

T122,22 =
√
2

2
a13u1,1122 +

√
2

2
a23u2,1222 + 1

2
a33

(
u1,2222 + u2,1222

)
,

the first component of the double divergence of the hyper-stress in terms of the
displacement field is

T1 jh,h j = a11u1,1111 + a12
(
u2,1112 + u2,1222

)

+√
2 (a13 + a23)

(
u1,1122 + 1

2
u2,1112 + 1

2
u2,1222

)

+a22u1,1122 + a33
(
u1,1122 + u2,1112 + u1,2222 + u2,1222

)
. (25)

For the sake of brevity, from now on, whenever we will refer to an equation (n)
in [50] we shall use the notation (n-P1). With this new notation it is now evident that
(21-P1) is given by insertion of (24), and (25) into the integral argument of (3-P1).

3 Analytical Solutions

In this Section we shall elaborate on the top of analytical solutions proposed in [50]
and give more details about the choice of compatible combinations of the external
distributed bulk actions bext and mext .

Since in [50] the case of a body of rectangular geometry is considered, in order to
elaborate some of the analytical solutions proposed therein to perform identification
through gedanken experiments, we shall do the same. In Fig. 1 the scheme of the
rectangle considered in [50] is represented.

Fig. 1 Nomenclature of the
2-dimensional body B
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3.1 Heavy Sheet

The following displacement field is considered,

u1 = 0, u2 = ρg (X2 − l) (3l + X2)

2c11
. (26)

At the bottom the vertical displacement is

u2 (X1, X2 = −l) = ρg (−l − l) (3l − l)

2c11
= −2

ρgl2

c11
.

We have by derivation of (26)

u1,1 = u1,2 = u2,1 = 0, u2,2 = ρg (X2 + l)

c11
. (27)

The strain components are by definition

G11 = 0, G12 = G21 = 0, G22 = ρg (X2 + l)

c11
(28)

so that the strain gradient components are

G11,1 = G11,2 = G12,1 = G12,2 = G21,1 = G21,2 = G22,1 = 0, G22,2 = ρg

c11
.

(29)
Thus, from (15)–(17), the stress components are

S11 = c11G11 + c12G22 = c12
ρg (X2 + l)

c11
, (30)

S12 = S21 = 2c33G12 = 0, (31)

S22 = c12G11 + c11G22 = ρg (X2 + l) , (32)

and, from (18)–(23), the hyperstress components are

T111 = 0, (33)

T112 = a12
ρg

c11
, (34)

T121 = T211 =
√
2

2
a13

ρg

c11
, (35)

T122 = T212 = 0, (36)

T221 = 0, (37)

T222 = a11
ρg

c11
. (38)
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From (4-P1), at the boundary sides with unit normal n we have the relations
between, per unit length, the contact force t and double force τ and the external
force t ext and double force τ ext ,

ti = t exti + mext
i j n j , τi = τ ext

i . (39)

Insertion of (24-P1)-(27-P1) into (39) and use of (30)–(38) gives for sides S, Q, R
and T , respectively,

t1 = t S1 = c12
ρg (X2 + l)

c11
= t ext,S1 + mext

11 = t ext,S1 , (40)

t2 = t S2 = 0 = t ext,S2 + mext
21 = t ext,S2 , (41)

τ1 = τ S
1 = 0 = τ

S,ext
1 , (42)

τ2 = τ S
2 =

√
2

2
a13

ρg

c11
= τ

S,ext
2 . (43)

t1 = t Q1 = −c12
ρg (X2 + l)

c11
= t ext,Q1 − mext

11 = t ext,Q1 , (44)

t2 = t Q2 = 0 = t ext,Q2 − mext
21 = t ext,Q2 , (45)

τ1 = τ
Q
1 = 0 = τ

Q,ext
1 , (46)

τ2 = τ
Q
2 =

√
2

2
a13

ρg

c11
= τ

Q,ext
2 . (47)

t1 = t R1 = 0 = t ext,R1 + mext
12 = t ext,R1 , (48)

t2 = t R2 = ρg (X2 + l) = 2ρgl + mext
22 = t ext,R2 + mext

22 = t ext,R2 , (49)

τ1 = τ R
1 = 0 = τ

R,ext
1 , (50)

τ2 = τ R
2 = a11

ρg

c11
= τ

R,ext
2 . (51)

t1 = t T1 = 0 = t ext,T1 − mext
12 = t ext,T1 , (52)

t2 = t T2 = −ρg (X2 + l) = −ρg (−l + l) = 0 = t ext,T2 − mext
22 = t ext,T2 , (53)

τ1 = τ T
1 = 0 = τ

T,ext
1 , (54)

τ2 = τ T
2 = a11

ρg

c11
= τ

T,ext
2 . (55)

At the vertices, from (42-P1) and (27), we have that the relevant combination of
the hyperstress for characterization of vertex-forces are

T112 + T121 =
(

a12 +
√
2

2
a13

)
ρg

c11
, T212 + T221 = 0
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so that, from (41-P1),

(
f ext1

)
Vi

= −
(

a12 +
√
2

2
a13

)
ρg

c11
, i = 1, 3 (56)

(
f ext1

)
Vi

=
(

a12 +
√
2

2
a13

)
ρg

c11
, i = 2, 4 (57)

(
f ext2

)
Vi

= 0, i = 1, 2, 3, 4. (58)

3.2 Non-conventional Bending

Let us take into account the following displacement field,

u1 = 0, u2 = −aX2
1

2
. (59)

The maximum displacement (at side S) is

u2 (X1 = L , X2) = −aL2

2
.

We have by derivation of (59)

u1,1 = u1,2 = u2,2 = 0, u2,1 = −aX1. (60)

The strain components are by definition

G11 = 0, G12 = G21 = −1

2
aX1, G22 = 0, (61)

so that the strain gradient components are

G11,1 = G11,2 = G12,2 = G21,2 = G22,1 = G22,2 = 0, G12,1 = G21,1 = −1

2
a.

(62)
Thus, from (15)–(17), the stress components are

S11 = c11G11 + c12G22 = 0, (63)

S12 = S21 = c33G12 = −a

2
X1c33, (64)

S22 = c12G11 + c11G22 = 0, (65)

and, from (18)–(23), the hyperstress components are
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T111 = a11G11,1 + a12G22,1 + √
2a13G12,2 = 0, (66)

T112 = a12G22,2 + a22G11,2 + √
2a23G12,1 = −

√
2

2
a23a, (67)

T121 = T211 =
√
2

2
a13G22,2 +

√
2

2
a23G11,2 + a33G12,1 = −1

2
a33a, (68)

T122 = T212 =
√
2

2
a13G11,1 +

√
2

2
a23G22,1 + a33G12,2 = 0, (69)

T221 = a12G11,1 + a22G22,1 + √
2a23G12,2 = 0, (70)

T222 = a11G22,2 + a12G11,2 + √
2a13G12,1 = −

√
2

2
a13a. (71)

From (4-P1), at the boundary sides with unit normal n we have the relations
between, per unit length, the contact force t and double force τ and the external
force t ext and double force τ ext ,

ti = t exti + mext
i j n j , τi = τ ext

i . (72)

Insertion of (24-P1)-(27-P1) into (72) and use of (63)–(71) gives for sides S, Q, R
and T , respectively,

t1 = t S1 = 0 = t ext,S1 + mext
11 = t ext,S1 = 0, (73)

t2 = t S2 = −a

2
X1c33 = t ext,S2 + mext

21 = t ext,S2 − a

2
c33X1 ⇒ t ext,S2 = 0, (74)

τ1 = τ S
1 = 0 = τ

S,ext
1 , (75)

τ2 = τ S
2 = −a

2
a33 = τ

S,ext
2 . (76)

t1 = t Q1 = 0 = t ext,Q1 − mext
11 = t ext,Q1 = 0, (77)

t2 = t Q2 = a

2
X1c33 = t ext,Q2 − mext

21 = t ext,Q2 + a

2
c33X1 ⇒ t ext,Q2 = 0, (78)

τ1 = τ
Q
1 = 0 = τ

Q,ext
1 , (79)

τ2 = τ
Q
2 = −a

2
a33 = τ

Q,ext
2 . (80)

t1 = t R1 = −a

2
X1c33 = t ext,R1 + mext

12 = t ext,R1 − a

2
X1c33 = 0 ⇒ t ext,R1 = 0,(81)

t2 = t R2 = 0 = t ext,R2 + mext
22 = t ext,R2 = 0, (82)

τ1 = τ R
1 = 0 = τ

R,ext
1 , (83)

τ2 = τ R
2 = −

√
2

2
a13a = τ

R,ext
2 . (84)
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t1 = t T1 = a

2
X1c33 = t ext,T1 − mext

12 = t ext,T1 + a

2
X1c33 ⇒ t ext,T1 = 0, (85)

t2 = t T2 = 0 = t ext,T2 − mext
22 = t ext,T2 , (86)

τ1 = τ T
1 = 0 = τ

T,ext
1 , (87)

τ2 = τ T
2 = −

√
2

2
a13a = τ

T,ext
2 . (88)

From (42-P1) and (60), at the vertices we have that the relevant combinations of
hyperstress for characterization of vertex-forces are

T112 + T121 = −a

(√
2

2
a23 + 1

2
a33

)

, T212 + T221 = 0

so that, from (41-P1),

(
f ext1

)
Vi

= a

(√
2

2
a23 + 1

2
a33

)

, i = 1, 3 (89)

(
f ext1

)
Vi

= −a

(√
2

2
a23 + 1

2
a33

)

, i = 2, 4 (90)

(
f ext2

)
Vi

= 0, i = 1, 2, 3, 4. (91)

It is worth to be noted that the total external moment Mext
S on side S is only due

to the double force τ
ext,S
2 of (76)

Mext
S =

∫ l

−l
τ
ext,S
2 ds = −a33

a

2

∫ l

−l
ds = −a33al (92)

that provides an interpretation of the parameter a first introduced in (59), i.e.,

a = −Mext
S

a33l
. (93)

3.3 Trapezoidal Case

Let us take into account the following displacement field

u1 = 0, u2 = bX1X2. (94)

We have by derivation of (94)
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u1,1 = u1,2 = 0, u2,1 = bX2 u2,2 = bX1. (95)

The strain components are by definition

G11 = 0, G12 = G21 = 1

2
bX2, G22 = bX1 (96)

so that the strain gradient components are

G11,1 = G11,2 = G12,1 = G21,1 = G22,2 = 0, G12,2 = G21,2 = 1

2
b G22,1 = b.

(97)
Thus, from (15)–(17), the stress components are

S11 = c11G11 + c12G22 = bc12X1, (98)

S12 = S21 = c33G12 = 1

2
bc33X2, (99)

S22 = c12G11 + c11G22 = bc11X1, (100)

and, from (18)–(23), the hyperstress components are

T111 = a11G11,1 + a12G22,1 + √
2a13G12,2 = b

(

a12 +
√
2

2
a13

)

, (101)

T112 = a12G22,2 + a22G11,2 + √
2a23G12,1 = 0, (102)

T121 = T211 = 1

2

√
2a13G22,2 + 1

2

√
2a23G11,2 + a33G12,1 = 0, (103)

T122 = T212 = 1

2

√
2a13G11,1 + 1

2

√
2a23G22,1 + a33G12,2

= 1

2
b

(√
2a23 + a33

)
, (104)

T221 = a12G11,1 + a22G22,1 + √
2a23G12,2 = b

(

a22 +
√
2

2
a23

)

, (105)

T222 = a11G22,2 + a12G11,2 + √
2a13G12,1 = 0. (106)

Insertion of (24-P1)-(27-P1) into (39) and use of (63)–(71) gives for sides S, Q, R
and T , respectively,

t1 = t S1 = c12bX1 = c12bL = t ext,S1 + mext
11 = t ext,S1 , (107)

t2 = t S2 = 1

2
bc33X2 = t ext,S2 + mext

21 = t ext,S2 + b

(
c12 + 1

2
c33

)
X2

⇒ t ext,S2 = −bc12X2, (108)
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τ1 = τ S
1 = b

(

a12 +
√
2

2
a13

)

= τ
S,ext
1 , (109)

τ2 = τ S
2 = 0 = τ

S,ext
2 . (110)

t1 = t Q1 = −bc12X1 = 0 = t ext,Q1 − mext
11 = t ext,Q1 , (111)

t2 = t Q2 = −1

2
bc33X2 = t ext,Q2 − mext

21 = t ext,Q2 − b

(
c12 + 1

2
c33

)
X2

⇒ t ext,Q2 = bc12X2, (112)

τ1 = τ
Q
1 = b

(

a12 +
√
2

2
a13

)

= τ
Q,ext
1 , (113)

τ2 = τ
Q
2 = 0 = τ

Q,ext
2 . (114)

t1 = t R1 = 1

2
bc33X2 = t ext,R1 + mext

12 = t ext,R1 + b

(
c12 + 1

2
c33

)
X2 = 0

⇒ t ext,R1 = −bc12X2 = −blc12, (115)

t2 = t R2 = bc11X1 = t ext,R2 + mext
22 = t ext,R2 , (116)

τ1 = τ R
1 = b

2

(√
2a23 + a33

)
= τ

R,ext
1 , (117)

τ2 = τ R
2 = 0 = τ

R,ext
2 . (118)

t1 = t T1 = −1

2
bc33X2 = t ext,T1 − mext

12 = t ext,T1 − b

(
c12 + 1

2
c33

)
X2

⇒ t ext,T1 = −bc12l, (119)

t2 = t T2 = 0 = t ext,T2 − mext
22 = t ext,T2 , (120)

τ1 = τ T
1 = b

2

(√
2a23 + a33

)
= τ

T,ext
1 , (121)

τ2 = τ T
2 = 0 = τ

T,ext
2 . (122)

From (42-P1) and (60), at the vertices we have that the relevant combination of the
hyperstresses for characterization of vertex-forces are

T112 + T121 = 0, T212 + T221 = b

(
a22 + √

2a23 + 1

2
a33

)
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so that, from (41-P1),

(
f ext1

)
Vi

= 0, i = 1, 2, 3, 4 (123)

(
f ext2

)
Vi

= −b

(
a22 + √

2a23 + 1

2
a33

)
, i = 1, 3 (124)

(
f ext2

)
Vi

= b

(
a22 + √

2a23 + 1

2
a33

)
, i = 2, 4. (125)

4 Pantographic Case

Let us assume that the two families of fibers in the pantographic structure,modelled as
Euler beams in the micro-model, are aligned with the axes of the frame of reference.
A series of intuitive considerations are done in this section. In other words a set of
gedanken experiments is conceived for the purpose of parameters identification.

4.1 Heavy Sheet

We can prove that the vertical displacement of side T is, in the micro-model, that
of the free-side of a cantilever extensional beam of length 2l, with axial rigidity
Em Am and with a distributed axial load bN = bv

N + bhN that is due to its own weight
bv
N = −ρm Amg and to the weight of the horizontal beams bhN = bv

N

u2 (X1, X2 = −l) = −2ρgl2

c11
= −4ρmgl2

Em
, (126)

where g is gravity acceleration, ρm is the mass per unit volume of the micro beams
and Em is their Young modulus. Besides, equating the mass of the continuous
macro model (ρL2l) with the one of the micro model (ρm AmL

2l
dm

+ ρm Am2l L
dm

=
2Ll 2ρm Am

dm
) yields the relation

ρ = 2ρm Am

dm
, (127)

where Am is the cross section area of eachmicro beam and dm is the distance between
two adjacent families of micro beams. From (126) and (127) we have

c11 = Em
2ρgl2

4ρmgl2
= Em

2ρm Am

dm

1

2ρm
= Em Am

dm
. (128)

Further considerations based upon the heavy sheet configuration can be done.
First of all, the natural absence of the Poisson effect in this configuration makes the
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horizontal force per unit length for the vertical sides, that are given from (40). This
and (128) give

t ext,S1 = ρg (l + X2)

c11
c12 = 0, ⇒ c12 = 0. (129)

The natural absence of double force in vertical sides gives from (43) and (128)

τ
ext,S
2 = √

2
a13ρg

c11
= 0, ⇒ a13 = 0. (130)

The natural absence of double force in horizontal sides gives from (51) and (128)

τ
R,ext
2 = ρga11

c11
= 0, ⇒ a11 = 0. (131)

Moreover, in the same heavy sheet configuration, the natural absence of vertex forces
gives from (56) and (128)

T112 + T121 =
(
a12 + √

2a13
)

ρg

2c11
= 0, ⇒ a12 + √

2a13 = 0, (132)

that yields with (130),
a12 = 0. (133)

4.2 Non-conventional Bending

We set an equivalence of such a case with a pantograph composed of a number (i.e.
2l
dm
) of horizontal beam that are bent due to an external couple Mm on the right-hand

side of each beam, so that the total external moment Mext
S on side S is related to Mm ,

Mext
S = − 2l

dm
Mm, (134)

and the vertical displacement of side S is

u2 (X1 = L , X2) = −aL2

2
= − MmL2

2Em Im
, (135)

where Im is the moment of inertia of the micro-beams. Such an equivalence works
nicely in the case of absence of internal rotational springs at the place of each internal
hinges.

In the case where the internal rotational springs are present, we need to apply, in
themicro-model, twomoments at the position of each internal rotational springs. One
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momentMH
ext on thehorizontal fibers and theothermomentMV

ext on thevertical fibers.
Such moments have the role to annihilate the effects of the moments, MH→V

rs and
MV→H

rs , that are due to the internal rotational springs and, therefore, are proportional
to the relative angle (θH − θV ) between the horizontal (θH is the rotation of the
horizontal beam) and the vertical θV (θV is the rotation of the vertical beam) beams.
Let us take into account the horizontal beam. The internal rotational springs gives
positive moment MV→H

rs on the beam

MV→H
rs = −kr (θH − θV )

because in this non-conventional bending case we have

θV = 0, θH = u2,1 = −aX1,

that gives
MV→H

rs = kraX1.

The same internal rotational spring gives an opposite moment MH→V
rs on the

vertical beam,
MH→V

rs = −kr (θV − θH ) = −kraX1.

In order to annihilate the effects of the internal rotational springs, the external
moments MH

ext and MV
ext need to be the opposite of those given by the rotational

springs, i.e.,

MH
ext = −MV→H

rs = −kraX1, MV
ext = −MH→V

rs = kraX1.

Thus, two moments have been applied at the position of each internal hinge-
rotational-spring in the micro-model. In the macro-model, such positions are distrib-
uted on the two-dimensional body. Therefore, we need to apply distributed external
moments that are modelled by a distributed external double force mext . In particu-
lar only the out-of-diagonal components mext

12 and mext
21 have the role of distributed

external couples. Since mext
12 does work on the component u1,2 of the displacement

gradient, then mext
12 is interpreted as the negative distributed couple on the vertical

beams
mext

12 = −MV
ext = −kraX1.

Because of (57-P1)

mext
12 = −a

2
c33X1, ⇒ c33 = 2kr . (136)

Equations (93), (134) and (135) give
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a = −Mext
S

a33l
.

a33 = −Mext
S

al
= 2l

dm
Mm

1

al
= 2l

dm

aL22Em Im
2L2

1

al
= 2

Em Im
dm

. (137)

Moreover, in the non-conventional bending case, from (89), the natural absence
of vertex forces gives,

T112 + T121 = a

2

(
a33 + √

2a23
)

= 0, ⇒ a33 + √
2a23 = 0. (138)

4.3 Trapezoidal Case

From (124), assuming zero wedge forces, in the trapezoidal case we have

T212 + T221 = a22 + √
2a23 + 1

2
a33 = 0 ⇒ 2a22 + 2

√
2a23 + a33 = 0. (139)

4.4 Summary

Equations (128)–(132), (136)–(139) completely characterize the orthotropic mater-
ial. In particular the two constitutive matrices are represented as follows

C = Em Am

dm

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ + 2kr

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ =
⎛

⎝

Em Am
dm

0 0
0 Em Am

dm
0

0 0 2kr

⎞

⎠ , (140)

A = Em Im
dm

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 0 0
0 1 −√

2 0 0 0
0 −√

2 2 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −√

2
0 0 0 0 −√

2 2

⎞

⎟⎟⎟⎟
⎟⎟
⎠

. (141)
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4.5 About the Redundancy of Equations Coming from
gedanken experiments

The same result in (136) could be achieved by identifying the component mext
21 that

does work on the component u2,1of the displacement gradient. Thus, mext
21 is inter-

preted as the positive distributed couple on the horizontal beams

mext
21 = MH

ext = −kraX1,

that, with (57-P1), gives the same identification (136).
We remark that the identification in (129) could also be achieved, in the trapezoidal

case, assuming zero horizontal force on the vertical sides and that the one in (130)
could also be achieved in the non-conventional bending case, from (84), assuming
zero double force at horizontal sides.

We remark that the identification in (133) could also be achieved in the trapezoidal
case, from (113) and with (132), assuming zero horizontal double force at vertical
sides.

We remark that the identification in (136) could also be achieved in the non-
conventional bending case, from (77)1 or from (73)1, assuming zero horizontal force
per unit length at vertical sides or, from (81), by assuming zero horizontal force per
unit length at horizontal sides. Alternatively it could be achieved in the trapezoidal
case, from (78)2 and (74)2, by assuming zero vertical force per unit length at vertical
sides or, from (81), by assuming zero horizontal force per unit length at horizontal
sides.

We finally remark that the identification in (138) could also be achieved in the
trapezoidal case, from (117), assuming zero horizontal double force at horizontal
sides.

Further redundant identification formulas could be derived in the trapezoidal case
that, for the sake of simplicity, are not made explicit in this paper.

5 Some Remarks on the Internal Energy

It is interesting to recognize that the internal energy (2) can now be computed with
(14-P1), (15-P1) and with the definition, in the linear case, of the deformation matrix
G and of its gradient ∇G,

U (G,∇G) = 1

2

Em Am

dm

(
G2

11 + G2
22

) + 1

2
2kr2 (G12)

2

+1

2

Em Im
dm

[
G22,1

(
G22,1 − 2G12,2

) + 2G12,2
(−G22,1 + 2G12,2

)]

+1

2

Em Im
dm

[
G11,2

(
G11,2 − 2G12,1

) + 2G12,1
(−G11,2 + 2G12,1

)]
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or, in terms of the displacement field,

U (G,∇G) = 1

2
kr

(
u1,2 + u2,1

)2 + Em Am

2dm

(
u21,1 + u22,2

) + Em Im
2dm

(
u21,22 + u22,11

)
.

(142)
Expression (142) is a useful form of the energy, as in it the contributions of both

families of fibers, for axial and for bending deformations of the micro-beams, and
also of the internal rotational springs, appear explicitly.

6 Conclusion

In the same fashion of [37], in this paper we have identified the whole set of nine
parameters characterizing a homogeneous linear second gradientD4 orthotropic con-
tinuum model accounting for external distributed bulk double forces, developed in
[50] and which can be considered an extension of the model presented in [36]. Ana-
lytical solutions proposed in [50] were employed in order to perform an identification
in terms of the Young’s modulus of the fibers’ material, of their area, of the moment
of inertia of their cross sections, of the rigidity of the internal rotational spring and of
the step. A suitable form of the strain energy, that closely resembles the contributions
of both families of fibers, for axial and for bending deformations of the micro-beams,
and also of the internal rotational springs, has been derived.

The results can of course be generalized in various ways. For instance, interesting
progresses in this line of investigation may involve multi-physics coupling between
mechanical and electric effects (a case in which anisotropy plays of course a relevant
role [53]), as well as more general beammodels for the fibers [54–56]. The extension
of the results to nonlinear second gradient continua is of course far from trivial and
may require substantial theoretical progresses.
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