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Abstract The present chapter concerns rigorous homogenization of a Hencky-type
discrete beam model, which is useful for the numerical study of complex fibrous
systems as pantographic sheets as well as woven fabrics. Γ -convergence of the
discrete model towards the inextensible Euler’s beam model is proven and the result
is established for placements in Rd in large deformation regime.

1 Introduction

Rigorous results on homogenization are very important for today’s theoretical and
applied mechanics. This is especially true for the numerical investigation of very
complex systems, as even with today’s computational tools they may require a long
computation time, and thus the a priori reliability of the results is of course desirable.
The investigation of metamaterials (see [1] for a review of recent results) is among
the topical research directions in which one often deals with very expensive numer-
ical simulations, as the implementation of the desired (often exotic) properties at
the macro-scale are usually realized by means of a very complex microstructure [2,
3]. The theory of microstructured/micromorphic continua is by now well developed,
with several sound and interesting results (see e.g. [4, 5] as general references on
Cosserat continua, [6–8] for related results and [9–16] for different kinds of applica-
tions ofmicrostructuredmodels). Still, it is necessary to develop suitable convergence
arguments if onewants to solidly rely on the numerical simulations based on the solu-
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tion of the simplified equations coming from the micromorphic/generalized contin-
uum model used for the description of the metamaterial.

In the present chapter we focus on special micro-structured systems which can be
described as discrete systems. In this case, the reliability of the homogenization has
to be intended in two ways:

1. Real world micro-structured systems with suitably small characteristic lengths
have to be well described by the homogenized continuum model;

2. The numerical simulation of the equations coming from the homogenized model
(that are usually way simpler than the ones coming from the discrete model) has
to converge in a suitable sense.

In principle, there is no reason to believe that the ordinary assumptions made for
classical (Cauchy) continuum models are suitable for models describing objects that
are so different from the phenomenology originally motivating them. Indeed, very
often generalized continuum models are called for, and in particular higher gradient
theories (see e.g. [17–22]) are being successfully employed in a number of cases
for the homogenization of systems with complex geometry at the micro-scale [23–
27]. In the present contribution we address this kind of question for Euler’s beam
model (also known as Elastica), which is the elementary constituent for a large class
of complex fibrous systems, including the promising case of pantographic sheets
(see [28–31] for theoretical and numerical results and [32] for experimental ones in
this direction). Specifically, we want to provide a rigorous justification for the dis-
crete approximation by Heinrich Hencky (1885–1951) [33] of Euler’s beam model
in large deformation, which is becoming increasingly topical in today’s research in
structural and computational mechanics [34–36] and metamaterials [37]. In particu-
lar, we address here the ideal case in which the beam is perfectly inextensible, while
future investigation will be devoted to the more general extensible case.

2 Convergence of Measure Functionals

Before setting the mechanical problem we are interested in, we need to recall some
(well known) mathematical tools for describing the placement and the energy of
the discrete beam model and define a suitable convergence for the sequence of the
discrete energy functionals.

Let (C[0, 1])d be the space of vector valued continuous functions on [0, 1]
endowed with the uniform norm ‖ϕ‖∞ := sup{‖ϕ(t)‖ : t ∈ [0, 1]} and (M [0, 1])d
the set of vector valued bounded measures on [0, 1] endowed with the norm

‖μ‖M := sup{〈μ, ϕ〉 : ϕ ∈ (C[0, 1])d , ‖ϕ‖∞ = 1}

where 〈., .〉 stands for the duality bracket between (M [0, 1])d and (C[0, 1])d . Recall
that if a sequence of vector valued bounded measures (μn) satisfies supn ‖μn‖M <
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+∞ then there exists a vector valued bounded measure μ and a subsequence (μnk )

which converges to μ with respect to the weak∗−topology of (M ([0, 1])d i.e.

lim
k→∞〈μnk , ϕ〉 = 〈μ, ϕ〉

for every ϕ ∈ (C([0, 1])d .
Let (Fn) and F be functionals on (M [0, 1])d with values in R ∪ {+∞}. We say

that Fn Γ − converges to F if the following holds [38]:

i. Upper bound inequality. For everyμ ∈ (M ([0, 1])d , there exists a sequence (μn)

in (M [0, 1])d weak∗− converging to μ for which

lim sup
n→∞

Fn(μn) ≤ F(μ).

ii. Lower bound inequality. For every μ ∈ (M [0, 1])d and every sequence (μn) in
(M [0, 1])d) weak∗−converging to μ,

lim inf
n→∞ Fn(μn) ≥ F(μ).

Such aΓ -convergence result is efficient when the following property of the sequence
(Fn) holds:

iii. Relative compactness. For every sequence (μn) in (M [0, 1])d

sup
n

Fn(μn) < +∞ =⇒ sup
n

‖μn‖M < +∞.

Informally speaking, relative compactness ensures that controlling the deformation
energy is enough to control, with the help of boundary conditions, the norm of the
measure employed for the description of the current configuration of the discrete
model.

3 Micro-Model for Non-Linear Beams

3.1 Discrete Configurations and Operators

Let δt denote the Dirac measure at the point t ∈ [0, 1]. The reference configuration
of the discrete micro-system is constituted by n + 1 nodes placed at the points i

n ,
i = 0, . . . , n. Therefore it can be identified with a measure concentrated at the points
i
n where i = 0, 1, ..., n, more precisely with the positive Radon measure on [0, 1]



4 J.-J. Alibert et al.

Fig. 1 Graphical representation of Hencky discrete model consisting of inextensible bars and
rotational springs. In the graph θi := θn(u)( i

n )

νn := 1

n

n∑

i=0

δ i
n

(1)

We assume that the reference (unstressed) configuration of the beam is straight, has
unitary length and lays parallel to e1, i.e. the first vector of the canonical base of
R

d . The current configuration of the beam can be described by a vector bounded
measure μ on [0, 1] of the form μ(dt) := u(t)νn(dt) where the placement function
u : [0, 1] → Rd is defined νn-almost everywhere i.e. at the points i

n where i =
0, 1, . . . , n (see Fig. 1 for a graphical representation of the discrete model).

In what follows, we will use the following notations:

ν+
n := 1

n

n−1∑

i=0

δ i
n
, ν−

n := 1

n

n∑

i=1

δ i
n
, νn := 1

n

n−1∑

i=1

δ i
n
, (2)

D+
n u(t) := n

(
u(t + 1

n ) − u(t)
)
, D−

n u(t) := n
(
u(t) − u(t − 1

n )
)
, (3)

D2
nu := n(D+

n u − D−
n u). (4)

Note that, if u is a placement function, D+
n u is defined ν+

n −almost everywhere, D−
n u

is defined ν−
n −almost everywhere and D2

nu is defined νn−almost everywhere.

3.2 Left Hand Side Clamped Inextensible Beam

A placement function u is said to be admissible for a left hand side clamped beam if
the following condition holds:

u(0) = 0 and D+
n u(0) = e1. (5)
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It is said to be admissible for an inextensible beam if the following condition holds:
‖u( i+1

n ) − u( i
n )‖ = 1

n . for i = 0, 1, ..., n − 1. This condition can be written

‖D+
n u‖ = 1 ν+

n − almost everywhere (6)

3.3 Deformation Energy Associated with Three Points
Interactions

At each node i
n , for i = 1, . . . , n−1, a rotational spring is placed, whose deformation

energy depends on the angle θn(u)( i
n ) ∈ (−π,+π) formed by the vectors u( i+1

n ) −
u( i

n ) and u( i
n )− u( i−1

n ). This energy must vanish when the angle is zero. We assume,
following [39, 40], that this energy is proportional to 1 − cos(θn(u)( i

n )). Hence,
when the discrete system is in the configuration described by the bounded measure
μ(dt) = u(t)νn(dt), its energy is given by

E3
n(μ) := 1

n

n−1∑

i=1

n2(1 − cos θn(u)( i
n )) where cos θn(u)( i

n ) = D+
n u( i

n ) · D−
n u( i

n )

‖D+
n u( i

n )‖‖D−
n u( i

n )‖

or, equivalently,

E3
n(μ) = 1

2

∫ ∥∥∥∥n
(

D+
n u(t)

‖D+
n u(t)‖ − D−

n u(t)

‖D−
n u(t)‖

)∥∥∥∥
2

νn(dt).

The above energy is well defined if the placement function u is such that D+
n u = 0

ν+
n −almost everywhere. This is clearly the case when u is admissible for an inex-
tensible beam. In this case, the discrete energy has the reduced form

E3
n(μ) = 1

2

∫
‖D2

nu(t)‖2 νn(dt). (7)

4 From Micro to Macro Model: Γ -Convergence Result

This section is devoted to left hand side clamped inextensible beams.

4.1 Functionals Associated to the Micro Model

Let Mn denote the set of those vector bounded measures of the form μ(dt) =
u(t)νn(dt) ∈ (M [0, 1])d such that
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u(0) = 0, D+
n u(0) = e1 and ‖D+

n u‖ = 1 ν+
n − almost everywhere. (8)

The total energy functional (associated to the discrete model) is given by

En(μ) :=
{

1
2

∫ ‖D2
nu(t)‖2 νn(dt) ifμ(dt) = u(t)νn(dt) ∈ Mn,

+∞ otherwise.
(9)

4.2 Functional Associated to the Macro Model

Let H 2(0, 1) denote the usual Sobolev space. Relying on well-known embedding
theorems, any function u ∈ H 2(0, 1) will be considered as a C1[0, 1]-function. Let
M be the set of those vector bounded measures of the form μ(dt) = u(t)dt ∈
(M [0, 1])d with u ∈ (H 2((0, 1))d and such that

u(0) = 0, u′(0) = e1 and ‖u′(t)‖ = 1 for every t ∈ [0, 1]. (10)

The total energy functional (associated to the continuous model) is given by

E(μ) :=
{

1
2

∫ 1
0 ‖u′′(t)‖2 dt if μ(dt) = u(t)dt ∈ M ,

+∞ otherwise.
(11)

4.3 Γ−Convergence result

Our main result is the following:

Theorem 1 The sequence (En) satisfies the relative compactness property and Γ -
converges to the functional E.

If we compare Theorem 4.1 with the results proved in [41], the difficulty consists
in the fact that the beam is inextensible, which corresponds to a nonlinear constraint.

5 Proof of the Main Result

5.1 Approximation of a Sequence with Bounded Energy

Let (μn) be a sequence in (M (0, 1])d with bounded energy. This means that there
exists some positive real number M such that
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μn(dt) = un(t)νn(dt) ∈ Mn and
∫

‖D2
nun(t)‖2 νn(dt) ≤ M. (12)

for every integer n. Let us define the sequence (μn) by setting μn(dt) = un(t)dt ,
with ūn piecewise C2 in (0, 1) satisfying:

un(0) = 0 , u′
n(0) = e1

u′′
n(t) = D2un( i

n ) as soon as t ∈ ( i
n − 1

2n ,
i
n + 1

2n ).

Notice that un ∈ (H 2(0, 1))d but in general un /∈ M because ‖u′
n(t)‖ is not nec-

essarily equal to 1. The following result will be used to establish the lower bound
inequality.

Lemma 1 Let (μn) be a sequence in (M (0, 1])d with bounded energy. Then, the
sequence (un) defined above is bounded with respect to the usual H 2−norm and
satisfies the following properties.

∫ 1

0
‖u′′

n(t)‖2 dt =
∫

‖D2
nun(t)‖2 νn(dt) for every n, (13)

lim
n→∞ ‖u′

n(t)‖ = 1 for every t ∈ [0, 1], (14)

μn − μn converges to 0 with respect to the weak∗topology. (15)

Proof One has un(0) = 0, u′
n(0) = e1 and

∫ 1

0
‖u′′

n(t)‖2 dt =
n−1∑

i=1

∫ i
n + 1

2n

i
n − 1

2n

‖u′′
n(t)‖2dt =

∫
‖D2

nun(t)‖2νn(dt) ≤ M

which implies that the sequence (un) is bounded with respect to the usual H 2− norm.
Hence, the two sequences (u′

n) and (un) are equicontinuous on [0, 1] and uniformly
bounded on [0, 1]. More precisely, for any s, t ∈ [0, 1],

‖u′
n(t) − u′

n(s)‖ ≤ √
M

√|t − s| and ‖u′
n(t)‖ ≤ 1 + √

M, (16)

‖un(t) − un(s)‖ ≤ (1 + √
M)|t − s| and ‖un(t)‖ ≤ 1 + √

M . (17)

On the other hand, a first computation gives that for any i = 1, ..., n − 1,

u′
n(

i
n + 1

2n ) = e1 +
∫ i

n + 1
2n

0
u′′
n(t) dt = e1 + 1

n

i∑

k=1

D2
nun(

k
n ) = D+

n un(
i
n ).

Since ‖D+
n un‖ = 1 ν+

n −almost everywhere and the sequence (u′
n) is equicontinuous

on [0, 1], we obtain (14).
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A second computation gives un(1) = un(1) and

un( i
n ) = i

n e1 +
∫ i

n

0
( i
n − s)u′′

n(s)ds

= i
n e1 + 1

n

i−1∑

k=1

(
n

∫ k
n + 1

2n

k
n − 1

2n

( i
n − s) ds

)
D2

nun(
k
n )+

( ∫ i
n

i
n − 1

2n

( i
n − s) ds

)
D2

nun(
i
n )

= i
n e1 + 1

n

i−1∑

k=1

(
i−k
n

)
D2

nun(
k
n ) + 1

8n2
D2

nun(
i
n )

= un( i
n ) + 1

8n2
D2

nun(
i
n )

for every i = 1, ..., n − 1. As a consequence, the inequality ‖un − un‖ ≤
√
M

8n holds
νn−almost everywhere.

Let ϕ ∈ C([0, 1])2. A third computation gives

|〈μn − μn, ϕ〉| =
∣∣∣∣∣∣

n∑

i=1

∫ i
n

i−1
n

(
ϕ(t) · un(t) − ϕ( i

n ) · un( i
n )

)
dt

∣∣∣∣∣∣

≤
n∑

i=1

∫ i
n

i−1
n

‖ϕ(t)‖‖un(t) − un( i
n )‖ dt +

n∑

i=1

∫ i
n

i−1
n

‖ϕ(t) − ϕ( i
n )‖‖un( i

n )‖ dt

+
∫

‖ϕ(t)‖‖un(t) − un(t)‖νn(dt)

≤ 1 + √
M

n

∫ 1

0
‖ϕ(t)‖ dt + (1 + √

M)

n∑

i=1

∫ i
n

i−1
n

‖ϕ(t) − ϕ( i
n )‖ dt

+
√
M

8n

∫
‖ϕ(t)‖νn(dt).

Since

lim
n→∞

n∑

i=1

∫ i
n

i−1
n

‖ϕ(t) − ϕ( i
n )‖ dt = 0 and lim

n→∞

∫
‖ϕ(t)‖ νn(dt) =

∫ 1

0
‖ϕ(t)‖ dt.

we conclude that the sequence (μn − μn) converges to 0 with respect to the
weak∗−topology of (M [0, 1])d . The proof is complete.

5.2 The Proof of Theorem 4.1

We divide this proof in three steps.
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Step 1. (Relative compactness). Let μ(dt) := u(t)νn(dt) ∈ Mn . Since ‖u(0)‖ = 0
and ‖D+

n u‖ = 1 ν+
n − almost everywhere, one has ‖u‖ ≤ 1 νn−almost everywhere,

hence

‖μ‖M =
∫

‖u(t)‖ νn(dt) ≤ 1.

Step 2. (Upper bound inequality). Letμ(dt) := u(t)dt ∈ M . Since u ∈ (C1[0, 1])d ,
we define μn(dt) = un(t)νn(dt) by setting

un(0) = 0 and un( i
n ) = 1

n

i−1∑

k=0

u′( k
n ) (for i = 1, ..., n).

Note that D+
n un(

i
n ) = u′( i

n ). Then D+
n un(0) = e1 and ‖D+

n un‖ = 1 ν+
n -almost

everywhere. Hence one has μn ∈ Mn and

D2
nun(

i
n ) = n

(
D+

n un(
i
n ) − D+

n un(
i−1
n )

) = n
(
u′( i

n ) − u′( i−1
n )

) = n
∫ i

n

i−1
n

u′′(t) dt

then, using Jensen inequality we obtain

lim sup
n→∞

∫
‖D2

nun‖2dνn = lim sup
n→∞

1

n

n−1∑

k=1

∥∥∥∥∥n
∫ i

n

i−1
n

u′′(t) dt

∥∥∥∥∥

2

≤
∫ 1

0
‖u′′(t)‖2 dt.

Let ϕ ∈ (C[0, 1])d . Since u′ is continuous on [0, 1] we obtain

lim
n→∞〈μn, ϕ〉 := lim

n→∞

∫
ϕ(t) · un(t) νn(dt)

= lim
n→∞

1

n

n∑

i=1

ϕ( i
n )·

(
1

n

i−1∑

k=0

u′( k
n )

)

= lim
n→∞

1

n

n∑

i=1

ϕ( i
n )·

(
u( i

n ) +
i−1∑

k=0

∫ k+1
n

k
n

(
u′( k

n ) − u′(t)
)
dt

)

= lim
n→∞

∫
ϕ(t) · u(t)νn(dt)

Hence, Riemann’s Theorem implies that the sequence (μn) converges to μ with
respect to the weak∗−topology of (M [0, 1])d .
Step 3. (Lower bound inequality). Let μ,μn ∈ (M [0, 1])d such that (μn) converges
to μ with respect to the weak∗−topology of (M [0, 1])d . Without loss of generality
we may assume that μn(dt) = un(t)νn(dt) ∈ Mn and there exists a nonnegative
real number M such that for every n
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∫
‖D2

nun(t)‖2νn(dt) ≤ M.

Let (μn) be the sequence of measures defined in Sect. 5.1. By Lemma 5.1, this
sequence converges to μ with respect to the weak∗−topology of (M [0, 1])d . Since
μn(dt) = un(t)dt and the sequence (un) is bounded with respect to the usual
H 2−norm, there exists u ∈ (H 2(0, 1])d such that μ(dt) = u(t)dt and

lim inf
n→∞

∫
‖D2

nun(t)‖2νn(dt) = lim inf
n→∞

∫ 1

0
‖u′′

n(t)‖2dt ≥
∫ 1

0
‖u′′(t)‖2dt.

Since the space H 2(0, 1) is compactly embedded on C1[0, 1], the sequence (u′
n)

converges to (u′) with respect to the uniform norm over [0, 1]. Hence, using Lemma
5.1, We obtain

‖u′(t)‖ = 1 for every t ∈ [0, 1]

then u ∈ M . The proof is complete.

6 Conclusions

Weproved aΓ -convergence result for aHencky-type discretization of an inextensible
Euler beam in large deformation regime. Future investigations should generalize the
result (in a suitable form) for extensible beammodels; moreover, it will be interesting
to extend the convergence argument to Generalized Beam Models [42–45] and also
to the dynamics of the discrete system, which should of course take into account
the possibility of various kinds of dynamic instabilities [46–48]. Finally, it has to be
remarked that Hencky-type discretization forElastica has proven to be very effective,
and is in fact used by several computational software packages (as for instance by
MATLAB�). The present result gives a sound mathematical argument which this
kind of numerical evidence can be based on.
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