Continuum Physics with Violations
of the Second Law of Thermodynamics

Martin Ostoja-Starzewski

Abstract As dictated by the modern statistical physics, the second law is to be
replaced by the fluctuation theorem on very small length and/or time scales. This
means that the deterministic continuum thermomechanics must be generalized to a
stochastic theory allowing randomly spontaneous violations of the Clausius—Duhem
inequality to take place anywhere in the material domain. This paper outlines possi-
ble extensions of stochastic continuum thermomechanics in coupled field problems:
(i) thermoviscous fluids, (ii) thermo-elastodynamics, and (iii) poromechanics with
dissipation within the skeleton, the fluid, and the temperature field. Linear dissipative
processes are being considered, with the thermodynamic orthogonality providing the
average constitutive response and the fluctuation theorem providing the violations of
the second law of thermodynamics. Special attention is paid to the fact that one can
develop hyperbolic theories (i.e. free of the paradox of infinite speeds of signal trans-
mission) while working with the Fourier-type conduction for which the fluctuation
theorem has already been developed.

1 Violations of the Second Law of Thermodynamics in
Heat Conduction and Viscous Flow

In continuum thermomechanics (e.g. [1]), the second fundamental law may be written
in terms of the reversible (s*) and irreversible (s*(") parts of entropy production
rate ()

§ =5 4 ¢ with 50 = — (%) i and s > 0. (1)
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Here 6 is the absolute temperature while g; is the heat flux [Throughout we inter-
changeably use the subscript (f;...) and the symbolic ( f) notations for tensors, as the
need arises; an overdot means the material time derivative.]. The inequality in (1)3
is assumed to hold instantaneously, i.e. for all 7.

In contemporary statistical physics (e.g. [2, 3]) the second law is replaced by the
fluctuation theorem which gives the relative probability of observing processes that
have positive (A) and negative (—A) total dissipation in non-equilibrium systems:

PG =4 _ .
P =-4 @

Here ¢, is the total dissipation for a trajectory I' = {qy, p1, ..., qn, pn} of N particles
originating at I' (0) and evolving for a time ¢:

¢ (I (0))=/0 ¢ (I (s))ds. 3)
The integral in (3) involves an instantaneous dissipation function:
d¢, (I (0
oy =L (4)

The second law of thermodynamics is recovered upon ensemble averaging, time
averaging, or upscaling.

Note for future reference that the dissipation function ¢, albeit on a coarser length
scale, is also employed in continuum thermomechanics to describe the dissipative part
of constitutive behavior of an elementary volume dV (or a corresponding elementary
mass dm). That function is taken as a functional ¢ (V') over the space of velocities V
(or as a functional ¢ (Y) over the space of dissipative forces Y), such that its value
equals the instantaneous irreversible entropy production:

¢ (V) = s, (5)

Effectively, the functional ¢ (V') or ¢ (Y) is employed to derive the constitutive laws
of continua. As is well known, one of the simplest models of continuum physics is the
linear (Fourier) heat conduction, whereby the functional becomes a quadratic form
and the inequality (1); implies the positive definiteness of the thermal conductivity
tensor.

In view of (2) above, the dissipation function is a stochastic (not deterministic)
quantity which possibly and spontaneously takes negative values, so that the positive-
definiteness does not absolutely hold. Therefore, we write (5) as

Y (w)-V=¢V, 0=s" wecf, (6)
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where Y (w) are the dissipative forces conjugate to V. Given that £2 is the set of
possible outcomes, the argument w indicates that ¢ (V, ) is a stochastic functional,
while Y () is a random quantity for a non-random (prescribed) velocity V. An
analogous picture holds for Y being prescribed and V the random outcome. It is
tacitly assumed that £2 is equipped with a o-algebra of observable events ./ and a
probability measure P defined on (£2, 7).

The fluctuation theorem as expressed by (1) states that (i) positive dissipation is
exponentially more likely to be observed than negative dissipation, and (ii) ensemble
averaging of ¢, leads to

(¢ | F1) = 0. (N

Here | .%, indicates the conditioning on the past and is discussed below, while ( ) :=
| f dP. Thus, the entropy production rate is non-negative on average. In view of the
random fluctuations, ¢ is a stochastic process with a specific type of memory effect:
a submartingale [4]. Treating time as a continuous parameter, we have

(@r+ar | past history) > ¢;. (3

Next, we recall the Doob—Meyer decomposition to write ¢, as a sum of a martingale
(M) and a “drift” process (G):

&(V,0)=M+G and ¢(V,0) =M + G. )

Thus, M # 0 reflects the fluctuations of entropy production about the zero level
<s(i)) = (. The four different cases depending on whether M = Oor M # Oand G =
0 or G > 0 have been discussed in [4]. Overall, deterministic continuum mechanics
is smoothly recovered as the time and/or spatial scale increases (so that M — 0) or
via ensemble averaging.

Note that one might also work with a discrete time formulation, making the
mathematical analysis simpler.

There are three types of phenomena in classical physics where the fluctuation
theorem is applicable: viscous [2], thermal [3], and electrical [2]. Here we concern
ourselves with the first two, so that, contact with continuum thermomechanics is
made by writing the scalar product Y - V' as one involving the intrinsic mechanical
dissipation (which includes the viscous effects) and thermal dissipation in spatial
(Eulerian) description:

—-Vo
¢V, 0) =¢un(Vi,®) + Gmecn(Va, 0), V=(V1,Vy) = (T d) - (10)

Thus, the generalized velocity vector V is made up of two parts: the temperature
gradient divided by the temperature —V6 /6 and the deformation rate d. The reason
we take the former as the argument of ¢, is that the fluctuation theorem for heat flow
was derived for controllable temperature differences [3], with the heat flux being the
stochastic outcome. Analogously, the fluctuation theorem for Couette and Poiseuille
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flows was derived for controllable velocities [3], with the Cauchy stress being the
stochastic outcome. Thus, the dissipative force corresponding to V is made up of the
heat flux and the dissipative stress

Y=Y =(q.09). (11)

It is largely a matter of convenience whether —V6/6 or g should be taken as a
velocity or a dissipative force. In the section on thermoviscous fluids we work with
the setup outlined above, while in the section on inviscid thermoelastic solids we
invert the roles of —V6/6 and ¢.

There are two basic possibilities here:

e both processes in (10) may independently exhibit spontaneous random violations
of the second law;

e both processes in (10) are coupled implying that the thermal and viscous violations
of the second law are coupled, for which the relevant statistical physics has not
yet been studied.

In what follows, we shall consider the first possibility above focusing on: (i)
thermoviscous fluids with parabolic or hyperbolic type heat conduction, (ii) ther-
moelasticity with parabolic or hyperbolic type heat conduction, and (iii) porome-
chanics with dissipation within the skeleton, the fluid, and the temperature field. The
reason we consider parabolic or hyperbolic cases is that the statistical physics has
established the spontaneous violations of the Fourier type law [3], but a hyperbolic
heat conduction in fluids and solids can still be modeled if a relaxation time in the
entropy constitutive law is introduced. The theoretical developments below hinge on
the fact that the balance laws apply irrespective of the conventional second law being
obeyed or not. At the same time, we are interested in formulating models which are
hyperelastic and hyperdissipative in ensemble average sense (or, for long time aver-
ages), thereby extending such class beyond the deterministic media fully obeying
the second law [5, 6].

2 Random Fields

One of the key problems in constitutive modeling in continuum mechanics concerns
the finding of a solution of (6), i.e. determining a constitutive relation linking ¥
with V. The most effective and popular approach is based on a thermodynamic
orthogonality [1] which also provides a stepping-stone to more complex models in
continuum thermodynamics. To this end, take ¢ as a functional of V, and obtain Y
as its gradient in the velocity space:

Y =AVyp >0, L= (V-Vyg)'¢. (12)
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The meaning of (11) is that, provided the dissipative force Y is prescribed, the actual
velocity maximizes the dissipation rate /¥ = Y - V subject to the side condition
dp(V)=Y. .V =19 >0,
Replacing the deterministic picture by a stochastic one, the internal energy density
u and the entropy s are real-valued random fields over the material (2) and time (7')
domains:
U:I9xTx2—>R, s:9xTx82—>R, (13)

where we consider the heat conduction problem in a rigid (undeformable) conductor.

The randomness disappears as the time and/or spatial scales become large: the field

quantities simplify to deterministic functions of a homogeneous continuum.
Considering, say, the thermal dissipation in (10), we have

d)th 9 » W) = —(qk 9 =—4q- 0 . (

Given the stochastic violations of second law,

bin(q, w) = G(q) + M(q, w), (15)

which, for the linear Fourier-type conductivity, becomes more explicit with
. 1 . 1
G(q) = g i%iidi, M(q, ») = 5611'//11‘]' (w)q;. (16)

Here G(g) involves the thermal conductivity k;ij which is positive definite, and
M(q, w) = dM(q, w)/dt, with M being the martingale modeling the random fluc-
tuations according to (2). Clearly, the randomness residing in M (d, @) allows the
total thermal conductivity «;; + .#;; to become negative since .#;; is not required
to be positive definite, thus signifying the violations of the second law. More specifi-
cally, #;; : 7 — ¥ (where ¥ is areal vector space) is a second-order rank 2 tensor
random field (e.g. [7, 8])

M D x 2 — V. (17)

In view of the Gaussian character of nanoscale fluctuations, .#;; is a Gaussian tensor
random field.

The same approach as in (15)—(17) may be used to introduce fluctuations in
mechanical dissipation ¢, (d, ) having spontaneously negative viscous responses.
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3 Thermoviscous Fluid with a Thermal Relaxation Time

The internal energy u is taken as a function of the strain ¢;; and the entropy s:
u=u(g;j,s). (18)
Switching from u to ¢ = u — 6s by a Legendre transformation, we find
Y =v(e,0) and s =s5(0). (19)
The first fundamental law (energy balance) is
ol = Uijdij —d4isi» (20

where the first term on the right is the specific power of deformation. The free energy
function ¥ (taken per unit mass), assuming no elastic response but the presence of a
relaxation time £, is

c Cr
L2 ZEi9d, 9 =0—6,. 1)

ij,0) = — pso? —
pY(€ij, 0) = po — pso 2, %

Here v and s are the free energy and entropy in the reference state, u is the shear
elastic modulus, Cg is the specific heat at constant strain, and ¢ = 6 — 6, is the
temperature difference from the reference temperature 6. The last term on the right
hand side is taken by analogy to the thermoelasticity with two relaxation times in
the next section, so as to retain the Fourier-type heat conduction, but to obey the
hyperbolic (finite speed) heat propagation. Also note that i does not depend on
the strain g;;, so the resulting fluid does not poses any elasticity. In this section, an
overdot denotes a material derivative 7/ 2t for absolute tensors (like the temperature
gradient and deformation rate) and an Oldroyd derivative for tensor densities (like
the heat flux and stress tensor).

The free energy being a potential for quasi-conservative stresses ol(j‘” and the
entropy s, we find

ij T
de;; (22)

The relation (22), is immediately identified as the constitutive equation for entropy.
In view of the fluid’s incompressibility, o (Q) is taken as the deviatoric part of the
quasi-conservative stress tensor, the corresponding spherical part being zero. As
always in TIV [1],

(q) d ( d
oy =0y +oy, B =8, (23)
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(jd) is the dissipative stress. Also, ﬂi(f)
and ,Bi(;l) is the internal dissipative stress, the first being conjugate to the internal
variable «;; and the second one to its rate ¢;;. The fluid under consideration has no
elastic response, so «;; = 0.

The above Ansatz leads to the Clausius—Duhem inequality in the form

where o, is the internal quasi-conservative stress

*(ir) _ qi0

00 T +0d; > 0, (24)

where ai(id) is the dissipative stress, which is now equal to the total stress o;; in view

of (22); and (23);. As discussed in the first two sections, the inequality (24) may
spontaneously be violated.
Consistent with (10), we take the specific (per unit mass) dissipation ¢ as:

[ 97i
pOs " = ¢ (—7, dij) : (25)

Clearly, the inequality (24) may be stated in terms of the scalar product (6): Y - V > 0.
Next, for the entropy production rate we adopt the dissipation functional in the
space of velocity V = (—071V#, d):

. K
pOs* ") = pp(V) = g 0vi 0 +Hdijdij, (26)

where k is the Fourier conductivity and H is the fluid viscosity. This is seen as a special
case of (10) with both processes being effectively compound [1]. By thermodynamic
orthogonality, (26) yields

1 9
—qi = —p—¢ =0,
2" 90, 27)
g1 9
O',j—O'ij —Epg”— ij-

Collecting the three parts of the constitutive law: mechanical, Fourier law, and
entropy:

Qi = _Kesi )
Ui' = Hdl’
J J (28)
Cg .
s=— (9 +10),
Bo

which shows that, while the Fourier-type law holds, there is a relaxation effect
involved in the entropy. As a result, there also are violations according to [3], while
the heat is conducted with finite speeds — i.e. not infinite speeds as would be the
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case with #y = 0. In other words, instead of having a parabolic (diffusion) equa-
tion for temperature, we have (by application of the energy balance (20) and the
entropy-temperature relation (28)3)

ki = pCr (¥ + 107) . (29)

Here we have also used the approximation of small temperature fluctuations. In
effect, 8 (just like ¢) is governed by the telegraph (damped hyperbolic) Eq.(29),
whose limiting case (for o — 0) is the conventional (parabolic) heat conduction
equation.

4 Thermoelasticity with Two Relaxation Times

Conventional thermo-elastodynamics is hyperbolic in elastic response and parabolic
in heat conduction. The standard way to obtain a purely hyperbolic (and still linear)
thermo-elastodynamics is to replace the Fourier law by the Maxwell-Cattaneo law
[9]. However, a fluctuation theorem for the latter type of thermal response does not
(yet) exist and we need to work with a Fourier-type law. Thus, one may proceed by
using the theory of thermoelasticity with two relaxation times [10, 11]. While the
original derivation of that reference had used the free energy functional only, one
may proceed by using a different free energy functional along with a dissipation
functional. The approach is similar to that in the preceding section, although we take
the heat flux and its rate as the argument of ¢. First, we adopt the internal energy u
as a function of the infinitesimal elastic strain ¢;; and the entropy s

u=u(ej,s), (30)

along with the (specific, per unit mass) dissipation functional ¢ as a function of the
strain rate &;;, the heat flux, and its rate

o =@ (Eij, qi). (31)
By the Legendre transformation ¢ = u — 6s, we now obtain
V=1 — s — 65, (32)

whereas by the postulate of hyperelasticity for quasi-conservative stress and the
entropy

@D — 577 and s = —p—0o. 33
0jj pae,-,- and s P34 (33)

Noting the balance of energy (20), (33) becomes
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d
pos = o, ¢ — g (34)

which, in view of (1), yields the Clausius—Duhem in standard form:

o 4ifi
pOs*) = 0 + O'(d) ij = 0. (35)

Now, adopt the free energy (with ¥ = 6 — 6 as before)

Cg ., Cg
W W(EU,Q) 81/ ljk18k1+Mlj€ljl9 — ——l‘ol?l? (36)
260 0o
so that
) —C M9 and s =—-M Cep+ Coni . 37
0;; = Cijuén +Mjjv and s = —M;je;j + % +9—0t0 37

Also, adopt the dissipation function (this time in the space of heat flux and strain
rate)

: *(ir Aij ER
¢ (qi. &) = pOs™" = 71615611' + 1 M;jéi;0, (38)
so that, by treating both processes as compound [1],

0, 10¢ )\ij () 0 R
2 7 Il d o = — =tM::V. 39
0 28qi 0 4 ane o d¢ij R &

On account of (23), we obtain
Oij :U(q)+0 _Cljk18k1+Mlj(ﬂ+tllé)’

90S = QQMUSU + Crp (v + l()l?) (40)
qgi = _kljﬁaj )

where, again (recalling Sect.2), k;; + .#;; is a random field of the Fourier thermal
conductivity in space-time with spontaneous violations of positive-definiteness prop-
erty. Note that k;; in (40)3 equals «;; + .#;;, anisotropy being possible because we
are now dealing with a solid, not fluid. It is well known that, (40) lead to coupled
and hyperbolic-type equations for the (u;, ¥) pair

(Cijiaursr),j —piti + [Mi; (9 + 1, = —b;, @1
(kij0,;),i —Ce(® +tg0) + 6o M;ju;, j = —r.
Observe:

(i) The constitutive relations (40) are the same as those of the Green-Lindsay
theory, but their derivation is based on treating the Fourier-type heat conduction
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as apurely dissipative process, and thus as a process described by the dissipation
function rather than by the free energy function in [10, 11].

(i) The inequalities ¢; > 7, > 0 have to hold. By setting #; = #, = 0, we obtain the
classical thermoelasticity. Also, one may only consider the limit 7y — 0, so that
(41), reduces to the conventional heat conduction equation.

(iii) Transient phenomena (such as wavefronts), if occurring on very short length
scales, are expected to deviate from the hyperbolic thermo-elastodynamics
obeying the second law [11].

5 Violations of Second Law in Poromechanics

The preceding considerations apply to physics of porous media, in the sense that:

e the nanoscale dimensions of the porous channel network are nanoscale;

e the viscous fluid flow (Poiseuille and Couette type) in the channels violates the
second law;

e the temperature field in the fluid occupying the channels violates the second law.

As a reference, in classical poromechanics obeying the second law [12], the
Clausius—Duhem inequality is written in terms of irreversible entropy production
§*0n) (= ps*U")) taking the form

050 = 0S;5" + 0810 + 0Siieterom = 0. (42)

(skeleton) —

where three possible contributions to dissipation are identified:

1. thermal dissipation: S;% ),

*(ir)

2. fluid dissipation: S ;4,3
*(ir)

3. skeleton dissipation: S;j;om)-

Conventionally, each of these contributions to dissipation is assumed to satisfy its
own second law inequality. It now follows that, in case of poromechanics describing
phenomena on very small space and time scales, the spontaneous violations of the
second law can occur in either one or two or three processes, and these can be modeled
according to what has been presented in the preceding sections.

6 Conclusions

The recent works [4, 13, 14] investigated extensions of continuum thermomechan-
ics to account for spontaneous, random violations of the second law that become
relevant on very small length and/or time scales... although in cholesteric liquids the
time of such a violation may be up to 3s. As dictated by modern statistical physics,



Continuum Physics with Violations of the Second Law of Thermodynamics 191

the second law is then to be replaced by the fluctuation theorem. The particular phe-
nomena and aspects included: Newtonian fluids with either parabolic or hyperbolic
heat conduction, random field models including spatial fractal and Hurst effects,
acceleration wavefront of nanoscale thickness, Lyapunov function for the heat field,
random fluctuations of the microrotation field in a viscous micropolar fluid, Couette
flow, and permeability of a medium with nanoscale pores.

This paper outlines possible extensions of stochastic continuum thermomechanics
in coupled field problems: (i) thermoviscous fluids, (ii) thermoelastic solids, and (iii)
poromechanics with dissipation within the skeleton, the fluid, and the temperature
field. Special attention is paid to the fact that one can develop hyperbolic theories
(i.e. free of the paradox of infinite speeds of signal transmission) while working with
the Fourier-type heat conduction for which the fluctuation theorem has already been
developed.

There are various directions in which this research may further be developed,
of which we list two. On one hand, the details and extensions of what has been
considered here need to be worked. On the other hand, one can start from the so-called
Crooks Fluctuation Theorem (CFT) in statistical mechanics [15, 16] that relates the
work done on a system during a non-equilibrium transformation to the free energy
difference between the final and the initial state of the transformation. In general,
the CFT says that, if the dynamics of the system satisfies microscopic reversibility,
then the forward space-time trajectory I' (7) is exponentially more likely than the
time-reversed trajectory I (¢), given that it produces entropy s*@",

P [1: (t)] — eg(w(r)‘ (43)
P[F®)

Here o) (I') is the microscopic version of AS) = AS — Q/6 = (W — AW) /6
written for the macroscopic system, whereby we also recall (1), the first law of ther-
modynamics, and the classical relation ¥ = U — S6, see [17]. The latter reference
reviews this and many related issues as well as the fact that the CFT implies the
so-called Jarzynski equality [18, 19]

<67W/k59> e*AlI//kBO’ (44)

where kg is the Boltzmann constant and 6 is the initial temperature of the system

in the reservoir. One step in the direction of extending the phenomenological non-
equilibrium thermodynamics to account for that equality has been taken in [20].
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